

Ofront
TM

Oberon-2 to C Translator, Version 1.0
User Guide

SOFTWARE TEMPL

ii

Copyright (c) SOFTWARE TEMPL, 1995
All rights reserved.

Author:
Dr. Josef Templ
Lüfteneggerstr. 8/44
4020 Linz, Austria
fon/fax: (++Austria) 732 / 77 89 54

This text has been produced with ETH-Oberon V4 compiled with Ofront 1.0.

Ofront is a trademark belonging to SOFTWARE TEMPL.
All other trademarks belong to their respective owners.

SOFTWARE TEMPL is an authorized Sun Software Partner

i

Contents

1 Introduction 1

1.1 Typographic Conventions 2
1.2 What is Ofront? 2
1.3 Intended Use 4

2 Getting Started 7

2.1 Command-line Version 7
2.2 Integrated Version 11
2.3 Principles of Operation 11
2.4 Cross Translation 15

3 C-Compilation and Linking 17

3.1 SunOS 4.x (SPARC) 18
3.2 SunOS 5.x (SPARC) 19
3.3 DEC Ultrix (MIPS) 20
3.4 HP-UX (PA-RISC) 21
3.5 IBM AIX (RS/6000) 23
3.6 SGI IRIX 5 (MIPS) 24
3.7 Linux (i386) 25

4 Module SYSTEM 27

4.1 The Static Role 27
4.2 Interfacing with C 28

4.2.1 Name Mapping 29
4.2.2 Pointers 29
4.2.3 Parameter Substitution inside Strings 30
4.2.4 Exporting Code Procedures 30
4.2.5 Return Types and Includes 31
4.2.6 Debugging 33

4.3 The Dynamic Role 34

5 Module Args 35

6 Exception Handling 37

7 Module Loading 43

8 Garbage Collection and Finalization 47

0

Appendix

A Supported Architectures and Compilers 49

B Available Libraries 51

C The Programming Language Oberon-2 55

D Grammar of Oberon-2 85

E Limitations of the Implementation 89

F Ofront Error Messages 91

1

1 Introduction

This document serves as a guide for users of Ofront, the industry’s
leading Oberon-2 to C translator. The reader of this guide is expected to
have at least a basic understanding of the programming language
Oberon and to be able to use the C compiler and linkage editor on the
respective target platform. It is also expected that the user of the
integrated version (cf. 2.2) has some knowledge about the ETH Oberon
system.

For an introduction to the programming language Oberon, please refer
to

Wirth N. and Reiser M. (1992). Programming in Oberon. Steps beyond
Pascal and Modula-2. Addison-Wesley, Wokingham, ISBN
0-201-56543-9.

This book is also available in German as

Wirth N. und Reiser M. (1994). Programmieren in Oberon. Das neue
Pascal. Addison-Wesley, Bonn, ISBN 3-89319-675-9.

For a thorough description of the ETH Oberon system, consult

Reiser M. (1991). The Oberon System. User Guide and Programmer’s
Manual. Addison-Wesley, Wokingham, ISBN 0-201-54422-9.

For a description of object-oriented programming in general and
object-oriented programming using Oberon-2 type-bound procedures in
particular, refer to

Mössenböck H. (1993). Object-oriented Programming in Oberon-2.
Springer Verlag, ISBN 3-540-56411-X.

This book is also available in German as

Mössenböck H. (1993). Objektorientierte Programierung in Oberon-2.
Springer Verlag, ISBN 3-540-57789-0

2

1.1 Typographic Conventions

This document uses the following typographic conventions:

Table 1.1 Typographic Conventions

typeface/prefix Meaning Example

Abcdef plain text This document uses
Abcdef name Ofront
% Abcdef C shell command % strip oberon

$ Abcdef grammar rule $ options = ["−" {option}].

Abcdef programs PROCEDURE P;

names from a program SYSTEM_halt

program output pos 10 err 3

Abcdef pseudo-code the Oberon main event loop

1.2 What is Ofront?

Ofront is a tool that translates Oberon-2 programs into semantically
equivalent C programs. Full error analysis is performed on the Oberon
input program and in case of no errors up to three files are generated as
output.

an Oberon symbol file (suffix .sym)

a C header file (suffix .h)

a C body file (suffix .c)

The C header and body files follow widely used C programming
conventions. Ofront is also capable of generating main programs by
translating the body of a module into a C main function. In this case
only the body file is generated.

Ofront does not invoke the C compiler or linkage editor. This may be
done in separate shell scripts or make files and is inherently dependent
on the C compiler and linkage editor being used.

Although normally not read by the user, the C code generated by
Ofront is kept as readable as possible, nicely formatted, should not
produce any C compiler error messages or warnings and is tuned for
efficient execution. In fact, an Oberon program translated by Ofront can
be expected to execute as fast and read as well as an equivalent
hand-coded C program.

The following list and the subsequent explanations give an overview
of the most important highlights of Ofront.

3

Highlights full Oberon-2 language support

extensible module interfaces

fast translation

parameterization for arbitrary C compilers, ANSI and K&R

highly compact and efficient run-time system

automatic garbage collection

advanced heap management (growth on demand, finalization)

commands and modules preserved

dynamic loading of modules or subsystems

interfacing with C or other foreign languages

clean and human-readable C code, no warnings

information hiding preserved in the generated header files

multiple libraries available

command-line version and integrated development environment

Ofront supports the full Oberon-2 language standard as proposed by
ETH Zurich. In addition to pure Oberon, this includes the
FOR-statement, type-bound procedures, open arrays as pointer base
types, ASSERT, more flexible string literals and nested comments.

Recent advances in compilation technology are included in Ofront to
allow fine-grained interface checking rather than the more traditional
per module interface checks. Ofront does not require recompilation of
all clients of a module if the interface of a module changes. Only those
clients which are actually affected by a change need to be recompiled.
Since extending the interface of a module does not invalidate any
clients, no recompilation is needed in this case.

Ofront provides fast translation of Oberon modules into C code. The
additional Ofront step is therefore almost negligible when compared
with C compilation and linking. Translation speed is more than 150,000
lines of Oberon code per minute on a 60 MHz HP 9000 Model 712, for
example.

In order to support a wide range of C compilers, Ofront is
parameterizable to support virtually all existing C compilers, be they
ANSI or Kernighan/Ritchie (K&R) style compilers.

4

Ofront includes a highly compact and efficient run-time system that
provides auxiliary routines for managing dynamic type information,
exceptions, modules, commands, the Oberon heap, and an automatic
garbage collector. Heap management and garbage collection are built
upon C malloc and scale themselves to the actual memory requirements
by means of an extensible heap. Ofront’s memory management is
significantly more efficient than native malloc. For Sun/SPARC, for
example, storage allocation is about a factor of 10 faster and the
complete run-time system needs less than 10 KB of object code.

Ofront allows interfacing between Oberon and C or other foreign
languages by means of in-lined code procedures. This provides for
flexible parameter mapping and avoids any run-time overhead. Since
Ofront programs are translated to C, they can be called from C or other
foreign languages as well; thus interfacing actually works in both
directions.

Ofront produces clean and human-readable C code by indentation of
nested statements, a set of Ofront-related macros that define operations
which are not directly available in C, and by avoidance of unnecessary
parentheses. In many cases this allows the usage of C tools such as the
debugger without getting lost in the generated code. The
correspondence between the original Oberon code and the C code is
always obvious.

Ofront follows widely used C programming conventions by producing
two C files, a header and a body file. The header file contains the
module interface to be used in #include control lines. Information
hiding is preserved in the C header files; i.e., they contain only
information about exported objects or record fields.

1.3 Intended Use

Ofront should be considered a complementary tool to already existing
Oberon compilers which produce native machine code. It is intended to
be used if at least one of the following properties is desired:

Strong optimizations should be performed on the program.
Oberon programs should be written for a computer which does not
feature a native-code Oberon compiler (yet).

5

Linking with existing C programs is essential.

Stand-alone programs are desired.

 Shared object libraries should be generated.

You know Oberon and have to learn C.

The translation of Oberon programs to C makes thousands of person
years invested into aggressively optimizing C compilers available to the
Oberon community. Oberon compilers that optimize equally well can
only be expected when Oberon is as wide-spread as C.

Virtually all computers feature a descent C compiler; some machines
still come with a C compiler bundled with the OS. The detour over C
assures that portability of Oberon programs even to exotic machines is
not an issue when selecting the programming language for a project.

The translation to C allows bidirectional interfacing with libraries
written in C, i.e. calling C from Oberon and calling Oberon from C.
This subject is not as trivial as might be expected, but with some
experience and care, interfaces can be realized in a very short time.

Using the C compiler as a code generator assures that Oberon programs
are translated into some standard object file format rather then into an
Oberon-specific format, which requires a special environment to
execute the programs. The standard object files can be linked with a
standard linkage editor which produces stand-alone Oberon programs.
The use of standard object files also supports interfacing with C
libraries or other programming languages that follow an operating
system’s standard object file format and calling conventions.

In addition to statically linked applications, many operating systems
(e.g. SunOS, HPUX, AIX) support the use of shared object libraries. In
this case object files can be shared between multiple applications,
which reduces memory requirements and loading time. Using C as code
generator enables the generation and use of shared object libraries for
Oberon programs. Typically a set of modules (sometimes called a
"subsystem") is linked into one shared object library. Since shared
object libraries are usually mapped into memory by using demand
paging, the loading time only depends on the amount of code accessed
during startup of an application, not on the static size of a library.

6

More and more students are being educated with Oberon. Many of them
have to use C in their industrial careers. Ofront can be immensely
helpful to see the correspondence between Oberon programs and/or
data types and their C counterparts. In effect, Ofront can be used as a
sort of interactive electronic C teacher. This was also one of the reasons
why readability of the generated code was one of Ofront’s design goals.

7

2 Getting Started

Ofront comes in different flavors. For Unix platforms both an
integrated environment and a command-line version is available. The
integrated version runs inside ETH-Oberon and the command-line
version runs as a stand-alone program that can be executed directly
from a shell. For PCs and Macintoshes versions running as a subsystem
of Oberon/F (TM) and as a separate environment are provided. These
latter versions follow the respective platform’s user interface
conventions and provide online documentation for first-time users.

All versions have exactly the same features; in particular, they have
the same set of options which we therefore describe only once in
Section 2.1. Ofront is capable of generating code for different C
compilers. Therefore it requires a file which parameterizes the
translation process. This file is called Ofront.par. For details on
parameterization and cross translation see Section 2.4.

The command-line version is provided for those users who prefer to
use their traditional ASCII text editor (e.g., emacs or vi) or to embed
Oberon in standard Unix programming tools such as shell scripts or
make files. The integrated Unix versions allow using the standard
Oberon text editors, which, although puristic at first glance, provide
much more functionality than plain ASCII editors. The Ofront
command-line version accepts source files either as plain ASCII texts,
as Oberon V4 texts, or as Oberon System 3 texts.

2.1 Command-line Version

The command-line version of Ofront is represented by command ofront,

which accepts an arbitrary number of input file parameters. Every file is
expected to contain one Oberon module. Oberon source files typically
(but not necessarily) have the file name extension .Mod. Options
affecting the translation process may be specified immediately after the
command name or after a file name. The former apply to all files, the
latter only to the preceeding one; thus, the order in which file names
and options are specified is important. Specifying an option twice
nullifies the effect of the option. This might be used to override a global
option for an individual file. The following EBNF grammar specifies
Ofront’s command line syntax. Note that options must not contain
whitespace.

$ command = "ofront" options {filename options}.

8

$ options = ["−" {option}].

$ option = "m" | "s" | "e" | "i" | "r" | "x" | "a" | "p" | "t".

ofront performs full error analysis on the Oberon input modules and
writes error and completion messages to the standard output device. No
C code is generated if errors are detected. The exact meaning of the
error numbers is listed in file OfrontErrors.Text and in the appendix.

ofront looks for its input files in the directories specified by the
environment variable OBERON, which is expected to contain a
colon-separated list of path names. The following example shows how
to set the OBERON environment variable under the Unix C-shell. If the
OBERON environment variable does not exist, files are looked up only
in the current working directory. Files that contain a "/" character in
their path name are always looked up relative to the current working
directory and independent of the OBERON environment variable.

% setenv OBERON .:..:/usr/local/Oberon

The meaning of the individual options is defined as follows:

m generate a main module (default off)
This option signals Ofront that the module body should be
translated into a C main function, which is the entry point of an
application. Every application consists of exactly one main module.
Modules which are intended to be included in a library should never
be compiled with option m.

s allow changing the symbol file (default off)
The interface of an Oberon module is represented in a compact and
efficient form in the module’s symbol file (suffix .sym). Changing
the symbol file of a module therefore means changing the interface
of the module. Examples of such a change are to insert, rename, or
delete an exported type, variable, or procedure. Those clients, which
depend on the changed feature, have to be adapted to the new
interface and recompiled. Note that, unlike earlier Modula-2 or
Oberon-2 compilers, only those clients of the module that depend on
the changed feature(s) need to be recompiled, not all modules which
import the changed service module. The new fine-grained interface
checking supports the evolution of software over time much better
than its coarse-grained predecessor. To avoid unintended interface
changes, this option is turned off by default.

9

e allow extending the module interface (default off)
This option is similar to s but restricts interface changes to
extensions. For example, it is possible to export additional global
variables or procedures if option e is specified. Renaming or
deleting a procedure or variable is not allowed. To avoid unintended
interface extensions, this option is turned off by default.

 i include header and body prefix files (default off)
Specifying this option enables the inclusion of C code that is
prepended to the generated header and body files. For a module M,
the header and body prefix files are expected to be named M.h0 and
M.c0 respectively. Non-existing prefix files are silently ignored.

r check value ranges (default off)
Specifying this option turns on value range checking such as
checking if SHORT of a LONGINT variable is in the INTEGER value
range. Since this option is not related to memory integrity, it is
turned off by default.

x check array indices (default on)
Specifying this option turns off array index bounds checking. Since
index checks are inlined and consist only of a single unsigned
compare, they are very fast and it is normally not necessary to turn
them off in order to get good performance. Furthermore, optimizers
can remove index checks in many places without giving up security.

a check assertions (default on)
Specifying this option turns off run-time checking of ASSERT

statements. Use this option only in carefully tested production code
when utmost efficiency is required. An unchecked assertion is
nothing but a comment.

p pointer initialization (default on)
Specifying this option turns off automatic pointer initialization.
Note that Oberon does not specify the value of local pointer
variables before they are assigned a value. Even with pointer
initialization, it is not correct to make assumptions about the initial
value of a pointer. In particular, it is not allowed to assume that they
are set to NIL. Pointer initialization is a technique to ensure
memory integrity even in case of erroneous programs and/or to
detect uninitialized pointers as soon as possible.

10

t check type guards (default on)
Specifying this option turns off run-time type guard checking. Since
type guard checks are very efficient anyway and undetected type
guard failures can easily destroy memory integrity, we recommend
using this option only in very rare cases such as low-level modules
where every machine cycle counts.

Example % ofront M1.Mod

M1.Mod translating M1 298

The generated output contains the name of the file, the name of the
module and the size in bytes of the generated C body file. In case of an
error or if a warning is issued, the text position (not line number) and an
error number are written to the standard output device. The meaning of
the error number can be looked up in file OfrontErrors.Text or in the
appendix.

% ofront −e M1.Mod M2.Mod M3.Mod −m

M1.Mod translating M1 298

M2.Mod translating M2 extended symbol file 340

M3.Mod translating M3 main program 230

showdef The command showdef is provided to allow decoding Ofront symbol
files. showdef xxx decodes the symbol file of module xxx and displays it
in human-readable form on the standard output device.

Example % showdef Args

DEFINITION Args;

 VAR

 argc−: LONGINT;

 argv−: LONGINT;

 PROCEDURE Get(pos: INTEGER; VAR val: ARRAY OF CHAR);

 PROCEDURE GetInt(pos: INTEGER; VAR val: LONGINT);

 PROCEDURE Pos(s: ARRAY OF CHAR): INTEGER;

END Args.

The showdef command corresponds to the Browser.Showdef command
in the integrated version.

11

2.2 Integrated Version

The integrated version of Ofront is represented by command
Ofront.Translate and accepts the same options and parameters as the
command line version. Note that options are preceded by a "\" character
on Unix platforms and that the "*" character refers to the star-marked
text in Oberon. This text can be translated right from the editor without
storing the text to a file first. The following EBNF grammar specifies
the Ofront.Translate command.

$ command = "Ofront.Translate" options {("*" | filename) options } "˜".

$ options = ["\" {option}].

$ option = "s" | "e" | "m" | "i" | "a" | "p" | "x" | "t".

The input files are searched in exactly the same way as in the
command-line version, i.e., using the environment variable OBERON.
This environment variable is also used by the ETH-Oberon V4 system
(activated by the command oberon), which (under Unix) runs as an
X-client. As usual for X-clients, oberon supports the −d (display) and
−g (geometry) command-line options and the DISPLAY environment
variable. For more details about using the integrated version please
refer to the oberon (1) manual page and the online documentation
included in the distribution.

Examples Ofront.Translate *\s ˜

Ofront.Translate \er M1.Mod M2.Mod M3.Mod\m ˜

2.3 Principles of Operation

Working with Ofront involves several steps to achieve a running
application. The following gives an overview of this process. Chapter 3
goes into details of particular combinations of C compilers and
operating systems.

Figure 2.1 Sequence of processing steps

Ofront C compiler Linker

a.outmodule

12

Ofront The first step is to run Ofront, which produces as its output the input to
the C compiler. This process is shown in Figures 2.2 and 2.3 for a
module M. In case of an error, no output files are written and existing
files with the same names are preserved. In case of success, existing
files with the same name are overwritten.

Ofront creates new files in the current working directory and looks up
old files (e.g., symbol files) in all directories listed in the OBERON

environment variable, which is expected to contain a list of path names
delimited by colons.

Figure 2.2 Translation of a normal module

Ofront

module M
symbol file M.sym

header file M.h

body file M.c

Ofront.par

*.sym

M.h0

M.c0

optional M.h0, M.c0

In the case of translating a main module (by specifying option m), only
a body file is generated. A main module cannot be imported by other
modules since it is the distinguished root of a module hierarchy. Files
M.sym and M.h are therefore deleted if they exist.

If option i is in effect, the files M.h0 and M.c0 would be used as a
prefix of the output files M.h and M.c. Missing prefix files are treated as
if they were empty.

13

Figure 2.3 Translation of a main module

Ofront

main module M

body file M.c

Ofront.par

*.sym

optional M.c0

M.c0

C compiler The second step, C compilation, unavoidably needs some knowledge
about a system’s C compiler in order to fully exploit Ofront. One point
is the optimization level that is desired for a given module. It is also
possible to C-compile without optimizations but with debugging
enabled. Selecting the appropriate debugging and/or optimization level
is the first decision when C-compiling. The second decision is whether
the module should be statically linked or put into a shared object library
from where it can be linked dynamically. On a system featuring shared
object libraries (sometimes also called dynamic link libraries), object
files normally must be in a certain format, which is often called
"position independent". This ensures that the generated object code can
be mapped into the address space of a process at an arbitrary position.
Most compilers must be instructed explicitly to generate position
independent code. Due to the variety of the C compiler options, the
Ofront and C steps are not integrated. However, the two steps (or three
if you also consider linking) can be automated by writing appropriate
shell scripts.

Linker Most systems allow putting object files into an archive or into a shared
object library. Archives are used for static linking of applications, i.e. if
the code of the archived modules should be copied into the executable
of the application. Shared object libraries are used if the code of one or
several modules should be shared among multiple applications. This
leads to significantly reduced executables, but on the other hand to
dependencies on the shared object library. The executable is no longer
self-contained. Due to the reduced code size and the possibility of

14

creating truly extensible applications, shared object libraries are gaining
importance nowadays while static archives are declining.

For shared object libraries, we distinguish two linking strategies:
dynamic linking and run-time linking. Dynamic linking is equivalent to
static linking except that some parts of an application reside outside the
application’s executable in a shared object library. As with static
linking, all parts of the application must be known in advance.
Run-time linking means that an arbitrary library which is not known in
advance can be loaded at run time and thereby truly extends an
application. Technically speaking, run-time linking is realized by
providing a programmatic interface to the dynamic linker. Clearly,
run-time linking is needed for Oberon in order to achieve the effect of
dynamic module loading. Unfortunately, not all operating systems
support run-time linking yet; most operating systems support dynamic
linking, and all support static linking.

Subsystems Typically, a group of modules that together provide an abstraction (e.g.,
a graphics editor) can be linked into a shared object library. In
principle, every single module can be regarded as a shared object
library, but this is not usually the granularity expected by an operating
system’s dynamic loader and might lead to inefficiencies. As an
example, the libraries that contain all modules of the Oberon V4 system
are provided as shared object libraries (e.g. libOberonV4.so for SunOS
5.x). For a complete Oberon system there must only be a simple main
module which initializes some global data structures and starts the
Oberon main event loop (cf. example module Configuration.Mod). The
size of this main program is just a couple of lines and a few KB of
object code if it is linked dynamically with the appropriate Oberon
library.

When packing more than one module into a subsystem, the problem
of retrieving such modules at run time arises. There must be a mapping
from a module name to the package that contains this module. The
simplest way of providing such a mapping is to follow an appropriate
naming convention for all modules that together form a subsystem. All
module names should start with a common prefix which identifies the
subsystem. We propose to use the first transition from lower case to
non-lower case characters in a module name as the end of this common
prefix. If, for example, there is a package named Dialog that provides
graphical user interface building blocks, all modules of the form
DialogFrames, DialogBoxes, Dialog1, etc, would be recognized as
belonging to this subsystem and can be loaded at runtime from the
Dialog subsystem. Note that in a software system that might be

15

extended from different persons it is a good idea to use unique module
name prefixes anyway in order to avoid name clashes. Chapter 7 gives a
concrete example of a run-time linking strategy including source code.

On a platform that supports run-time linking, after the oberon

application is started, the module list contains only those modules
which are directly or indirectly imported by the main module or which
are loaded explicitly during the initialization process. When activating a
command, e.g. Edit.Open, module Edit will be loaded (mapped) as well
and become a member of the module list. Thus dynamic loading of
modules is preserved.

On a platform that only supports static or dynamic linking, all
modules which are to be available to the application must be imported
by the main module either directly or indirectly. After starting such an
application, all modules are contained in the module list right from the
beginning.

2.4 Cross Translation

Ofront allows cross-translation of Oberon modules to a variety of target
systems by means of the parameter file Ofront.par. Parameter files for
various C compilers are provided and named Ofront.xxx.par where xxx

identifies the target platform. The parameter file for the Intel 960

architecture, for example, would be named Ofront.i960.par. A list of
available parameter files is given in the appendix. If your C compiler is
not listed, you have two possibilities:

Use a prameterization file for a C compiler that has the same
characteristics as yours. To generate code for a specific C compiler,
simply rename the appropriate parameter file to Ofront.par.

Generate a new parameter file. A C program ofrontparam.c is
included, which, when compiled and executed, will output the
characteristic attributes of the C compiler used to compile it.
ofrontparam.c includes SYSTEM.h; thus you have to make sure that
the C compiler uses the appropriate version of this include file.

% cc ofrontparam.c; a.out > Ofront.par; rm a.out

Note that for successful cross-translation all modules must be translated
against the right symbol files, i.e., against symbol files that are
generated while using the same parameter file. Otherwise the size and

16

alignment of various data types might be inconsistent.
If there is no precompiled run-time system provided for your target

architecture, you will have to translate and cross-compile the module
SYSTEM.Mod first. (If the source text of module SYSYEM is not
included in your version of Ofront, contact your Ofront distributor.)
Translation should be done using the −i option, since the body prefix
file SYSTEM.c0 must be included. For maximum efficiency, run-time
checks should be disabled for module SYSTEM. Ofront will neither
produce a .sym nor a .h file when translating module SYSTEM. C
compilation of SYSTEM.c should always be done using the highest
optimization level available with a particular C compiler.

% ofront SYSTEM.Mod −iapx

% cc −O −c SYSTEM.c

For particular application domains, such as real time systems or
multiprocessor environments, modifications of the standard run-time
system might be necessary. Please note that it is not allowed to
redistribute the original or modified SYSTEM module as source or object
code without the prior written permission of SOFTWARE TEMPL. This
limitation is intended to prevent incompatibilities between the original
and possibly modified run-time system versions. It is of course allowed
to link a modified SYSTEM object file statically with your application
and distribute it.

17

3 C-Compilation and Linking

This chapter contains a description of C compilation and linking in
selected combinations of C compilers and operating systems which
might serve as prototypes for other combinations. The reader should be
familiar with at least one C compiler and linker; i.e., this chapter is not
an introduction to the field of compiling and linking programs for a
particular platform. Most compilers and linkers provide an
overwhelming number of arguments and options, some of them may be
combined, others not. As a rule of thumb, however, most of these
options can be ignored.

For every compiler/platform combination, an example is presented
that shows how to compile and link the Oberon V4 module library as a
shared library (if possible) and how to create a main executable
program that is dynamically linked with the library. The starting point
is that all library modules have been translated to C and are available in
the current working directory. Module Configuration.Mod has not been
translated yet and is intended to become the main executable program.
Therefore this is the only module that will not be part of the generated
library. On platforms that do not support run-time linking, the file
Configuration.Max.Mod is used; it imports all modules which should be
available in the executable.

hello world The following program shows how the generated library libOberonV4

can be used to create a simple command-line program. Module Console

is used to write output to the standard output device. The cc command
requires specification of the referenced library, which is platform
dependent in general. Options −L and −l are supported by most
C-compilers, though.

MODULE hello;

IMPORT Console;

BEGIN Console.String("hello world"); Console.Ln

END hello.

% ofront hello.Mod −m; cc hello.c −L. −lOberonV4 −o hello

% hello

hello world

18

3.1 SunOS 4.x (SPARC)

SunOS 4.x does support dynamic linking and a limited form of run-time
linking. The main restriction is that SunOS 4.x does not allow that
shared object libraries which are loaded at runtime (by means of a
dlopen call) depend on shared object libraries which are themselves
loaded at runtime. Such cases can lead to loading shared libraries
multiple times into main memory causing inconsistencies in a program
due to multiple instances of global variables. The mentioned limitations
are removed in SunOS 5.x (Solaris2). We deliberately refrain from
using the run-time linking facilities of SunOS 4 but use dynamic
linking to reduce the size of an application.

The following example shows how to create a shared library
libOberonV4.so.1.0 and a dynamically linked executable named oberon.

% cc −O −PIC *.c −Qproduce .o

C compilation for shared object libraries requires option −pic or −PIC

(position independent code). The difference is that −pic only works for
small libraries. If debugging should be enabled rather than
optimizations, specify option −g instead of −O. Option −Qproduce .o

prevents invocation of the linker and leaves the output of the compiler
in object files with suffix .o.

% ld *.o −lm −o libOberonV4.so.1.0

The system’s linkage editor ld combines the *.o files to a shared object
library named libOberonV4.so.1.0. External references that refer to
statically bound objects (e.g., the functions of libm) must be resolved in
the ld command; references to shared libraries (e.g., libX11) can be
resolved when linking the main executable. The C library
(/usr/lib/libc.so.x.y) is imported automatically and need not be specified
explicitly.

C compilation for static archives or statically linked applications is
normally done without option −PIC; although it would also work with
−PIC, but the code is slightly faster without it.

A dynamically linked executable can be created by the cc command
simply by replacing the −Qproduce .o option with a specification of the
generated object file (−o oberon) as in

% ofront Configuration.Max.Mod −m

% cc Configuration.c −L. −lOberonV4 −lm −lX11 −o oberon

19

In this case, the executable is dynamically linked if shared versions of
the referenced libraries are available. Option −L is used to specify
additional directories that contain shared libraries or static archives.
Option −l specifies libraries or archives to be used to resolve external
references.

The environment variable LD_LIBRARY_PATH may be used to specify a
colon-separated list of path names to be used by the dynamic linker to
search for libraries at both linking and loading time. A typical setting
for LD_LIBRARY_PATH would be

.:/usr/local/Oberon/lib:/usr/openwin/lib.

If object files (or static archives) are specified explicitly as in

% cc Configuration.c *.o −lm −lX11 −o fatoberon

the object files *.o would be statically linked into the executable
fatoberon. Use options −Bstatic and −Bdynamic for controlling the static
or dynamic linking of modules in SunOS 4.

3.2 SunOS 5.x (SPARC)

SunOS 5.x (Solaris2) supports both dynamic linking and run-time
linking. There is no need to explicitly instruct the compiler to generate
position-independent code since this is the default mode. The system’s
linkage editor (ld) may be used to combine object files into shared
object libraries as shown in the following example.

% cc −c −fast *.c

% ld −G *.o −o libOberonV4.so

% ofront Configuration.Mod −m

% cc Configuration.c −L. −lOberonV4 −lm −lX11 −ldl −o oberon

The first step runs the C compiler for all .c files but supresses linking
(option −c). Optimizations for execution speed are turned on by option
−fast. The second step invokes the linkage editor. Option −G specifies
generation of a shared object library. The last step compiles the main
executable and links it dynamically to libOberonV4. Additional libraries
and directories can be specified with options −l and −L as usual. The
environment variable LD_LIBRARY_PATH may be used to specify a colon
separated list of path names to be used by the dynamic linker to search
for libraries at both linking and execution time. In addition, a run path

20

may be written into the executable (use option −R or environment
variable LD_RUN_PATH). The run path provides a default path list if
LD_LIBRARY_PATH is not present at run time. A typical setting for
LD_LIBRARY_PATH (or the −R option) would be

.:/opt/Oberon/lib:/usr/openwin/lib.

ocl In order to extend for example the Oberon V4 system by an additional
module at runtime, the script ocl as shown below is provided for
Solaris2. It translates an Oberon module to C, compiles it, and links it
into a shared library consisting of exactly one Oberon module. The
module may then be loaded at runtime at the first time a command of
the module is to be executed. Note that you have to link additional
libraries using the −l option in the ld command in case that the module
references those libraries.

#!/bin/csh

#

compile and link an Oberon module

#

SYNOPSIS

ocl moduleName [ofrontOption [ccOption]]

#

use the single character "−" to skip ofrontOption

example: ocl hello − −g

translate .Mod to .c

ofront $1.Mod $2

compile .c to .o

cc −c $3 $1.c

link .o into lib$1.so; use option −l to link appropriate libraries

ld −G −L. −lOberonV4 $1.o −o lib$1.so

remove unnecessary files and show result

rm $1.c $1.o; ls −l lib$1.so

3.3 DEC Ultrix (MIPS)

DEC/Ultrix (V4.2A) only supports static linking. Object file archives
can be created and maintained by means of the ar command. The

21

linkage editor ld combines object files and archives to self-contained
executables. In order to generate an executable command oberon, it
suffices to use the compile-and-link mode of the cc command as shown
below:

% ofront Configuration.Max.Mod −m

% cc *.c −lm −lX11 −o oberon

To create a static archive named libOberonV4.a, the archiving tool ar

may be used. The strip command strips off symbolic information
contained in the executable, making it slightly smaller.

% ar qs libOberonV4.a *.o

% cc Configuration.c −L. −lOberonV4 −lm −lX11 −o oberon

% strip oberon

3.4 HP-UX (PA-RISC)

HP-UX allows both dynamic linking and run-time linking. In order to
use dynamic or run-time linking, the C compiler (cc) must be instructed
explicitly to generate position independent code (option +z or +Z for
very large libraries). The linker (ld) must be instructed to generate a
shared library instead of a normal executable (option −b). The
following commands show how to create libOberonV4.sl and the
executable oberon under HP-UX:

% cc −Aa +z −O −c *.c

% ld −b −z *.o −lc −lm −L/usr/lib/X11R5 −lX11 −o libOberonV4.sl

% ofront Configuration.Mod −m

% cc −Aa −Wl,+s Configuration.c −L. −lOberonV4 −ldld −o oberon

The first step compiles all .c files found in the working directory.
Option −Aa specifies ANSI semantics to be used in cases where ANSI C
differs from older HP C compilers. +z specifies generation of
position-independent code. Option −O requires performing level-two
optimizations (same as +O2). Option −c avoids invoking the linker after
C compilation.

The second step generates a shared library (option −b) and enables
NIL-checking (option −z) to be done by the hardware. Library inclusion
is specified by means of the −L and −l options. −o specifies the name of
the generated output file.

22

The third step compiles the main executable and generates an
executable named oberon, which is dynamically linked with library
libOberonV4.sl. It is important to include library libdld.sl (by means of
option −ldld) in order to enable run-time linking. Option −Wl,+s

indicates passing option +s to the linker. +s means that the environment
variable SHLIB_PATH (a colon-separated list of path names) should be
consulted for dynamic library loading.

ocl In order to extend for example the Oberon V4 system by an additional
module at runtime, the script ocl as shown below is provided. It
translates an Oberon module to C, compiles it, and links it into a shared
library consisting of exactly one Oberon module. The module may then
be loaded the first time a command of the module is to be executed.
Note that you have to link additional libraries using the −l option in the
ld command in case that the module references those libraries.

#!/bin/csh

#

compile and link an Oberon module

#

SYNOPSIS

ocl moduleName [ofrontOption [ccOption]]

#

use the single character "−" to skip ofrontOption

example: ocl hello − −g

translate .Mod to .c

ofront $1.Mod $2

compile .c to .o

cc −Aa −c +z $3 $1.c

link .o into lib$1.sl; use option −l to link appropriate libraries

ld −b −z −L. −lOberonV4 $1.o −o lib$1.sl

remove unnecessary files and show result

rm $1.c $1.o; ls −l lib$1.sl

23

3.5 IBM AIX (RS/6000)

AIX supports dynamic linking but not run-time linking. Note that the
load system call is not sufficient for run-time linking. A separate library
(libdl.a) is available from a third party vendor (HELIOS Software
GmbH, Germany, e-mail: jum@helios.de) that provides run-time
linking facilities similar to the one found in SunOS. The AIX linkage
editor may either be invoked by the ld or the cc command.

% cc −c −O *.c

% cc −o libOberonV4.o −bM:SRE −bE:V4.exp −lX11 −lm −lc −L. −ldl \

−e _nostart *.o

% cc Configuration.c libOberonV4.o

The first step compiles all .c files with optimizations being switched on
(−O) and supresses linking (option −c). There is no need to explicitly
instruct the compiler to generate position independent code. The second
step links all .o files to a shared library libOberonV4.o. Option −bM:SRE

sets the shared object flag in the generated object file. Option
−bE:V4.exp specifies file V4.exp to be used as an export list. Export lists
start with the #! sign and list all names of exported objects. Options
−lX11 −lm −lc specify that three additional libraries (libX11, libm, and
libc) should be linked. Option −e _nostart specifies that the shared
object does not have an entry point that is to be given control after
loading it.

A separate tool (genexp) to generate the export lists for a set of
modules is provided with Ofront for AIX. genexp takes an arbitrary
number of module names (possibly including a filename extension) as
input and writes the export list to the standard output device. For
example

% genexp *.sym > V4.exp

ocl In order to extend for example the Oberon V4 system by an additional
module at runtime, the script ocl as shown below is provided. It
translates an Oberon module to C, compiles it, and links it into a shared
library consisting of exactly one Oberon module. The module may then
be loaded at runtime the first time a command of the module is to be
executed. Note that you have to link additional libraries using the −o

option in the second cc command in case that the module references
those libraries.

24

#!/bin/csh

#

compile and link an Oberon module

#

SYNOPSIS

ocl moduleName [ofrontOption [ccOption]]

#

use the single character "−" to skip ofrontOption

example: ocl hello − −g

translate .Mod to .c

ofront $1.Mod $2

generate an export file

genexp $1 > $1.exp

compile .c to .o

cc −c $3 $1.c

compile .o to lib*.o; use option −o to link to appropriate libraries

cc $1.o −o lib$1.o −bM:SRE −bE:$1.exp −e _nostart libOberonV4.o

remove unnecessary files and show result

rm $1.c $1.o $1.exp; ls −l lib$1.o

3.6 SGI IRIX 5 (MIPS)

IRIX 5.3 supports dynamic linking and a limited form of run-time
linking. The programmatic interface to the runtime linker and the
limitations are exactly the same as in SunOS 4.x. The main restriction is
that IRIX 5.3 does not allow shared object libraries which are loaded at
runtime (by means of a dlopen call) to depend on shared object libraries
which are themselves loaded at runtime. Such cases can lead to loading
shared libraries multiple times into main memory causing
inconsistencies in a program due to multiple instances of global
variables. We deliberately refrain from using the run-time linking
facilities of IRIX 5.3 but show how to use dynamic linking to reduce
the size of an application.

% cc −O −c *.c

25

C compilation for shared object libraries does not require a flag for
position independent code since this is set implicitly. Option −O

specifies level 2 optimizations and −c suppresses linking after C
compilation.

% ld *.o −lc −lm −lX11 −o libOberonV4.so

The system’s linkage editor ld combines the *.o files to a dynamically
linked shared object library named libOberonV4.so. Additional libraries
are referenced by means of the −l option. A dynamically linked
executable can be created by the cc command as shown below.

% ofront Configuration.Max.Mod −m

% cc Configuration.c −L. −lOberonV4 −o oberon

At runtime, the environment variable LD_LIBRARY_PATH, a
colon-separated list of path names, is used to specify the directories in
which the dynamic linker looks for shared object libraries.

3.7 Linux (i386)

Linux (Yggdrasil, Fall 1994 distribution) supports dynamic linking
similar to SunOS 4.x but with even more stringent limitations. All
shared object libraries must be assigned a world-wide unique address
range in order to avoid conflicts with other shared libraries. In addition,
special tools are needed to generate shared libraries. The situation is
expected to change with the introduction of the ELF object file format
for Linux and version 2.7.0 of gcc, which supports generation of
position independent code. So far, we deliberately refrain from using
shared object libraries for Linux and show how to produce a static
archive and a traditionally linked application only. Note that existing
shared libraries, such as libc or libX11 will nevertheless be linked
dynamically.

% cc −O −c *.c

% ar libOberonV4.a *.o

% ranlib libOberonV4.a

% cc Configuration.c −L. −lOberonV4 −lm −lX11 −o oberon

% strip oberon

26

27

4 Module SYSTEM

The pseudo module SYSTEM plays a dual role in Ofront. First, it serves
as an escape mechanism to unsafe and system-dependent language
constructs (the static role) and second, it serves as the container of
run-time routines (the dynamic role). The following sections explain
both roles of module SYSTEM together with a mechanism to interface
Oberon with C or other foreign languages.

4.1 The Static Role

Ofront’s SYSTEM module is identical to that described in "Programming
in Oberon" (see Ch. 1) except that it does not allow direct access to
registers or condition codes. If these features are desired in a program,
external or in-line expanded assembly language routines have to be
used. For interfacing with foreign language procedures, see Section 4.2.
The following definition describes all objects exported by module
SYSTEM. Note that type Any stands for an arbitrary type, type Int stands
for an arbitrary integer type, and type Scalar for an arbitrary
unstructured type.

DEFINITION SYSTEM;

 TYPE

 BYTE = Octet;

 PTR = POINTER TO Any;

 PROCEDURE ADR (x: Any): LONGINT;

 PROCEDURE BIT (adr, n: LONGINT): BOOLEAN;

 PROCEDURE GET (adr: LONGINT; VAR x: Scalar);

 PROCEDURE LSH (i: Int; n: LONGINT): Int;

 PROCEDURE MOVE (sadr, dadr, n: LONGINT);

 PROCEDURE NEW (VAR p: PTR; n: LONGINT);

 PROCEDURE PUT (adr: LONGINT; x: Scalar);

 PROCEDURE ROT (i: Int; n: LONGINT): Int;

 PROCEDURE VAL (T: Type; x: Any): T;

END SYSTEM.

In addition to these exported objects, import of module SYSTEM enables
specification of various flags for types or procedures. A type flag

28

always follows the first keyword that is used to construct the type and
consists of an integer constant enclosed in brackets, as in the following:

TYPE

P = POINTER [1] TO PDesc;

PROCEDURE WriteString(s: ARRAY [1] OF CHAR);

The meaning of type flags is defined in Table 4.1.

Table 4.1 Type flags

RECORD 1 untagged record
ARRAY 1 do not copy value array parameters
POINTER 1 untraced pointer, implied by RECORD [1]
type flag meaning

For procedures, Ofront allows a "-" sign after the keyword PROCEDURE

in a procedure declaration to indicate that this procedure is an in-lined
C code sequence. The in-lined code is written in quotation marks after
the procedure heading as in the following example:

PROCEDURE −malloc(size: LONGINT): LONGINT

"((LONGINT)malloc(size))";

Ofront translates such procedures into macro definitions which are
subject to C preprocessing.

#define Mymodule_malloc(size) ((LONGINT)malloc(size))

Obviously, this mechanism provides a way to interface Oberon with
foreign languages such as C or assembly language, as explained in more
detail in Section 4.2.

4.2 Interfacing with C

In order to allow reuse of existing libraries written in C or other foreign
languages (including assembly language), Ofront provides a mechanism
to interface with such languages. The requirements on this mechanism
are at least that it should not introduce unjustified run-time overhead
and that it should allow a flexible way of mapping Oberon to C
parameters, which are not always identical. Realistically, it cannot be
expected that mixing different languages is as simple as staying within

29

only one language. The general rule is that if you want to be 100%
compatible with C, then you have to use C. Nevertheless, Ofront’s way
of interfacing with C allows writing interfaces with very little
programming effort.

The basic idea is to use in-lined code procedures implemented as C
macro definitions as shown in Section 4.1. This mechanism has been
successfully used to connect the X11 library, the C library and
mathematical functions to Oberon.

Please observe the following pitfalls in order to succeed, and note that
for inexperienced users it is a good idea to look at the generated macro
or even at the preprocessed C code before trusting a code procedure. An
important rule for writing a C macro is to put arguments in parentheses
to avoid semantic changes due to the application of precedence rules
after macro expansion has taken place.

4.2.1 Name Mapping

Somehow Oberon names must be mapped to C names used in the
in-lined code procedures. Since code procedures translate to macros, the
C macro preprocessor can be used to perform this name mapping on all
parameters of the macro. Thus it is possible to use Oberon names inside
the code procedures as far as parameters of the procedure are
concerned. The following gives a nontrivial example:

PROCEDURE −externalFunction(if: BOOLEAN) "externalFunction(if)"

Note that "if" is not a valid parameter name in C but a reserved
keyword. Ofront translates the parameter to if_ and passes this symbol
to the macro activation. The preprocessor then substitutes the if inside
the code procedure with if_ in the in-lined C code and everything works
as expected. Obviously the name if must not be used as the C keyword if

inside the code procedure.
For names of objects not passed as parameters, please look in Section

4.2.6 and in the generated C code. The rule for global names is that they
are always prefixed by the module name followed by an underscore.

4.2.2 Pointers

Dynamic data structures in Oberon and C differ in the way storage is
released. Oberon uses automatic garbage collection, whereas C uses

30

explicit release of storage blocks. To avoid corrupting Oberon’s or C’s
memory management, never assign a C pointer to an Oberon pointer
unless the pointer points to a valid Oberon heap object or the Oberon
pointer is a local variable. Assign an Oberon pointer to a C pointer only
if you are sure that the C program does not release the storage block.

Note also the possibility of using pointer types with type flag [1] (cf.
Section 4.1) for specifying pointers that are not traced by Oberon’s
garbage collector. These pointers cannot be used to anchor an Oberon
heap object but can refer to an external storage block which is subject to
explicit deallocation as it is the case in C.

4.2.3 Parameter Substitution inside Strings

The C preprocessor only works on whole tokens, and a string literal is
considered a token. Thus macro substitution normally does not take
place inside a string. There is, however, one noteworthy exception to
this rule. Some pre-ANSI C preprocessors do perform parameter
substitution in strings that are contained in a macro definition. For the
not so rare case of calling the printf function with a string as argument,
for example, one should always check that no macro parameter occurs
as a token within the string. The following example is erroneous since
the s inside the string literal might be substituted with the actual
argument s.

PROCEDURE −error(s: ARRAY OF CHAR) 'printf("error: %s", s)';

A formulation that works for all compilers would be

PROCEDURE −error(x: ARRAY OF CHAR) 'printf("error: %s", x)';

4.2.4 Exporting Code Procedures

When exporting a code procedure, note that this might easily lead to
name clashes at the point where the code procedure is used. The
following example shows a problematic situation:

PROCEDURE P;

VAR sin: LONGREAL;

BEGIN

sin := Math.sin(x);

31

...

END P;

If Math.sin is an exported code procedure defined as

PROCEDURE −sin*(x: REAL): REAL "sin(x)";

then preprocessing sin := Math.sin(x) would result in sin := sin(x), which
clearly uses the name sin ambiguously. The quintessence is that code
procedures should only be exported if the names involved are very
unlikely to produce a name clash or if efficiency is of highest priority.
Otherwise a wrapper procedure should be exported that passes the
parameters to the code procedure as shown below:

PROCEDURE −Sin(x: REAL): REAL "sin(x)";

PROCEDURE sin*(x: REAL): REAL;

BEGIN RETURN Sin(x)

END sin;

The careful reader might have noticed that the above example would
not work correctly were there not additional provisions to get the return
type of the external function sin right. Section 4.2.5 deals with this
problem.

4.2.5 Return Types and Includes

By definition, the return type of a C function that has no prototype in
the current scope is int, which is incorrect in the above example (sin)
since the return type of sin is float or double. We have to declare a
function prototype that provides the correct return type. As an
alternative, we could also include a header file which contains such a
declaration.

Ofront allows specification of special files that are included at the
beginning of the generated header and body files. Such files are called
prefix files since they prefix the generated output files. The prefix files
of a module M are expected to be called M.h0 and M.c0 for the header
and the body, respectively. Inclusion of prefix files must be enabled
explicitly by specifying option i.

Prefix files can be of particular importance if combined with
conditional inclusion (#ifdef) since they allow keeping an Oberon

32

module portable even if it depends, for example, on particular
definitions of the underlying Unix variant.

Example To get the return type of function Math.sin right, module Math must be
translated with option i and a file Math.c0 must be provided that
contains either an include control line for an appropriate header file
(math.h) or that contains the extern declarations directly. The second
form has the advantage that "name space pollution" is reduced to a
small number of explicitly specified identifiers; it has the disadvantage
of possible inconsistencies with math.h and it requires additional typing
if more than one function is involved.

% Ofront Math.Mod −i

Math.c0:

#include <math.h>

or

Math.c0:

extern double sin();

Since it is sometimes inconvenient to provide an additional file for only
one or two declarations, Ofront also allows specification of control
lines and extern declarations directly in the Oberon source text. This is
done by means of looking at the contents of a code procedure and
translating those that start with # or extern directly into the
corresponding control line or extern declaration. Note that such code
procedures are useful only as declarations; they should never be called.

The code procedure

PROCEDURE −includemath() "#include <math.h>";

would be translated into the include control line

#include <math.h>

The code procedure

PROCEDURE −externsin() "extern double sin();";

33

would be translated into the declaration

extern double sin();

It is highly recommended to use these facilities only in very few
low-level modules (if at all) since they are inherently unportable and
potentially unsafe. They also lead to name space pollution, i.e. they can
produce name clashes. If code procedures are exported or if header
prefix files are used, this may even affect client modules.

4.2.6 Debugging

Due to the translation of Oberon programs to C programs, any C
debugging tool including core dump analyzers or fancy run-time
debuggers can be used to inspect Oberon programs. However,
debugging happens on the level of the generated C code, not at the
Oberon language level. This fact is addressed by one of Ofront’s design
goals, viz. to generate human readable C code. Provided some basic
knowledge of C, it is always obvious which Oberon statement
corresponds to which C statement. The following name mappings
should be kept in mind when accessing Oberon objects from within a C
debugging tool:

The name of a global variable or global procedure is prefixed by
the module name followed by an underscore.
Constructs which have no direct counterpart in C such as NEW or
COPY are expressed by macros or functions with the same name
prefixed with __ (double underscore). These macros are defined in
file SYSTEM.h.
The names of predefined Oberon types are unchanged.
The names of local variables and parameters are unchanged except
for those which conflict with C keywords. These are postfixed with
an underscore.
Local types, local procedures and anonymous types receive unique
names through appending serial numbers.

Examples Oberon C meaning

Args.Get Args_Get global procedure

Args.argv Args_argv global variable

INTEGER INTEGER predefined type

i, j, k, if i, j, k, if_ local variables

p, q, default p, q, default_ value parameters

34

*p, *q, *default_ VAR parameters

s s, s__len an array parameter s with its length

in s__len

r *r, r__typ a VAR−parameter record r

with dynamic type r__typ

s[i] s[i] array element with index i

r.f r.f record field f

(*r).f record field f of VAR parameter r

p↑ *p dereferenced pointer

p.f, p↑.f p−>f field f of record p↑

NEW(p) __NEW(p, T) allocate variable p↑ of type T

M.P(x) M_P(x) call procedure M.P

o.P(x) __M_T0_P(o, x) macro to call type bound procedure P

o.P↑(x) M_T0_P(o, x) super call, statically bound

4.3 The Dynamic Role

Module SYSTEM plays a second role in Ofront. It acts as a run-time
system for applications generated by Ofront. All run-time routines are
contained in an object file called SYSTEM.o and all exported names in
this file are prefixed with "SYSTEM_" in order to guarantee globally
unique names. The contents of SYSTEM.o is not important for using
Ofront. However, it is important that SYSTEM.o be linked either
statically or dynamically to every application generated with Ofront.
Due to the compactness of Ofront’s run-time system, this increases the
size of statically linked applications by only about 10 KB of object
code.

Run-time routines are provided for operations not directly available
in C. Among them are: heap management, automatic garbage
collection, a finalization registry, a registry for modules, commands and
types, and primitives for exception handling (cf. Chapters 6, 7, 8).

35

5 Module Args

Module Args provides access to a program’s command line arguments
and environment variables.

DEFINITION Args;

 VAR argc−, argv−: LONGINT;

 PROCEDURE Get(n: INTEGER; VAR val: ARRAY OF CHAR);

 PROCEDURE GetInt(n: INTEGER; VAR val: LONGINT);

 PROCEDURE Pos(s: ARRAY OF CHAR): INTEGER;

 PROCEDURE GetEnv(var: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);

END Args.

argc and argv provide direct access to the argument count and argument
vector. Note that argc is at least 1 since by convention the first argument
is the name by which the program was invoked. argv is defined as the C
pointer char *argv[]; i.e., it refers to an array of character pointers.
Every character array is terminated by a null character.

Get(n, val) returns the nth argument as string val. val remains unchanged
if the argument does not exist. Get(0, val) returns the name by which the
program was invoked. The argument is silently truncated to the length
of val.

GetInt(n, val) returns the nth argument as integer val. val remains
unchanged if the argument does not exist or if it is not an integer
number.

Pos(s) searches for argument s and returns its position if it exists;
otherwise it returns argc. Pos is useful for looking up a particular option
as shown below.

GetEnv(var, val) returns the value of environment variable var if it exists;
otherwise val remains unchanged. val is silently truncated in case of
overflow.

Example The following statement sequence looks for a display argument which
is specified either by the environment variable DISPLAY or as the
command line argument following −d or −display. The string "unix:0" is
used as a default value.

36

DISPLAY := "unix:0";

Args.GetEnv("DISPLAY", DISPLAY);

Args.Get(Args.Pos("−d") + 1, DISPLAY);

Args.Get(Args.Pos("−display") + 1, DISPLAY);

37

6 Exception Handling

Oberon does not define exception handling in the language itself since
this is highly platform- and/or application-specific. If appropriate
libraries are used for developing Oberon programs with Ofront, the low
level details of exception handling should be hidden from the
programmer. Only if such libraries are not available or if you are going
to develop such a library, the following is relevant.

Halt In order to implement a particular exception handling mechanism,
module SYSTEM provides a hook into a simple trap handling framework
and two variables which hold additional information. Whenever an
explicit run-time check fails or if HALT is called from a program,
procedure SYSTEM_HALT gets called. Note that Ofront implements
run-time checks simply by calling HALT with a negative parameter. In
turn, this triggers an upcall of the procedure installed in SYSTEM_Halt,
which represents a customizable trap dispatcher. If this procedure
returns or if there is no such procedure installed, the process is exited
with a call to exit(n) where n is the HALT parameter.

void (*SYSTEM_Halt)(); hook for a trap dispatcher
LONGINT SYSTEM_halt; holds the value of x in HALT(x)
LONGINT SYSTEM_assert; holds the value of x in ASSERT(cond, x)

On Unix platforms, for example, exception handling essentially means
signal handling since an exception is communicated to a process by
sending a signal. Unix programs may use this mechanism and install a
SYSTEM_Halt procedure that turns the call into a signal 4 (illegal
instruction) sent to the process. By installing a Unix signal handler and
examining the two variables SYSTEM_halt and SYSTEM_assert listed
below, exception handling can be realized. The advantage of such a
solution in the realm of Unix systems is that exceptions which are not
detected by explicit tests but generated directly by the CPU (e.g., a zero
divide) or sent by another process (e.g. an interrupt signal) also result in
sending a signal. In any case, if the procedure installed in SYSTEM_Halt

returns, the process is exited with a call to exit(n) where n is the HALT

parameter.

lock Two additional variables allow to protect regions that are not reentrant
from keyboard interrupts (e.g. by typing Ctrl_C or a Break character on
the controlling terminal or by sending a signal 2 to a Unix process).
Non-reentrant procedures can for example be found in the X11 library.
Calls of functions of this library can easily kill the calling process if a

38

previous display operation has been interrupted and left the connection
to the X-server in an inconsistent state. Other examples of non-reentrant
procedures are Ofront’s heap management and garbage collection
procedures since they work _ by definition _ on a global data structure.

LONGINT SYSTEM_lock;

BOOLEAN SYSTEM_interrupted;

The variable SYSTEM_lock represents a lock that is incremented
whenever a critical region is entered and decremented when it is left. If
a keyboard interrupt happens to occur and SYSTEM_lock is greater than
zero, only the boolean flag SYSTEM_interrupted must be set to TRUE, no
other action that possibly leads to reentering the critical region should
occur. When the critical region is left and SYSTEM_lock decremented to
zero, this flag might be checked to see if an interrupt is "pending" and if
so, __HALT(−9) can be used to issue a "deferred" interrupt signal. It is
important that SYSTEM_interrupted is set to FALSE (either before posting
the delayed interrupt signal or inside the signal handler) in order to
prevent unintended postings of deferred interrupt signals at the end of
other critical regions.

Example The following example shows an exception handler for the ETH Oberon
system. The call Kernel.siglongjmp(Kernel.trapEnv, 1) at the end of
procedure Trap transfers control to Oberon’s main event loop, provided
that an appropriate context has been stored in variable Kernel.trapEnv.
The mechanism used for saving the execution context and transferring
control across procedure calls is Unix’s sigsetjmp/siglongjmp. The
example involves four modules: one that implements the signal handler
(System), one that sets up the environment that is to be restored after
handling a signal (Oberon), one that shows how to use the locking
mechanism in order to safely access non-reentrant procedures (Display)
and one that provides the low level facilities (Kernel).

MODULE System;

...

VAR trapLevel: INTEGER;

PROCEDURE −signal(sig: LONGINT; func: Unix.SignalHandler)

"signal(sig, func)";

PROCEDURE −halt(): LONGINT "SYSTEM_halt";

PROCEDURE −assert(): LONGINT "SYSTEM_assert";

PROCEDURE −lock(): LONGINT "SYSTEM_lock";

39

PROCEDURE −resetHalt() "SYSTEM_halt = −128";

PROCEDURE −setIntd(v: BOOLEAN) "SYSTEM_interrupted = v";

PROCEDURE −FinalizeAll() "SYSTEM_FINALL()";

PROCEDURE Trap(sig, code: LONGINT; scp: Unix.SigCtxPtr);

BEGIN

signal(sig, Trap);

IF trapLevel = 0 THEN

trapLevel := 1;

CASE sig OF

| 2:

IF lock() > 0 THEN (* delay interrupt until lock = 0 *)

setIntd(TRUE); trapLevel := 0; RETURN

ELSE Out.String("INTERRUPT")

END

| 3:

FinalizeAll(); Unix.Exit(0)

| 4:

CASE halt() OF

| 0: (* silent halt *)

resetHalt(); trapLevel := 0;

Kernel.siglongjmp(Kernel.trapEnv, 1)

| −1: Out.String("ASSERT(");

Out.Int(assert(), 1); Out.String(") FAILED")

| −2: Out.String("INDEX OUT OF RANGE")

| −3: Out.String("FUNCTION WITHOUT RETURN")

| −4: Out.String("INVALID CASE")

| −5: Out.String("TYPE GUARD FAILED")

| −6: Out.String("IMPLICIT TYPE GUARD FAILED")

| −7: Out.String("WITH GUARD FAILED")

| −8: Out.String("VALUE OUT OF RANGE")

| −9: setIntd(FALSE); Out.String("DELAYED INTERRUPT")

ELSE

IF (halt() > 0) & (halt() < 256) THEN

Out.String("HALT("); Out.Int(halt(), 1); Out.Char(")")

ELSE Out.String("ILLEGAL INSTRUCTION")

END

END ;

resetHalt()

| 8:

Out.String("ARITHMETIC EXCEPTION, code = ");

Out.Int(code, 1)

40

| 10:

Out.String("BUS ERROR")

| 11:

Out.String("SEGMENTATION VIOLATION")

| 13:

Out.String("UNCONNECTED PIPE")

ELSE

Out.String("SIGNAL "); Out.Int(sig, 0)

END ;

Out.Ln

END ;

trapLevel := 0;

Kernel.siglongjmp(Kernel.trapEnv, 1)

END Trap;

...

BEGIN

trapLevel := 0;

signal(2, Trap); (* keyboard interrupt *)

signal(3, Trap); (* quit *)

signal(4, Trap); (* illegal instruction *)

signal(8, Trap); (* arithmetic error *)

signal(10, Trap); (* bus error *)

signal(11, Trap); (* segmentation violation *)

signal(13, Trap) (* unconnected pipe *)

END System.

MODULE Oberon;

...

PROCEDURE Loop*;

BEGIN

res := Kernel.sigsetjmp(Kernel.trapEnv, 1);

LOOP

the Oberon main event loop, which is to be reentered upon a trap

END

END Loop;

...

END Oberon.

41

MODULE Display;

...

PROCEDURE −Lock() "SYSTEM_lock++";

PROCEDURE −Unlock() "SYSTEM_lock−−; if (SYSTEM_interrupted &&

SYSTEM_lock == 0) __HALT(−9)";

PROCEDURE CopyBlock*(SX, SY, W, H, DX, DY, mode: INTEGER);

BEGIN

Lock();

call of non−reentrant X−library routines

Unlock()

END CopyBlock

...

END Display.

MODULE Kernel;

...

VAR trapEnv*: Unix.JmpBuf;

PROCEDURE −sigsetjmp*

(VAR env: Unix.JmpBuf; savemask: LONGINT): LONGINT

"sigsetjmp(env, savemask)";

PROCEDURE −siglongjmp*(VAR env:Unix. JmpBuf; val: LONGINT)

"siglongjmp(env, val)";

PROCEDURE −SetHalt*(p: PROCEDURE(n: LONGINT));

"SYSTEM_Halt = p";

PROCEDURE Halt(n: LONGINT);

VAR res: LONGINT;

BEGIN res := Unix.Kill(Unix.Getpid(), 4)";

END Halt;

BEGIN SetHalt(Halt)

END Kernel.

42

43

7 Module Loading

Module SYSTEM provides a registration service for Oberon modules. It
deliberately does not provide dynamic linking facilities itself since this
is platform- and possibly application-specific. Dynamic loading as
provided, for example, by module Modules in ETH Oberon systems can
be built on top of this registration service. For every module, Ofront
generates an exported function named after the module and followed by
the suffix __init. This function is the C counterpart of an Oberon module
body. Upon the first call of an init function, the module is registered
together with its commands and exported types by means of the
registration service of module SYSTEM. In addition, the module is
initialized as required by Oberon (the part of the init function that
corresponds to the Oberon module body is preceded by the comment /*
BEGIN */). Thus, when implementing dynamic linking, the only task is
to call a module’s init function, which returns a pointer to the module.

In order to get access to the list of loaded modules, module SYSTEM

provides the anchor of the module list in variable SYSTEM_modules.
Module nodes are defined as follows:

TYPE

Module = POINTER TO ModuleDesc;

Cmd = POINTER TO CmdDesc;

ModuleDesc = RECORD

next: Module;

name: ARRAY 20 OF CHAR;

refcnt: LONGINT;

cmds: POINTER TO CmdDesc;

types: LONGINT;

enumPtrs: PROCEDURE (P: PROCEDURE(p: LONGINT))

reserved1, reserved2: LONGINT

END ;

CmdDesc = RECORD

next: Cmd;

name: ARRAY 24 OF CHAR;

cmd: Command

END ;

Example An example implementation of module Modules (a component of the
ETH Oberon V4 module library) for HP-UX with a particular shared

44

library search strategy is given below. Modules which are loaded at
runtime are looked up

1. in the program’s executable
2. in the previously loaded shared libraries
3. in a shared library named after the module to be loaded
4. in a subsytem named after the module name prefix; digits treated as

upper case letters
5. in a subsytem named after the module name prefix; digits treated as

lower case letters
6. in the shared library libOberonV4.sl.

MODULE Modules;

...

PROCEDURE −include() "#include <dl.h>";

PROCEDURE −dlopen(name: ARRAY OF CHAR): LONGINT

"(long)shl_load(name, BIND_DEFERRED, 0)";

PROCEDURE −dlsym(VAR h: LONGINT; name: Name; VAR p: Command)

"if (shl_findsym((shl_t*)h, (const char*)name, TYPE_PROCEDURE, p) ==

−1) *p = 0";

PROCEDURE −Prog(): LONGINT "(long)PROG_HANDLE";

PROCEDURE −modules*(): Module

"(Modules_Module)SYSTEM_modules";

PROCEDURE Concat(s1, s2: ARRAY OF CHAR; VAR d : ARRAY OF CHAR);

VAR i, j: INTEGER;

BEGIN i := 0; j := 0;

WHILE s1[i] # 0X DO d[i] := s1[i]; INC(i); END;

WHILE s2[j] # 0X DO d[i] := s2[j]; INC (i); INC(j); END;

d[i] := 0X;

END Concat;

PROCEDURE GetSubsys1(n: ARRAY OF CHAR; VAR s: ARRAY OF CHAR);

VAR i: INTEGER; ch: CHAR;

BEGIN

ch := n[0]; i := 0;

WHILE (ch # 0X) & ((ch < "a") OR (ch > "z")) DO

s[i] := ch; INC(i); ch := n[i]

END ;

45

WHILE (ch >= "a") & (ch <= "z") DO s[i] := ch; INC(i); ch := n[i] END ;

IF ch = 0X THEN s[0] := 0X ELSE s[i] := 0X END

END GetSubsys1;

PROCEDURE GetSubsys2(n: ARRAY OF CHAR; VAR s: ARRAY OF CHAR);

VAR i: INTEGER; ch: CHAR;

BEGIN

ch := n[0]; i := 0;

WHILE (ch >= "A") & (ch <= "Z") DO s[i] := ch; INC(i); ch := n[i] END ;

WHILE (ch # 0X) & ((ch < "A") OR (ch > "Z")) DO

s[i] := ch; INC(i); ch := n[i]

END ;

IF ch = 0X THEN s[0] := 0X ELSE s[i] := 0X END

END GetSubsys2;

PROCEDURE ThisMod* (name: ARRAY OF CHAR): Module;

VAR m: Module; bodyname, libname, libname2: ARRAY 64 OF CHAR;

body: Command; lib, prog, all: LONGINT;

BEGIN m := modules();

WHILE (m # NIL) & (m.name # name) DO m := m.next END ;

IF m = NIL THEN

all := 0; prog := Prog(); Concat(name, "__init", bodyname);

dlsym(prog, bodyname, body);

IF body = NIL THEN dlsym(all, bodyname, body) END ;

IF body = NIL THEN

Concat("lib", name, libname); Concat(libname, ".sl", libname);

lib := dlopen(libname);

IF lib # 0 THEN dlsym(lib, bodyname, body) END

END ;

IF body = NIL THEN

GetSubsys1(name, libname);

IF libname[0] # 0X THEN

Concat("lib", libname, libname); Concat(libname, ".sl", libname);

lib := dlopen(libname);

IF lib # 0 THEN dlsym(lib, bodyname, body) END

END

END ;

IF body = NIL THEN

GetSubsys2(name, libname2);

IF libname2[0] # 0X THEN

Concat("lib", libname2, libname2);

Concat(libname2, ".so", libname2);

46

IF (libname2 # libname) THEN

lib := dlopen(libname2);

IF lib # 0 THEN dlsym(lib, bodyname, body) END

END

END

END ;

IF body = NIL THEN lib := dlopen("libOberonV4.sl");

IF lib # 0 THEN dlsym(lib, bodyname, body) END

END ;

IF body # NIL THEN

body(); m := modules();

WHILE (m # NIL) & (m.name # name) DO m := m.next END

END

END ;

IF m # NIL THEN res := 0 ELSE res := 1; COPY(name, importing) END ;

RETURN m

END ThisMod;

PROCEDURE ThisCommand*

(mod: Module; name: ARRAY OF CHAR): Command;

VAR c: Cmd;

BEGIN c := mod.cmds;

WHILE (c # NIL) & (c.name # name) DO c := c.next END ;

IF c = NIL THEN res := 2; RETURN NIL

ELSE res := 0; RETURN c.cmd

END

END ThisCommand;

END Modules.

47

8 Garbage Collection and Finalization

Conceptually speaking, the programming language Oberon is based on
an infinite heap since there is no way to explicitly deallocate dynamic
data structures. Automatic garbage collection in combination with
dynamic heap expansion is a techique to implement this feature on
today’s finite hardware. Garbage collection is performed implicitly
whenever the heap storage is exhausted. Only if there is not enough
storage to be reclaimed, is the heap extended. In addition, Ofront’s
run-time system provides the procedure SYSTEM_GC to call the garbage
collector explicitly as shown by the following code procedure:

PROCEDURE −GC(markStack: BOOLEAN)

"SYSTEM_GC(markStack)";

The parameter markStack specifies whether the run-time stack should
be consulted for the reachability analysis. As an optimization,
markStack may be set to FALSE if it can be guaranteed that no objects
are anchored on the stack, which is the case, for example, in the main
Oberon loop of the ETH Oberon system. If in doubt, always pass TRUE

for markStack.
gclock Module SYSTEM provides the variable SYSTEM_gclock for

controlling the activities of the garbage collector.

SHORTINT SYSTEM_gclock;

A value of 0 means default behavior, i.e., garbage collection before
expanding the heap, value 1 means no garbage collection with
markStack set to TRUE as it is the case if the heap storage is exhausted,
and value 2 means no garbage collection at all even if SYSTEM_GC is
called with markStack set to FALSE.

Finalization Systems based on automatic garbage collection rather than explicit
release of unused memory blocks require a mechanism to release
external resources that are connected with released objects. This
mechanism is usually called finalization. Examples are Unix file
descriptors, which could be connected with Oberon file objects.
Whenever Oberon’s garbage collector detects that a file object is no
longer used, it releases this object. Closing the associated Unix file
descriptor directly by the garbage collector would imply that the
garbage collector knows about file objects and Unix file descriptors.
Since it is not possible for the garbage collector to know in advance all
kinds of objects that have external resources associated with them, there

48

must be an extensible mechanism that allows performing such cleanup
operations.

For this purpose, Ofront provides a registration service that associates
an object with a finalization procedure. The finalization procedure is
called when the object its released. If an object is registered n times,
there are exactly n finalization procedures to be called. No assumption
about the finalization order must be made. Although possible, a
finalization procedure should never establish new references to the
finalized object since this would prevent such objects from eventually
being reclaimed by the garbage collector. Otherwise there are no
restrictions to the finalization procedure.

The following declarations show the programmatic interface of the
finalization mechanism. Procedure SYSTEM_FINALL is implicitly called
at the end of a main program.

TYPE

Finalizer = PROCEDURE(obj: SYSTEM.PTR);

PROCEDURE −RegisterFin(obj: SYSTEM.PTR; finalize: Finalizer)

"SYSTEM_REGFIN(obj, finalize)";

PROCEDURE −FinalizeAll()

"SYSTEM_FINALL()";

49

Appendix A

Supported Architectures

The following Ofront.par parameterization files have been prepared for
your convenience. Additional architectures can easily be supported by
compiling and executing the program ofrontparam.c as described in
Section 2.4.

Ofront.aix.par

RS6000/IBM AIX

Ofront.hpux.par

PA-RISC/HP-UX Series 700, 800

Ofront.i960.par

Intel i960 embedded controller with natural alignment

Ofront.irix5.par

MIPS R4000 in 32 bit mode/Silicon Graphics IRIX 5.x

Ofront.linux386.par

Intel 386/Linux

Ofront.sunos.par

SPARC V7, V8/Solaris 1 and 2

Ofront.ultrix.par

MIPS R2000/Ultrix

Supported Compilers

The following SYSTEM.h include files have been prepared and tested for
the specified compilers and platforms. Additional platforms can be
supported on demand. Please contact your Ofront distributor.

SYSTEM.cc.aix.h

the IBM XlC compiler for RS6000/AIX machines

SYSTEM.cc.hpux.h

50

the C compiler bundled with HP-UX Series 700/800 machines

SYSTEM.cc.irix5.h

the standard C compiler for MIPS R4000 based SGI IRIX 5.x

machines

SYSTEM.cc.sunos4.h

the C compiler bundled with SPARC/Solaris 1

SYSTEM.cc.sunos5.h

the Sun C compiler for SPARC/Solaris 2

SYSTEM.cc.ultrix.h

the C compiler bundled with DEC/Ultrix (MIPS based)

SYSTEM.gcc.i960.h

the gnu C compiler for cross development of i960-based
embedded systems

SYSTEM.gcc.linux.h

the gnu C compiler for Linux based PCs.

SYSTEM.gcc.sunos4.h

the gnu C compiler for SPARC/Solaris 1

51

Appendix B

Available Libraries

Unix platforms only

libOberonV4:

the ETH Oberon V4 module library consisting of a tiled window
system, an extensible text and graphics editor and a number of
extensions and utilities. Module CmdlnTexts may be used much
like module Texts, but does not import modules Display and Fonts,
thus CmdlnTexts may be used in command line programs that deal
with texts but do not open a window. libOberonV4 may be
distributed freely as long as the ETH copyright restrictions are
observed.

SYSTEM

Args

Console

Modules

Unix

Kernel

Files

X11

Display

Input

Math

MathL

Fonts

Viewers

Reals

Texts

CmdlnTexts

Oberon

MenuViewers

TextFrames

In

Out

Printer

TextPrinter

52

ParcElems

System

Edit

EdiT

EditTools

MenuElems

IconElems

ClockElems

TextPFrames

TextPreview

TableElems

StyleElems

FoldElems

Folds

ErrorElems

ChartElems

LineElems

PopupElems

StampElems

AsciiCoder

Miscellaneous

FKeys

Colors

FontToBDF

Browser

Types

Display1

KeplerPorts

KeplerGraphs

KeplerFrames

Kepler

Kepler1

Kepler2

Kepler4

Kepler5

Kepler6

Kepler7

Kepler8

Kepler9

KeplerElems

Mailer

53

libOberonS3

The ETH Oberon System 3 module library (Release 2.0) consists
of a tiled and an overlapping window system, text and graphics
editors, graphical end-user objects (including buttons, text boxes,
lists and panels) together with user interface construction tools,
and ready-to-use components for accessing Internet services such
as a world-wide-web browser, an electronic mail facility, and
clients for ftp, gopher, finger, news, and telnet.
[not yet released]

Further libraries are in preparation.

54

55

Appendix C

The Programming Language Oberon-2

H. Mössenböck, N. Wirth
Institut für Computersysteme, ETH Zürich
October 1993

1 Introduction

Oberon-2 is a general-purpose programming language in the tradition of
Pascal and Modula-2. Its most important features are block structure,
modularity, separate compilation, static typing with strong type
checking (also across module boundaries), and type extension with
type-bound procedures.

Type extension makes Oberon-2 an object-oriented language. An
object is a variable of an abstract data type consisting of private data
(its state) and procedures that operate on this data. Abstract data types
are declared as extensible records. Oberon-2 covers most terms of
object-oriented languages by the established vocabulary of imperative
languages in order to minimize the number of notions for similar
concepts.

This report is not intended as a programmer’s tutorial. It is
intentionally kept concise. Its function is to serve as a reference for
programmers, implementors, and manual writers. What remains unsaid
is mostly left so intentionally, either because it can be derived from
stated rules of the language, or because it would require to commit the
definition when a general commitment appears as unwise.

Chapter 12 defines some terms that are used to express the type
checking rules of Oberon-2. Where they appear in the text, they are
written in italics to indicate their special meaning (e.g. the same type).

2 Syntax

An extended Backus-Naur Formalism (EBNF) is used to describe the
syntax of Oberon-2: Alternatives are separated by |. Brackets [and]
denote optionality of the enclosed expression, and braces { and } denote
its repetition (possibly 0 times). Non-terminal symbols start with an
upper-case letter (e.g. Statement). Terminal symbols either start with a

56

lower-case letter (e.g. ident), or are written all in upper-case letters (e.g.
BEGIN), or are denoted by strings (e.g. ":=").

3 Vocabulary and Representation

The representation of (terminal) symbols in terms of characters is
defined using the ASCII set. Symbols are identifiers, numbers, strings,
operators, and delimiters. The following lexical rules must be observed:
Blanks and line breaks must not occur within symbols (except in
comments, and blanks in strings). They are ignored unless they are
essential to separate two consecutive symbols. Capital and lower-case
letters are considered as distinct.

1. Identifiers are sequences of letters and digits. The first character must
be a letter.

$ ident = letter {letter | digit}.

Examples: x Scan Oberon2 GetSymbol firstLetter

2. Numbers are (unsigned) integer or real constants. The type of an
integer constant is the minimal type to which the constant value belongs
(see 6.1). If the constant is specified with the suffix H, the
representation is hexadecimal otherwise the representation is decimal.

A real number always contains a decimal point. Optionally it may
also contain a decimal scale factor. The letter E (or D) means "times ten
to the power of". A real number is of type REAL, unless it has a scale
factor containing the letter D. In this case it is of type LONGREAL.

$ number = integer | real.

$ integer = digit {digit} | digit {hexDigit} "H".

$ real = digit {digit} "." {digit} [ScaleFactor].

$ ScaleFactor = ("E" | "D") ["+" | "−"] digit {digit}.

$ hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".

$ digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

Examples:
1991 INTEGER 1991

0DH SHORTINT 13

12.3 REAL 12.3

4.567E8 REAL 456700000

57

0.57712566D−6 LONGREAL 0.00000057712566

3. Character constants are denoted by the ordinal number of the
character in hexadecimal notation followed by the letter X.

$ character = digit {hexDigit} "X".

4. Strings are sequences of characters enclosed in single (’) or double
(") quote marks. The opening quote must be the same as the closing
quote and must not occur within the string. The number of characters in
a string is called its length. A string of length 1 can be used wherever a
character constant is allowed and vice versa.

$ string = ' " ' {char} ' " ' | " ' " {char} " ' ".

Examples: "Oberon−2" "Don't worry!" "x"

5. Operators and delimiters are the special characters, character pairs,
or reserved words listed below. The reserved words consist exclusively
of capital letters and cannot be used as identifiers.

+ := ARRAY IMPORT RETURN

− ↑ BEGIN IN THEN

* = BY IS TO

/ # CASE LOOP TYPE

˜ < CONST MOD UNTIL

& > DIV MODULE VAR

. <= DO NIL WHILE

, >= ELSE OF WITH

; .. ELSIF OR

| : END POINTER

() EXIT PROCEDURE

[] FOR RECORD

{ } IF REPEAT

6. Comments may be inserted between any two symbols in a program.
They are arbitrary character sequences opened by the bracket (* and
closed by *). Comments may be nested. They do not affect the meaning
of a program.

58

4 Declarations and scope rules

Every identifier occurring in a program must be introduced by a
declaration, unless it is a predeclared identifier. Declarations also
specify certain permanent properties of an object, such as whether it is a
constant, a type, a variable, or a procedure. The identifier is then used to
refer to the associated object.

The scope of an object x extends textually from the point of its
declaration to the end of the block (module, procedure, or record) to
which the declaration belongs and hence to which the object is local. It
excludes the scopes of equally named objects which are declared in
nested blocks. The scope rules are:

1. No identifier may denote more than one object within a given scope
(i.e. no identifier may be declared twice in a block);

2. An object may only be referenced within its scope;
3. A type T of the form POINTER TO T1 (see 6.4) can be declared at

a point where T1 is still unknown. The declaration of T1 must
follow in the same block to which T is local;

4. Identifiers denoting record fields (see 6.3) or type-bound
procedures (see 10.2) are valid in record designators only.

An identifier declared in a module block may be followed by an export
mark (" * " or " - ") in its declaration to indicate that it is exported. An
identifier x exported by a module M may be used in other modules, if
they import M (see Ch. 11). The identifier is then denoted as M.x in
these modules and is called a qualified identifier. Identifiers marked
with " - " in their declaration are read-only in importing modules.

$ Qualident = [ident "."] ident.

$ IdentDef = ident [" * " | " − "].

The following identifiers are predeclared; their meaning is defined in
the indicated sections:

ABS (10.3) LEN (10.3)

ASH (10.3) LONG (10.3)

BOOLEAN (6.1) LONGINT (6.1)

CAP (10.3) LONGREAL (6.1)

CHAR (6.1) MAX (10.3)

CHR (10.3) MIN (10.3)

COPY (10.3) NEW (10.3)

59

DEC (10.3) ODD (10.3)

ENTIER (10.3) ORD (10.3)

EXCL (10.3) REAL (6.1)

FALSE (6.1) SET (6.1)

HALT (10.3) SHORT (10.3)

INC (10.3) SHORTINT (6.1)

INCL (10.3) SIZE (10.3)

INTEGER (6.1) TRUE (6.1)

5 Constant declarations

A constant declaration associates an identifier with a constant value.

$ ConstantDeclaration = IdentDef "=" ConstExpression.

$ ConstExpression = Expression.

A constant expression is an expression that can be evaluated by a mere
textual scan without actually executing the program. Its operands are
constants (Ch.8) or predeclared functions (Ch.10.3) that can be
evaluated at compile time. Examples of constant declarations are:

N = 100

limit = 2*N − 1

fullSet = {MIN(SET) .. MAX(SET)}

6 Type declarations

A data type determines the set of values which variables of that type
may assume, and the operators that are applicable. A type declaration
associates an identifier with a type. In the case of structured types
(arrays and records) it also defines the structure of variables of this
type. A structured type cannot contain itself.

$ TypeDeclaration = IdentDef "=" Type.

$ Type = Qualident | ArrayType | RecordType | PointerType | ProcedureType.

Examples:

Table = ARRAY N OF REAL

Tree = POINTER TO Node

60

Node = RECORD

key : INTEGER;

left, right: Tree

END

CenterTree = POINTER TO CenterNode

CenterNode = RECORD (Node)

width: INTEGER;

subnode: Tree

END

Function = PROCEDURE(x: INTEGER): INTEGER

6.1 Basic types

The basic types are denoted by predeclared identifiers. The associated
operators are defined in 8.2 and the predeclared function procedures in
10.3. The values of the given basic types are the following:

1. BOOLEAN the truth values TRUE and FALSE

2. CHAR the characters of the extended ASCII set (0X ..
0FFX)

3. SHORTINT the integers between MIN(SHORTINT) and
MAX(SHORTINT)

4. INTEGER the integers between MIN(INTEGER) and
MAX(INTEGER)

5. LONGINT the integers between MIN(LONGINT) and
MAX(LONGINT)

6. REAL the real numbers between MIN(REAL) and
MAX(REAL)

7. LONGREAL the real numbers between MIN(LONGREAL) and
MAX(LONGREAL)

8. SET the sets of integers between 0 and MAX(SET)

Types 3 to 5 are integer types, types 6 and 7 are real types, and together
they are called numeric types. They form a hierarchy; the larger type
includes (the values of) the smaller type:

LONGREAL >= REAL >= LONGINT >= INTEGER >= SHORTINT

6.2 Array types

61

An array is a structure consisting of a number of elements which are all
of the same type, called the element type. The number of elements of an
array is called its length. The elements of the array are designated by
indices, which are integers between 0 and the length minus 1.

$ ArrayType = ARRAY [Length {"," Length}] OF Type.

$ Length = ConstExpression.

A type of the form

ARRAY L0, L1, ..., Ln OF T

is understood as an abbreviation of

ARRAY L0 OF

ARRAY L1 OF

...

ARRAY Ln OF T

Arrays declared without length are called open arrays. They are
restricted to pointer base types (see 6.4), element types of open array
types, and formal parameter types (see 10.1). Examples:

ARRAY 10, N OF INTEGER

ARRAY OF CHAR

6.3 Record types

A record type is a structure consisting of a fixed number of elements,
called fields, with possibly different types. The record type declaration
specifies the name and type of each field. The scope of the field
identifiers extends from the point of their declaration to the end of the
record type, but they are also visible within designators referring to
elements of record variables (see 8.1). If a record type is exported, field
identifiers that are to be visible outside the declaring module must be
marked. They are called public fields; unmarked elements are called
private fields.

$ RecordType = RECORD ["("BaseType")"] FieldList {";" FieldList} END.

$ BaseType = Qualident.

$ FieldList = [IdentList ":" Type].

62

Record types are extensible, i.e. a record type can be declared as an
extension of another record type. In the example

T0 = RECORD x: INTEGER END

T1 = RECORD (T0) y: REAL END

T1 is a (direct) extension of T0 and T0 is the (direct) base type of T1
(see Ch. 12). An extended type T1 consists of the fields of its base type
and of the fields which are declared in T1. All identifiers declared in the
extended record must be different from the identifiers declared in its
base type record(s).

Examples of record type declarations:

RECORD

day, month, year: INTEGER

END

RECORD

name, firstname: ARRAY 32 OF CHAR;

age: INTEGER;

salary: REAL

END

6.4 Pointer types

Variables of a pointer type P assume as values pointers to variables of
some type T. T is called the pointer base type of P and must be a record
or array type. Pointer types adopt the extension relation of their pointer
base types: if a type T1 is an extension of T, and P1 is of type
POINTER TO T1, then P1 is also an extension of P.

$ PointerType = POINTER TO Type.

If p is a variable of type P = POINTER TO T, a call of the predeclared
procedure NEW(p) (see 10.3) allocates a variable of type T in free
storage. If T is a record type or an array type with fixed length, the
allocation has to be done with NEW(p); if T is an n-dimensional open
array type the allocation has to be done with NEW(p, e0, ..., en-1) where
T is allocated with lengths given by the expressions e0, ..., en-1. In
either case a pointer to the allocated variable is assigned to p. p is of

63

type P. The referenced variable p↑ (pronounced as p-referenced) is of
type T. Any pointer variable may assume the value NIL, which points to
no variable at all.

6.5 Procedure types

Variables of a procedure type T have a procedure (or NIL) as value. If a
procedure P is assigned to a variable of type T, the formal parameter
lists (see Ch. 10.1) of P and T must match (see Ch. 12). P must not be a
predeclared or type-bound procedure nor may it be local to another
procedure.

$ ProcedureType = PROCEDURE [FormalParameters].

7 Variable declarations

Variable declarations introduce variables by defining an identifier and a
data type for them.

$ VariableDeclaration = IdentList ":" Type.

Record and pointer variables have both a static type (the type with
which they are declared - simply called their type) and a dynamic type
(the type of their value at run time). For pointers and variable
parameters of record type the dynamic type may be an extension of
their static type. The static type determines which fields of a record are
accessible. The dynamic type is used to call type-bound procedures (see
10.2).

Examples of variable declarations (refer to examples in Ch. 6):

i, j, k: INTEGER

x, y: REAL

p, q: BOOLEAN

s: SET

F: Function

a: ARRAY 100 OF REAL

w: ARRAY 16 OF RECORD

name: ARRAY 32 OF CHAR;

count: INTEGER

64

END

t, c: Tree

8 Expressions

Expressions are constructs denoting rules of computation whereby
constants and current values of variables are combined to compute
other values by the application of operators and function procedures.
Expressions consist of operands and operators. Parentheses may be used
to express specific associations of operators and operands.

8.1 Operands

With the exception of set constructors and literal constants (numbers,
character constants, or strings), operands are denoted by designators. A
designator consists of an identifier referring to a constant, variable, or
procedure. This identifier may possibly be qualified by a module
identifier (see Ch. 4 and 11) and may be followed by selectors if the
designated object is an element of a structure.

$ Designator = Qualident {"." ident | "[" ExpressionList "]" | "↑" |

"(" Qualident ")"}.

$ ExpressionList = Expression {"," Expression}.

If a designates an array, then a[e] denotes that element of a whose
index is the current value of the expression e. The type of e must be an
integer type. A designator of the form a[e0, e1, ..., en] stands for
a[e0][e1]...[en]. If r designates a record, then r.f denotes the field f of r
or the procedure f bound to the dynamic type of r (Ch. 10.2). If p
designates a pointer, p↑ denotes the variable which is referenced by p.
The designators p↑.f and p↑[e] may be abbreviated as p.f and p[e], i.e.
record and array selectors imply dereferencing. If a or r are read-only,
then also a[e] and r.f are read-only.

A type guard v(T) asserts that the dynamic type of v is T (or an
extension of T), i.e. program execution is aborted, if the dynamic type
of v is not T (or an extension of T). Within the designator, v is then
regarded as having the static type T. The guard is applicable, if

1. v is a variable parameter of record type or v is a pointer, and if
2. T is an extension of the static type of v

65

If the designated object is a constant or a variable, then the designator
refers to its current value. If it is a procedure, the designator refers to
that procedure unless it is followed by a (possibly empty) parameter list
in which case it implies an activation of that procedure and stands for
the value resulting from its execution. The actual parameters must
correspond to the formal parameters as in proper procedure calls (see
10.1).

Examples of designators (refer to examples in Ch.7):

i (INTEGER)

a[i] (REAL)

w[3].name[i] (CHAR)

t.left.right (Tree)

t(CenterTree).subnode (Tree)

8.2 Operators

Four classes of operators with different precedences (binding strengths)
are syntactically distinguished in expressions. The operator ~ has the
highest precedence, followed by multiplication operators, addition
operators, and relations. Operators of the same precedence associate
from left to right. For example, x-y-z stands for (x-y)-z.

$ Expression = SimpleExpression [Relation SimpleExpression].

$ SimpleExpression = ["+" | "−"] Term {AddOperator Term}.

$ Term = Factor {MulOperator Factor}.

$ Factor = Designator [ActualParameters] | number | character |

string | NIL | Set | "(" Expression ")" | "˜" Factor.

$ Set = "{" [Element {"," Element}] "}".

$ Element = Expression [".." Expression].

$ ActualParameters = "(" [ExpressionList] ")".

$ Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.

$ AddOperator = "+" | "−" | OR.

$ MulOperator = "*" | "/" | DIV | MOD | "&".

The available operators are listed in the following tables. Some
operators are applicable to operands of various types, denoting different
operations. In these cases, the actual operation is identified by the type
of the operands. The operands must be expression compatible with
respect to the operator (see Ch. 12).

66

8.2.1 Logical operators

OR logical disjunction p OR q "if p then TRUE, else q"
& logical conjunction p & q "if p then q, else FALSE"
~ negation ˜ p "not p"

These operators apply to BOOLEAN operands and yield a BOOLEAN
result.

8.2.2 Arithmetic operators

+ sum
- difference
* product
/ real quotient
DIV integer quotient
MOD modulus

The operators +, -, *, and / apply to operands of numeric types. The
type of the result is the type of that operand which includes the type of
the other operand, except for division (/), where the result is the
smallest real type which includes both operand types. When used as
monadic operators, - denotes sign inversion and + denotes the identity
operation. The operators DIV and MOD apply to integer operands only.
They are related by the following formulas defined for any x and
positive divisors y:

x = (x DIV y) * y + (x MOD y)

0 <= (x MOD y) < y

Examples:
 x y x DIV y x MOD y

 5 3 1 2

−5 3 −2 1

8.2.3 Set Operators

+ union
- difference (x - y = x * (-y))
* intersection
/ symmetric set difference (x / y = (x-y) + (y-x))

67

Set operators apply to operands of type SET and yield a result of type
SET. The monadic minus sign denotes the complement of x, i.e. -x
denotes the set of integers between 0 and MAX(SET) which are not
elements of x. Set operators are not associative ((a+b)-c # a+(b-c)).
A set constructor defines the value of a set by listing its elements
between curly brackets. The elements must be integers in the range
0..MAX(SET). A range a..b denotes all integers in the interval [a, b].

8.2.4 Relations

= equal
unequal
< less
<= less or equal
> greater
>= greater or equal
IN set membership
IS type test

Relations yield a BOOLEAN result. The relations =, #, <, <=, >, and >=
apply to the numeric types, CHAR, strings, and character arrays
containing 0X as a terminator. The relations = and # also apply to
BOOLEAN and SET, as well as to pointer and procedure types
(including the value NIL). x IN s stands for "x is an element of s". x
must be of an integer type, and s of type SET. v IS T stands for "the
dynamic type of v is T (or an extension of T)" and is called a type test. It
is applicable if

1. v is a variable parameter of record type or v is a pointer, and if
2. T is an extension of the static type of v

Examples of expressions (refer to examples in Ch.7):

1991 INTEGER

i DIV 3 INTEGER

˜p OR q BOOLEAN

(i+j) * (i−j) INTEGER

s − {8, 9, 13} SET

i + x REAL

a[i+j] * a[i−j] REAL

(0<=i) & (i<100) BOOLEAN

t.key = 0 BOOLEAN

68

k IN {i..j−1} BOOLEAN

w[i].name <= "John" BOOLEAN

t IS CenterTree BOOLEAN

9 Statements

Statements denote actions. There are elementary and structured
statements. Elementary statements are not composed of any parts that
are themselves statements. They are the assignment, the procedure call,
the return, and the exit statement. Structured statements are composed
of parts that are themselves statements. They are used to express
sequencing and conditional, selective, and repetitive execution. A
statement may also be empty, in which case it denotes no action. The
empty statement is included in order to relax punctuation rules in
statement sequences.

$ Statement = [Assignment | ProcedureCall | IfStatement | CaseStatement |

WhileStatement | RepeatStatement | LoopStatement |

ForStatement | WithStatement | EXIT | RETURN [Expression]].

9.1 Assignments

Assignments replace the current value of a variable by a new value
specified by an expression. The expression must be assignment
compatible with the variable (see Ch. 12). The assignment operator is
written as ":=" and pronounced as becomes.

$ Assignment = Designator ":=" Expression.

If an expression e of type Te is assigned to a variable v of type Tv, the
following happens:

1. if Tv and Te are record types, only those fields of Te are assigned
which also belong to Tv (projection); the dynamic type of v must
be the same as the static type of v and is not changed by the
assignment;

2. if Tv and Te are pointer types, the dynamic type of v becomes the
dynamic type of e;

3. if Tv is ARRAY n OF CHAR and e is a string of length m<n, v[i]
becomes ei for i = 0..m-1 and v[m] becomes 0X.

69

Examples of assignments (refer to examples in Ch.7):

i := 0

p := i = j

x := i + 1

k := log2(i+j)

F := log2 (* see 10.1 *)

s := {2, 3, 5, 7, 11, 13}

a[i] := (x+y) * (x−y)

t.key := i

w[i+1].name := "John"

t := c

9.2 Procedure calls

A procedure call activates a procedure. It may contain a list of actual
parameters which replace the corresponding formal parameters defined
in the procedure declaration (see Ch. 10). The correspondence is
established by the positions of the parameters in the actual and formal
parameter lists. There are two kinds of parameters: variable and value
parameters.

If a formal parameter is a variable parameter, the corresponding
actual parameter must be a designator denoting a variable. If it denotes
an element of a structured variable, the component selectors are
evaluated when the formal/actual parameter substitution takes place, i.e.
before the execution of the procedure. If a formal parameter is a value
parameter, the corresponding actual parameter must be an expression.
This expression is evaluated before the procedure activation, and the
resulting value is assigned to the formal parameter (see also 10.1).

$ ProcedureCall = Designator [ActualParameters].

Examples:

WriteInt(i*2+1) (* see 10.1 *)

INC(w[k].count)

t.Insert("John") (* see 11 *)

9.3 Statement sequences

Statement sequences denote the sequence of actions specified by the

70

component statements which are separated by semicolons.

$ StatementSequence = Statement {";" Statement}.

9.4 If statements

$ IfStatement = IF Expression THEN StatementSequence

{ELSIF Expression THEN StatementSequence}

[ELSE StatementSequence]

END.

If statements specify the conditional execution of guarded statement
sequences. The Boolean expression preceding a statement sequence is
called its guard. The guards are evaluated in sequence of occurrence,
until one evaluates to TRUE, whereafter its associated statement
sequence is executed. If no guard is satisfied, the statement sequence
following the symbol ELSE is executed, if there is one.

Example:

IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier

ELSIF (ch >= "0") & (ch <= "9") THEN ReadNumber

ELSIF (ch = " ' ") OR (ch = ' " ') THEN ReadString

ELSE SpecialCharacter

END

9.5 Case statements

Case statements specify the selection and execution of a statement
sequence according to the value of an expression. First the case
expression is evaluated, then that statement sequence is executed whose
case label list contains the obtained value. The case expression must
either be of an integer type that includes the types of all case labels, or
both the case expression and the case labels must be of type CHAR.
Case labels are constants, and no value must occur more than once. If
the value of the expression does not occur as a label of any case, the
statement sequence following the symbol ELSE is selected, if there is
one, otherwise the program is aborted.

71

$ CaseStatement = CASE Expression OF Case {"|" Case}

[ELSE StatementSequence] END.

$ Case = [CaseLabelList ":" StatementSequence].

$ CaseLabelList = CaseLabels {"," CaseLabels}.

$ CaseLabels = ConstExpression [".." ConstExpression].

Example:

CASE ch OF

"A" .. "Z": ReadIdentifier

| "0" .. "9": ReadNumber

| " ' ", ' " ': ReadString

ELSE SpecialCharacter

END

9.6 While statements

While statements specify the repeated execution of a statement
sequence while the Boolean expression (its guard) yields TRUE. The
guard is checked before every execution of the statement sequence.

$ WhileStatement = WHILE Expression DO StatementSequence END.

Examples:
WHILE i > 0 DO i := i DIV 2; k := k + 1 END

WHILE (t # NIL) & (t.key # i) DO t := t.left END

9.7 Repeat statements

A repeat statement specifies the repeated execution of a statement
sequence until a condition specified by a Boolean expression is
satisfied. The statement sequence is executed at least once.

$ RepeatStatement = REPEAT StatementSequence UNTIL Expression.

9.8 For statements

A for statement specifies the repeated execution of a statement
sequence while a progression of values is assigned to an integer

72

variable called the control variable of the for statement.

$ ForStatement = FOR ident ":=" Expression TO Expression

[BY ConstExpression] DO StatementSequence END.

The statement

FOR v := beg TO end BY step DO statements END

is equivalent to

temp := end; v := beg;

IF step > 0 THEN

WHILE v <= temp DO statements; v := v + step END

ELSE

WHILE v >= temp DO statements; v := v + step END

END

temp has the same type as v. step must be a nonzero constant
expression. If step is not specified, it is assumed to be 1.

Examples:
FOR i := 0 TO 79 DO k := k + a[i] END

FOR i := 79 TO 1 BY −1 DO a[i] := a[i−1] END

9.9 Loop statements

A loop statement specifies the repeated execution of a statement
sequence. It is terminated upon execution of an exit statement within
that sequence (see 9.10).

$ LoopStatement = LOOP StatementSequence END.

Example:
LOOP

ReadInt(i);

IF i < 0 THEN EXIT END;

WriteInt(i)

END

Loop statements are useful to express repetitions with several exit

73

points or cases where the exit condition is in the middle of the repeated
statement sequence.

9.10 Return and exit statements

A return statement indicates the termination of a procedure. It is
denoted by the symbol RETURN, followed by an expression if the
procedure is a function procedure. The type of the expression must be
assignment compatible (see Ch. 12) with the result type specified in the
procedure heading (see Ch. 10).

Function procedures require the presence of a return statement
indicating the result value. In proper procedures, a return statement is
implied by the end of the procedure body. Any explicit return statement
therefore appears as an additional (probably exceptional) termination
point.

An exit statement is denoted by the symbol EXIT. It specifies
termination of the enclosing loop statement and continuation with the
statement following that loop statement. Exit statements are
contextually, although not syntactically associated with the loop
statement which contains them.

9.11 With statements

With statements execute a statement sequence depending on the result
of a type test and apply a type guard to every occurrence of the tested
variable within this statement sequence.

$ WithStatement = WITH Guard DO StatementSequence

{"|" Guard DO StatementSequence} [ELSE StatementSequence] END.

$ Guard = Qualident ":" Qualident.

If v is a variable parameter of record type or a pointer variable, and if it
is of a static type T0, the statement

WITH v: T1 DO S1 | v: T2 DO S2 ELSE S3 END

has the following meaning: if the dynamic type of v is T1, then the
statement sequence S1 is executed where v is regarded as if it had the
static type T1; else if the dynamic type of v is T2, then S2 is executed
where v is regarded as if it had the static type T2; else S3 is executed.

74

T1 and T2 must be extensions of T0. If no type test is satisfied and if an
else clause is missing the program is aborted.

Example:
WITH t: CenterTree DO i := t.width; c := t.subnode END

10 Procedure declarations

A procedure declaration consists of a procedure heading and a
procedure body. The heading specifies the procedure identifier and the
formal parameters. For type-bound procedures it also specifies the
receiver parameter. The body contains declarations and statements. The
procedure identifier is repeated at the end of the procedure declaration.

There are two kinds of procedures: proper procedures and function
procedures. The latter are activated by a function designator as a
constituent of an expression and yield a result that is an operand of the
expression. Proper procedures are activated by a procedure call. A
procedure is a function procedure if its formal parameters specify a
result type. The body of a function procedure must contain a return
statement which defines its result.

All constants, variables, types, and procedures declared within a
procedure body are local to the procedure. Since procedures may be
declared as local objects too, procedure declarations may be nested. The
call of a procedure within its declaration implies recursive activation.

Objects declared in the environment of the procedure are also visible
in those parts of the procedure in which they are not concealed by a
locally declared object with the same name.

$ ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.

$ ProcedureHeading =

PROCEDURE [Receiver] IdentDef [FormalParameters].

$ ProcedureBody = DeclarationSequence [BEGIN StatementSequence] END.

$ DeclarationSequence = {CONST {ConstantDeclaration ";"} |

TYPE {TypeDeclaration ";"} | VAR {VariableDeclaration ";"} }

{ProcedureDeclaration ";" | ForwardDeclaration ";"}.

$ ForwardDeclaration =

PROCEDURE "↑" [Receiver] IdentDef [FormalParameters].

If a procedure declaration specifies a receiver parameter, the procedure
is considered to be bound to a type (see 10.2). A forward declaration
serves to allow forward references to a procedure whose actual

75

declaration appears later in the text. The formal parameter lists of the
forward declaration and the actual declaration must match (see Ch. 12).

10.1 Formal parameters

Formal parameters are identifiers declared in the formal parameter list
of a procedure. They correspond to actual parameters specified in the
procedure call. The correspondence between formal and actual
parameters is established when the procedure is called. There are two
kinds of parameters, value and variable parameters, indicated in the
formal parameter list by the absence or presence of the keyword VAR.
Value parameters are local variables to which the value of the
corresponding actual parameter is assigned as an initial value. Variable
parameters correspond to actual parameters that are variables, and they
stand for these variables. The scope of a formal parameter extends from
its declaration to the end of the procedure block in which it is declared.
A function procedure without parameters must have an empty
parameter list. It must be called by a function designator whose actual
parameter list is empty too. The result type of a procedure can be
neither a record nor an array.

$ FormalParameters = "(" [FPSection {";" FPSection}] ")" [":" Qualident].

$ FPSection = [VAR] ident {"," ident} ":" Type.

Let Tf be the type of a formal parameter f (not an open array) and Ta the
type of the corresponding actual parameter a. For variable parameters,
Ta must be the same as Tf, or Tf must be a record type and Ta an
extension of Tf. For value parameters, a must be assignment compatible
with f (see Ch. 12).

If Tf is an open array , then a must be array compatible with f (see
Ch. 12). The lengths of f are taken from a.

Examples of procedure declarations:

PROCEDURE ReadInt(VAR x: INTEGER);

VAR i: INTEGER; ch: CHAR;

BEGIN i := 0; Read(ch);

WHILE ("0" <= ch) & (ch <= "9") DO

i := 10*i + (ORD(ch)−ORD("0")); Read(ch)

END;

x := i

76

END ReadInt

PROCEDURE WriteInt(x: INTEGER); (*0 <= x <100000*)

VAR i: INTEGER; buf: ARRAY 5 OF INTEGER;

BEGIN i := 0;

REPEAT buf[i] := x MOD 10; x := x DIV 10; INC(i) UNTIL x = 0;

REPEAT DEC(i); Write(CHR(buf[i] + ORD("0"))) UNTIL i = 0

END WriteInt

PROCEDURE WriteString(s: ARRAY OF CHAR);

VAR i: INTEGER;

BEGIN i := 0;

WHILE (i < LEN(s)) & (s[i] # 0X) DO Write(s[i]); INC(i) END

END WriteString;

PROCEDURE log2(x: INTEGER): INTEGER;

VAR y: INTEGER; (*assume x>0*)

BEGIN

y := 0; WHILE x > 1 DO x := x DIV 2; INC(y) END;

RETURN y

END log2

10.2 Type-bound procedures

Globally declared procedures may be associated with a record type
declared in the same module. The procedures are said to be bound to the
record type. The binding is expressed by the type of the receiver in the
heading of a procedure declaration. The receiver may be either a
variable parameter of record type T or a value parameter of type
POINTER TO T (where T is a record type). The procedure is bound to
the type T and is considered local to it.

$ ProcedureHeading =

PROCEDURE [Receiver] IdentDef [FormalParameters].

$ Receiver = "(" [VAR] ident ":" ident ")".

If a procedure P is bound to a type T0, it is implicitly also bound to any
type T1 which is an extension of T0. However, a procedure P’ (with the
same name as P) may be explicitly bound to T1 in which case it
overrides the binding of P. P’ is considered a redefinition of P for T1.
The formal parameters of P and P’ must match (see Ch. 12). If P and T1

77

are exported (see Chapter 4) P’ must be exported too.
If v is a designator and P is a type-bound procedure, then v.P denotes

that procedure P which is bound to the dynamic type of v. Note, that
this may be a different procedure than the one bound to the static type
of v. v is passed to P’s receiver according to the parameter passing rules
specified in Chapter 10.1.

If r is a receiver parameter declared with type T, r.P↑ denotes the
procedure P bound to the base type of T.
In a forward declaration of a type-bound procedure the receiver
parameter must be of the same type as in the actual procedure
declaration. The formal parameter lists of both declarations must match
(Ch. 12).

Examples:

PROCEDURE (t: Tree) Insert (node: Tree);

VAR p, father: Tree;

BEGIN p := t;

REPEAT father := p;

IF node.key = p.key THEN RETURN END;

IF node.key < p.key THEN p := p.left ELSE p := p.right END

UNTIL p = NIL;

IF node.key < father.key THEN father.left := node

ELSE father.right := node

END;

node.left := NIL; node.right := NIL

END Insert;

PROCEDURE (t: CenterTree) Insert (node: Tree); (*redefinition*)

BEGIN

WriteInt(node(CenterTree).width);

t.Insert↑ (node) (* calls the Insert procedure bound to Tree *)

END Insert;

10.3 Predeclared procedures

The following table lists the predeclared procedures. Some are generic
procedures, i.e. they apply to several types of operands. v stands for a
variable, x and n for expressions, and T for a type.

Function procedures

78

Name Argument type Result type Function

ABS(x) numeric type type of x absolute value

ASH(x, n) x, n: integer type LONGINT arithmetic shift (x * 2 n)

CAP(x) CHAR CHAR if x is a letter, the

corresponding capital letter

CHR(x) integer type CHAR character with ordinal number x

ENTIER(x) real type LONGINT largest integer not greater than x

LEN(v, n) v: array; LONGINT length of v in dimension n

n: integer const. (first dimension = 0)

LEN(v) v: array LONGINT equivalent to LEN(v, 0)

LONG(x) SHORTINT INTEGER identity

INTEGER LONGINT

REAL LONGREAL

MAX(T) T = basic type T maximum value of type T

T = SET INTEGER maximum element of a set

MIN(T) T = basic type T minimum value of type T

T = SET INTEGER 0

ODD(x) integer type BOOLEAN x MOD 2 = 1

ORD(x) CHAR INTEGER ordinal number of x

SHORT(x) LONGINT INTEGER identity

INTEGER SHORTINT identity

LONGREAL REAL identity (truncation possible)

SIZE(T) any type integer type number of bytes required by T

Proper procedures

Name Argument types Function

ASSERT(x) x: Boolean expression terminate program if not x

ASSERT(x, n) x: Boolean expression; terminate program if not x

n: integer constant

COPY(x, v) x: character array, string; v := x

v: character array truncation possible

DEC(v) integer type v := v − 1

DEC(v, n) v, n: integer type v := v − n

EXCL(v, x) v: SET; x: integer type v := v − {x}

HALT(n) integer constant terminate program

INC(v) integer type v := v + 1

INC(v, n) v, n: integer type v := v + n

INCL(v, x) v: SET; x: integer type v := v + {x}

NEW(v) pointer to record or allocate v↑

fixed size array

79

NEW(v, x0, ..., xn) v: pointer to open array; allocate v↑ with

xi: integer type lengths x0.. xn

COPY allows the assignment of a string or a character array containing
a terminating 0X to another character array. If necessary, the assigned
value is truncated to the target length minus one. The target will always
contain 0X as a terminator. In ASSERT(x, n) and HALT(n), the
interpretation of n is left to the underlying system implementation.

11 Modules

A module is a collection of declarations of constants, types, variables,
and procedures, together with a sequence of statements for the purpose
of assigning initial values to the variables. A module constitutes a text
that is compilable as a unit.

$ Module = MODULE ident ";" [ImportList] DeclarationSequence

[BEGIN StatementSequence] END ident ".".

$ ImportList = IMPORT Import {"," Import} ";".

$ Import = [ident ":="] ident.

The import list specifies the names of the imported modules. If a
module A is imported by a module M and A exports an identifier x, then
x is referred to as A.x within M. If A is imported as B := A, the object x
must be referenced as B.x. This allows short alias names in qualified
identifiers. A module must not import itself. Identifiers that are to be
exported (i.e. that are to be visible in client modules) must be marked
by an export mark in their declaration (see Chapter 4).

The statement sequence following the symbol BEGIN is executed
when the module is added to a system (loaded), which is done after the
imported modules have been loaded. It follows that cyclic import of
modules is illegal. Individual (parameterless and exported) procedures
can be activated from the system, and these procedures serve as
commands.

MODULE Trees;

IMPORT Texts, Oberon;

(* exports: Tree, Node, Insert, Search, Write, Init;

exports read−only: Node.name *)

TYPE

Tree* = POINTER TO Node;

80

Node* = RECORD

name−: POINTER TO ARRAY OF CHAR;

left, right: Tree

END;

VAR w: Texts.Writer;

PROCEDURE (t: Tree) Insert* (name: ARRAY OF CHAR);

VAR p, father: Tree;

BEGIN p := t;

REPEAT father := p;

IF name = p.name↑ THEN RETURN END;

IF name < p.name↑ THEN p := p.left ELSE p := p.right END

UNTIL p = NIL;

NEW(p); p.left := NIL; p.right := NIL;

NEW(p.name, LEN(name)+1); COPY(name, p.name↑);

IF name < father.name↑ THEN father.left := p

ELSE father.right := p

END

END Insert;

PROCEDURE (t: Tree) Search* (name: ARRAY OF CHAR): Tree;

VAR p: Tree;

BEGIN p := t;

WHILE (p # NIL) & (name # p.name↑) DO

IF name < p.name↑ THEN p := p.left ELSE p := p.right END

END;

RETURN p

END Search;

PROCEDURE (t: Tree) Write*;

BEGIN

IF t.left # NIL THEN t.left.Write END;

Texts.WriteString(w, t.name↑); Texts.WriteLn(w);

Texts.Append(Oberon.Log, w.buf);

IF t.right # NIL THEN t.right.Write END

END Write;

PROCEDURE Init* (t: Tree);

BEGIN NEW(t.name, 1); t.name[0] := 0X; t.left := NIL; t.right := NIL

END Init;

81

BEGIN Texts.OpenWriter(w)

END Trees.

12 Definition of terms

Integer types SHORTINT, INTEGER, LONGINT
Real types REAL, LONGREAL
Numeric types integer types, real types

Same types
Two variables a and b with types Ta and Tb are of the same type if
1. Ta and Tb are both denoted by the same type identifier, or
2. Ta is declared to equal Tb in a type declaration of the form Ta =

Tb, or
3. a and b appear in the same identifier list in a variable, record field,

or formal parameter declaration and are not open arrays.

Equal types
Two types Ta and Tb are equal if
1. Ta and Tb are the same type, or
2. Ta and Tb are open array types with equal element types, or
3. Ta and Tb are procedure types whose formal parameter lists match.

Type inclusion
Numeric types include (the values of) smaller numeric types according
to the following hierarchy:

LONGREAL >= REAL >= LONGINT >= INTEGER >= SHORTINT

Type extension (base type)
Given a type declaration Tb = RECORD (Ta) ... END, Tb is a direct
extension of Ta, and Ta is a direct base type of Tb. A type Tb is an
extension of a type Ta (Ta is a base type of Tb) if
1. Ta and Tb are the same types, or
2. Tb is a direct extension of an extension of Ta
If Pa = POINTER TO Ta and Pb = POINTER TO Tb, Pb is an extension
of Pa (Pa is a base type of Pb) if Tb is an extension of Ta.

Assignment compatible
An expression e of type Te is assignment compatible with a variable v
of type Tv if one of the following conditions hold:

82

1. Te and Tv are the same type;
2. Te and Tv are numeric types and Tv includes Te;
3. Te and Tv are record types and Te is an extension of Tv and the

dynamic type of v is Tv ;
4. Te and Tv are pointer types and Te is an extension of Tv;
5. Tv is a pointer or a procedure type and e is NIL;
6. Tv is ARRAY n OF CHAR, e is a string constant with m characters,

and m < n;
7. Tv is a procedure type and e is the name of a procedure whose

formal parameters match those of Tv.

Array compatible
An actual parameter a of type Ta is array compatible with a formal
parameter f of type Tf if
1. Tf and Ta are the same type, or
2. Tf is an open array, Ta is any array, and their element types are

array compatible, or
3. Tf is ARRAY OF CHAR and a is a string.

Expression compatible
For a given operator, the types of its operands are expression
compatible if they conform to the following table (which shows also the
result type of the expression). Character arrays that are to be compared
must contain 0X as a terminator. Type T1 must be an extension of type
T0, P0 and P1 denote pointer types bound to T0 and T1 respectively and
Q stands for a procedure type. S stands for a character array or a string
literal.

operator first operand second operand result type
+ − * numeric numeric smallest numeric type

including both operands

/ numeric numeric smallest real type

including both operands

+ − * / SET SET SET

DIV MOD integer integer smallest integer type

including both operands

OR & ˜ BOOLEAN BOOLEAN BOOLEAN

= # < <= > >= numeric numeric BOOLEAN

CHAR CHAR BOOLEAN

S S BOOLEAN

= # BOOLEAN BOOLEAN BOOLEAN

SET SET BOOLEAN

83

NIL, P0 or P1 NIL, P0 or P1 BOOLEAN

Q, NIL Q, NIL BOOLEAN

IN integer SET BOOLEAN

IS type T0 type T1 BOOLEAN

Matching formal parameter lists
Two formal parameter lists match if
1. they have the same number of parameters, and
2. they have either the same function result type or none, and
3. parameters at corresponding positions have equal types, and
4. parameters at corresponding positions are both either value or

variable parameters.

84

85

Appendix D

Grammar of Oberon-2

module = MODULE ident ";" [ImportList] DeclarationSequence

[BEGIN StatementSequence] END ident "." .

ImportList = IMPORT import {"," import} ";" .

import = ident [":=" ident].

DeclarationSequence = {CONST {ConstantDeclaration ";"} |

TYPE {TypeDeclaration ";"} | VAR {VariableDeclaration ";"}}

{ProcedureDeclaration ";" | ForwardDeclaration ";"}.

ConstantDeclaration = identdef "=" ConstExpression.

identdef = ident ["*" | "−"].

ConstExpression = expression.

TypeDeclaration = identdef "=" type.

type = qualident | ArrayType | RecordType | PointerType | ProcedureType.

qualident = [ident "."] ident.

ArrayType = ARRAY [length {"," length}] OF type.

length = ConstExpression.

RecordType = RECORD ["(" BaseType ")"] FieldListSequence END.

BaseType = qualident.

FieldListSequence = FieldList {";" FieldList}.

FieldList = [IdentList ":" type].

IdentList = identdef {"," identdef}.

PointerType = POINTER TO type.

ProcedureType = PROCEDURE [FormalParameters].

VariableDeclaration = IdentList ":" type.

ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.

ProcedureHeading = PROCEDURE [Receiver] ["*"] identdef

[FormalParameters].

Receiver = "(" [VAR] ident ":" ident ")".

ProcedureBody = DeclarationSequence [BEGIN StatementSequence] END.

FormalParameters = "(" [FPSection {";" FPSection}] ")" [":" qualident].

FPSection = [VAR] ident {"," ident} ":" FormalType.

FormalType = type.

ForwardDeclaration = PROCEDURE [Receiver] "↑" identdef

[FormalParameters].

StatementSequence = statement {";" statement}.

statement = [assignment | ProcedureCall | IfStatement |

CaseStatement | WhileStatement | RepeatStatement | LoopStatement |

WithStatement | ForStatement | EXIT | RETURN [expression]].

86

assignment = designator ":=" expression.

designator = qualident {"." ident | "[" ExpList "]" | "(" qualident ")" | "↑" }.

ExpList = expression {"," expression}.

expression = SimpleExpression [relation SimpleExpression].

relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.

SimpleExpression = ["+"|"−"] term {AddOperator term}.

AddOperator = "+" | "−" | OR .

term = factor {MulOperator factor}.

MulOperator = "*" | "/" | DIV | MOD | "&" .

factor = number | CharConstant | string | NIL | set |

designator [ActualParameters] | "(" expression ")" | "˜" factor.

set = "{" [element {"," element}] "}".

element = expression [".." expression].

ProcedureCall = designator [ActualParameters].

ActualParameters = "(" [ExpList] ")" .

IfStatement = IF expression THEN StatementSequence

{ELSIF expression THEN StatementSequence}

[ELSE StatementSequence] END.

CaseStatement = CASE expression OF case {"|" case}

[ELSE StatementSequence] END.

case = [CaseLabelList ":" StatementSequence].

CaseLabelList = CaseLabels {"," CaseLabels}.

CaseLabels = ConstExpression [".." ConstExpression].

WhileStatement = WHILE expression DO StatementSequence END.

RepeatStatement = REPEAT StatementSequence UNTIL expression.

LoopStatement = LOOP StatementSequence END.

WithStatement = WITH guard DO StatementSequence

{"|" guard DO StatementSequence} [ELSE StatementSequence] END.

guard = qualident ":" qualident.

ForStatement = FOR ident ":=" expression TO expression

[BY ConstExpression] DO StatementSequence END.

87

Lexical structure

ident = letter {letter | digit}.

number = integer | real.

integer = digit {digit} | digit {hexDigit} "H" .

real = digit {digit} "." {digit} [ScaleFactor].

ScaleFactor = ("E" | "D") ["+" | "−"] digit {digit}.

hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

CharConstant = """ character """ | "'" character "'" | digit {hexDigit} "X".

string = """ {character} """ | "'" {character} "'".

The ASCII-Code

0 1 2 3 4 5 6 7

0 nul dle 0 @ P ` p

1 soh dc1 ! 1 A Q a q

2 stx dc2 " 2 B R b r

3 etx dc3 # 3 C S c s

4 eot dc4 $ 4 D T d t

5 enq nak % 5 E U e u

6 ack syn & 6 F V f v

7 bel etb ' 7 G W g w

8 bs can (8 H X h x

9 ht em) 9 I Y i y

A lf sub * : J Z j z

B vt esc + ; K [k {

C ff fs , < L \ l |

D cr gs − = M] m }

E so rs . > N ↑ n ˜

F si us / ? O _ o del

88

89

Appendix E

Limitations of the Implementation (Version 1.0)

Only one-dimensional open arrays are currently supported.

Ofront assumes that variables of type LONGINT, pointers and
procedure variables are the same size, for example all 32 bit.

The implementation of intermediate-level variables is not reentrant; i.e.,
procedures that access intermediate-level variables cannot be used in a
multithread program.

Range checks are not always emitted, in particular, they are not emitted
for SET operations.

Untagged records (RECORD [1]) are only rudimentarily supported and
should not be used currently.

No link-time interface checking is performed.

There is no translator option to generate code for NIL checks because it
is assumed that NIL checks are always done by the hardware (e.g., by
protecting low memory pages from read and write access). However,
this might not be the case in embedded systems and there are even Unix
systems that allow reading (or even writing) the zero page.

The browsing facilities using the showdef or Browser.ShowDef

commands are not as elaborate as they could be. In particular, currently
they do not allow showing the definition of individual exported objects
but always decode the complete interface of a module.

There are only a few shell scripts prepared that support automation of
the multiple steps necessary to create an application or library.

There is no make file generator included since due to the fine grained
interface checks employed by Ofront a simple file-based time stamping
technique seems to be inappropriate.

HP-UX, IRIX 5: Open array value parameters may confuse the

90

conservative stack collection phase of the garbage collector if they
contain pointers. The reason is that, due to the missing alloca function
in HP-UX and IRIX 5, such arrays are currently copied onto the Unix
heap by means of malloc. As a consequence, pointers inside these arrays
are not seen by the garbage collector when inspecting the procedure
activation stack.

91

Appendix F

Ofront Error Messages

NW, RC, JT / 16.1.95

1. Incorrect use of the language Oberon

 0 undeclared identifier

 1 multiply defined identifier

 2 illegal character in number

 3 illegal character in string

 4 identifier does not match procedure name

 5 comment not closed

 6

 7

 8

 9 "=" expected

 10

 11

 12 type definition starts with incorrect symbol

 13 factor starts with incorrect symbol

 14 statement starts with incorrect symbol

 15 declaration followed by incorrect symbol

 16 MODULE expected

 17

 18 "." missing

 19 "," missing

 20 ":" missing

 21

 22 ")" missing

 23 "]" missing

 24 "}" missing

 25 OF missing

 26 THEN missing

 27 DO missing

 28 TO missing

 29

 30 "(" missing

 31

 32

92

 33

 34 ":=" missing

 35 "," or OF expected

 36

 37

 38 identifier expected

 39 ";" missing

 40

 41 END missing

 42

 43

 44 UNTIL missing

 45

 46 EXIT not within loop statement

 47 illegally marked identifier

 48

 49

 50 expression should be constant

 51 constant not an integer

 52 identifier does not denote a type

 53 identifier does not denote a record type

 54 result type of procedure is not a basic type

 55 procedure call of a function

 56 assignment to non−variable

 57 pointer not bound to record or array type

 58 recursive type definition

 59 illegal open array parameter

 60 wrong type of case label

 61 inadmissible type of case label

 62 case label defined more than once

 63 illegal value of constant

 64 more actual than formal parameters

 65 fewer actual than formal parameters

 66 element types of actual array and formal open array differ

 67 actual parameter corresponding to open array is not an array

 68 control variable must be integer

 69 parameter must be an integer constant

 70 pointer or VAR record required as formal receiver

 71 pointer expected as actual receiver

 72 procedure must be bound to a record of the same scope

 73 procedure must have level 0

 74 procedure unknown in base type

93

 75 invalid call of base procedure

 76 this variable (field) is read only

 77 object is not a record

 78 dereferenced object is not a variable

 79 indexed object is not a variable

 80 index expression is not an integer

 81 index out of specified bounds

 82 indexed variable is not an array

 83 undefined record field

 84 dereferenced variable is not a pointer

 85 guard or test type is not an extension of variable type

 86 guard or testtype is not a pointer

 87 guarded or tested variable is neither a pointer nor a VAR−parameter

record

 88 open array not allowed as variable, record field or array element

 89

 90

 91

 92 operand of IN not an integer, or not a set

 93 set element type is not an integer

 94 operand of & is not of type BOOLEAN

 95 operand of OR is not of type BOOLEAN

 96 operand not applicable to (unary) +

 97 operand not applicable to (unary) −

 98 operand of ˜ is not of type BOOLEAN

 99 ASSERT fault

100 incompatible operands of dyadic operator

101 operand type inapplicable to *

102 operand type inapplicable to /

103 operand type inapplicable to DIV

104 operand type inapplicable to MOD

105 operand type inapplicable to +

106 operand type inapplicable to −

107 operand type inapplicable to = or #

108 operand type inapplicable to relation

109 overriding method must be exported

110 operand is not a type

111 operand inapplicable to (this) function

112 operand is not a variable

113 incompatible assignment

114 string too long to be assigned

115 parameter doesn't match

94

116 number of parameters doesn't match

117 result type doesn't match

118 export mark doesn't match with forward declaration

119 redefinition textually precedes procedure bound to base type

120 type of expression following IF, WHILE, UNTIL or ASSERT is not

BOOLEAN

121 called object is not a procedure (or is an interrupt procedure)

122 actual VAR−parameter is not a variable

123 type of actual parameter is not identical with that of formal

VAR−parameter

124 type of result expression differs from that of procedure

125 type of case expression is neither INTEGER nor CHAR

126 this expression cannot be a type or a procedure

127 illegal use of object

128 unsatisfied forward reference

129 unsatisfied forward procedure

130 WITH clause does not specify a variable

131 LEN not applied to array

132 dimension in LEN too large or negative

135 SYSTEM not imported

150 key inconsistency of imported module

151 incorrect symbol file

152 symbol file of imported module not found

153 object or symbol file not opened (disk full?)

154 recursive import not allowed

155 generation of new symbol file not allowed

156 parameter file not found

157 syntax error in parameter file

2. Limitations of the implementation

200 not yet implemented

201 lower bound of set range greater than higher bound

202 set element greater than MAX(SET) or less than 0

203 number too large

204 product too large

205 division by zero

206 sum too large

207 difference too large

208 overflow in arithmetic shift

95

209 case range too large

213 too many cases in case statement

218 illegal value of parameter (0 <= p < 256)

219 machine registers cannot be accessed

220 illegal value of parameter

221 too many pointers in a record

222 too many global pointers

223 too many record types

224 too many pointer types

225 address of pointer variable too large (move forward in text)

226 too many exported procedures

227 too many imported modules

228 too many exported structures

229 too many nested records for import

230 too many constants (strings) in module

231 too many link table entries (external procedures)

232 too many commands in module

233 record extension hierarchy too high

234 export of recursive type not allowed

240 identifier too long

241 string too long

242 address overflow

244 cyclic type definition not allowed

245 guarded pointer variable may be manipulated by non−local

operations; use auxiliary pointer variable

3. Compiler Warnings

301 implicit type cast

306 inappropriate symbol file ignored

4. Run−time Error Messages

SYSTEM_halt

 0 silent HALT(0)

1..255 HALT(n), cf. SYSTEM_halt

 −1 assertion failed, cf. SYSTEM_assert

 −2 invalid array index

 −3 function procedure without RETURN statement

 −4 invalid case in CASE statement

96

 −5 type guard failed

 −6 implicit type guard in record assignment failed

 −7 invalid case in WITH statement

 −8 value out of range

 −9 (delayed) interrupt

−10 NIL access

−11 alignment error

−12 zero divide

−13 arithmetic overflow/underflow

−14 invalid function argument

−15 internal error

5. Unix signals

 1

 2 interrupt signal

 3 quit signal

 4 invalid instruction, HALT

 5

 6

 7

 8 arithmetic exception: division by zero, overflow, fpu error

 9

 10 bus error, unaligned data access

 11 segmentation violation, NIL−access

 12

 13 access to closed pipe

97

Edit.Print "1:lp" *\p 1\s 1 4\p n ~

Edit.Print "none" *\p f\p -3\a\f Times12.Scn.Fnt~

Edit.Print none *\p f\p -3\a\s -3 96\f Times12.Scn.Fnt~

Edit.Print "1:lp" *\p 1\s 1 4\i 1\p n ~

Edit.Print "2:lp" *\p 1\s 2 4\i 2\p n ~

Edit.Print "1:lp" *\p f\p -3\a\s 81 96\i 1\f Times12.Scn.Fnt~

Edit.Print "2:lp" *\p f\p -3\a\s 82 96\i 2\f Times12.Scn.Fnt~

