
История и перспективы
языка Оберон

A History and Perspective of the
Programming Language Oberon

Prof. Niklaus Wirth
Проф. Никлаус Вирт

Москва. Политехнический музей
21 сентября 2005 г.

Modula-2 and Oberon
Niklaus Wirth

Structured Programming:Pascal (1970)
Modular Programming: Modula-2 (1979)

The Language
Implementations

Object-oriented Programming: Oberon (1988)
The Language
Implementations

Programming in 1975

• Main Frame Computers
• Use over terminals and low-speed lines
• Time-sharing
• Fortran for scientific applications
• Cobol for business applications
• IBM tried to join the two fields through

- the 360 family of computers
- the language PL/1

• My 1st sabbatical at Xerox 1976/77

System Programming and HL-Languages

• Available: Pascal, C, PL/1, Lisp, …
• Introducing structures and data types
• Large systems require programming in teams
• Decomposition of system into modules

– Precise definition of interfaces by team
– Implementation of components by members

• Independent compilation Separate comp.
– Guarantees type checking over modules
– Mesa (Xerox PARC)

Modula-2 (1979)

• Modules
• Procedure types
• Low-level facilities
• The type CARDINAL
• What was left out

– Concurrency
– Exception handling
– Storage management

Modules
Information hiding, encapsulation

module M0;
export random;
var x: integer;
procedure random(): integer;
begin x := (x*a + b) mod c; return x
end random;

begin x := 0
end M0;

Modules, export and import

• Local (possibly nested) modules
– with export and import lists in heading

• Global modules
– Separate texts for definition of interface

and implementation
– Definition part replaces export list
– Separate compilation. Symbol files
– Module import: import M0, M1
– Qualified import: from M0 import x, y, z

Separate Compilation
M1 imports M0

M0.def M0.mod M1.def M1.mod

compile compile compile compile

M0.obj M1.objM0.sym M1.sym

load and link M1

Procedure types

Algol, Pascal: u := integral(fct, a, b)
Modula: f := fct u := integral(f, a, b)

var f: procedure (x: real): real

• Type safety
• Makes up-calls possible
• Important for, e.g., operating systems

Low-level Facilities

• Type transfer functions
i := integer(x) x := real(i)
interpretation of real as integer depends

on representation
• Type Address (address arithmetic)
• Misuse of variant record structure

i: integer x: real

w: bitsetz: complex

The type Cardinal

• integer: -215 ≤ k < 215

• cardinal: 0 ≤ k < 216

• Larger range of addresses
• Assume x: cardinal

while x ≥ 0 do S; x := x-1 end
while x > 0 do x := x-1; S end

• Different interpretation of division
(-x)/y = -(x/y) q×y + r = x, 0 ≤ r < y
(-5)/2 = -2 (-5)/2 = -3 (r = +1)

What was left out?
• Concurrency

– Coroutine, transfer
– Together with synchronization primitives

packaged inside a utility module
• Exception handling

– Controlled exit from procedure and/or
module, deallocation of stack frames

• Storage management (garbage collection)
– Too many “unsafe features”

Implementation of Modula

1977 first notes about the language
1978 7-pass compiler for PDP-11 (K. van Le)

64K byte memory, 2M byte disc
1979 5-pass compiler (U. Ammann)

ported to Workstation Lilith (128K byte)
1981 single-pass compiler on Lilith (N. Wirth)

entier operating system, compiler, editor,
Ethernet, servers etc. written in a single
language without using any assembler

Oberon, Language and System
• Object-oriented programming
• My 2nd sabbatical at Xerox, 1984/85
• The Cedar System

– Mesa Modula
– Cedar Oberon

• Return to the Essentials!
Algol Algol W Pascal Modula Oberon

• entier operating system, compiler, editor,
Ethernet, servers etc. written in a single
language without using any assembler

• Better system programming through use of a
simpler, structured language

• More efficient system development through
use of a flexible, interactive environment

• Oberon System on workstation Ceres (1989)
– Non-hierarchical file system
– Non-overlapping viewer system (windows)
– Single process, single language, single user

system
– Fast compiler, flexible document editor
– 200K bytes, compilation in 40s
– Allows systematic teaching of the fundamentals

The Language Oberon (1988)

• Features omitted from Modula:
– Variant records
– Enumeration types
– Subrange types
– Set types (single type set)
– Qualified import
– Low-level facilities (type transfer functions)
– Merging definition and implementation texts

Separate compilation
M1 imports M0

M0.mod M1.mod

compile compile

M0.obj M1.objM0.sym M1.sym

load and link M1

Features added to Modula

• Type inclusion (5 arithmetic types)
longreal ⊇ real ⊇ longint ⊇ integer ⊇ shortint
k: integer; x: real; x := k; k := x; k := entier(x)

• Type extension (inheritance)
T0 = record x, y: integer end
T1 = record (T0) t: Text end

T0 T1x x
y a T1 is also a T0y

t

Object-orientation and
inhomogeneous data structures

a tree

Methods = bound procedures

type figure = pointer to record
x, y, w, h: integer;
move: procedure (f: figure; dx, dy: integer);
draw: procedure (f: figure; mode: integer)

end ;
var f: figure;
… f.x := 48; … f.move(f, 10, 10) …

f qualifies method move
f designates object moved

Implementations

• First ideas in early 1985
• Development of Workstation Ceres-1
• First compiler devel. on Lilith in Modula
• Compiler completed and ported to Ceres,

and Language Report published in 1988
• Implementation of Oberon System by

Wirth and Gutknecht 1986-88
• Entire system programmed exclusively in

Oberon, by 2 persons in less than 2 years

Porting Oberon

• Concentrated effort to port Oberon to
various platforms:

• Intel 80x86 (IBM PC)
• Motorola 680x0 (Apple Mac) M. Franz
• Sparc (Sun) J. Templ
• MIPS (Silicon Gr.) R. Crelier
• PowerPC (IBM) M. Brandis
• NS32x32 (National) N. Wirth

Why Oberon for Teaching?

• Oberon is the “natural” descendant of Pascal
• Adopts Pascal’s syntax, power, and style
• Clearly exhibits structure of program + data
• Implies 30 years of experience in structured

programming with a structured language
• Incorporates object-orientation
• Sound basis for effective implementation and

clean abstractions
• We have 15 years experience with Oberon

References

• www.Oberon.ethz.ch
• www.Oberon.ethz.ch/WirthPubl/
• www.Oberon.ethz.ch/books.html

http://www.oberon.ethz.ch/
http://www.oberon.ethz.ch/WirthPubl/
http://www.oberon.ethz.ch/books.html

	История и перспективыязыка Оберон
	Modula-2 and Oberon
	Programming in 1975
	System Programming and HL-Languages
	Modula-2 (1979)
	Modules
	Modules, export and import
	Separate Compilation
	Procedure types
	Low-level Facilities
	The type Cardinal
	What was left out?
	Implementation of Modula
	Oberon, Language and System
	The Language Oberon (1988)
	Separate compilation
	Features added to Modula
	Object-orientation andinhomogeneous data structures
	Methods = bound procedures
	Implementations
	Porting Oberon
	Why Oberon for Teaching?
	References

