ETH

Eidgendsdische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Zonnon Language Report

Jurg Gutknecht and Eugene Zueff
Editors: Brian Kirk and David Lightfoot

October 2004

Abstract

Zonnon is a general-purpose programming language in the Pascal, Modula-2 and Oberon family. It
retains an emphasis on simplicity, clear syntax and separation of concerns whilst focusing on
concurrency and ease of composition and expression. Unification of abstractionsis at the heart of its
design and thisis reflected in its conceptual model based on modules, objects, definitions and
implementations. Zonnon offers a new computing model based on active objects with their interaction
defined by syntax controlled dialogs. It also introduces new features including operator overloading
and exception handling, and is specifically designed to be platform independent.

Document Details

Title: Zonnon Language Report
Version: 02

Revision: 02

Issued: 11th October 2004

Language Designer: Prof. Jirg Gutknecht
Language Implementer: Eugene Zueff

Test Suite Implementer: Vladimir Romanov
Report Editors: Brian Kirk and David Lightfoot

Copyright © 2003, 2004 ETH Zurich. All rights reserved.
This document may be copied without charge for academic purposes provided that no changes are
made to the content, including this notice.

Published by:

Institute of Computer Systems
ETH Zentrum, RZ H 24
CH-8092 Zirrich

Switzerland

The latest version of this report is available on-line at www.zonnon.ethz.ch
Please send details of any errors and omissionsin this document to zonnon@inf.ethz.ch

Any product and company hames mentioned in this document may be the trademarks of their
respective owners.

The contents of examples used in this document are fictitious and no association with any real
company, organization, product, service, domain name, e-mail address, logo, place or event isintended
or should beinferred.

The typographic conventions used in the report are:

New concepts areindicated in italics

Programming language keywords in the text arein italics.
Main headings arein 12-point Arial

Subheadings arein 11-point Arial

Sub-subheadings are in 10-point Arial
Sub-sub-subheadings arein 9-point Arial

Main text isin 10-point Times New Roman

Syntax isin &point Arial

References appear in square brackets e.g. [Compiler]

In general spellingisin‘US English’

Zonnon Language Report: Draft v02r02 Printed on 2004-11-01

Contents

L INEPOOUCTION...eretieee ettt 1
2 Program CONSIIUCHION........coucuiieerieeerriereseesessssessses s sssseses s s st nsens 1
G TSV 1 <l L0 = 11 oo IO TR

31 Definition of Extended Backus-Naur Formalism
3.2 EBNF defiN@d iN EBINF ...ttt ns st ae e s s se s se st ess s sssassensnsnsesens
3.3 DeSCription Of EBNF ...ttt
331 Sequence
3.3.2 REPELITION ... bbb
TR TG TS = 1= ox 1 o TPV
334
335

4 Language SymbolS and [AENTITIENS.........cou et 4
4.1 Vocabulary and REPIESENALION........ccuerrierrierrriereieressisese e sesesses s essssees 4
4.2 [0 g 11T £SO
4.3 Modifiersand Specifiers
4.4 NUMEIIC CONSEANES.....cuiieeereieiseeres et iseas s sees st se b ss bbb bbbttt b bbbt
4.5 CREraCter CONSLANTS......c.oiueeteeereereetreetreseisease s e seas s b st ss bbb bbbttt s bbb
4.6 SHNG CONSLANEScccveeererererereirecisietsesssses st ass s esssssssssessesans
4.7 Reserved Words, Delimiters and Operators

47.1 RESEIVEA WOITS.......ocoieieeieeeiets ettt

47.2 DEIIMITENS ..ottt

47.3 Predefined Operators

474 USEr-DEfiNEA OPEIELOIS........ceeveeeeeriseriseereiestieess st sese s ses bbb sees
4.8 Comments

5 DECIAraLIONS....c.oiereeireecireecie et bbb
5.1 Identifier Declarations and SCoOpe RUIES.........ccccerverreereresseninirennens
511 Declaration MOGifiersS.......ccoueernnenensineeneeseeeneseeeeseessenens
5.2 Constant Declarations
5.3 TypeDECIarations.........coccveerreremnerrmneerneneseeseeeneessesessssessssessseeessenees
531 BaSIC TYPES ..ot sses s
53.2 ENUMEration TYPES......ccvererrieriesneenesenessseesesese s esessenens
533 ATTAY TYPES ..ot s
5.34 THESIIING TYPE...eeeeeteecetrre ettt bns
5.35 (@ o 1= ox B I8/ 0= TR
5.3.6 RECOI TYPES ...ttt sesss st ssnans
5.3.7 Postulated INterface TYPES....oveeerereeterererie e sesessesessenens
5.3.8 Procedure TYPES......cccvicereirenesiesess s tsesesssssssssssssssesens
5.3.9 Converting betWeeN TYPES......ccvveerereeererersesiesessssessesssssessensens
54 Variabl@ UECIaIraliONS........cciureecireeeireieiree ettt

L ed o1 (== o PO
6.1 Operandsand DESIGNALOrS.........cccucrrurevrerreresresssensssessssssesessessesesens
6.2 Predefined Operators......oceveceenesessseesesesse s sessssssesssssssssesens
6.2.1 Logical operators
6.2.2 ATIthMELiC OPEraLOrScvvvecereeteereee e
6.2.3 Set Operators
6.24 REIBLIONS. ...t sas e
6.3 User-Defined Operators and Operator Declarations
6.3.1 Basic Operators that can be overloaded............cocovvenvcrnenens
6.3.2 New Operator DeClaations...........oreinerrnecenieeeneresereeserseens
6.3.3 Rules governing overloadingc.coereeneeeeneeernerensersesernenens
6.4 OpeErator PreCEdENCE.. ...ttt
6.5 Numeric resolution Within eXPressions..........ccoeeneeeeeesenesesennens

7.1 The AsSIgNment StAEMENT.........coocreerneererererrsee e
7.2 The Procedure Call
7.3 Theif Statement.............
7.4 The case Statement

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01

7.5 The Whil € SEALEMENTcvceeiecce ettt e b e et se e e bbb st n s

7.6 Therepeat StateMENt.......cccocccevericeeresesse s
7.7 Thefor StateMENt ...t
7.8 Theloop StAEMENL.......c.cccoeeerereririerereses st
7.9 Thereturn StatemMEeNt......ccocococeverereererenseerereseeese st esesssssesessssessens
7.10 TheBlock andlaunch Statements..........ccooveevevvenreeennensenesenseeenenens

7.10.1 EXception handlingccoeeeeeeereeerneeerneennesseseeseseeseessesessssessssennns

7.10.2 Concurrency Modifiers and the launch Statement..................
711 Theawait StAEMENt ...
7.12 The Send StALEMENLccorirurrereree e

7.13 Thereceive Statement
7.14 Theaccept Statement

8 Procedure (and Method) Declarations and Formal Parameters
8.1 Procedure MOGITIErS ...t
8.2 PIOPEITIES ..ttt R R

9 PredefiNed PrOCEAUIES..........coeieececeeeee ettt et as b e et b e e s e st e e se st enasesnsrban

10 Activities, Behavior and INteraction...........ccceeeeeevveneciesesessseesesee e
10.1 BENAVION ...ttt bes
10.2 Interaction........ccceeeeuee.

10.3 Protocol EBNF
0 S =g 11 =4 oo PR
10.5 Input and OUtpUt ProCeAUIES..........cceeurereeerereseeiseressssesesesssssssessnenes
1051 Parametersand SPeCial SYNtaX.......ccoevveereeirerirseeereressssenesessenenns
1052 INPUL PrOCEAUIES.........ceereeteereresieereeee et nseees
10.5.3 OULPUL PrOCEAUIES........corieeerieeetieetieesisess s ses st nsses

L1 Program UNITS.....cccceiecieie sttt sass s sttt s s se s et s s s s s se bt s s sntesasssansnssnsanses
111 TheMOUUIE....c.eet et b bbb
11.2 Theobject asaunit of program composition...........ccceveveeerrereenens
11.2.1 Inheritance: refinement and aggregation
11.22 Multiple INNErtaNCe.......ccvveerrerreeeee s eseees
11.2.3 Polymorphism
11.3 Thedefinition.................
114 Theimplementation

12 REFIECHION ...ttt bbb b bbbt
121 XML Schema......ccccoeeee
12.1.1 Accessrights
1212 ODJECES ..ottt
12.1.3 Procedure parameters (parameter passing mode):c.......
12.1.4 Procedure and Variable immutability:........c.cccoovnnncnencrienn.
1215 OpPErator Priority ...occvecereerrieemrieeesinessrseeerseeessesessessesessesessesesseseens
12.1.6 Blocksand Procedure bodies..........ocvrereeineereneereneenenciresireeene
12.1.7 Type, variable and constant widths...........ccc.cooeverrevccrrencnnnen,
12.1.8 Enumeration cardinalitycccocoevevecevesecienesenseeeseese s
12.2 Example: program reflection and information............cceecnveesenenesssese s senes

13 Definition Of TErMINOIOQYcveeiureeerrieeirereirerseserseses et es bbb
131 Numeric types.......co...
132 Sametypes......ccnrenn.
133 EQUA LYPES ottt
13.4 Assignment compatible
135 Array COMPAibIE.....ccveeeeece e
13.6 Expression compatible and Operator Overloading
13.7 Matching formal ParamELEr lISS.......ccvrirreriririesressssesess st ss et senassesnes

Zonnon Language Report: Draft v02r02 Printed on 2004-11-01

Zonnon Language Report

1 Introduction

Zonnon isanew programming language in the Pascal, Modula-2 and Oberon family. It retains an
emphasis on simplicity, clear syntax and separation of concerns. Although more compact than
languages such as C#, Java and Ada, it is a general-purpose language suited to a wide range of
applications. Typically thisincludes component-oriented composition, concurrent systems, algorithms
and data structures, object-oriented and structured programming, graphics, mathematical programming
and low-level systems programming. Zonnon provides arich object model which encapsulates
behavior and syntax controlled dial ogs which encapsulate state. It may be used to write programsin
procedural or object-oriented styles[Zonnon] and is well suited for teaching purposes, from basic
principles right through to advanced concepts.

Unification of abstractionsis at the heart of Zonnon’sdesign. Thisisreflected initsfour pillars
the Module—both atextual container and program composition object
the Object—a type template for defining objects
the Definition—a concept of abstraction and composition for defining interfaces
the Implementation—a container for reusabl e fragments of object implementations

These entities provide the basis for program composition in the large and also for textual partitioning
and separate compilation during program devel opment—they are ‘first-class citizens' in the language.

The object model in Zonnon is based on the notion that ‘ everything is an object’. It supports three
views of them, firstly as entities with an intrinsic type, used by abstract operatorsin atype-safe way,
secondly as providers of services accessed via defined interfaces and thirdly as autonomous agents
interoperating viaformal dialogs. Activities are used both for adding behavior to objects and for
implementing dialogs, they integrate concurrency seamlessly into the language.

Many of the conceptsin Zonnon have been drawn from its heritage. The intention has been to offer
expressive and cohesive features which have proved their worth. Zonnon also introduces some new
features such as operator overloading for representing mathematical and other expressionsin anatural
way and exception handling for improving reliability. Some features have been reintroduced from
earlier members of the Pascal language family, for example the definition, implementation pairs and
enumeration types from Modula-2 and, for pragmatic reasons, a basic form of the read and write
statements from Pascal .

When choosing alanguage for building modern systems achieving interoperability between
programs written in different languages within the same system is an important consideration. The
Zonnon language is specifically designed to be platformindependent whilst supporting interoperability
with other software.

A companion document Compiler |mplementation Details contains implementation specific details
for aparticular compiler and runtime support package for a particular computing platform. (See
[Compiler])

2 Program Construction

Zonnon programs are based on four constructs: the module, object, definition and implementation.

A module has adual nature: it declares a syntactic container for logically cohesive program
declarations and it simultaneously declares an object whose lifecycleis controlled by the system. So
the modul e provides the mechanism for the textual partitioning of a source program and also the
dynamic loading at execution time of a part of a program, in the form of an instantiated object.

Any number of dynamically created objects may have their lifecycles managed by a program, however
only asingle instance of each modul€e s object may be instantiated by the system at any given time.
Because the module forms a unit of encapsulation and data hiding, it isalso ideal as a container for
implementing abstract data types.

Zonnon Language Report: Draft v02 r02 1 Printed on 2004-11-01

An object is atype template comprising fields, methods and activities. The fields represent the object’s
state, the methods its functionality and the activities its concurrent behaviour. It can exposeitsinterface
to its system environment in two ways. Firstly by itsintrinsic interface, that is, the set of all the
elements which the programmer chooses to make public rather than keep private, and secondly by a
number of definitions each of which exposes a distinct facet representing an aspect of the object’s
servicestoitsclients.

A definition defines a distinct facet of an object in terms of an abstract interface comprising field
declarations and method signatures. Definitions can form a network of related types, not just a
hierarchy.

An implementation defines an aggregate of field and method implementations intended for re-use when
incorporated into a program via one or more object templates. An object implementing adefinitionis
required to implement all of its fields and methods. However, if an object imports an implementation of
adefinition with the same name as the definition then thisisimplicitly presumed to be its (possibly
partial) implementation.

A programtext comprises modules, objects, definitions and implementations. The program’ sintrinsic
interfaceisthe set of declarations made public by all of its parts. A run-time programcomprises one or
more modules and any objects that are created dynamically. The systemprovides mechanisms for
dynamic program loading and unloading of modules and dynamic management of object resources at
execution time, when a program runs.

These constructs are used to form the overall structure of aprogram as module, object, definition and
implementation program units. Each construct may exist as a separately compiled unit or may be
textually embedded within certain of the other constructs. A number of relations hold between these
constructs which define how they may be used together; they are as follows, where x and y each
represent a construct:

X containsy
Construct x may have one or more of construct y textually nested within it.

ximportsy
Construct x may import declarations from one or more constructy.

X aggregates fromy
Construct x may import implementation fragments from a construct y.

X implementsy

If the names of a definition and an implementation areidentical then the implementation provides at
least part of the implementation of the definition, otherwise it may provide implementations for one
or more definitions

x refinesy

definition x refines definition y, omitting, adding to, or modifying its services.
Therulesfor valid use of the constructs (program units) areillustrated in Figure 1, they are:
A module unit can have definition, implementation and object constructs textually nested in it

modul e, definition, implementation and object units can import declarations from other module,
definition and object units

module, implementation and object units can aggregate from other implementation units
module, implementation and object units can implement definition constructs

definition constructs can refine other definition constructs

Zonnon Language Report: Draft v02 r02 2 Printed on 2004-11-01

xly D | O M
D
I
(e}
M + o+ o+
X contains y
xly D | O M
D
I +
(e} +
M +

X implements y

ZT0TOx

0T O0OXxX

+++ +0

+++ +0

X imports y

x refines y

o)

+++ +=Z

X aggregates from y

Key:

D= definition

| = implementation
O= object

M= module

+= Relation is valid

Figure 1 Valid relations between Constructs (Program Units)

3 Syntax Notation

The syntax of Zonnon is defined in an Extended Backus-Naur Formalism (EBNF) in section 14.
Relevant fragments of the syntax are also provided in the text as each feature of the language is

defined.

3.1 Definition of Extended Backus-Naur Formalism

The EBNF notation used in this report has the following features:

Alternatives are separated by |.

Brackets [and] denote that the enclosed expression is optional.
Braces{ and } denote repetition of the content (possibly 0 times).
Parentheses (and) are used to form groups of items.

Non-terminal symbols start with an upper-case letter (e.g. Statement).

Terminal symbols either start with alowercase letter (e.g. letter), or arewrittenin bold letters
(e.g. begin), or are denoted by strings (e.g. ":=").

Comments start with // and continue to the end of theline.

3.2 EBNF defined in EBNF

It is possible to define the EBNF syntax using EBNF asfollows:

Syntax = {Production}.

Production = NonTerninalSymbol "=" Expression ".".
Expression =Term {"|" Term}.

Term = Factor {Factor}.

Factor = terminalSymbol | NonTerminalSymbol |

(" Expression)" | "[" Expression "]" | "{" Expression "}" .

3.3 Description of EBNF

The EBNF constructs are described bel ow:

3.3.1 Sequence

A=BC.
An Aconsistsof aB followed by aC
Examples:

Sentence = Subject Predicate.

FileName = Name ".' Extension.
Name = FirstName Surname.

3.3.2 Repetition
A={B}.
An A consists of zero or moreB's.

Examples:
File = {Record}.

Zonnon Language Report: Draft v02 r02

Printed on 2004-11-01

Bill = {Item Price}.

3.3.3 Selection
A=B|C.
An Aconsistsof aB or aC.

Examples:

Fork = Resource | Data.
Meal = Breakfast | Lunch | Dinner.

3.3.4 Option
A=1[B].
An A consists of aB or nothing.

Example:
SelectedDrink = [Tea | Coffee | Chocolate]. // Possibly none!

3.3.5 Quotes and bold font

Text in quotesor in a boldfont stands for itself.

Examples:

ImportDeclaration = import Import {"," Import}.
OwnSymbol = "me" | self.

4 Language Symbols and Identifiers

4.1 Vocabulary and Representation

In Zonnon symbols are identifiers, numbers, strings, operators, and delimiters. There are some |lexical
rules:

Blanks and line breaks must not occur within symbols and are ignored unless they are
essential to separate two consecutive symbols (except in comments, and within strings).

Capital and lower-case letters are considered as distinct.

4.2 I|dentifiers

Identifiers are sequences of letters and digits and underscores‘_'. Thefirst character must be a letter or
an underscore.

ident = (letter | "_") { letter | digit | "_"}.
Examples:
X Scan ZonnonGetSymbol firstLetter

_external_package27 // underscore typically used for interoperability with other languages

4.3 Modifiers and Specifiers

A modifier is used to indicate alternative semantics, where the same syntax is used for more than one
purpose. Itisalist of words, numbers and other symbols contained in braces{ }.

Examples:

{value }
{ public }

A specifier isused to provide additional information such as the type of an expected object, or awidth.
It comprises alist of words or numbers contained in braces {} or an EBNF protocol specification (See
also 10.3)

Examples:

Zonnon Language Report: Draft v02 r02 4 Printed on 2004-11-01

var r: real{32};
i 1= integer(t);
{ bodypart = LEG | NECK| ARM}

4.4 Numeric constants

Numbers are (unsigned) integer, cardinal or real constants. If the constant is specified with the suffix H,
the representation is hexadecimal, otherwise the representation is decimal. A real number always
contains a decimal point and optionally it may also contain adecimal scale factor. The letter E means
‘times ten to the power of’. A numeric constant may optionally be followed by awidth modifier which
isthe number of hitsto be used for its representation (surrounded by braces). If no width is specified
then the default value defined in the Compiler Implementation Details [Compiler] is used. For further
information on types see 13.1.

number = (whole | real) ["{" Width "}"].

whole = digit {digit} | digit {hexDigit} "H".

real = digit {digit} "." {digit} [ScaleFactor].

ScaleFactor = "E" ["+" | "-"] digit {digit}.

hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".

digit ="0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

Width = ConstExpression.

A whole constant is compatible with both integer (signed) types and cardinal (unsigned) types.

Examples:

constant type value
1991 integer/cardinal 1991
ODH{8} integer{8} 13

cardinal{8}

12.3 real 12.3
4.567E8 real 456700000
0.57712566E-6{64} real{64} 0.00000057712566

4.5 Character constants

A character constant is a character enclosed in single (') or double (*) quote marks. The opening quote

must be the same as the closing quote and must not be the character itself. Character constants may also

be denoted by the ordinal number of the character in hexadecimal notation followed by the letter X.
CharConstant = " character " | " character " | digit { HexDigit } "X".

character = letter | digit | Other.
Other = // Any character from the alphabet except the character used as the delimiter

Thisisuseful for expressing special characters that are either non-printable or that are part of an
extended character set.

Examples:
ngt 20X

4.6 String constants

String constants are sequences of characters enclosed in single (") or double () quote marks. The
opening quote must be the same as the closing quote and must not occur within the string. The number
of charactersin astring iscalled itslength. A single character string (of length 1) can be used wherever
acharacter constant is allowed and vice versa. String constants can be assigned to variables of type
string (see 5.3.1and 5.3.4).

string =" { character } "" | " { character } "".
character = letter | digit | Other.
Other = // Any character from the alphabet except the string's own delimiter character

Examples:

"Zonnon" "Don'tworry!" "Xx" ‘hello world'

4.7 Reserved Words, Delimiters and Operators

Operators and delimiters are the special characters, character pairs, or reserved words listed below.

Zonnon Language Report: Draft v02 r02 5 Printed on 2004-11-01

4.7.1 Reserved Words
The following reserved words (shown inboldin this report) may not be used asidentifiersand are
written either entirely in lower-case letters:

accept activity array as await begin by case const definition div do else elsifend exception exit false for
if implementation implements import in is launch loop mod module new nil object of on operator or
procedure receiverecord refines repeat return self send then to true type until var while

or entirely in upper-case | etters:

ACCEPT ACTIVITY ARRAY AS AWAIT BEGIN BY CASE CONST DEFINITION DIV DO ELSE ELSIF END
EXCEPTION EXIT FALSE FOR IF IMPLEMENTATION IMPLEMENTS IMPORT IN IS LAUNCH LOOP MOD
MODULE NEW NIL OBJECT OF ON OPERATOR OR PROCEDURE RECEIVE RECORD REFINES REPEAT
RETURN SELF SEND THEN TO TRUE TYPE UNTIL VAR WHILE

4.7.2 Delimiters

The delimiter characters are:
()[1{} . (dot), (comma) ;(semicolon) : (colon) .. (range)

| (case separator) ' (single quote) " (double quote)

4.7.3 Predefined Operators

The predefined operators are:
- (unary minus) + (unary plus) ~ (negation)
A (unary dereference)
+ - */ div mod & or

= (assignment) = (equality) # (notequal) < <= > >= in implements

4.7.4 User-Defined Operators

Zonnon introduces the concept of user-defined operators. They are declared like procedures. (See 6.3).

4.8 Comments

Comments may be inserted between any two symbolsin aprogram. They are arbitrary character
sequences opened by the bracket (* and closed by *). Comments may be nested. They do not affect the
meaning of aprogram. They are shown initalicsin this report.

5 Declarations

5.1 Identifier Declarations and Scope Rules

Every identifier occurring in a program must be introduced by a declaration, unless it has been
predefined. Declarations also specify certain permanent properties of an item, such aswhether itisa
constant, atype, avariable (see 5.4), or a procedure (see section 8). The identifier is then used to refer
to the associated item.

The scope of an identifier extends textually from the point of its declaration to the end of the scope
to which the declaration belongs and hence to which it islocal. It excludes the scopes of equally named
identifiers which are declared in nested blocks. The scoperules are:

No identifier may denote more than one item within a given scope (i.e. no identifier may be
declared twice in ablock).

An identifier may only be referenced within its scope.

Identifiers denoting object fields or methods/procedures are valid only in object designators,
where they must be qualified by the name of the object.

Qualldent = {ident "." } ident.

Examples:
Month.Oct (* see 5.3.2 %

Zonnon Language Report: Draft v02 r02 6 Printed on 2004-11-01

NameSpace.Program

5.1.1 Declaration Modifiers

A declaration may have an optional modifier. The declaration modifiers are defined as follows:
- private: theidentifier isvisible only in the scope of its declaration.
public: the identifier is visible inthe scope in which it is declared and in any constructs
that explicitly imports the program construct that containsits declaration.
immutable: isused for variables in conjunction with public and indicates that the valueis
read-only from outside the scope in which it is declared.

Example:

var {private} flag: boolean;
var {public, immutable} refCount: integer; (*read only access*)

5.2 Constant Declarations

A constant declaration associates an identifier with a constant value.

ConstantDeclaration = ident "=" ConstExpression.
ConstExpression = Expression.

Examples:

const N =10;
limit=2*N — 1; (* see 6.2.2%)
fullSet = { min(set) .. max(set) }; (*see5.3.1%
A constant expression is an expression that can be evaluated solely by atextual scan without actually
executing the program. Its operands must be constants or calls of predefined functions.

5.3 Type Declarations

A datatype determines the set of values variables of that type may assume and the operators that are
applicable to them. A type declaration associates an identifier with atype. In the case of the structured
types (arrays and objects) it also defines the structure of variables of this type. Object types are defined
in5.34 and11.1

TypeDeclaration =ident "=" Type.

Type = (TypeName [Width] | EnumType | ArrayType | ProcedureType | InterfaceType).
Width = "{" ConstExpression "}".

5.3.1 Basic Types

The basic types are denoted by predefined identifiers. The associated operators are defined in 6.2 and
the predefined function proceduresin 9. The values of the basic types are the following:

object the generic type from which object types are derived

boolean the truth valuestrue and false

char the underlying character set of the environment

cardinal positive whole numbers between min(cardinal) and max(cardinal)
integer the integers between min(integer) and max(integer)

fixed large numbers with fixed precision between min(fixed) and max(fixed)
real the real numbers between min(real) and max(real)

set the sets of whole numbers (integer or cardinal) between 0 and max(set)
string character strings

Note that object is areserved word.

For typeschar, integer, cardinal, real and set the number of bits required to contain the value can be
specified by a modifier stating a whole number of bits asaconstant valuein braces{ } after the type
name. The default type widths are:

char{16}, cardinal {32}, integer{32}, real {80}, set{32}, fixed 128

For conversion between different types see section 5.3.9.

Zonnon Language Report: Draft v02 r02 7 Printed on 2004-11-01

5.3.2 Enumeration Types

An enumeration is atype that comprises anamed list of identifiers denoting the values which constitute
the type. These identifiers are qualified by the type name when used as named constantsin the
program. The values are ordered and their ordering relation is defined by their textual sequencein the
enumeration list. No other values belong to the type. The ordinal number of the first valueis zero and
increases by one for each subsequent identifier.

EnumType ="(" IdentList ")".
IdentList = ident { "," ident }.

Examples:

type NumberKind = (Bin, Oct, Dec, Hex);
Month = (Jan, Feb, Mar, Apr, May, Jun, July, Sep, Oct, Nov, Dec);

Namesin separate enumerations need not be different astheir useis always qualified. So for example
NumberKind.Oct isdistinct from Month.Oct.

Values of expressions can be converted to a different type. (See section5.3.9).

The predefined function pred returns the value of the predecessor of the enumeration value given asits
parameters, for all except the first value of the enumeration. The predefined function succ returns the
value of the successor of the enumeration value given as its parameters, for all except the last value of
the enumeration.

5.3.3 Array Types

An array isastructure consisting of anumber of elementsthat are all of the same type, called the
element type. Arrays can be indexed either by a positive whole number or by avalue of an enumeration
type. In thefirst case, the number of elementsin the array’ s declaration determinesits length. The
array’ s elements are designated by indices, which are whole-number values between 0 and the array
length minus 1. In the second case the name of the enumeration type is used in the declaration and the
array’ s elements are designated by values of the enumeration type.

The syntax rules for the array type are:

ArrayType = array Length {"," Length} of Type.
Length = ConstExpression | "*".

Arrays can be multidimensional; that is, the array elements may themselves be arrays, and mixing the
different length specification formsis acceptable in principle. But this possibility may well be restricted
by the implementation. (See [Compiler]). An example and a counter example are:

type Acceptable = array * of array 42 of T; (*array *, 42 of T%)
Jagged = array 42 of array * of T; (* jagged' array *)

The declarationarray mof array n of T istextually equivalent toarray m, n of T.
For example array * of array 42 of T can be writtenarray *, 420f T

The expression len(a, n) returnsthe number of elementsin dimensionn of the array a. The expression
len(a) isashorthand for len(a, 0).

In an array the number of elementsin any dimension may be variable and is then denoted by an
asterisk. It isthe programmer’ s responsihbility to allocate storage space on the heap for an array by
using the reserved word new for each instance of the array:

arrayVariable := new ArrayType(lengtho, lengthy, ...);

The length values must be expressed by positive expressions of integer or cardinal type and the number
of such expressions must correspond to the number of dimensions of the variable.

Examples of the use of arrays are:
type Vector = array * of integer;

procedure CreateAndReadVector(var a: Vector);
var i, n: integer;
begin
read(n);
a = new Vector(n);
fori:=0to len(a)—1do
read(ali])

Zonnon Language Report: Draft v02 r02 8 Printed on 2004-11-01

end
end CreateAndReadVector;

procedure InitializeMatrix(var mat: array *, * of real);
var i, j: integer;
begin
for i:=0to len(mat, 0) - 1 do
for j:=0to len(mat, 1) — 1 do
matfi, j] := 0.0
end
end

end InitializeMatrix;
var m: array 10, 10 of real;

I.r.1.itializeMatrix(m);
5.3.4 The string Type

Variables of type string represent immutabl e sequences of characters. Strings can be compared for
equality and inequality by using the ‘=" and ‘# operators. The operator ‘+' signifies concatenation of
strings and ‘:=" signifies assignment. The predefined procedure copy converts between string type and
array of char representation and vice versa. (See[CLI]).

5.3.5 Object Types

An object is adatatype template comprising fields, methods and activities. The fields represent the
object’s state, the methods its functionality and the activitiesits concurrent activities. It can expose its
interface to its system environment in two ways. Firstly by the interface of itsintrinsic type (referred to
asitsintrinsic interface), that is the set of all the elements which the programmer chooses to make
public rather than keep private. Secondly by one or more definitions, each of which exposes a distinct
facet representing an aspect of the object’ s servicesto itsclients.

Object = object [ObjModifier] ObjectName [FormalParameters] [ImplementationClause] ;"

[ImportDeclaration]

Declarations

{ ActivityDeclaration }

(BlockStatement | end) SimpleName.
ObjModifier = "{" ident "}". // value or ref

/I private or public
ActivityDeclaration = activity ActivityName [ImplementationClause] ";"
Declarations (BlockStatement | end SimpleName).

ImplementationClause = implements DefinitionName {"," DefinitionName }.

ImportDeclaration = import Import {"," Import } ";".

Import = ImportedName [as Ident].

ImportedName = (ModuleName | ImplementationName | NamespaceName |
DefinitionName, ObjectName).

An object is composed of declarations including constants, types, variables (referred to asfields), and
procedures (referred to as methods). The modifierspublic and private can be used to declare the
visibility of the contents of an object. If no modifier is present then the default isprivate.

Individual items may be made public by explicit use of the modifier { public} following their
declaration. The object itself can also have a modifier which denotesit as either a value object or a
reference object using the modifier valuesvalue and ref respectively. The default modifier isvalue.
Variables which are reference objects are references to objects which are created dynamically
during program execution within the program using new. An object may optionally have parameters
which can be used in the body of the object to initialize fields when the object is instantiated using new.

Examples:

object {ref} Box(w, h: integer);
var width, height: integer;
procedure Area(): integer;
begin
return width * height
end Area;
begin
self.width := w; self.height := h (* self is optional in both cases here *)

Zonnon Language Report: Draft v02 r02 9 Printed on 2004-11-01

end Box.
var box: Box;
Béx = new Box(3, 7); (* makes new Box object with width 3 and height 7 *)

See 11.2 on OBJECTs as program units.

5.3.6 Record Types

A record isavalue object type. It can be used to encapsul ate constant, type and variable declarations
but not methods or activities. The keyword record is equivalent to object { value}. Variables which are
declared as records (val ue objects) are statically allocated at compile time.

Examples:

record Position; (* declares the 'record'-type Position *)
var X, y: integer
end Position;

which is equivalent to:

object {value} Position; (* declares the 'record'-type Position *)
var X, y: integer
end Position;

record Date; (* declares the 'record-type Date *)
var year: integer{8};
month: Month;
day: integer{8}

end Date;

5.3.7 Postulated Interface Types

Aninterface is apostulated implementation for an object composed from one or more definitions. See
5.3.8and 11.2 for further details.

InterfaceType = object [Postulatedinterface].

Postulatedinterface = "{" DefinitionName { "," DefinitionName } "}".

5.3.8 Procedure Types

A variable of aproceduretype T has a procedure or method P or nil asitsvaue. If P isassigned to a
variable of type T, the formal parameter lists of P and T must match according to a set of rules. (See
13.4). P must not be a predefined procedure nor may it be local to another procedure. \When a method
isassigned to avariable of type procedure it must be prefixed by (the designator of) an object instance
that containsit.

ProcedureType = procedure [ProcedureTypeFormals].

ProcedureTypeFormals = "(" [PTFSection { ;" PTFSection }] ")" [":" FormalType].

PTFSection =[var] FormalType {"," FormalType }.
FormalType = { array "*" of } (TypeName | InterfaceType).

Examples:
<missed>

5.3.9 Converting between Types

In Zonnon, type conversions within a“‘family’ (such asinteger) are implicit when guaranteed to be
safe. However, conversions between families must be explicit (because a change of internal
representation isinvolved). Inverse conversions (for example, integer {32} tointeger {16}) must
always be explicit. The exception mechanism detects conversion anomalies (see 7.10.1).

Zonnon Language Report: Draft v02 r02 10 Printed on 2004-11-01

The interoperability between typesis summarized in the table below and is based on the ECMA
Common Type System model [CL1], asused in .NET:

Type family Size in bits
8 | [16] [327] [64 T T128
fixed M
A
real M > M
2 21
integer M > M > M > M
2 2 7
cardinal M > M > M > M
~r o7

char M
M mandatory type for conforming implementation
> implicit conversion always allowed (within same family)
2,1 explicit conversion alwaysallowed (change of representation)
1 may result in reduction of the value' sresolution

Note that implicit conversions are transitive and inverse conversion (in opposite direction of the
arrows) requires an explicit conversion and may result in truncation or an exception.

5.3.9.1 Type name used as conversion function

To achieve atype conversion, the name of the destination typeis regarded as a built-in function which
takes an expression of the source type as a parameter and returns the converted value. An optional
second parameter indicates the desired width of the result.

Syntax:

TypeConversion = Typeldentifier "(" expression ["," Width] ")".
Examples:
integer(x + eff, 16)

isthe value of the expressionx + e/f represented as a 16-bit integer (exception may be raised if
conversion not possible).

integer(x + e/f)

isthe value of the expression x + e/f represented as a 32-hit integer (assuming that 32 isthe
implementation’s default width for integer).

Note that integers cannot be implicitly conversion to real and so:
var count, sum: integer; mean: real;
mean := sum / count

isnot syntactically allowed and requires explicit conversions:

mean := real(sum) / real(count)

5.3.9.2 Implicit type of constant

Thetype of asimple numeric constant is determined by the declaration of the variableto which it is
assigned. So for instance, given the declaration:

var i: integer {16};
then the assignment
=1,
isactually treated by the compiler as being
i :=1{16},
If no width is specified, then the implementation’'s default width for that type is assumed [Compiler].

Other type conversions are achieved by means of predefined procedures (see 9).

Zonnon Language Report: Draft v02 r02 11 Printed on 2004-11-01

5.4 Variable declarations

A variable holds avalue that can be assigned to it from an expression in an assignment operation (see
7.1). A variableis defined to have atype, which may not change, and which defines the set of values
that it may hold. Variable declarations introduce variables by defining an identifier and adatatype for
each one.

VariableDeclaration = IdentList ":" Type.
Examples:

var i, j, ki integer;
X, y: real;
p, g: boolean;
s: set {32};
a: array 100 of real;
name: array 32 of char;
size, count: integer;
mousePosition: Position;
dateOfBirth, today: Date;

6 Expressions

An expression is a construct which specifies a computation. In an expression constants and current
values of variables are combined to compute other values by the application of operators and function
procedures. An exp ression consists of operands and operators; parentheses may be used to express
specific associations of operators and operands. The types of intermediate values used during
expression evaluation are the responsibility of the implementation (see [Compiler]). The type of the
result of an expression is defined in the section on expression compatibility (see 13.6).

6.1 Operands and Designators

With the exception of set constructors and literal constants (numbers, character constants, or strings),
operands are denoted by designators. A designator consists of an identifier referring to a constant,
variable, or procedure. Thisidentifier may possibly be qualified by an identifier denoting a module,
definition, implementation or object and may be followed by selectors if the designated object is an
element of a structure.

Designator = Instance
| Designator "{" Type “}" /I Conversion
| Designator "A" /I Dereference
| Designator "[* Expression { "," Expression }"]" // Array element
| Designator "(" [ActualParameters] ")"// Function call
| Designator "." MemberName /I Member selector
Instance = (self | InstanceName | DefinitionName "(* InstanceName ")").
ActualParameters = Actual { "," Actual }.
Actual = Expression ["{" [var] FormalType "}"]. /I Argument with type signature

The” symbol is used so that areference can optionally be made explicit in a program text.

Examples:

designator type meaning

size integer value of the variable called size

ali] real the element of the array a at position i
dateOfBirth.day integer{8} the day field of the object called dateOfBirth
w[3].namel[i] char the element at position i in the name field of the

element at position 3 of the array called w

If a designates an array, thenal€] denotesthat element of a whose index isthe current value of the
expression e. The expression e must be of either an enumeration, cardinal or integer type. A designator
of theform a[e0, €1,, en] standsfor a[e0][€el]....[en].

If obj designates an object, then obj.f denotes the field f of obj or the method f of the object obj, (see
11.1).

If the designated object is a constant or avariable, then the designator refersto its current value. If
it is aprocedure without any parameter list, the designator refers to the procedure itself. However, if it
isafunction procedure and is followed by a (possibly empty) parameter list it causes an activation of

Zonnon Language Report: Draft v02 r02 12 Printed on 2004-11-01

that procedure and stands for its resulting value. The actual parameters must correspond to the formal
parameters asin proper procedure calls. (See 7.2).

6.2 Predefined Operators
Predefined operators are fixed and built into the language.

6.2.1 Logical operators

These operators apply to boolean operands and yield a boolean resullt.

or logical disjunction porq ‘if p thentrue, elseq’
& logical conjunction p&q ‘if p thenq, elsefalse’
~ negation ~-p ‘not p’

6.2.2 Arithmetic operators

The operators +, -, and * apply to operands of numeric typesin an expression. (See 6.3.1). Thedivision
operator / applies only to operands of type real and produces aresult of typereal. When used as
monadic operators, - denotes sign inversion and + denotes the identity operation.

+ sum
difference
* product
/ real quotient (of reals)
Examples:
i=j+k;

x := real(i) / float(j); (* see section 5.3.9%
The operatorsdiv and mod apply to integer and cardinal operands only.
div integer quotient
mod modulus
They are related by the following formulas defined for any x and positive divisorsy:

x = (xdivy)*y+ (xmody)
0 <= (xmody)<y

If the value of the divisor y is negative then the meanings of the operatorsdiv and mod are
mathematically ambiguous and so are |eft undefined, their effect isimplementation specific. (See

[Compiler]). It isrecommended that programmers test for this condition and employ mathematics to
ensure that only positive divisors values are used.

Examples:
X y x divy x mody
5 3 1 2
-5 3 2 1

6.2.3 Set Operators

Set operators apply to operands of type set and yield aresult of type set. The declared bit widths of the
operand SETs must be identical. The monadic minus sign denotes the complement of X, that is, -x
denotes the set of integers between 0 and max(set) which are not elements of x.

+ union bitwise or

- difference (x - y =x* (-y)) bitwise subtraction
* intersection bitwise and

/ symmetric set difference (x / y = (x-y) + (Y-X)) bitwise exclusive or

A set constructor defines the value of a set by listing its elements, if any, between braces. The elements
must be integersin therange 0 .. max(set). A rangem.. n denotes all integersin the interval starting
with element m and ending with element n, inclusive of m and n. If m > n then m.. n denotes an empty
set.

Zonnon Language Report: Draft v02 r02 13 Printed on 2004-11-01

Examples of the use of sets:

const left = 0; right = 1; top = 2; bottom = 3;
var edges: set; X, y: integer;
begin

edges = {}; (* the empty set *)

if x<xMinthen edges := edges + {left}

i.f'left in edgesthen ... (*clip at left *)

const opCodemask = {0..3};
var opCode, word: set;

6bCode :=word * opCodeMask; (* extract the op-code *)

6.2.4 Relations

Relationsyield aboolean result. Therelations =, #, <, <=, >, and >= apply to the numeric types and
char. Therelations = and # also apply to boolean and set, as well asto procedure types (including the
valuenil). x in sstandsfor *x isan element of S'. x must be of an integer type, and s of type set.

= equal

unequal

< less

<= less or equal

> greater

>= greater or equal

in set membership

implements x implements D istrueif object x implements definition D
is xisTistrueif theintrinsic type of xisT

Examples of expressions

expression type meaning

1991 integer simple constant value

idiv3 integer integer division ofi by 3
~wellFormed or outOfRange boolean (not well-formed) or out-of-range
@i+)) * (i) integer arithmetic expression

s-{8,9, 13} set{8} s with 8, 9, 13 removed

keys in {left, right} boolean keys isleft or right or both
('0'<=ch) & (ch<='9") boolean chis a digit

6.3 User-Defined Operators and Operator Declarations

Operator overloading introduces the notion of user-defined operators and the opportunity to use normal

syntax in expressions involving them. Operators are defined only in a modul e implementing an abstract
datatypei.e. which defines a new user-defined type and implements a set of operationson it. Typically
this can be used when introducing new data types such as complex numbers or matrices.

6.3.1 Basic Operators that can be overloaded

The set of predefined operators that can be overloaded is asfollows:
- (unary minus) + (unary plus) ~
A (unary dereference)
+ - */ div mod & or
= # < <=>>=in
:= (assignment is a special case, see 6.3.3)

Note that the implements and is operators cannot be overloaded, (see 11.1).

6.3.2 New Operator Declarations

Overloaded operators are introduced as operator declarations. The syntax of the declaration isas
follows:

Zonnon Language Report: Draft v02 r02 14 Printed on 2004-11-01

OperatorDeclaration = operator [ProcModifiers] OpSymbol [FormalParameters] ;" OperatorBody ";".
OperatorBody = Declarations BlockStatement OpSymbol.
OpSynbol = String. /I a 1- or 2-character string; the set of possible symbols is restricted

Example:

operator '+ (x1, x2: Complex): Complex;

var res: Complex;

begin

res.re ;= xl.re + x2.re;
res.im := x1.im + x2.im;
returnres

end '+

For overloaded operators the number of parametersin an operator declaration must be the same as
that of the predefined operator with the same symbol.

In the user defined operator for assignment there must be two parameters, and the first one must be
passed by reference.

It isonly possible to declare overloaded operatorsin amodule, but not in an object or definition.
Thereason is to enable complete overloading resolution statically at compile time. Thisis also intended
to clearly separate two concepts. objectsimplementing interfaces (definitions) and abstract data types
with associated operators.

Operator declaration can be made avail able outside the module where it is declared. In that case, it
islegal to use those operators in units importing the module in normal expressions, together with the
predefined operators. The compiler is responsible for selecting the right version of the operator in each
case.

It is possible to define operators in amodule to extend an abstract data type. These operators must
be defined in terms of the operations already defined in the module where the abstract datatypeis
declared.

Normally, all imported entities should be qualified by the name of the imported unit. Thisisaso
possible, but not required, for operators. For example, there are two legal waysto use ‘ new addition’
for operands of sometypeT.

module M;

type T {public}=...;

operator {public}'+" (a,b:T):T; begin ...end "+";
end M.
object Obj;

import M;

var x,y: T,
begin

XI=X+Y; (* like a normal expression *)

x:=x M."+"y; (*fully qualified, but less conventional *)
end Ob;j.

An operator procedure cannot be called as anormal function:

x 1= M."+"(X, y); (* not legal; must use expression notation *)

6.3.3 Rules governing overloading

The following set of rules applies to overloaded operators:

1) Thetype of at least one operand of an overloaded operator must be a user-defined type
(an array type, an object type, a procedure type, an enumeration type). It isillegal to
introduce user-defined operator versionsfor ‘basic’ types such asinteger, real, and
boolean.

2 Specifying an object type with a postulated interface (such asobject { D }) asthe
operator’s parameter is not allowed. The reason is that it must be possible to resolve
operator overloading completely at compiletime (i.e. statically).

3) There are no restrictions on the result type of an overloaded operator.

4) The number of arguments, the precedence of an overloaded operator and the form (prefix
or postfix) of unary operators, must be the same as those features for predefined operators
with the same symbols.

5) The dereference construct with ‘" symbol (see Designator production in the syntax) is
considered here as postfix unary operator. Therefore, any overloaded” operator keeps the

Zonnon Language Report: Draft v02 r02 15 Printed on 2004-11-01

form of unary postfix operator; similarly, unary + and — operators are always unary prefix

operators.

6) It isalso possible to overload assignment. In this case, the assignment symbol is
considered as a special operator with the symbol ‘:=" performing a certain side effect and
producing no value.

7 In the overloaded operator for assignment there must be two parameters, and the first one
must be passed by reference.

8) Itislegal to specify more than one version of the overloaded operators with the same

symbol; in that case, the types of the parameters of the corresponding operator
declarations must differ from any other operator declaration for the same symbol. (See
section 6.3.1).

6.4 Operator Precedence

Four classes of operators with different levels of precedence (binding strengths) are syntactically
distinguished when used in expressions. Operators of the same precedence associate from left to right.
For example, x—y - z stands for (X - y) - z. Operator precedence from highest to lowest is:

1. unary negation operator ~
2. multiplication operators
3. addition operators

4. relations

Operators are used in expressions:

Expression = SimpleExpression

[("="]"#"|"<" | "<="| ">" | ">="| in) SimpleExpression]
| Designator implements DefinitionName.
SimpleExpression = ["+"|""] Term { ("+" | ™| or) Term }.

Term = Factor { (™" |"/" | div | mod | "&") Factor }.
Factor = number
| CharConstant
| string
| nil
| Set
| Designator
| new TypeName ["(" ActualParameters ")"]
| new ActivitylnstanceName
| "(" Expression ")"
| "~" Factor.
Set ="{" [SetElement { "," SetElement }] "}".
SetElement = Expression [".." Expression].
The available operators are listed in the following tables. Some operators are applicable to operands
of various types, denoting different operations. In these cases, the actual operation is effectively
‘overloaded’ and the appropriate one to useisidentified by the type of the operands. The operands

must be expression compatible with respect to the operator, see 13.6.

6.5 Numeric resolution within expressions

An expression consists of a series of evaluations of operators on their operands. For each operator the
relationship between the resolution of each of its operands and the result of the operation is defined as
follows:

operator first operand second operand result

+ integer{ s} integer{t} integer{ max(s, t)}
- integer{ s} integer{t} integer{ maxi(s, t)}
* integer{ s} integer{ t} integer{s + t}

div integer{ s} integer{ t} integer{ s}

mod integer{ s} integer{ t} integer{ t}

+ cardinal{ s} cardinal{t} cardinal{ maxi(s, t)}
- cardinal{ s} cardinal{t} cardinal{ maxi(s, t)}
* cardinal{ s} cardinal{t} cardinal{s + t}

Zonnon Language Report: Draft v02 r02 16 Printed on 2004-11-01

div cardinal{ s} cardinal{t} cardinal{ s}

mod cardinal{ s} cardinal{t} cardinal{t}

+ real{ s} real{t} real{ maxi(s, t)}
- real{ s} real{t} real{ maxi(s, t)}
* real{ s} real{t} real{s+ t}

/ real{ s} real{t} rea{ s+t}

+ fixed fixed fixed

- fixed fixed fixed

* fixed fixed fixed

/ fixed fixed fixed

Imax(s,t) =s,if s> telset
7 Statements

Statements denote actions. There are elementary and structured statements. Elementary statements are
not composed of any parts that are themselves statements. They are the assignment, the procedure call,
await, return and exit statements. Structured statements are composed of parts that are themselves
statements. They are used to express sequencing and conditional, selective, and repetitive execution. A
statement may also be empty, in which case it denotes no action. The empty statement isincluded in
order to relax punctuation rules in statement sequences.

Statement= [Assignment
| ProcedureCall
| IfStatement
| CaseStatement
| WhileStatement
| RepeatStatement
| LoopStatement
| ForStatement
| await Expression
| exit
| return [Expression]
| BlockStatement
|launch Statement
| Send
| Receive].

Statement sequences denote the sequence of actions specified by the component statements which are
separated by semicolons.

StatementSequence = Statement {";" Statement}.
Example:

temp := a; a := b; b := temp (* swap values in a and b*)

7.1 The Assignment Statement

An assignment statement replaces the current value of avariable by a new value specified by an
expression. The expression must be assignment compatible with the variable. (See 13.4). The
assignment operator iswritten as‘:=" and pronounced as ‘ becomes'.

Assignment = Designator ":=" Expression.

Examples
i=0;
p:= | = j;
X:=i+1;
k := log2(i+j);
F :=log2;
s:={2,3,5,7 11,13}
afi] = (x+y) * (x-y);
tkey :=1;
wli+1].name := "John";
t:i=c;

Zonnon Language Report: Draft v02 r02 17 Printed on 2004-11-01

7.2 The Procedure Call

Within amodul e a procedure call invokes a procedure. When it is declared within an object a procedure
isreferred to as amethod. In either case it may contain alist of actual parameters which replace the
corresponding formal parameters defined in the procedure declaration. (See section 8). The
correspondence is established by the relative ordering of the parametersin the actual and formal
parameter lists. There are two kinds of parameters: variable and value parameters.

If aformal parameter is a variable parameter, the corresponding actual parameter must be a
designator denoting a variable. If it denotes an element of a structured variable, the component
selectors are evaluated when the formal/actual parameter substitution takes place, i.e. before the
execution of the procedure. If aformal parameter is avalue parameter, the corresponding actual
parameter must be an expression. This expression is evaluated before the procedure activation, and the
resulting value is assigned to the formal parameter.

ProcedureCall = Designator.

Examples:
Writelnt(i*2+1)
inc(w[k].count)
t.Insert("John")

A method call consists of the name of an object, followed by a period and then the name of a procedure
declared within the object type declaration of the object. Within the method the reserved word self
refers to the object on which the method was called.

A specific procedure call may also be ‘ safeguarded’, by prefixing the object with a definition. For
example:

object T implements |, D; ...end T;
var t. T,

A client who wants to make specific use of t’ sinterpretation of the services specified by D (e.g. asa
supercall) would then simply call D’ s methods and fields safeguarded by t:

D().f(..); ..; .. := D(t).x;

The order in which the parametersis evaluated during procedure/method invocation is defined in the
Compiler Implementation Details [Compiler].

7.3 The if Statement

IfStatement =
if Expression then StatementSequence
{elsif Expression then StatementSequence}
[else StatementSequence]
end.

Example:

if (ch >="A") & (ch <="Z")then Readldentifier
elsif (ch >="0") & (ch <="9")then ReadNumber
elsif (ch=""")or (ch=""") then ReadString
else SpecialCharacter

end

An if statement specifies the conditional execution of guarded statement sequences. The expression
preceding a statement sequenceis called its guard and its type must be boolean. The guards are
evaluated in sequence of occurrence; if one evaluatestotrue, its associated statement sequenceis
executed. If no guard is satisfied, the statement sequence following the symbol elseis executed, if there
isone.

7.4 The case Statement

The case statement specifies the selection and execution of a statement sequence according to the value
of an expression. First the case expression is eval uated then the statement sequence whose case label
list contains the obtained value is executed. The case expression must either be of an integer or cardinal
type that is expression compatible (see 13.6) with the types of all case labels, or both the case
expression and the case labels must be of type char or an enumeration. case labels are constants, and
no value must occur more than once. If the value of the expression does not occur as alabel of any

Zonnon Language Report: Draft v02 r02 18 Printed on 2004-11-01

case, the statement sequence following the symbol else is selected, if there is one, otherwise the
UnmatchedCase exception is raised.

CaseStatement = case Expression of Case {"|" Case} [else StatementSequence]end.
Case = [CaseLabelList ":" StatementSequence].

CaselabelList = CaselLabels {'," CaseLabels}.

CaselLabels = ConstExpression [".." ConstExpression].

Example;

case chof

"A" .. "Z": Readldentifier (* assumes contiguous encoding of letters*)
| "0" .. "9": ReadNumber

| "™, " ReadString

else SpecialCharacter

end

case month of
Month.Apr, Month.Jun, Month.Sep, Month.Nov: days := 30
| Month.Feb: if Leap(year)
thendays := 29
else days := 28
end
else days =31
end

7.5 The while Statement

The while statement specifies the repeated execution of a statement sequence while the expression of
type boolean (its guard) yieldstrue. The guard is checked before every execution of the statement
sequence and so the statement sequence will be executed zero or more times.

WhileStatement = while Expressiondo StatementSequence end.

Examples

var i, k, idNumber: integer;

while i# 3do writeln(Hello'); i := i + 1 end

read(idNumber);

while ~Valid(idNumber) do
write('Type ID number again *);
read(idNumber)

end;

(* Valid(idNumber) *)

while i>0do i:=idiv2;k:=k+1end
while (t#nil) & (t.key #i)do t:=tleftend

7.6 The repeat Statement

A repeat statement specifies the repeated execution of a statement sequence until a condition specified
by an expression of type boolean is satisfied. The statement sequence is executed at least once.

RepeatStatement = repeat StatementSequence until Expression.
Examples:
var idNumber: integer;

repeat
write (‘'Type ID number *); read(idNumber)
until Valid(idNumber);

var i, X: integer; buffer: array 10 of integer;

i:=0;

(* convert non-negative value of x to decimal representation *)
repeat buffer[i] := xmod 10; x := xdiv 10; inc(i) until x = 0;

(* write out digit characters in correct order *)
repeat dec(i); write(char(buffer[i] + integer("0"))) until i=0

Zonnon Language Report: Draft v02 r02 19 Printed on 2004-11-01

7.7 The for Statement

A for statement specifies the repeated execution of a statement sequence for afixed number of times
while aprogression of valuesis assigned to avariable of integer or cardinal type called the control
variable of the for statement.

ForStatement = for ident ":=" Ex pression to Expression [by ConstExpression] do StatementSequence end.

Example:

var i: integer;

f.(')'r i:=0to79dok:=k+a[]end
for i:=79to 1by-1do a[i] := afi-1] end

The statement

for v := lowto highby step do statementsend

isequivalent to

v := low; temp := high;
if step > 0then

while v <=temp do statements; v := v + stepend
else

while v >=temp do statements; v := v + stepend
end

The value of the expressionlow must be assignment compatible withv and that of high must be
expression compatible with v. The value of step must be a non-zero constant expression of an integer or
cardinal type. If by step is omitted, then step defaultsto the value 1.

7.8 The loop Statement

A loop statement specifies the repeated execution of a statement sequence. It isterminated upon
execution of an exit statement within that sequence.

LoopStatement = loop StatementSequence end.

Example:
loop (* copy integers from input to output until O is typed *)
read(i);
if i<0then exitend,;
write(i)
end

loop statements are useful for expressing repetitions with several exit points or cases where the exit
condition occurs naturally in the middle of the repeated statement sequence.

An exit statement is denoted by the symbol exit. It specifies termination of the enclosing loop
statement and continuation with the statement following that loop statement. Anexit statement is
contextually, although not syntactically, associated with the |oop statement which containsit.

7.9 The return Statement

A return statement indicatesthe termination of aprocedure. It is denoted by the symbol return,
followed by an expression if the procedure is a function procedure. The type of the expression must be
assignment compatible (see 13.4) with the result type specified in the procedure.

Function procedures require the presence of areturn statement indicating the result value. In proper
procedures, areturn statement isimplied by the end of the procedure body. Any explicitreturn
statement therefore appears as an additional (probably exceptional) termination point.

7.10 The Block and launch Statements

The block statement allows the grouping together of logically related statements and the introduction of
exception handlers. Block statements can be nested.

BlockStatement = begin [BlockMaodifiers]
StatementSequence
{ ExceptionHandler }
[CommonExceptionHandler]
end.
BlockModifiers = "{" ident { "," ident } "}"J/ locked, concurrent

Zonnon Language Report: Draft v02 r02 20 Printed on 2004-11-01

ExceptionHandler = on ExceptionName {"," ExceptionName } do StatementSequence.
CommonExceptionHandler = on exception do StatementSequence.

The statement sequence within the block is carried out.

7.10.1 Exception handling

If an exception occurs then the exception handlers are tried in the order in which they appear textually
until one that matches the exception is found or the general exception is reached. The statement
sequence corresponding to the exception nameisthen carried out.

Exception names take the form of predefined identifiers and include:
ZeroDivision: division by zero
Overflow : value does not lie within min(type) .. max(type)
OutOfRange: array index out of bounds
NilReference: uninitialized array/object/activity/dialog instance
UnmatchedCase: control flow reached missing else in case statement
Conversion: invalid type conversion (not guarded by ‘t istype’)
Read: wrongly formatted input value for read or readin

(See aso[Compiler]).
Example:

var idNumber: integer; idValid: boolean;
begin
read(idNumber);
if Valid(idNumber) then idValid := true; Process(idNumber)
else idvalid := false (* wrong number *)
end
on exceptiondo
idValid := false (* wrong sort of characters typed*)
end

7.10.2 Concurrency Modifiers and the launch Statement

A block may optionally have a modifier. The following modifiers are defined:

locked: only asingle activity is allowed within the scope of this block. It is used to enforce
mutual exclusion in for protected accessto variables in concurrent programs. The statements
within the block are executed sequentially.

concurrent: theindividual statementsin the block may be executed concurrently by one or
more processors in any order. However if a statement is prefixed by the keyword launch then
it becomes a launch statement. This provides a way to define the order in which concurrent
statements are started. The block terminates simultaneously when the last statement has
completed execution.

In both casesthe begin and end delimiters act asabarrier.
Example:
begin {locked}
... (*statements in the block are executed sequentially but atomically as a unit*)
end
Example:

begin {concurrent}...launch S; T; launch U; ... end
The effect of thisisto launch S, then execute T, then launch U and wait at end for all launched
statements to terminate. This provides an innovative statement level concurrency that allows
programmers to specify the ‘launch logic’ without requiring the statements to be executed in sequence.
7.11 The await Statement

The await statement is used for conditional scheduling within an activity in an object or module [AOS].

await Expression

Zonnon Language Report: Draft v02 r02 7 Printed on 2004-11-01

It must occur within ablock statement which has alocked modifier. The expression defines the
precondition of continuation of execution.

When it is executed the Boolean expression is evaluated and if it istrue then execution continues at
the next statement. However, if it isfalse then execution is suspended until the system scheduler
subsequently re-eval uates the condition (possibly on more than one occasion) and findsthat it has
become true. When this occurs execution continues at the next statement.

Example: object Buffer

This example shows how afirst-in-first-out buffer can be implemented using an object. The producer,
which ‘puts’ the data, is assumed to belong to adifferent activ ity to the consumer, which ‘gets' it. The
await statements regulate the content of the buffer. The locked modifiers ensure mutual exclusion of
access to the shared buffers whenever they are being altered, to conserve their integrity.

object Buffer;
(* First-in first-out buffer (‘thread safe") *)
const bufLen = 1000;
var data: array bufLen of integer;
in, out: integer,

procedure {public} Put (i: integer); (* put element into the buffer *)
begin {locked}
await (in + 1)mod bufLen # out; (*wait until not full *)
data[in] :=i;
in ;= (in + 1) mod bufLen
end Put;

procedure {public} Get (var i: integer); (* get element from the buffer *)
begin {locked}

await in # out; (* wait until not empty *)

i := datafout];

out := (out + 1) mod bufLen
end Get;

begin
in:=0; out :=0;
end Buffer;

7.12 The send Statement

The send statement is used within the implementation of an activity (see section 10) to output avalue
to adialog established between two activities. The send is non-blocking, that is execution of the
statement following the send statement continues immediately after the send statement has been
started.

Send = send expression ['=>" activity].

Examples:
send pi*x/180.0 => a (* Convert degrees to radians and send the result to callee activity 'a' *)
send "29 August 2003" (* Send the date string back to the caller activity *)

7.13 The receive Statement

The receive statement is used within the implementation of an activity (see section 10) to receive a
value from the dial og. Execution is blocked until a value has become available to be received.

Receive = receive [activity "=>"] variable.

Examples:
receive a => date (* Receive the date string from callee activity ‘a' *)
receive angle (* Receive the angle value from the caller activity 'a' *)

7.14 The accept Statement

The accept statement is used within the implementation of an activity (see section 10) to accept avalue
from the dialog. The accept is non-blocking, that isit returnsavalue if oneisimmediately available
and otherwise returnsnil. In any case, execution immediately continues with the statement that follows
the accept statement.

Accept = accept [activity "=>"] variable.

Zonnon Language Report: Draft v02 r02 22 Printed on 2004-11-01

Examples:

accept a=>date (* Accept the date string from callee activity 'a’,
or nil if none is immediately available *)

accept angle (* Accept the angle value from the caller activity 'a’ *)

8 Procedure (and Method) Declarations and Formal Parameters

A procedure declaration consists of a procedure heading and a procedure body. The heading specifies
the procedure’ sidentifier and its formal parameters, if any. The body contains declarations and
statements. The procedure identifier is repeated at the end of the procedure declaration. A procedure
declared within an object is called a method.

There are two kinds of procedures: proper procedures and function procedures. The latter are
activated by afunction designator as a constituent of an expression and yield aresult that is an operand
of the expression. Proper procedures are activated by a procedure call. A procedureisafunction
procedure if its formal parameters specify aresult type. The body of afunction procedure must contain
areturn statement that definesits result.

All constants, variables, types, and procedures declared within a procedure body arelocal to the
procedure. Since procedures may be declared aslocal itemstoo, procedure declarations may be nested
(subject to implementation restrictions). The call of a procedure within its declaration implies recursive
activation.

In addition to its formal parameters and locally declared items, the items declared in the
environment of the procedure are also visible in the procedure (with the exception of those items that
have the same name as an item declared |ocally).

ProcedureDeclaration = ProcedureHeading [ImplementationClause] *;" [ProcedureBody ";" .

ProcedureHeading = procedure [ProcModifiers] ProcedureName [FormalParameters].

ProcModifiers = "{" ident { "," ident } "}". // private, public, sealed

ProcedureBody = Declarations BlockStatement SimpleName.

FormalParameters = "(" [FPSection { ;" FPSection }])" [":" FormalType].
FPSection =[var] ident {"," ident } ":" FormalType.

Formal parameters are identifiers declared in the formal parameter list of a procedure. They correspond
to actual parameters specified in the procedure call. The correspondence between formal and actual
parameters is established when the procedureis called. There are two kinds of parameters, value and
variable parameters, indicated in the formal parameter list by the absence or presence of the keyword
var. Value parameters are local variables to which the value of the corresponding actual parameter is
assigned as an initial value. Variable parameters correspond to actual parameters that are variables, and
they stand for these variables. The scope of aformal parameter extends from its declaration to the end
of the procedure block in which it is declared. A function procedure without parameters must have an
empty parameter list. It must be called by afunction designator whose actual parameter list is empty
too.

Therulesfor the correspondence between formal and actual parameters are asfollows. Let Tf be the
type of aformal parameter f (not an open array) and Ta the type of the corresponding actual parameter
a. For variable parameters, Ta must be the same asTf, or Tf must be an object type and Ta must be
derived from Tf. For value parameters, a must be assignment compatible with f. (See 13.4).

If Tf isan open array, thena must be array compatible with f. (See 13.5). The lengths of f are taken
from a.

8.1 Procedure Modifiers

A modifier may optionally occur after the reserved word procedur e to denote its nature. The following
modifiers are defined:

private: the procedureis only visible in the scope in which it is declared; thisis the default.

public: the procedure is visible in the scope in which it is declared and within any construct
that imports the construct in which it is declared.

sealed: the procedure may not be further redefined (overridden),
theinverse of being sealed is referred to as being open

Examples:

procedure ReadInt(var x: integer);
var i: integer; ch: char;

Zonnon Language Report: Draft v02 r02 23 Printed on 2004-11-01

begin
i := 0; read(ch);
while ("0"<=ch) & (ch <="9") do
i := 10* + (integer(ch) - integer("0")); read(ch)
end;
X =i
end Readint;

procedure {private} WriteHex(x: integer);
(* precondition: 0 <= x <100000H *)
var i: integer; buf: array 5 of integer;
begin
i=0;
repeat buffi] := xmod 10H; x := xdiv 10H; inc(i) until x = 0;
repeat dec(i);
if buf[i] < 10 then write(char(buf[i] + integer("0")))
else write(char(buf[i] — 10 + integer("A")))
end
untili=0
end WriteHex;
procedure log2(x: integer): integer;
(* precondition: x >0 *)
var y: integer,;
begin
y:=0;
while x> 1do x :=xdiv 2; inc(y) end;
returny
end log2;

8.2 Properties

A property isavariable for which accessor procedures are provided by the programmer and
automatically called whenever its value is read or written. Whenever the value of the variableis
accessed in an expression a function marked with the modifier get is called and whenever the value of
the variable is set by an assignment, the procedure marked with the modifierset is called. A variable
for which only a getter function is provided is ‘read only’. A variable for which only a setter is
provided is ‘writeonly’.

definition D;
var x: T;

end D.

object O implements D;
procedure {get} Getx (): T implements D.x;
(* 'getter": called automatically whenever x is accessed *)
begin

return(...)
end x;
procedure {set} Setx (expression: T) implements D.x;
(* 'setter": called automatically whenever x is assigned the value of the expression *)
begin

endl>'<';
end O.

Zonnon Language Report: Draft v02 r02 24 Printed on 2004-11-01

9 Predefined Procedures

The following table lists the predefined procedures. Some are generic procedures, i.e. they apply to
several types of operands. Within the specifications v stands for avariable, x and n for expressions, and
T for atype. The names of the predefined procedures can also be written entirely in upper-case | etters.

Name Argument(s) type(s) Result type Purpose
abs(x) integer, cardinal or real type ofx absolute value ofx
assert(b) b: boolean none if ~b terminate
assert(b, n) b: boolean; none if ~b terminate, report n to environment
n: integer or cardinal
cap(x) x: char char corresponding capital letter
precondition: x is a letter
copy(x, V) X: string; v: character array none V=X
copy(v, x) X: string; v: character array none X =V
copyvalue(v) v: ref object value object dereference an object
dec(v) v: integer, cardinal or none vi=v-1
enumeration type
dec(v, n) v: integer, cardinal or none V:i=vVv-n
enumeration type
n: integer or cardinal type
excl(v, x) V: set; none v :=v-{x}
X: integer or cardinal type
halt(n) n: integer or cardinal const none terminate program execution
inc(v) v: integer, cardinal or none vi=v+1
enumeration
inc(v, n) v: integer, cardinal or none Vi=v+n
enumeration
n: integer or cardinal type
incl(v, x) V: set; none vi=v+{x}
X: integer or cardinal type
len(v, n) v:array; integer length of v in dimension n
n: integer or cardinal const (first dimension = 0)
len(v) v:array integer equivalent to len(v, 0)
low(x) x:char char corresponding lower-case letter
precondition: x is a letter
max(T) integer integer maximum value of type integer{w}
max(T) cardinal cardinal maximum value of type cardinal{w}
max(T) enumeration enumeration maximum value of the enumeration
max(T) char{w} integer maximum character
max(T) real{w} real maximum value of type real{w}
max(T) set{w} integer maximum element of a set{w}
min(T) integer integer mininmum value of type integer{w}
min(T) enumeration enumeration minimum value of the enumeration
min(T) char{w} integer minimum character
min(T) real{w} real minimum value of type real{w}
min(T) set{w} integer 0
odd(x) X: integer boolean xmod2=1
pred(x) X: integer integer x — 1, pre: x # min(integer)
pred(x) X: enumeration type of x predecessor enumeration value,
pre: x # min(enumeration)
pred(x) x: char char predecessor char, pre: X # min(char)
size(T) any type integer number of bytes required by T
succ(x) X: integer or cardinal integer x + 1, pre: x # max(integer)
succ(x) X: enumeration type of x successor enumeration value,
pre: x # max(enumeration)
succ(x) x: char char successor char, pre: x hot max(char)

In assert(x, n) and halt(n), the interpretation of n is implementation specific. (See [Compiler]).

For predefined input-output procedures see section 10.5.

10 Activities, Behavior and Interaction

The declaration of an activity issimilar to that of amethod (procedure) with the omission of a
parameter list. The reserved word activity is used to differentiate an activity declaration from that of a
method. Activities may also have the private or public modifiersto control their visibility. Once an
activity has been declared then instances of it can be created in any active object or module.

Zonnon Language Report: Draft v02 r02 25 Printed on 2004-11-01

Semantically, the difference between an activity and amethod is more substantial. Activities are
declared and then instantiated (launched) rather than called, and anew activity isimplicitly spawned
with each launch.

The operator new is used to create each instance of an activity.

10.1 Behavior

Activities provide a means of encapsulating behavior added to an object or module (regarded as a
singleton object). An object may contain an arbitrary number of activities, or none at all in which case
it is apassive object. Typically behavioral activities are private to the object (or module) that contains
them and are created and launched by the constructor.

Example:

object Cell (*of a pipeline*);
type Job = ...;
var in, out, n: integer;
buf: array N of Job;

procedure Get (j: Job);
begin ...
end Get;

procedure { public } Put (j: Job);
begin ...
end Put;

activity Process;

var ... (*state space of the activity*)
begin ...

end Process;

var p: Process;

begin

n:=0;in:=0; out:=0;

p := new Process (* Create activity in Cell *)
end Cell;

10.2 Interaction

A formal syntax specification can be associated with activities for object interaction. In order to start
interaction a caller first creates an activity in the callee object which implicitly opensadialog with it
that then commences between the caller and the callee defined by the formal dial og syntax of the
callee’ s activity. It is noteworthy that the interaction between the caller and callee activitiesis
asymmetrical. The caller knows the callee by its name, whereas the callee is unaware of the name of its
caller, the only association between them being the dialog.

The actual exchange of syntactic tokens between caller and callee is controlled by the send and
receive operations described in sections0 and 7.13, where receive takes a generic object argument. If
necessary, the is operator can then be used to discriminate between the different types of syntactic
tokens (see 6.2.4).

10.3 Protocol EBNF

The definition of an activity caninclude a dialog that isaformal syntax specification of a
communication protocol in EBNF. It is represented as a modifier to an enumeration type which defines
the alphabet of terminal tokens of the syntax. The name of an activity and its enumeration type
constitute the activity’ s signature. Note that in EBNF protocol specifications the communication of an
item from the calleeto the caller isprefixed by a“?.

definition Fighter;

activity (* Syntax of the protocol, in this case it is recursive too *)
{ fight={attack ({defense attack } | RUNAWAY [?CHASE] | KO | fight) }.
attack = ATTACK strike.
defense = DEFENSE strike.
strike = bodypart [strength].
bodypart = LEG | NECK | HEAD.
strength = integer. }

Karate = (RUNAWAY, CHASE, KO, ATTACK, DEFENSE, LEG, NECK, HEAD);

Zonnon Language Report: Draft v02 r02 2% Printed on 2004-11-01

end Fighter.

object Opponent implements Fighter;
activity Karate implements Fighter.Karate;
var t: object;

procedure fight;
begin
while tis ATTACK do
receive t;
while tis DEFENSE do receive t; strike
if tis ATTACK then strike else halt(protocolError) end
end;
if tis RUNAWAY then
if (*not exhausted*) then send Karate.CHASE end;
return (* fight over *)
elsif tis KO then return (* fight over *)
elsif tis ATTACK then fight (* recursion, continue the fight *)
else halt(protocolError)
end
end
end fight;

procedure strike;
begin (* note use of type tests as guards*)
if (tis LEG) or (tis NECK)or (tis HEAD)
then
receive t; (* bodypart*)
if tis integerthen receive tend (* optional strength parameter*)
end
end strike;

begin (* Karate*)
receive t;
fight
end Karate;
end Opponent.

object Challenger;
import Opponent, Fighter;
var opp: Opponent; f: Fighter.Karate;
opp = new Opponent; (* create opponent *) ...
f := new opp.Fighter.Karate; (* create didog *)
send Fighter.Karate. ATTACK =>f; ... (* fight according to the dialog protocol *)

end”C':haIIenger.

10.4 Termination

An object may only terminate when there are no longer any referencesto it, and when all of its
activities have terminated. An activity terminates after the execution of the statement immediately
preceding the end of its procedure’ s body.

10.5 Input and Output Procedures

The language includes built-in features for simple textual input and output. Conceptually, reading and
writing corresponds to receiving and sending tokens from and to the predefined activitiesstandard
input and standard output respectively.

For convenience, predefined proceduresin asimilar style to Pascal are provided for reading and
writing text. The procedures for inputting text are read and readln and for outputting are write and
writeln. All input and output isto texts which are implicitly assumed to be represented as lines of
characters delimited by end of line markers.

10.5.1 Parameters and special syntax

The procedures are used with a non-standard syntax for their parameter lists. This allowsfor avariable
number of parameters which may be of various data types. Parameters of type char require no datatype
conversion, however for other types such asinteger, real, etc the datatransfer includes an implicit data
type conversion.

Zonnon Language Report: Draft v02 r02 27 Printed on 2004-11-01

10.5.2 Input Procedures

10.5.2.1 The read procedure

The form of theread procedureis

read (v1, ..., vn)

It may have one or more parameters, each of which is avalue of some basic datatype. If visavalue of
type char thenread(v) transfers the next character from the input text tov. If visavalue of type
integer, cardinal or real thenread(v) impliesthe reading of a sequence of characters from the input
text and assignment of that number tov. Preceding blanks and line markers are skipped and discarded.

10.5.2.2 The readin procedure

The form of the readIn procedureis

readin(vl, ..., vn)

readln has the same functionality asread except that after reading vn all remaining characters on the
line are skipped up to and including the next end of line marker.

10.5.3 Output Procedures

10.5.3.1 The write procedure
The form of the write procedureis
write (p1, ..., pn)
It may have one or more parameters, each of which hasthe form
e.em or emn
Where e represents the value to be output and mand n are field-width specifiers. If the value of e
requires less than mcharactersfor its representation then blanks (spaces) are output to ensure that a
total of exactly mcharacters are written. If mis omitted an implementation-defined default value will
be assumed. The form em:n is only applicable to numbers of typereal. (See below).
The write procedure parameters can be of type char, string, boolean, integer, cardinal andreal.
- Ifeisof type char thenwrite (e: m) writes out m- 1 spaces followed by the character
contained ine. If mis omitted then only the character iswritten.
If eis of type string thenwrite (e: m) writes the characters of the string, preceded by blanksto
ensure atotal field width of m.
If eis of type boolean then either the word true or false is written, preceded by blanks to
ensure atotal field width of m.
If eisof typeinteger or cardinal then the decimal representation of the number e will be
written, preceded by blanks to ensure atotal width of m.
If eis of typereal then the decimal representation of the number e will be written, preceded
by blanks to ensure atotal width of m. If the parameter n is missing a floating point
representation consisting of a coefficient and a scale factor will be written. If n is present then
afixed-point representation with n digits after the decimal point is provided.

10.5.3.2 The writeln procedure
The form of thewriteln procedureis:

writeln (v1, ..., vn)

writeln has the same functionality aswrite except that after writing vn an end of line marker is written.

10.5.3.3 Default values of widths inwrite and writeln

The default field width for write and writeln procedure parameters depends on the type of the
parameter, the default widths are:

char default field width 1

string default field widthis 4

boolean default field width is 6

Zonnon Language Report: Draft v02 r02 28 Printed on 2004-11-01

integer default field width is 20
cardinal default field widthis 20
real default field width is 20

11 Program Units

A Zonnon program may be textually partitioned into units, each of which can be compiled separately.
It isalso possible to textually nest some of these units. The rules governing thisarein section Error!
Reference sour ce not found. .

11.1 The module

A module has adual nature, it declares a syntactic container for logically cohesive program
declarations and it simultaneously declares an object whose lifecycleis controlled by the system. So
the modul e provides the mechanism for the textual partitioning of a source program and also the
dynamic loading at execution time of a part of aprogram, in the form of an instantiated object.

Any number of dynamically created objects may have their lifecycles managed by a program,
however only asingle instance of each module’s object may be instantiated by the system at any given
time. For this reason the module is also ideal for implementing abstract data types.

Module = module [ModuleModifier] ModuleName [ImplementationClause]";"
[ImportDeclaration]
ModuleDeclarations
(BlockStatement | end) SimpleName.
ModuleModifier = "{" ident "}" // private or public.
ModuleDeclarations = { SimpleDeclaration | NestedUnit ";" }
{ ProcedureDeclaration | OperatorDeclaration }
{ ActivityDeclaration }.
NestedUnit = (Definition | Implementation | Object).

ImplementationClause = implements DefinitionName {"," DefinitionName }.

ImportDeclaration = import Import {"," Import } ";".

Import = ImportedName [as ident].

ImportedName = (ModuleName | DefinitionName | ImplementationName | NamespaceName |
ObjectName).

Each module has a unique name and constitutes atext that may be separately compiled as a unit.
Optionally amodule may implement one or more definitions. (See section 2). In this case the distinct
facets of the object are defined separately in definition units which provide an abstract interface. A
module may optionally import elements from one or more other implementations, that is, gain accessto
their scope and make possibl e the aggregation of their content. By using the asclauseit is also possible
to rename all entities as they are imported. This can be used to avoid name clashes and/or to simplify
long external names to promote program readability.

Exanple:

import System.Console as S;
é:WriteLine('HeIIo'); (* equivalent to System.Console.WriteLine('Hello") *)
A module may optionally contain
Other textual unitsi.e. definitions, implementationsand objects
Simple declarations of constants, types, variables, and procedures
Operator declarations, for defining user defined operators
Activity declarations, for defining activities within the module on instantiation

Examples:

module Small;
begin

write ("Hello World')
end Small.

module BodyMassIndex;
(* calculate body mass index *)
var height, weight, bmi: real;

Zonnon Language Report: Draft v02 r02 29 Printed on 2004-11-01

begin

write(‘weight in kg?); read(weight);
write(‘height in m? *); read(height);
bmi := weight / (height * height);
write(' body mass index is', bmi : 6: 2);
if bmi <19 then

write('too thin’)
elsif bmi <27 then

write('OK')
else

write('too fat')
end
end BodyMassIndex.

definition D; ...end D.
definition E; ...end E.

module M;
import D, E;
var a:object{D, E}; (* object is one that implements both D and E *)

end.i\'/I.
11.2 The object as a unit of program composition
Optionally an object may implement one or more definitions In this case the distinct facets of the
object are defined separately indefinition units which provide an abstract interface. Also an object may
import elements from a modul e or implementation; that is, gain accessto their scope. By using the as
clauseit isalso possibleto rename all entities as they are imported. This can be used to avoid name

clashes and/or to simplify long external namesto promote readability of the programming within the
object.

Note that an object importing a definition D to make use of the implementation D must explicitly
aggregate it by importing D, see sections11.3and 11.4.

11.2.1 Inheritance: refinement and aggregation

There are two kinds of inheritance supported in Zonnon: refinement and aggregation. Refinement is the
inheritance of an interface definition whilst aggregation is the inheritance (reuse) of (fragnents of) an
existing implementation. All object declarations that do not explicitly refine some other object are
deemed to refine object. Thus all objects (directly or indirectly) refine object. If an object B refines an
object A, then B issaid to be ‘derived from’ A.

11.2.2 Multiple Inheritance

Multiple inheritance is characterized by the possibility to refine from multiple definitions and/or to
aggregate from multiple implementations. In Zonnon there is no ambiguity associated with multiple
inheritance, due tothe use of qualified identifiersfor naming (see 5.1).

11.2.3 Polymorphism

Polymorphisminvolves the selection of the appropriate method to invoke at execution time, depending
on the type of the variable that it isto be acted upon. There are two concepts:

1) anobject of type Tisrequired here, and
2) anobject isrequired here that implements an interface definition D

Zonnon emphasi zes the second more general concept (2 above) and goes further by allowing the
specification of multiple definitions (so called ‘facets’ of the object’ s overall interface) and soin this
context polymorphism means ‘an object is required here that implementsD1 and D2 and ...".

11.3 The definition

A definition defines adistinct facet of an object in terms of an abstract interface comprising field
declarations and method signatures (but not method bodies). Definitions can form a network of related
types, not just a hierarchy. The dependencies between definitions may not be cyclic.

Zonnon Language Report: Draft v02 r02 30 Printed on 2004-11-01

Definition = definition [DefinitionModifier] DefinitionName [RefinementClause] ;"
[ImportDeclaration]
DefinitionDeclarations
end SimpleName.
DefinitionModifier = "{" ident "}" // private or public

RefinementClause = refines DefinitionName.

ImportDeclaration = import Import { ", Import } ";".

Import = ImportedName [as ident].

ImportedName = (ModuleName | ImplementationName | NamespaceName |
DefinitionName| ObjectName).

DefinitionDeclarations = { SimpleDeclaration } { { ProcedureHeading ";" } | ActivitySignature }.

A definition has a unique name and optionally refines another definition, presenting a new facet of an
object, possibly adding new fields and behavior and thus forming a specialized formof the original
definition.

It may also optionally import elements from one or moreimplementations, that is gain access to
their scope and make possible the literal aggregation of their content. By using the asclauseit is also
possible to rename all entities as they are imported. This can be used to avoid name clashes and/or to
simplify long external names to promote readability of the programming within the object. The
modifiers public and private can be used to declare the visibility of the contentsof a definition. If no
modifier is present then the default ispublic. The definition can contain a set of declarations of
constant, types and variables and al so method procedure headings (signatures), but not the bodies of
procedures.

Examples:

definition Graphical;
(* features of all graphical objects *)
var X, y: integer; (* object’s position *)

procedure MoveTo (newX, newY: integer);
(* post: (x = newX) & (y = newY) *)

procedure MoveBy (dx, dy: integer);

procedure Draw;
end Graphical.

definition Rectanglerefines Graphical;
(* features specific to rectangle objects *)
var width, height: integer;

procedure Area (): integer;
end Rectangle.

implementation Graphical,
(* see example in section 11.4 *)

end Graphical.

object {ref} Boximplements Rectangle;
procedure Area (): integer;
begin
return width * height
end Area;
end Box.

11.4 The implementation

An implementation defines an aggregate of field and method implementation fragments intended for re-
use when incorporated into a program via one or more object templates. Animplementation has a
unigue name unlessit has the same name as its corresponding definition. It may optionally import
elements from one or more other implementations, that is, gain accessto their scope and make possible
the aggregation of their content. By using the asclauseit is also possible to rename all entities as they
are imported. This can be used to avoid name clashes and/or to simplify long external names to
promote readability of the programming within the object. The modifierspublic and private can be
used to declare the visibility of the contents of an implementation. If no modifier is present then the
default ispublic.

Zonnon Language Report: Draft v02 r02 3 Printed on 2004-11-01

An object implementing adefinition is required to implement all of its methods unless the definition
has a corresponding implementation which isimported to the object.
Implementation = implementation [ImplementationModifier] ImplementationName ";"
[ImportDeclaration]
Declarations
(BlockStatement | end) SimpleName.
ImplementationModifier = "{" ident "}". //private or public
ImportDeclaration = import Import { "," Import } ";".
Import = ImportedName [as ident].
ImportedName = (ModuleNa me | ImplementationName | NamespaceName |
DefinitionName | ObjectName).

The implementation can contain a set of declarations of constants, types and variables and al so method
procedure headings and bodies. These bodies ultimately form the concrete implementations of the
methods of objects.

Examples:

implementation Graphical; (* an implementation of the definitionGraphical *)
(* X and Y are declared in the definition*)
procedure MoveTo (newX, newY: integer);
begin
X 1= newx;y := newY
end MoveTo;
procedure MoveBy (dx, dy: integer);
begin

X:=x+dxy:=y+dy
end MoveBy;

end Graphical.

12 Reflection

It is sometimes desirable to access information about the constructs and their attributes (e.g. modifiers)
of aZonnon source program. To make this possible the compiler can produce an XML definition of the
salient features of each separately compiled item of sourcetext. This can later be accessed by arun-
time program using the predefined procedure getAttribute. The construct parameter is the name of any
Zonnon entity, including program units, types, constants, variables, objects, procedures, parameters,
blocks and operators.

The attribute values may be accessed using two forms of getAttribute:

getAttribute(construct, var string);

or

string := getAttribute (construct);

Theinformation isreturned in asingle string, possibly containing several attribute values.

12.1 XML Schema

Thefollowing list defines the XML schema used to describe the information reflected from the
program:

12.1.1 Access rights

<access>public</access>

<access>private</access>

12.1.2 Objects

<object>ref</object>

<object>value</object>

Zonnon Language Report: Draft v02 r02 32 Printed on 2004-11-01

12.1.3 Procedure parameters (parameter passing mode):

<parameter>var</paramete r>

<parameter>value</parameter>

12.1.4 Procedure and Variable immutability:

<immutable>open</immutable>

<immutable>sealed</immutable>

12.1.5 Operator priority

<priority>3</priority>

12.1.6 Blocks and Procedure bodies

<behaviour>passive</behaviour> //neither locked nor concurrent
<behaviour>locked</behaviour>

<behaviour>concurrent</behaviour>

12.1.7 Type, variable and constant widths

<width>64</width>

12.1.8 Enumeration cardinality

<ordinal>7</ordinal>

12.2 Example: program reflection and information

definition d;
procedure pl (var x: integer {32});
procedure { sealed } p2;
var v: integer {64},
type T =(one, two, three);
end d.

object o implements d;
procedure pl (var x: integer {32}) implements d.p1;
var attrsl, attrs2, attrs3, attrs4, attrs5, attrs6: string;
begin {locked }
attrs1 := getAttribute(d);
attrs2 := getAttribute(d.v);
attrs3 := getAttribute(pl.x);
attrs4 := getAttribute(d.T);
attrs5 := getAttribute(pl);
attrs6 := getAttribute(d.p2);
end pl;
begin
end o.

When this program runs it produces reveals its form via the reflection information as follows:

attrs1(d) contains:
"<attributes> <access>public</access> </attributes>"

attrs2(d.v) contains:
"<attributes> <access>public</access> <implement>open</implement>
<width>64</width> </attributes>"

attrs3(p1.x) contains:
"<attributes> <parameter>var</parameter> <width>32</width> </attributes>"

attrs4(d.T) contains:

"<attributes> <access>public</access> <width>32</width> <ordinal>3</ordinal>
</attributes>"

attrs5(p1) contains:
"<attributes> <access>public</access> <implement>sealed</implement>
<behaviour>locked</behaviour> </attributes>"

Zonnon Language Report: Draft v02 r02 33 Printed on 2004-11-01

attrs6(d.p2) contains:
"<attributes> <access>public</access> <implement>sealed</implement>
<behaviour>passive</behaviour> </attributes>"

13 Definition of Terminology

13.1 Numeric types

The numeric types are:
Integer types integer or integer{ width}
Cardina types cardinal or cardinal{ width}
Real types real or real{ width}

13.2 Same types

Two variablesa and b with typesTa and Tb are of the same type if
Ta and Tb are both denoted by the same typeidentifier, or
Taisdeclared to equal Th in atype declaration of theform Ta = Tb, or

a and b appear in the sameidentifier list in avariable, object field, or formal parameter
declaration and are not open arrays.

13.3 Equal types

Two types Ta and Tb are equal if
Ta and Tb are the same type, or
Ta and Tb are open array typeswith equal element types, or
Ta and Tb are procedure types whose formal parameter lists match.

13.4 Assignment compatible

An expression e of type Teis assignment compatible with avariable v of type Tv if one of the
following conditions hold:
- Teand Tvarethe sametype;

Within each of the type families

integer, cardinal, real, set, char

an expression of type Te may be assigned to avariable v whose type Tvis large enough

(defined by itswidth) to hold the set of values of type Te;

Tvisaprocedure type andeisnil;

Tvisaprocedure type and e is the name of a procedure whose formal parameters match

the signature of Tv

13.5 Array compatible

An actual parameter aof type Ta is array compatible with aformal parameter f of type Tf if
Tf and Ta are the same type, or
Tfisan open array, Taisany array, and their element types are array compatible

13.6 Expression compatible and Operator Overloading

For a given operator, the types of its operands are expression compatible if they conform to the
following table (which shows also the result type of the expression), for example: opl > op2. Thetable
also implicitly defines the sets of operand combinations that are supported for operator overloading.

Operator First operand (opl) Second operand (op2) Result type

+-* integer{m} integer{n} max of integer{m} and integer{n}

+-* cardinal{m} cardinal{n} max of cardinal{m} and
cardinal{n}

+-* rea{m} real{n} max of real{m} and real{n}

Zonnon Language Report: Draft v02 r02 A Printed on 2004-11-01

/ rea{m} real{n} max of real{m} and real{n}

pre: op2 #0

+-* set{m} set{n} max of set{m} and set{n}

divmod integer{m} integer{n} max of integer{m} and integer{n}
pre: op2 # 0

or &~ boolean boolean boolean

—#H<<=>>= integer{m} integer{n} boolean

=#<<=>>= cardinal{m} cardinal{n} boolean

=H#<<=>>= real{m} real{n} boolean

=H<<=>>= enumeration T enumeration T boolean

sH#H<<=>>= char char boolean

—#<<=>>= character array, character array boolean

=H<<=>>= string string boolean

=# boolean boolean boolean

=# set set boolean

=# procedure type T procedure type T boolean

=# nil nil boolean

in integer set boolean

implements object definition boolean

is object object type boolean

13.7 Matching formal parameter lists

Two formal parameter lists match if
they have the same number of parameters, and
they have either the same function result type or none, and
parameters at corresponding positions have equal types, and
parameters at corresponding positions are both either value or variable parameters.

14 Syntax

/I Zonnon Syntax in EBNF
/I Version of 11th March 2004

/I 1. Program and program units
CompilationUnit = { ProgramUnit "." }.
ProgramUnit = (Module | Definition | Implementation | Object).

/1 2. Modules
Module = module [ModuleModifier] ModuleName [ImplementationClause] *;"
[ImportDeclaration]
ModuleDeclarations
(BlockStatement | end) SimpleName.
ModuleModifier = "{" ident "}" // private or public (the default is private).
ModuleDeclarations = { SimpleDeclaration | NestedUnit ";" }
{ ProcedureDeclaration | OperatorDeclaration }
{ ActivityDeclaration }.
NestedUnit = (Definition | Implementation | Object).
ImplementationClause = implements DefinitionName {"," DefinitionName }.
ImportDeclaration = import Import {"," Import } ";".
Import = ImportedName [as ident].
ImportedName = (ModuleName | DefinitionName | ImplementationName | NamespaceName |
ObjectName).

/1 3. Definitions
Definition = definition [DefinitionModifier] DefinitionName [RefinementClause] ;"
[ImportDeclaration]
DefinitionDeclarations
end SimpleName.
DefinitionModifier = "{" ident "}" // private or public; default is public
RefinementClause = refines DefinitionName.

Zonnon Language Report: Draft v02 r02 35 Printed on 2004-11-01

DefinitionDeclarations = { SimpleDeclaration } { { ProcedureHeading “;" }| ActivitySpecification }.
ActivitySpecfication =
activity "{" ProtocolEBNF "}" ActivityName "=" EnumType ";".
ProtocolEBNF = Specification of the protocol in EBNF based on the syntax alphabet.
/I see section 10.3

/I 4. Implementations
Implementation = implementation [ImplementationModifier] ImplementationName ";"
[ImportDeclaration]
Declarations
(BlockStatement | end) SimpleName.
ImplementationModifier = "{" ident "}". // private or public; default is public

/I'5. Objects
Object = object [ObjModifier] ObjectName [FormalParameters] [ImplementationClause] ;"
[ImportDeclaration]
Declarations
{ ActivityDeclaration }
(BlockStatement | end) SimpleName.
ObjModifier = "{" ident "}". /I value or ref; value by default
/I private or public; private by default
ActivityDeclaration = activity ActivityName [ImplementationClause]";"
Declarations
(BlockStatement | end SimpleName).

/1 6. Declarations
Declarations = { SimpleDeclaration } { ProcedureDeclaration }.
SimpleDeclaration = (const [DeclModifier] { ConstantDeclaration ";" }
|type [DeclModifier] { TypeDeclaration ;" }
| var [DeclModifier] { VariableDeclaration ;" }

DecIModifier = "{" ident "}". // public or private or immutable
ConstantDeclaration = ident "=" ConstExpression.
ConstExpression = Expression.

TypeDeclaration = ident "=" Type.

VariableDeclaration = IdentList ":" Type.

/I 7. Types

Type = (TypeName [Width] | EnumType | Array Type | ProcedureType | InterfaceType).
Width = "{" ConstExpression "}".

ArrayType = array Length {"," Length } of Type.

Length = (ConstExpression | "*").

EnumType ="(" IdentList ")".

ProcedureType = procedure [ProcedureTypeFormals].

ProcedureTypeFormals ="(" [PTFSection { ";" PTFSection }] ")" [":" FormalType].
PTFSection = [var] FormalType {"," FormalType }.

FormalType = { array "*" of } (TypeName | InterfaceType).

InterfaceType = object [Postulatedinterface].

Postulatedinterface = "{" DefinitonName {"," DefinitonName } "}".

/I 8. Procedures & operators

ProcedureDeclaration = ProcedureHeading [ImplementationClause]";" [ProcedureBody ";"].
ProcedureHeading = procedure [ProcModifiers] ProcedureName [FormalParameters].
ProcModifiers ="{" ident { "," ident } "}". // private, public, sealed

ProcedureBody = Declarations BlockStatement SimpleName.

FormalParameters = "(" [FPSection { ";" FPSection }])" [":" FormalType].

FPSection =[var] ident {"," ident } ":" FormalType.

OperatorDeclaration = operator [ProcModifiers] OpSymbol [FormalParameters] ;" OperatorBody ";".
OperatorBody = Declarations BlockStatement OpSymbol.

OpSymbol = string. // A 1,2-character string; the set of possible symbols is restricted

/' 9. Statements
StatementSequence = Statement { ;" Statement }.

Zonnon Language Report: Draft v02 r02 36 Printed on 2004-11-01

Statement = [Assignment
| ProcedureCall
| IfStatement
| CaseStatement
| WhileStatement
| RepeatStatement
| LoopStatement
| ForStatement
| await Expression
| exit
| return [Expression]
| BlockStatement
|launch Statement
| Send
| BlockingReceive
| NonBlockingReceive
]
Assignment = Designator ":=" Expression.
ProcedureCall = Designator.
IfStatement = if Expression then StatementSequence
{ elsif Expression then StatementSequence }
[else StatementSequence]
end.
CaseStatement = case Expression of
Case {"|" Case }
[else StatementSequence]
end.
Case =[CaselLabel { "," CaseLabel } ":" StatementSequence].
Caselabel = ConstExpression [".." ConstExpression].
WhileStatement = while Expressiondo StatementSequence end.
RepeatStatement = repeat StatementSequence until Expression.
LoopStatement = loop StatementSequence end.
ForStatement = for ident ":=" Expression to Expression [by ConstExpression]
do StatementSequence end.
BlockStatement = begin [BlockMaodifiers]
StatementSequence
{ ExceptionHandler }
[CommonExceptionHandler]
end.
BlockModifiers ="{" ident {"," ident } "}". // locked, concurrent
ExceptionHandler = on ExceptionName {"," ExceptionName } do StatementSequence.
CommonExceptionHandler = on exception do StatementSequence.
Send = send expression ["=>" activity].
BlockingReceive = receive [activity "=>"] variable.
NonBlockingReceive = accept [activity "=>"] variable.

/1 10. Expressions
Expression = SimpleExpression
[("="]"#"|"<"["<="|">"|">="] in) SimpleExpression]
| Designator implements DefinitionName
| Designator is TypeName.

SimpleExpression = ["+"|""] Term { ("+"| ™| or) Term }.
Term = Factor { (™" |"/" | div| mod | "&") Factor }.
Factor = number

| CharConstant

| string

[nil

| Set

| Designator

| new TypeName ["(" ActualParameters ")"]
| new ActivitylnstanceName
| "(" Expression ")"

| "~" Factor.
Set ="{" [SetElement { "," SetElement }] "}".
SetElement = Expression [".." Expression].

Designator = Instance
| Designator "{" Type “}" // Conversion

| Designator " /I Dereference

| Designator "[* Expression {"," Expression }"]" // Array element
| Designator "(" [ActualParameters] ")" /I Function call

| Designator "." MemberName /l Member selector

Instance = (self | InstanceName | DefinitionName "“(" InstanceName ")").
ActualParameters = Actual { "," Actual }.
Actual = Expression ["{" [var] FormalType "}"]. /I Argument with type signature

Zonnon Language Report: Draft v02 r02 37 Printed on 2004-11-01

/l 11. Constants

number = (whole | real) ["{" Width "}"].

whole = digit {digit} | digit {hexDigit} "H".

real = digit { digit } "." { digit } [ScaleFactor].

ScaleFactor = "E" ['+" | ™"] digit { digit }.

HexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".

digit ="0" | "1"|"2" | "3" | "4" | "5" | "6" | "7"] "8" | "9".

CharConstant = " character " | """ character " | digit { HexDigit } "X".
string =" { character } "" | " { character }
character = letter | digit | Other.

Other = // Any character from the alphabet except those that are in use...

/1 12. Identifiers & names

ident = (letter | "_") { letter | digit | "_"}.
letter = "A" | ... | "Z" | "a" | ... | "z" | /] any other "culturally-defined" letter
IdentList = ident { "," ident }.

Qualldent = {ident "." } ident.
DefinitionName = Qualldent.
ModuleName = Qualldent.
NamespaceName = Qualldent.
ImplementationName = Qualldent.
ObjectName = Qualldent.

TypeName = Qualldent.
ExceptionName = Qualldent.
InstanceName = Qualldent.
ActivitylnstanceName = Qualldent.
ProcedureName = ident.

ActivityName = ident.

MemberName = (ident | OpSymbol).
SimpleNare = ident.

15 References
Thereferences are ordered al phabetically:

[AOS]
An Active Object System Design and Multiprocessor |mplementation
Dr Pieter Muller

PhD Thesis 14755 ETH Zurich

[CLI] Standard ECMA-335:
Common Language Infrastructure (CL1), see section on Common Type System (CTYS)
http://www.ecma.ch/ecmal/STAND/ecma-355.htm

[Compiler]
Zonnon Compiler Implementation Details, ETH Zurich, 2003
Thefirst implementation of the compiler isfor the Microsoft .NET Interoperability Platform

[Mesa]

Mesa Language Manua Version 5.0

JMitchell, W Maybury, R Sweet

CSL-79-3 April 1979

XEROX Palo Alto Research Centre, California, USA

[Modula-2]

Programming in Modula-2

N Wirth

Springer Verlag 1982, 1983, 1985

ISBN 0-540-15078-1, ISBN 0-387-15078-1

[Oberon]

Project Oberon: The Design of an Operating System and Compiler
N. Wirth and J. Gutknecht

ACM Press 1992, ISBN 0-201-54428-8

Zonnon Language Report: Draft v02 r02 38 Printed on 2004-11-01

[Pascal]

PASCAL — User Manual and Report, 1SO Pascal Standard
Kathleen Jensen and Niklaus Wirth

Springer Verlag 1974, 1985, 1991

ISBN 0-387-97649-3, ISBN 0-540-97649-3

[Zonnon]

Zonnon for .NET: A Language and Compiler Experiment
J. Gutknecht and E. Zueff

LNCS 2789, Springer Verlag 2003, ISBN 3-540-40796-0

Zonnon Language Report: Draft v02 r02 39

Printed on 2004-11-01

