
Good Ideas - Revisited
Niklaus Wirth

September 2005
Moscow State University

Computer Architecture

Programming Languages

Miscellaneous Techniques

Programming Paradigms

Expression stacks

(a/b) + ((c+d)*(c-d))
a b / c d + c d - * +

a
b

a/b a/b a/b a/b
c c+d c+d
d c

d

a/b a/b (a/b)+((c+d)*(c-d))
c+d (c+d)*(c-d)
c-d

Subroutine return addresses
before call

subroutine
code

after call

S

subroutine
code

BSR S

subroutine
code

S

BSR S

subroutine
code

S

BSR S

return register

subroutine
code

subroutine
code

stack

SP

SP

PC

PC

Virtual addressing

+
+ +

PTR

data

Level 1

Page table
Level 2

Page table

Page table entry

prot bits address

Benefit and cost of virtual addressing

Benefits:
• Simplifies allocation in multiprocessing
• Simplifies reuse of pages
• Protects from illegal access
Cost:
• Multiple memory access via page tables
• Additional hardware
• Efficiency requires cashes

Simple vs. complex instruction sets

Simple instruction set -> simple hardware
What led to complex instruction sets?

High-level language constructs
Wish for code density
Microprogramming
Descriptor-architectures (B5500)

The concept of computer families
The return to RISC architectures

Programming Language Features

• Notation and syntax
• Algol’s FOR statement
• Algol’s OWN variables
• Algol’s name parameter

Notation and Syntax

• Assignment operator x = y x := y
z = x ++ y b = x == y
x +++++y ++x+++y+1
x+++++y+1==++x+++y
x+++y++==x+++++y+1

• APL: x-y-z means x-(y-z), but not (x-y)-z
• Confusion between statement and expression
• Statements are executed
• Expressions are evaluated

Syntax (Algol and Pascal)

if b then S0 if b then S0 else S1

if b0 then if b1 then S0 else S1

if b0 then if b1 then S0 else S1

if b0 then if b1 then S0 else S1
if p then for i := 1 step 1 until n do if q then S1 else S2

if p then for i := 1 step 1 until n do if q then S1 else S2

if b then S0 end if b then S0 else S1 end

Algol’s complicated for ststement

for i := 1 step 1 until n do a[i] := 0
for i := 2, 3, 5, 7, 11 do a[i] := 0
for i := x, x+1, x*(y+z) do a[i] := 0
for i := i+1 while i < n do a[i] := 0
for i := x-3, x step k until y, y+7, while z < 20

do a[i] := 0
for i := 1 step 1 until i+1 do a[i] := 0
for i := 1 step i until i do i := -i

Algol’s own variables

procedure P(x, y);
begin integer z; z := x; x := y; y := z
end

real procedure random;
begin own real x; x := (x*a + b) mod c;

randon := x
end

Algol’s name parameter

real procedure square(x); real x; square := x*x
square(a) literally means a*a
square(sin(a)*cos(a)) stands for

sin(a)*cos(a)*sin(a)*cos(a)

real procedure square(x);
value x; real x; square := x*x

stands for
begin real x’; x’ := x; square := x’*x’ end

Algol’s Jensen device

real procedure sum(k, x, n);
begin real s;

for k := 1 step 1 until n do s := s+x;
sum := x

end

a1 + a2 + … + a100 sum(i, a[i], 100)
a × b sum(i, a[i]*b[i], 100)

Dijkstra’s “display”
procedure P;
begin integer i;

procedure Q;
begin integer j;

procedure R;
begin integer k;
end ;
A(R)

end ;
Q

end

procedure A(proc h);
begin integer x;

procedure B;
begin integer y;

procedure C;
begin integer z; h
end ;
C

end ;
B

end

→ P → Q → A → B → C → R

R

C

B

A

Q

P

display frame pointer

static link dynamic link

Functional programming

• What distinguishes a functional language
from a procedure language?

• FP: exclusively function application
• No state, no variables
• FPLs have sneaked in state and assignment
• No side effects
• Eases detection of potential parallelism
• Academic exercise ?

Logic programming

• Prolog
• Implementation is a search engine for

solutions satisfying given predicates
• Logic inference engine
• In practice requires hints in the form of cuts
• One must understand the functioning of the

hidden engine
• An academic exercise ?

Object-oriented programming

• Technically based on 2 concepts only:
- procedure types of variables
- type extension (inheritance)

• View of procedures as belonging to objects
• Terminology

object (record typed) variable
class (record) type
method (record bound) procedure
send msg call procedure

“Good ideas” of today?

• Many of the good ideas of their time have
become mediocre or even bad ideas
– Because of technology changes
– Because of shifts of goals and habits
– Because of too much emphasis on efficiency

• Which are today’s “good ideas”?
– Will they also turn mediocre?
– Or are they bad already now?

	Good Ideas - Revisited
	Expression stacks
	Subroutine return addresses
	Virtual addressing
	Benefit and cost of virtual addressing
	Simple vs. complex instruction sets
	Programming Language Features
	Notation and Syntax
	Syntax (Algol and Pascal)
	Algol’s complicated for ststement
	Algol’s own variables
	Algol’s name parameter
	Algol’s Jensen device
	Dijkstra’s “display”
	Functional programming
	Logic programming
	Object-oriented programming
	“Good ideas” of today?

