Teaching Principles!
Which Principles?

Jirg Gutknecht
ETH Zdlrich
September 2005

On the Level of Teaching

Heaven

\ 4
Teaching
Principles

Earth

Four Principles

Stepwise refinement
Information hiding
Software composition
Programming model

Four Principles

Stepwise refinement
Information hiding
Software composition
Programming model

“With a new computer language,
one not only learns a new
vocabulary and grammar but one
opens oneself to an new world of
thought”

Niklaus Wirth

The Pascal Language Family

e Guiding Principle: ,Make it as simple as possible
but not simpler”

Language | New Feature |Concept
1970 | Pascal Pointer A&D
1980 | Modula Module Systems
1990 | Oberon Type Extension | OOP
2005 | Zonnon Activity Concurrency

e The Zonnon project has emerged from
MS Project 7/7+ initiative
http.//zonnon.ethz.ch

Spectrum of Programming

A

eActive Systems
eDistributed Systems

eSimulations
*GUIs
eInteractive Systems

Large Scale
Traditional
OO0P

*Operating Systems
*Embedded Systems

Zonnon
A

eAlgorithms &
Data Structures

Small Scale

A Simple A&D Zonnon Program

module Zeller;
procedure { public } getWeekDay; NO classes,

var . . no objects,
d, m, y, ¢, n: integer; . .
wd: array 7 of string; no inheritance,
begin .
readIn(d, m, y): no wrtugl methods,
c := vy div 100; no overriding,
y =y mod 100; m := 2; o static fields

m_
n := entier(2.62*m — 0.2)
+d+y+ydivd+cd
writeln(wd[n mod 7])
end getWeekDay;

iv 4 — 2*C

begin
wd[0] := "Sunday"; wd[1] := "Monday";
wd[2] := "Tuesday"; wd[3] := "Wednesday";
wd[4] := "Thursday"; wd[5] := "Friday";
wd[6] := "Saturday"
r

end Zelle

The Challenge of Concurrency

e Moore's Law
»Double performance each 1.5 years

e Achieved via

> Until now: # FLOPS
e 10 MHz = 100 MHz - 1 GHz - 3.2 GHz
* Power, Heat = Stop at ~ 3.5 GHz

»From now: Multi CPU cores
1 CPU—> 2CPU=> 8CPU >

e Challenge of exploiting multiple CPU
»Support needed from programming language

The Zonnon Programming
Model:
A Structured Approach to
Concurrency

Procedural Paradigm

e Directed at single CPU configurations

Caller Working Idle Working
| |

>{
Callee | Working | cPU

e The same paradigm used in different
cases

»Local procedure call
»Method call
»Remote procedure call

New Concept: Activities

e Procedure call as dialog

Caller Send parameters Receive result
Receive parameters Send result cPU2

» Activities as generalized procedures

Caller Send message Receive message

tepur
Callee : o |
Receive message Send message te

PU2

Scenario 1: Independent Actions

e activity A (..);
var ..
begin ..
end A;
e activity B (..);
var ..
begin ..
end B;
e begin { barrier }
new A(.); new B(.)
end

Example 1: Quicksort

e activity Sort (I, h: 1Integer)
var 1, jJ: integer;
begin { barrier }
.. (*partition array 1, J & 1, h¥)
ifT 1 < j then new Sort(l, jJ) end;
if 1 < h then new Sort(i, h) end
end Sort;
e (*start Quicksort¥*)
begin
new Sort(l, N)
end

Example 2: Active Objects

e type X = object
activity A (.);
.. (*intrinsic behavior¥®)
end A;
activity B (.);
.. (*intrinsic behavior¥®)
end B;
procedure new (..);
.. (*constructor¥*)
end new;
begin { barrier }
new A(.); new B(.)
end X;

Passive vs. Active

put item
get item

set time
get time @

Scenario 2: Object Dialogs

e type Y = object (*callee*™)
activity D (.): ..;
var t, u: T;
begin (*dialog¥*)
. return t; .. u = *;
end
end Y;
evar y: Y; d: Y.D; t, u: T;
begin (*caller¥™)
y = new Y;
d := new y.D; (ractive link*)
t :=dC); .o d); .
end

Example 1: World of Monkeys

The northern and southern monkeys have to eat and drink!
There is a small rope between the two rocks.
The rope can carry up to m>=1 monkeys,

Concurrent crossing in both direction is not possible
Note: There are some nasty hungry crocodiles below the rope

The Rope as Shared Resource

e module { shared } Rope; (*global view*)
type
Monkey = object; (*active¥*)
MonkeyMsg = (claim, release);
var cur, 1: integer;
(*number of monkeys on rope
> 0 South-North traversal
< 0 North-South traversal¥*)
activity MonkeyDialog (): MonkeyMsg;
begin
for 1 := 0 to 99 do new Monkey () end
end Rope;

Monkeys as Active Objects

e type Monkey = object
activity LiveOnTheRocks ();
var res: MonkeyMsg;
d: Rope.MonkeyDialog;
begin (*story of life*)
d := new Rope.MonkeyDialog;
loop
passivate(Random.Next()); (*eat/dr¥*)
res := d(MonkeyMsg.claim);
end
end LiveOnTheRocks;
begin { barrier }
new LiveOnTheRocks()
end Monkey;

10

The Monkey Dialog Activity

e activity MonkeyDialog (): MonkeyMsg;
var req: MonkeyMsg;
begin
loop
req := *; (*South-North request¥*)
——>await (0 <= cur) & (cur < m);
inc(cur); passivate(100);
dec(cur); return MonkeyMsg.release;
req := *; (*North-South request¥*)
await (0 >= cur) & (cur > -m);
dec(cur); passivate(100);
inc(cur); return MonkeyMsg.release
end
end MonkeyDialog;

Example 2: Next Meeting Time

Manager

proposal T

Manager
O

next avail t

Manager

11

The Coordinator

e module { shared } Coordinator;
type Manager = object; (*active¥*)
var T, i: integer;
activity ManagerDialog ();
var next: integer;
begin
loop
return T; t = *;
iTt>T then T := t end;
await T > t;

end
end ManagerDialog;
begin T := 0;
for 1 := 0 to 9 do new Manager() end

end Coordinator.

Managers as Active Objects

e type Manager = object
activity Check ;
var t: integer;
d: Coordinator.ManagerDialog;
bedi

egin
d := new Coordinator.ManagerDialog;
loo

P
t :=dQ;
(*check agenda and update t*)
d(t)
end
end
begin new Check()
end Manager;

Example 3: Frisbee Fun

Starting the Game

e module Game;

type Player = object; (*active*)
var i1: integer; p, q, last: Player;
begin

last := new Player(); q := last;

for 1 := 0 to 9 do
p := new Player ();
p.Init(q, Random.Next() mod 2);
q:==0p

end;

last.Init(q, 0)

end Game.

13

Player as Dual Activity Object

e type Player = object { shared }
FrisbeeMsg = (request, catch);
var nofFrisbees: iInteger;

d: Player.FrisbeeDialog;

procedure Init (q: Player; f: iInteger);

begin
d = new g.FrisbeeDialog;
nofFrisbees = T;
end Init;
activity Play O;
activity FrisbeeDialog (): FrisbeeMsg;
begin { barrier }
new Play O
end Player;

The Playing Activity

e activity Play Q;
var msg: FrisbeeMsg;
begin
d := new Player.FrisbeeDialog;
loop
await nofFrisbees # 0;
msg := d(); d(FrisbeeMsg.catch);
nofFrisbees = 0
end
end Play;

14

The Frisbee Dialog Activity

e activity FrisbeeDialog ();
var msg: FrisbeeMsg;
begin
loop
await nofFrisbees = 0;
return FrisbeeMsg.request;

msg 1= *;
nofFrisbees = 1
end

end FrisbeeDialog;

Example 4: Santa Claus

e Invented by John
Trono in ,,J. A. Trono.
A new exercise in
concurrency. SIGCSE
Bulletin, 1994*

e Discussed and solved
later by Ben-Ari with
Rendez-Vous (in
Ada95) and monitors
(in Java)

15

The Original Story

Santa Claus sleeps at the North pole until awakened by
either all of the nine reindeer, or by a group of three out
of ten elves. He performs one of two indivisible actions:

» If awakened by the group of reindeer, Santa
harnesses them to a sleigh, delivers toys, and finally
unharnesses the reindeer who then go on vacation.

» If awakened by a group of elves, Santa shows them
into his office, consults with them on toy R&D, and
finally shows them out so they can return to work
constructing toys.

A waiting group of reindeer must be served by Santa
before a waiting group of elves. Since Santa's time is
extremely valuable, marshalling the reindeer or elves
into a group must not be done by Santa.

Our Extension: Negotiation

Before joining, elves should be informed about
the expected waiting time and be given the
opportunity to withdraw

Dialog as formal syntax in EBNF

> Messages from callee to caller marked " 4 "

HandleElf = join (Negotiate | {reject).
Negotiate = [Jwait join].ldone |
lwait done.

16

The Model

Reindeer
Join\

deliver

consult
Ldone

JActive link®
(stateful)

ldone

Management Lwait
lreject

—_*._ldone
join™

done ;

Management as Active Server

e module { shared } Management;
type
EIfMsg = (Join, reject, delay, done);
ReindeerMsg = (join, done);
SantaMsg = (deliver, consult, done);
EIT = object; (*active*)
Reindeer = object; (*active¥™)
Santa = object;
var rO, r, R, e0, e, E: integer;
santa: Santa;
activity Work Q);
activity EIfDialog (): EIlfMsg;
activity ReindeerDialog (): ReindeerMsg;
begin { barrier }
new Work ()
end Management.

17

Manager as Active Server

e activity Work ;
var res: SantaMsg;
d: Santa.Dialog;
begin
d := new santa.Dialog;
loop
awvait (r > r0) & (e > e0);
it r > rO then
res := d(SantaMsg.deliver); inc(r0)
else
res := d(SantaMsg.consult); inc(e0)
end
end
end Work;

The EIf Handling Activity

e activity ElfDialog ();
var myGroup: integer; req: EIfMsg;

begin
loop req = *;
if (*too soon*) then return EIfMsg.reject
else
if e0 < e then
return EIfMsg.wait; req := *
end;

iT req = EIfMsg.join then
myGroup = e; iInc(E);
if E =3 then E := 0; inc(e) end;
await e0 > myGroup;
return EIfMsg.done

end

end
end
end ElfDialog;

18

Elves as Active Objects

e type EIT = object

activity Work O;
var res: EIfMsg; d: Manager.ElfDialog;
begin
d = new Manager.ElfDialog;
loop
passivate(Random._Next());
res := d(EIfMsg.join);
if res = ElIfMsg.wait then
if (Cimpatient*) then d(EIfMsg.done)
else res := d(EIfMsg.join)
end
end
end
end Work;
begin { barrier } new Work()

end EIT;

Santa Dialog Controlled

e type Santa = object
activity Dialog (): SantaMsg;
var req: SantaMsg;
begin
loop
req := *;
1T req = SantaMsg.deliver then
passivate(10000)
else (*consult*) passivate(500)

end;
return SantaMsg.done
end
end Dialog;
end Santa.

x -

19

Summary (1)

e The presented concept of activity
upgrades the ordinary object-oriented
model in three respects by adding
»An option of orchestrating multiple

concurrent activities according to
programmed ,launch logic*

»Optional intrinsic encapsulated behavior of
objects

»A new way of dialog-oriented and stateful
interoperability based on ,,active links*

Summary (2)

e The concept of activity has proved its
suitability in several case studies and in
iImplementations

»The model of active objects underlies the Aos
Active Oberon operating system

> Active objects and dialogs have been
implemented in the Active C# ROTOR
compiler available from
http://www.avocado.ethz.ch/ActiveCSharp/

> Activities are currently being implemented in
the Zonnon for .NET compiler, see
http://zonnon.ethz.ch

