
The Xerox Star:
A Retrospective

Jeff Johnson and Teresa L. Roberts, US West Advanced Technologies

William Verplank, IDTwo

David C. Smith, Cognition, Inc.

Charles H. Irby and Marian Beard, Metaphor Computer Systems

Kevin Mackey, Xerox

x crox introduced the 8010 “Star”
Information System in April of
1Y8 I. That introductton was an

important event in the history of personal
computing because it changed notions of
how interacttve systems should be de-
signed. Several of Star’s designers. some
of us responsible for the origmal dectpn
and others for recent improvements, de-
scribe in this article where Star came from.
what is distinctive about it. and how the
original design has changed. In doing so.
we hope to correct some misconception\
about Star that we have seen in the trade
press and to relate some of what we have
learned from designing it.

For brevity, we use the name “Star”
here to refer to both Star and its successor,
Viewpoint. “ViewPoint” refers exclu-
sively to the current product.

What Star is

Star was designed as an office automa-
tion system. The idea was that profession-
als in a business or organization would
have workstations on their desks and
would use them to produce, retrieve, dis-
tribute, and organize documentation,
presentations, memos, and reports. All of
the workstations in an organization would

The Xerox Star has
significantly affected

the computer industry.
In this retrospective,

several of Star’s
designers describe its
important features,
antecedents, design
and development,

evolution, and some
lessons learned.

be connected via Ethernet and vvould share
access to file servers. printers. etc.

Star’s designers assumed that the target
users were interested in getting their work
done and not at all interested in computers.
Therefore. an important design goal was to
make the “computer” as invisible to users
as possible. The applications included in

September 1989 0018.91h2/89/0900-(~1 l$Ol.OO 0 1989 IEEE

the system were those that office profes-
sionals would supposedly need: docu-
ments, business graphics. tables. personal
databases, and electronic mail. The set
was fixed. always loaded, and automati-
cally associated with data files. sliminat-
ing the need to obtain. install. and start the
right application for a given task or data
ftle. Users could focus on their work.
oblivtous to concepts like softvvare. oper-
ating systems. applications. and programs.

Another important assumption was that
Star’s users would be casual. occasional
users rather than people who spent most of
their time at the machine. This assumption
led to the goal of having Star be easy to
learn and remember.

When Star was introduced in 1981. its
bitmapped screen. windows. mouse-
driven interface, and icons were readily
apparent features that clearly distin-
guished it from other computers. Soon.
however, others adopted these features.
Today, windows. mice, and icons are more
common. However. Star’s clean, consis-
tent user interface has much more to do
with its details than with its gross features.
We list here the features that we think make
Star what it is, categorized according to
their level in the system architecture: ma-
chine and network, window and file man-
ager, user interface. and document editor.

11

Machine and network level. Impor-
tant aspects of Star can be found in the low-
est levels of its architecture: the machine
and the network of which it is a part.

Distributed, personal computing.
Though currently available in a stand-
alone configuration, Star was designed
primarily to operate in a distributed
computing environment. This approach
combines the advantages and avoids the
disadvantages of the two other primary ap-
proaches to interactive computing: time-
shared systems and stand-alone personal
computers.

Time-shared systems, dominant through
tbe sixties and seventies, allow sharing of
expensive resources like printers and
large data stores among many users and
help assure the consistency of data that
many must use. Timesharing has the disad-
vantages that all users depend upon the
continued functioning of the central com-
puter and that system response degrades as
the number of users increases.

Persona1 computers, which have re-
placed timesharing as the primary mode of
interactive computing, have the advan-
tage, as one Xerox researcher put it, “of
not being faster at night.” Also, a collec-
tion of personal computers is more reliable
than are terminals connected to a central-
ized computer: system problems are less
apt to cause a total stoppage of work. The
disadvantages of PCs, of course, are the
converse of the advantages of timeshar-
ing. Companies that use stand-alone PCs
usually see a proliferation of printers, in-
consistent databases, and nonexchange-
able data.

The solution, pioneered by researchers
at Xerox (see “History of Star develop-
ment” below) and embodied in Star, is to
connect personal workstations with a lo-
cal area network and to attach shared re-
sources (file servers, database servers,
printers) to that same network.

Mouse. An interactive computer system
must provide a way for users to indicate
which operations they want and what data
they want those operations to be per-
formed on. Users of early interactive sys-
tems specified operations and operands
via commands and data descriptors (such
as text line numbers). As video display ter-
minals became common, it became clear
that it was often better for users to specify
operands - and sometimes operations -
by pointing to them on the screen. It also
became clear that graphic applications
should not be controlled solely with a key-

board. In tbe sixties and seventies, people
invented many different pointing devices:
the light pen, the trackball, the joystick,
cursor keys, tbe digitizing tablet, the touch
screen, and the mouse.

Like other pointing devices, the mouse
allows easy selection of objects and trig-
gering of sensitive areas on the screen. Tbe
mouse differs from touch screens, light
pens, and digitizing pads in that it is a rela-
tive pointing device: the movement of the
pointer on the screen depends upon mouse
movement rather than position. Unlike
light pens, joysticks, and digitizing pads,
the mouse (and the corresponding pointer
on the screen) stays put when the user lets
go of it.

To achieve satisfactory mouse-track-
ing performance, Star handles the mouse
at a very low level. In some workstations,
the window system handles mouse track-
ing, with the result that the mouse pointer
often jerks around the screen and may even
freeze for seconds at a time, depending
upon what else the system is doing. The
mouse is a hand-eye coordination device,
so if the pointer lags, users just keep mov-
ing the mouse. When the system catches
up, the mouse moves beyond the user’s
target. We at Xerox considered this unac-
ceptable.

Star uses a two-button mouse, in con-
trast with the one-button mouse used by
Apple and the three-button mouse used by
most other vendors. Though predecessors
of Star developed at Xerox Palo Alto Re-
search Center (see “History of Star devel-
opment” below) used a three-button
mouse, Star’s designers wanted to reduce
tbe number of buttons to alleviate confu-
sion over which button did what. Wby stop
at two buttons instead qf reducing the
number to one, as Apple did? Because
studies of users editing text and other ma-
terial showed that a one-button mouse
eliminated button-confusion errors only
at the cost of increasing selection errors to
unacceptable levels.

Bitmapped display. Until recently,
most video display terminals were charac-
ter-mapped. Such displays enable vast
savings in display memory, which, when
memory was expensive, made terminals
more affordable.

Some windowing systems allow win-
dows to overlap each other. Other systems
don’t; the system adjusts the size and posi-
tion of windows as they are opened and
closed. Star’s windowing system could
overlap windows and often did (for ex-
ample, property sheets appeared in win-
dows overlapping application windows).
However, early testing revealed that users
spent a lot of time adjusting windows, usu-
ally so they did not overlap. Because of
this, and because Star’s 17-inch screen
reduced the need for overlapping win-
dows, the designers decided to constrain
application windows to not overlap. How-
ever, some situations benefit from over-
lapping application windows. This, added
to a subsequent reduction in the standard
screen size to 15 inches (with a 19-inch
screen optional), resulted in optional con-
straints for Viewpoint, Star’s successor,
with the default setting allowing applica-
tion windows to overlap one another.

In the seventies, researchers at Xerox
PARC decided that memory would get
cheaper eventually and that a bitmapped
screen was worth the cost anyway. They
thus developed the Alto, which had a
screen 8.5 inches wide and 10.5 inches tall
and an instruction set specially designed

Integrated applications. “Integrated”
has become a buzzword used to describe
many things. Here, it means that text,
graphics, tables, and mathematical for-
mulas are all edited inside documents. In
many other systems, different types of
content are edited in separate application

for manipulating display memory.
Like the Alto, Star’s display has a reso-

lution of 72 pixels per inch. The number 72
was chosen for two reasons. First, there are
72 printer’s points per inch, so 72 pixels
per inch allows for a smooth interface with
the world of typesetting and typography.
Second, 72 pixels per inch is a high enough
resolution for on-screen legibility of a
wide range of graphics and character sizes
(down to about eight points - see Figure
l), but not so high as to cause an onerous
memory burden, which a screen that
matched the 300 dots-per-inch printer
resolution would have. Unlike many PC
graphic displays, the pixel size and density
are the same horizontally and vertically,
which simplifies the display software and
improves image quality.

Window and file manager level. Just
above Star’s operating system (not dis-
cussed here) are facilities upon which its
distinctive user interface rests.

Windows. Systems now commonly al-
low several programs to display informa-
tion simultaneously in separate areas of
the screen, rather than each taking up the
entire display. Star was the first commer-
cial system to provide this capability.

12 COMPUTER

Figure 1. Viewpoint screen image. Star’s bitmapped display, once unique in the marketplace, is non much more common.
Such a display permits WYSIWYG editing, display of proportionally spaced fonts, integrated text and graphics, and
graphical user interfaces.

windowa and then cut and paated together.
For example, a MacDraw drawing put into
a Microsoft Word or Aldus Pagemaker
document can no longer be edited; rather,
the original must be re-edited with
MacDraw and then substituted for the old
drawing in the document.

Not even Star is fully integrated in the
sense used here. For example, though the
original structured graphics editor. the
new one (see “History of Star develop-
ment” below). and the table and formula
editors all operate inside text files, spread-
sheets and freehand drawings are cur-
rently edited in separate application win-
dows and transferred into documents,
where they are no longer fully editable.

User-interface level. Star’s user inter-
face is its most outstanding feature. In this
section we discuss important aspects of
the interface in detail.

L>csXrol~ r,~~rt~/~llor-. Star. unlike all con-
ventional 55 sterns and many 1% Indow- and
mouse-based ones. uvx an analogy with
real office\ to make the system easy to
learn. This analogy is called “the Deshtop
metaphor.” To quote from an early article
about Star:

Even user‘\ initial view of Star 1s the Deal-
top. which rc\embles the top of im office de\k.
together M lth surrounding furnlturr and
equipment. It repre\ent\ ;1 uorhmg en\,ron-
ment, where current protect, and accesrtble
resource\ re\~de. On the xreen are dl\pla)ed
picture\ of famtltar office ohJeCt5. such ;i\
documents. folder\. file drawers. In-haslets.
and out-haArts. These object\ ilre displayed
as small pictures. or icons.

The Desktop i\ the prtncipal Star technque
for realizing the phy\icnl offlce metaphor
The tcon\ on it are vlvble. concrete emhodi-
ments of the correspondmg phq\ical oh,jects.
Star users are encouraged to think of the ob-
jects on the Desktop in physical terms. YOU
can move the icon\ around to arrange your

Having uindow s and a mouse doe\ not
make a system an embodtment of the Desh-
top metaphor. In a Desktop metaphor s) \-
tcm, users deal mainly with data file\.
oblivious to the existence of program”.
They do not “invoke a text editor.” the!
“open a document.” The system knows
the type of each file and notifies the relc-
vant application program when one is
opened.

Most systems, including M indowed
ones. use a Tools metaphor. in which users
deal mainly with applications as tools.
Users start one or more application pro-
grams (such as a word processor or spread-
sheet), then specify one or more data files
to edit with each. Such systems do not ex-

September 1989 I3

plicitly associate applications with data
tiles. Users bear the burden of doing that -
and of remembering not to try to edit a
spreadsheet file with the text editor or vice
versa. User convention distinguishes dif-
ferent kinds of files, usually with filename
extensions (such as memo.txt). Star re-
lieves users of the need to keep track of
which data file goes with which applica-
tion.

SunView is an example of a window
system based upon the Tools metaphor
rather than the Desktop metaphor. Its users
see a collection of application program
windows, each used to edit certain tiles.
Smalltalk-80, Cedar, and various Lisp
environments also use the Tools metaphor
rather than the Desktop metaphor.

This is not to say that the Desktop meta-
phor is superior to the Tools metaphor. The
Desktop metaphor targets office automa-
tion and publishing. It might not suit other
applications (such as software develop-
ment). However, we could argue that ori-
enting users toward their data rather than
toward application programs and employ-
ing analogies with the physical world are
useful techniques in any domain.

The disadvantage of assigning data files

to applications is that users sometimes
want to operate on a file with a program
other than its “assigned” application.
Such cases must be handled in Star in an ad
hoc way, whereas systems like Unix allow
you to run almost any file through a wide
variety of programs. Star’s designers feel
that, for its audience, the advantages of
allowing users to forget about programs
outweighs this disadvantage.

Generic commands. One way to sim-
plify a computer system is to reduce the
number of commands. Star achieves sim-
plicity without sacrificing functionality
by having a small set of generic commands
apply- to all types of data: Move, Copy,
Open, Delete, Show Properties, and Same
(Copy Properties). Dedicated function
keys on Star’s keyboard invoke these
commands. Each type of data object inter-
prets a generic command in a way appro-
priate for it.

Such an approach avoids the prolifera-
tion of object-specific commands and/or
command modifiers found in most sys-
tems, such as Delete Character, Delete
Word, Delete Line, Delete Paragraph, and
Delete File. Command modifiers are nec-

essary in systems in which selection is
only approximate. Consider the many
systems in which the object of a command
is specified by a combination of the cursor
location and the command modifier. For
example, Delete Word means “delete the
word that the cursor is on.”

Modifiers are unnecessary in Star be-
cause exact selection of the objects of
commands is easy. In many systems, the
large number of object-specific com-
mands is made even more confusing by
using single-word synonyms instead of
command modifiers for similar opera-
tions on different objects. For example,
depending upon whether the object of the
command is a file or text, the command
used might be Remove or Delete, Dupli-
cate or Copy, and Find or Search, respec-
tively.

Careful choice of the generic com-
mands can further reduce the number of
commands required. For example, you
might think it necessary to have a generic
command Print for printing various
things. Having Print apply to all data ob-
jects would avoid the trap that some sys-
tems fall into of having separate com-

Direct manipulation
Jeff Johnson and Teresa L. Roberts

Stars Desktop metaphor is based upon the more general
principle of “direct manipulation.“l~ What, exactly, is direct
manipulation? Consider the following passage from a descrip-
tion of Apples Macintosh:

Imagina driving a car that has no steering wheel, scceterator,
brake pedal, turn signal mr, or gear selector. In place of all the
familii manual controls, you hava only a fypwrifw kayboa&

Anytime you want to turn a comer, change lanes, stow down,
speedup,honkyourhom,orbadcup,youhevetotypeacommend
saqwnca on the keyboard. lJrMtwat& the car can’t undemtand
Englicrhsen~.Insteed,youmuethoklCbwnaspedalkeywith
onafi~andlypainaomelettefaandnumbwa,auchaa
WCTLAS5.” whkzh means. “slow to M, turn left, and aocelarata
to $5.”

NodoubtyoucouldlaamtodfiveauchacarifyouhadauffWnf
motivstionanddeterminsUon.Butwhyttother,whsnsomanycars
use fern&r contmfs? Most peoole wouldn”t.3

Actually, It isn’t famlllarfty that makes real cars easier to
drive than the hypothegcal “computer car” would be - cars
are certainly not familiar to those who are just learning to drive
them. What makes real cars easier to drive is the dtrecmess of
their controls. Real carshave distfnct interfaces to tha spaed
control (the accelerator pedal), the dtrec6on control (the steer-
ing wheel), the gears (the gearshi handle), the radio (several
knobs and buttons), etc. Each interface is speciaffy d&gned
for controlling its respective fun&on. In contrast, tha hypo-

thetia “computer-car” has only one control: a keyboard.
Direct manipulation requires that distinct functions be in-

voked and controlled in spatially dlsttnct locations, in ways that
are speckic and appropriate for the particular function being
controlled. Data objects should be selected and operated on
by simulated physical contact rather than by abstract verbal
reference: “That one” rather than “The one in row 6.” Continu-
ous functkms (such as screen brightness and color saturation)
shouM bs controlled via continuous controls such as sltders,
knobs, and dials. Discrete functkms (such as character font
family) sh~td be ccntroiled via discrete means such as com-
mands, muMposit& &t&es, or menus. In effect, a dii
manipulation system has a dfrent input channel for every
funckontheusercanhaveftperform.

Conventional interfaces are indirect in that there is a single,
general interface to all func6onafky (such as a keyboard and
command language or a menu). In other words, there is only
one input channel for atl kinds of input; different kinds of input
are distinguished linguistk?ally, rather than spatially.

Having a different interface to each functkm may seem to
contradict the goal of having a con&tent interface, but in fact
does not Slmitar functions should fndeed have sfmflar user in-
terfaces across contexts. Mrect manipulation requires, how-
aver, that dHerent functions shouM have distinct interfaces,
just as a car has distfnct interfaces to its various functions.

Directness versus indirectness ls not a simpfe dichotomy:
we can speak of degrees of directness. Consider a graphics
ad&or for creating itlustrations. In the foflwving sequence of in-
twfacee, each conteine all of the indir&on of the pmvtous
oneandaddsanewlevel:

14 COMPUTER

sheets. illustration\. directories. etc., but
it ih nonetheless unnccej\ary. In Star. u\-
ers simply Cop! to ;t printer icon whateve
they hant to print. Similarly. the Movr
command is used to invoke Send Mail b>
moving ;I document to the out-basket.

Of’ course. not everything cm he done

via generic commands. Some operations
are object-specific. For example, a word
might USC italics. but italics are meaning-
les\ for a triangle. In Star. object-specific
operations are provided via selection-
dependent “soft” function keys and via
menus attached to application windou\.

nil-lJ(,t nlurli/llrlurroll utfd ,~rtr/‘llic~ul
I~.SPI’ i,ltofi~c,c~. Traditional computer \yh-
terns require users to remember and type a
great deal ju\t to control the system. This
Impedes learning and retention. espe-
cially by casual users. Star‘s deigner\
favored an approach emphasiring rccog-
nition over recall. seeing and pointing
over remembering and typing. This sug-
gested using menus rather than com-
mands. However. the designers wanted to
go beyond a conventional menu-based
approach. They wanted users to feel that
they are manipulating data directly. rather

than iz\uinp commanda to the \\ stem to do 11,~ happens “behind the user’s back.”
it. Star’\ dc\iyners also wanted lo ercploit You needn’t fiddle uith the system to un-
the tremendou\ communication po\\ihili- drr\tand what‘s going on: you can under-
ties of the display. The! uanted to mo\e stand by inspection.
away from strictly verbal communica- Onr of Star‘s designer\ wrote
tion. Therefore. they based the system
heavily upon principle\ that are now When r\cr\thmp ,n u computer \\\tem I\

hnown as direct manipulation and graphi- \~\lblc on the \cri‘en. thr dl\pln> hecomr\

~31 control.
reallt>, Otqrct\ and acttons can he undrr-

‘
Star user\ control the system h) manipu-

stood purely in term\ ot their ett’ect\ upon the
d~\pla\, Thl\ va\tl\ \mlpl~f~e\ under\tand-

. lating fraphical elements on the screen. ,ns and reduce\ learmn~ time.-
elements that represent the state of the 5~4
tern and data created by user\. The system An example of this philosophy IS the fact
does not distlnfuish between input and that. unlike many v,indowbn\ed corn
output. Anything displayed (output) b) puter system\ (e\en some developed at
the system can bc pointed to and acted upon Xerox). Star has no hidden menus - all
b) the u\er (input). When Star display\ a available menus arc marked uith menu
directory. it (unlike MS-DOS and Unix) i\ buttons.
not displaying a list ofthe name\ ofthe files For a more detailed explanation of di-
in the directory. it is displaying the filej rc‘ct manipulation. see the \idebar.
thcmselvc\ so that the user can manrpulate
them. User\ of this type of system have the
feeling that they are operating upon the
data directly. rather than through an apent

Computer user5 often have di fficultl
managin_e their files. Before Star existed,

-like fetching a book from a library shelf ~1 secretary at Xerox complamed that she
yourself rather than asking someone to do couldn’t keep trach of the files on her disk.
It for you. An inspection of her system revealed file,

‘4 relntcd principle is that the grate of the narned~memo. memo 1, memo07 1379. let-
system always shous in the display. Noth- ter. etc. Naming thing\ to keep track of

(1) The most direct interface for moving a circle would have
the user point directly at the screen and pull the circle to its new
location.

(2) Introducing a mouse, bitpad, or joystick adds one level of
indirection: moving the mouse, bitpad stylus, or joystick on the
desk moves the pointer on the screen. Some users have diff-
culty with this indirection.

(3) Arrow keys introduce another level - and another kind -
of indirection: the keystroke movements required to move the
screen pointer, and hence the circle, do not resemble the de-
sired movement of the circle.

(4) Typing a command to move the circle is still more indirect
Though typing a command involves movements (keystrokes),
we are inclined to thmk of the movements as incidental; they
could just as well be speech. Thus, it is no longer a matter of
movement - similar or not - in one place corresponding to
movement in another place; rather, it is the syntax and seman-
tics of the command that determine what happens,

Differences in directness can be very subtle. Contrast the
following two methods of changing the size of a window on the
display:

(1) Grabbing onto a corner of the window and stretching the
window to the desired size.

(2) Clicking on the desired window, choosing Resize from a
command pull-down menu, then pointing to where the win-
dow’s new border is to be moved.

It is sometimes said that mouse-driven user interfaces are
direct while keyboard user interfaces are indirect. Note, how-
ever, that both methods 1 and 2 above use a mouse, yet

method 2 is less direct than method 1.
The above examples involve an illustration tool and a win-

dow manager. Such apphcations are actually in a special cate-
gory with respect to direct manipulation, because the images
on the screen are what the application is intended to manipu-
late. The purpose of many applications (such as databases,
command and control, and file management) is to allow users
to manipulate informatlon that is only represented on the
screen in some way (for example, pictorially or textually). Such
applications therefore have one inherent level of indirection.

Systems having direct-manipulation user interfaces encour-
age users to think of them as tools rather than as assistants,
agents, or coworkers. Natural-language user interfaces,
which are inherently indirect, encourage the reverse. As direct-
manipulation interfaces become more prevalent and as pro-
gress is made In natural-language understanding and genera-
tion, it will be interesting to see which way users prefer to think
about their computers.

References

1. E. HutchIns, J. Hollan. and D.A Norman, “Direct Manlpulatlon
interfaces,” In User-centered System Desjgn, D.A Norman and S
Draper, eds.. Erlbaum Associates, H&dale, New Jersey, 1986.
pp. 67-124.

2. B. Shnelderman, “Direct Manipulation: A Step Beyond Program-
mung Languages,” Computer, Vol 16, No. 8, Aug 1983, pp. 57-68.

3. L. Poole, “A Tour of the Mac Desktop,” MacWorld, Vol 1, No. 1,
1984, pp. 16-21.

September 1989 I5

them is bothersome enough for program-
mers, but completely unnatural for most
people.

Star alleviates this problem partly by
representing data files with pictures of
office objects called icons. Every applica-
tion data file in the system has an icon rep-
resenting it. Each type of file has a charac-
teristic icon shape. If a user is looking for a
spreadsheet, his or her eye can skip over
mailboxes, printers, text documents, etc.

Furthermore, Star allows users to or-
ganize files spatially rather than by dis-
tinctive naming. Systems having hierar-
chical directories, such as Unix and MS-
DOS, provide an abstract sort of “spatial”
file organization, but Star’s approach is
concrete. Files can be kept together by
putting them into a folder or simply by
clumping them together on the Desktop,
which models how people organize their
physical worlds. Since data files are repre-
sented by icons, and files are distinguished
by location and specified by selection
rather than by name, users can use names
like memo, memol, letter, etc., without
losing track of their files as easily as they
would with most systems.

As bitmap-, window-, and mouse-based
systems have become more common, the
use of the term “icon” has widened to re-
fer to any nontextual symbol on the dis-
play. In standard English, “icon” is a term
for religious statues or pictures believed to
contain some of the powers of the deities
they represent. It would be more consis-
tent with its normal meaning if “icon”
were reserved for objects having behav-
ioral and intrinsic properties. Most gra-
phical symbols and labels on computer
screens are therefore not icons. In Star,
only representations of files on the Desk-
top and in folders, mailboxes, and file
drawers are called icons.

Few modes. A system has modes if user
actions differ in effects or availability in
different situations. Tesler has argued that
modes in interactive computer systems
are undesirable because they restrict the
functions available at any given point and
force users to keep track of the system’s
state to know what effect their actions will
have.’ Though modes can be helpful in
guiding users through unfamiliar proce-
dures or for handling exceptional activi-
ties, they should be used sparingly and
carefully.

Star avoids modes in several ways. One
is the extensive use of generic commands
(see above), which drastically reduces the
number of commands needed. This, in

turn, means that designers need not assign
double-duty (that is, different meanings in
different modes) to physical controls.

A second way is by allowing applica-
tions to operate simultaneously. When
using one program (such as a document
editor), users are not in a mode that pre-
vents them from using the capabilities of
other programs (such as the desktop man-
ager).

A third way Star avoids modes is by us-
ing a noun-verb command syntax. Users
select an operand (such as a file, a word, or
a table), then invoke a command. In con-
ventional systems, arguments follow
commands, either on a command line or in
response to prompts. Whether a system
uses noun-verb or verb-noun syntax has a
lot to do with how mqded it is. In a noun-
verb system such as Star, selecting an ob-
ject prior to choosing a command does not
put the system into a mode. Users can de-
cide not to invoke the command without
having to “escape out” of anything or can
select a different object to operate on.

Though Star avoids modes, it is not
completely modeless. For example, the
Move and Copy commands require two
arguments: the object to be moved and the
final destination. Though less moded
ways to design Move and Copy exist, these
functions currently require the user to se-
lect the object, press the Move or Copy key,
then indicate the destination using the
mouse. While Star waits for the user to
point to a destination, it is in Move or Copy
mode, precluding other uses of the mouse.
These modes are relatively harmless,
however, because (1) the shape of the cur-
sor clearly indicates the state of the system
and (2) the user enters and exits them in the
course of carrying out a single mental plan,
making it unlikely that the system will be
in the “wrong” mode when the user begins
his or her next action.

Objects have properties. Properties
allow objects of the same type to vary in
appearance, layout, and behavior. For
example, files have a Name property, char-
acters have a Font family property, and
paragraphs have a Justified property.
Properties may have different types of val-
ues: the Name property of a file is a text
string; the Size property of a character
might be a number or a choice from a menu;
the Justified property of a paragraph is ei-
ther “on” or “off.” In Star, properties are
displayed and changed in graphical forms
called property sheets.

Property-based systems are rare. Most
computer systems, even today, allow us-

ers to set parameters for the duration of an
interactive session or for the duration of a
command, but not for particular data ob-
jects. For example, headings in Wordstar
documents do not “remember” whether
they are centered or not; whether a line is
centered is determined by how the pro-
gram was set when the line was typed.
Similarly, directories in Unix do not
“remember” whether files are to be listed
in alphabetical or temporal order; users
must respecify which display order
they want every time they invoke the 1s
command.

Progressive disclosure. It has been said
that “computers promise the fountains of
utopia, but only deliver a flood of informa-
tion.“4 Indeed, many computer systems
overwhelm their users with choices, com-
mands to remember, and poorly organized
output, much of it irrelevant to what the
user is trying to do. They make no presump-
tions about what the user wants. Thus, they
are designed as if all possible user actions
were equally likely and as if all informa-
tion generated by the system were of equal
interest to the user. Some systems dimin-
ish the problem somewhat by providing
default settings of parameters to simplify
tasks expected to be common.

Star goes further towards alleviating
this problem by applying a principle called
“progressive disclosure.” Progressive
disclosure dictates that detail be hidden
from users until they ask or need to see it.
Thus, Star not only provides default set-
tings, it hides settings that users are un-
likely to change until users indicate that
they want to change them. Implicit in this
design are assumptions about which prop-
erties will be less frequently altered.

One place progressive disclosure is
used is in property sheets. Some objects
have a large number of properties, many of
which are relevant only when other prop-
erties have certain values (see Figure 2).
For example, on the page layout property
sheet, there is no reason to display all of the
properties for specifying running header
content and position unless the user actu-
ally specifies that the document will have
running headers.

Another example of progressive disclo-
sure is the fact that property displays in
Star are temporary, displayed on demand.
In some systems, the properties of the cur-
rent selection are displayed at all times,
through codes embedded in the te.xt or in an
area of the screen reserved for that pur-
pose, even though the user usually doesn’t
care.

16 COMPUTER

Figure 2. Progressive disclosure. Star’s property sheets, like the rest of the interface, use a principle known as progressive
disclosure to avoid overwhelming users with information, Llsually, users don’t need to see an object’s properties: they only
need to see and perhaps change its assigned style. Users see an object’s properties only upon request. Also, even when a user
sets a property sheet to show an object’s properties, as shown here, some information remains hidden until the user asks to
see it. For example, there is no need to clutter the property sheet here with boxes for entering numbers for “Other” values of
Line Height. Spacing Before Paragraph, or Spacing After Paragraph until the user actually sets the property to “Other.”

A highlq refined manifestation of Pro-
gressive disclosure recently added to
Viewpoint is stoles. which allows users to
regard document content (such as a para-
graph) as having a single style rule instead
of a large number of properties. Thus,
styles hide needless detail from users.

C‘on.sistcr~c~~. Because Star and all of its
applications were designed and devel-
oped in-house, its designers had more toll-
trol over its user interface than is usually
the case with computer systems. Because
the designers paid close attention to detail.
they achieved a very high degree ofconsis-
tency. The left mouse button always se-
lects; the right always extends the selec-
tion. Mouse-sensitive areas always give
feedback when the left button goes down.
but never take effect until the button comes
“P.

El~r/‘/lcl\i.s o,, ,yf’c’rf ,ppl1rc (Ilid .s~‘,-c’t’,I
(ILcsI,~II. Windows. icons. and property
sheets are uselrss if users can’t easily dis-
tinguish them from the background or
each other. can’t easily see which labels
correspond to which object\. or can’t cope
with the visual clutter. To assure that Star
presents information in a maximally per-
celvahle and useful fashion. Xerox hired
graphic designers to deTermIne the ap-
pearance and placement of screen objects.
These designers applied various written
and unwritten principles to the design of
the window headers and borders, the Desk-
top background. the command buttons,
the pop-up menus. the propert) sheets. and
the Desktop icons. The most important
principles are

l The illusion of manipulable objects.
One goal. fundamental to the notion of d-

rect manipulation. is to create the illusion
of manipulable objects. It should be clear
that objects can be selected and how to se-
lect them. It should be obvious when the)
are selected and that the next action will
apply to them. Whereas the usual task ot
graphic designers is to present informa-
tion for passive viewing. Star’s designers
had to figure out how to present informa-
tion for manipulation as well. This show\
mo%t clearly in the Desktop icons. uith
their clear figure/ground relationship: the
icons stand by themselves, with self-con-
tained labels. Windows reveal in their bor-
ders the “handles” for scrolling. paging.
window-specific commands, and pop-up
menus.

l Visual order and user focus. One of the
most obvious contributions of good
graphic design is appropriate visual order
and focus on the screen. For example, in-

September 1989 I7

Figure 3. Visual order and user focus. The large amount of contrast present on the screens of many window systems (left
screen) makes it difftcult to focus on the relevant information. The selection should be the user’s main focus: it is the object of
the next operation. The right screen shows how Star/ViewPoint’s screen design focuses attention on the selection.

Figure 4. Visual order and user focus. Four candidate sets of icons were designed
and tested for Star. A representative sample from each set is shown here. In Star,
the icon selected by the user is indicated by inverting its image. Candidate icon
sets in which the images are mostly white allow icons to stand out when selected.
The set that best satisfies thii criterion, the one on the upper left, was chosen.

I8

tensity and contrast, when appropriately
applied, draw the user’s attention to the
most important features of the display.

In some windowing systems, window
interiors have the same (dark) color as the
Desktop background. Window content
should have high intensity relative to the
Desktop, to draw attention to what is im-
portant on the screen. In Star, window con-
tent background is white, both for high
contrast and to simulate paper.

Star keeps the amount of black on the
screen to a minimum to make the selection
stand out (see Figure 3). In most window-
ing systems, window headers and other
areas of the screen are black, making the
selection hard to find. This principle is so
important that Star’s designers made sure
that the display hardware could fill the
nonaddressable border of the screen with
Desktop grey rather than leaving it black as
in most systems. Star also uses icon images
that turn from mostly white to mostly black
when selected (see Figure 4) and allows at
most one selection on the screen at a time.

l Revealed structure. Often, the more
powerful the program used, the greater the
distance between intention and effect. If
only effect is displayed and not intention,
the user’s task of learning the connection
is much more difficult. A good graphical
interface can make apparent to the user
these connections between intention and
effect, that is, “revealed structure.” For
example, there are many ways to deter-
mine the position and length of a line of text
on a page. It can be. done with page margins,
paragraph indentations, centering, tabs,
blank lines, or spaces. The WYSIWYG, or

COMPUTER

“what you see is what you get,” view of all
these would be identical. That would be
enough if all that mattered to the user was
the final form on paper. But what will hap-
pen if characters are inserted‘? If the line is
moved to another page, where will it land?
WYSIWYG views are sometimes not
enough.

Special views are one method of reveal-
ing structure. In Star, documents can show
“Structure” and/or “Non-Printing Char-
acters” if desired (see Figure 5). Another
convenient means for revealing structure
is to make it show up during selection. For
example, when a rectangle is selected in a
graphics frame, eight control points high-
light it, any of which can attach to the cur-
sor during Move or Copy and can land on
grid points for precise alignment. The
control point highlighting allows a user to
distinguish a rectangle from four straight
Iines; both might produce the same printed
effect but would respond differently to
editing.

l Consistent and appropriate graphic
vocabulary. Property sheets (see Figure 2)
present a form-like display for the user to
specify detailed property settings and ar-
guments to commands. They were de-
signed with a consistent graphic vocabu-
lary. All of the user’s targets are in boxes:
unchangeable information such as a prop-
erty name is not. Mutually exclusive val-
ues within choice parameters appear with
boxes adjacent. Independent “on/off” or
state parameters appear with boxes sepa-
rated. The current settings are shown in-
verted. Some of the menus display graphic
symbols rather than text. Finally, there are
text parameters consisting of a box into
which text or numbers can be typed, cop-
ied, or moved, and within which text edit-
ing functions are available.

l Match the medium. It is in this last prin-
ciple that the sensitivities of a good
graphic designer are most apparent. The
goal is to create a consistent quality in the
graphics that is appropriate to the product
and makes the most of the given medium.
Star has a large black and white display.
The solutions the graphics designers de-
vised might have been very different had
the display had grey-scale or color pixels.

A common problem with raster displays
is “jaggies”: diagonal lines appearing as
staircases. With careful design, jaggies
can be avoided, for example, by using only
vertical, horizontal, and 4%degree
angles. Also important is controlling how
the edges of the figures interact with the
texture of the ground. Figure 6 shows how
edges are carefully matched to the back-

September 1989

. ..f.......................
gTl-tc peace sign
is 3 styljzetj reii-
ditim.of the,

: foo!print 0f.a
it-. '- CJ ‘.’ C .tt-te inter-

: na?imal bird of
] pe:?ce, I...

-.,.,.... . .___..................................... -_ _._..

‘

Figure 5. Revealed structure. At the top is the WYSIWYG view of mixed text and
graphics. The middle two panels show that structure is revealed when an object is
selected. When a line segment is selected, its control points are shown. When text
is selected, the text string is revealed. The bottom panel shows the effect of the
Show Structure and Show Non-Printing Characters commands, which is to re-
veal the location of embedded graphics and text frames (dotted lines) and “new
paragraph” and Space characters.

ground texture so that they have a consis-
tent quality appearance.

Document editor level. At the top level
of Star’s architecture are its applications,
the most prominent of which is the docu-
ment editor.

WYSIWYG document editor. Within the
limits of screen resolution, Star docu-
ments are displayed as they will print, in-
cluding typographic features such as bold-
face, italics, proportional spacing, vari-
able font families, and superscripts, and
layout features such as embedded graph-
ics, page numbers, headers, and footers.
This is commonly referred to as “what you
see is what you get,” or WYSIWYG.

Star adheres to this principle even in
domains where other WYSIWYG docu-
ment editors do not. For example, mathe-
matical formulas are created and edited in
documents using a WYSIWYG editor that
has knowledge built into it about the ap-
pearance and layout of mathematical sym-
bols. A square root sign has a slot for an

d

Figure 6. Match the medium. Many .
graphic refinements were made during
the design process. For example, the
turned corner of the document icon
was moved to the top so that the three
lines of label would line up with the la-
bels of other icons. Also, icons were
carefully sized and positioned against
the gray background to create
smoother lines.

19

expression and grows when the expres-
sion becomes large (see Figure 7). In most
systems, mathematical formulas are cre-
ated either by putting together special
characters to make mathematical symbols
or by using a special in-line notation (such
as sqrt(sigma(1, n, (x*3)/2))) to represent
the formula that will eventually be printed.
Formulas created with such systems usu-
ally require several print-edit cycles to get
right.

Extended character set for multilingual
capability. Star uses 16-bit character
codes, in contrast to most of the computer
industry, which uses seven- or eight-bit
character codes (for example, ASCII or
EBCDIC). The Star character set is a su-
perset of ASCII. The reason for a 16-bit
code is a strong market requirement for
enhanced multilingual capabilility com-
ing from Xerox’s subsidiaries in Europe
and Japan. Most systems provide non-
English characters through different
fonts, so that the eight-bit “extended”
ASCII codes might be rendered as math
symbols in one font, Greek letters in an-
other font, and Arabic in yet another. This
has the effect that when any application
loses track of font information while han-
dling the text (which happens often in
some systems), a paragraph of Arabic may
turn into nonsensical Greek or math sym-
bols or something else, and vice versa.

Star uses 16-bit character codes to per-
mit the system to reliably handle European
languages and Japanese, which uses many
thousands of characters. All Star and
Viewpoint systems have French, German,
Italian, Spanish, and Russian language
capabilities built in. The Japanese lan-
guage capability was developed as part of
the original Star design effort and released
in Japan soon after Star’s debut in the
United States. Since that time, many more
characters have been added, covering Chi-
nese, Arabic, Hebrew, and nearly all Euro-
pean languages.

As explained in several articles by Joe
Becker, the designer of Star’s multilin-
gual capabilities, handling many of the
world’s languages requires more than an
expanded character set.5 Clever typing
schemes and sophisticated rendering al-
gorithms are required to provide a multi-
lingual capability that satisfies customers.

The document is the heart of the world
and unifies it. Most personal computers
and workstations give no special status to
any particular application. Dozens of ap-
plications are available, most incompat-

ible with each other in data format as well
as user interface.

Star, in contrast, assumes that the pri-
mary use of the system is to create and
maintain documents. The document edi-
tor is thus the primary application. All
other applications exist mainly to provide
or manipulate information whose ulti-
mate destination is a document. Thus,
most applications are integrated into the
document editor (see “Integrated appli-
cations” above), operating within frames
embedded in documents. Those applica-
tions that are not part of the document
editor support transfer of their data to
documents.

History of Star
development

Having described Star and Viewpoint,
we will describe where they came from and
how they were developed. Figure 8 graphs
this history, showing systems that influ-
enced Star and those influenced by it.

Pre-Xerox. Although Star was con-
ceived as a product in 1975 and was re-
leased in 198 1, many of the ideas that went
into it were born in projects dating back
more than three decades.

Memex. The story starts in 1945, when
Vannevar Bush, a designer of early calcu-
lators and one of President Franklin D.
Roosevelt’s science advisors, wrote an
article describing his vision of the uses of
electronics and information technology.
At a time when computers were new,
room-sized, and used only for military
number-crunching, Bush envisioned a
personal, desktop computer for non-nu-
merical applications. He called it the
Memex. Due to insufficient technology
and insufficient imagination on the part of
others, Bush’s ideas languished for 15
years.

Sketchpad. In the sixties, people began
to take interactive computing seriously.
One such person was Ivan Sutherland. He
built an interactive graphics system called
Sketchpad that allowed a user to create
graphical figures on a CRT display using a
light pen. The geometric shapes users put
on the screen were treated as objects: after
being created, they could be moved, cop-
ied, shrunk, expanded, and rotated. They
could also be joined together to make
larger, more complex objects that could
then be operated upon as units. Sketchpad

influenced Star’s user interface as a
as well as its graphics applications.

NLS. Also in the sixties, Douglas Engel-
bart established a research program at
Stanford Research Institute (now called
SRI International) for exploring the use of
computers “to augment the knowledge
worker” and human intellect in general.
He and his collegues experimented with
different types of displays and input de-
vices (inventing the mouse when other
pointing devices proved inadequate) and
developed a system commonly known as
NLS.*

NLS was unique in several respects. It
used CRT displays when most computers
used teletypes. It was interactive (i.e., on-
line) when almost all computing was
batch. It was full-screen-oriented when
the few systems that were interactive were
line-oriented. It used a mouse when all
other graphic interactive systems used
cursor keys, light pens, joysticks, or digit-
izing tablets. Finally, it was the first sys-
tem to organize textual and graphical in-
formation in trees and networks. Today, it
would be called an “idea processor” or a
“hypertext system.”

The Reactive Engine. While Engelbart
et al. were developing ideas, some of
which eventually found their way into
Star, Alan Kay, then a graduate student,
was doing likewise. His dissertation, The
Reactive Engine, contained the seeds of
many ideas that he and others later brought
to fruition in the Smalltalk language and
programming environment, which, in
turn, influenced Star. Like the designers of
NLS, Kay realized that interactive appli-
cations do not have to treat the display as a
“glass teletype” and can share the screen
with other programs.

Xerox PARC. In 1970, Xerox estab-
lished a research center in Palo Alto to
explore technologies that would be impor-
tant not only for the further development of
Xerox’s then-existing product line (copi-
ers), but also for Xerox’s planned expan-
sion into the office systems business. The
Palo Alto Research Center was organized
into several laboratories, each devoted to
basic and applied research in a field related
to the above goals. The names and organi-

*The actual name of the system was On-Line System.
A second system called Off-Line System was abbrevi-
ated FLS, hence NLS’s strange abbrewiation. NLS is
now mark&d by McDomtell Douglas under the name
Augment.

20 COMPUTER

Here is an elementary integral:

I
Figure 7. WYSIWYG formula editing. Mathematical formulas are edited in Star in a highly WYSIWYG fashion, in contrast
to most systems, in which formulas are specified via in-line expressions or by constructing them from pieces in a special
character font.

Memex

Macintosh

5
Metaphor

Workstation

V
Mac II

k
Viewpoint 2.0

Cognition
MCAE

System

ess

:ript

Figure 8. How systems influenced later systems. This graph summarizes how various systems related to Star have influenced
one another over the years. Time progresses downwards. Double arrows indicate direct successors (i.e., follow-on versions).
Many “influence arrows” are due to key designers changing jobs or applying concepts from their graduate research to
products.

September 1989 21

Figure 9. The Xerox Alto. The Alto, developed at Xerox PARC in the seventies.
was a prototype for Star. Both its hardware design and the many programs writ-
ten for it by PARC researchers strongI> influenced Star’s designers.

zation of the labs have changed o\er the

years. but the research topic\ habe stayed

the same: materials science. laser physics.

integrated circuitry. computer-aided de-

sign and manufacturing, user intertacea

(not necessaril! to computers). and con-
puter science (including netuorking. da-

tabases. operating systems. languages

and programming en\ ironments. praph-

its. document production systems. and

artificial intelligence).

Alto. PARC researchers were fond of the

22

slogan “The best ua\ to predict the future

is to invent it.” After some initial ewperi-

ments with time-shared systems. thej

began searching for a new approach to
computing.

Among the founding members of PARC

was Alan Kay. He and his colleagues were

acquainted with NLS and liked its nov>el

approach to human-computer interaction.

Soon. PARC hired several people who had

worked on NLS. In I97 I. the center signed

an agreement with SRI licensing Xerox to

use the mouse. Kay and others were dedi-

cated to a vision ot personal computers in a

distributed environment. In tact. the)
coined the term “personal computer” in

1973. long before iiiicrocompt~t~r~ started

vv hat has been called the “personal com-
puter revolution.”

One result of thc search for 3 ncvv q-
preach M ;I\ the Alto (set‘ Figure 9 1, The

.-\I10 v.;15 ;I minicomputer that had a remov-

ahlc. 2.5.megabyte hard dish path tllopp>

dishs did not exist ;II the time) and 17X to

256 hilob) tcs of mcmor~. L’nlil\e rno\t
machines of its day. the Alto ;IIW had a
rnIcropro~rammable instruction set. ii
“full-page“ t t OJ x W/1 inch. 600 x 800

pixel) bitmapped graphic display. about

50 hitobhtes of high-speed dispta) nlt‘n~-
orb. and a mouse.

The first Alto became operational in

1972. At tirst. onl! a halt-doren OI- w Al-
tos were built. Atter software that ex-

plaited the Alto‘s capahilitics hccamc

av ailabtc. d~~~~a~id for them frcvv trcmcn-

dousl). spreading be! and PARC into

Xerox as a \v hole and even to external cus-

tamers. EventualI!. Xerox built more than
a thousand Altos.

Fti~r-rrcjr. Another product of the neu

approach v+ as the Ethernet. With its stair-

dardired. layered communications proto-

cots. Ethernet provided a uay of connect-

ing computers much more tlcxibt) than

previousI> possible. Soon after the first

Altos uere built. they uere networked

together. Eventually. the network greu to

thousands of worhstations (Altos and Alto

successors) within Xerox’s uorlduidc

organization.

Sn~ni/rcl/l\. Alan Kay mas OIW of the main

advocates of the Alto. His Learning Rc-

search Group began using the Alto to build

prototypes for a personal computing s\ 4-

tern “of the future” - a portable machine

that vvoutd provide not canned apptica-

tions but rather the building blocks neces-

sar:, for users to build the tools and appli-

cations they needed to solve their own in-

formation processing problems. The tech-

nologies needed to build a lap computer
with the power of the envisioned system

(called the “DlnaBook”) here unavait-

able at the time and still are.

The prototypes developed by Kay’s

group evolved into the Smalttalk language

and programming env,ironment. Smatt-

talk further promoted the notion of per-
sonal computing; pioneered complete,

interactive programming environments;

and refined and soliditied concepts of ob-

ject-oriented programming that had been

COMPUTER

extant only in vestigial forms in previous
systems. Most importantly for Star,
Smalltalk demonstrated the power of gra-
phical, bitmapped displays; mouse-
driven input; windows; and simultaneous
applications. This is the most visible link
between Smalltalk and Star, and is perhaps
why many people wrongly believe that
Star was written in Smalltalk.

Pygmalion. The first large program to
be written in Smalltalk was Pygmalion, the
doctoral thesis project of David C. Smith.
One goal of Pygmalion was to show that
programming a computer does not have to
be primarily a textual activity. It can be
accomplished, given the appropriate sys-
tem, by interacting with graphical ele-
ments on a screen. A second goal was to
show that computers can be programmed
in the language of the user interface, that is,
by demonstrating what you want done and
having the computer remember and repro-
duce it. The idea of using icons - images
that allow users to manipulate them and in
so doing act upon the data they represent-
came mainly from Pygmalion. After com-
pleting Pygmalion, Smith worked briefly
on the NLS project at SRI before joining
the Star development team at Xerox.

Bravo, Gypsy, and BravoX. At the same
time that the Learning Research Group
was developing Smalltalk for the Alto,
others at PARC, mainly Charles Simonyi
and Butler Lampson, were writing an ad-
vanced document editing system for it
called Bravo. Because it made heavy use of
the Alto’s bitmapped screen, Bravo was
unquestionably the most WYSIWYG text
editor of its day, with on-screen underlin-
ing, boldface, italics, variable font fami-
lies and sizes, and variable-width charac-
ters. It allowed the screen to be split, so
different documents or different parts of
the same document could be edited at once,
but did not operate in a windowed environ-
ment as we use the term today. Bravo was
widely used at PARC and in Xerox as a
whole.

From 1976 to 1978, Simonyi and others
rewrote Bravo, incorporating many of the
new user-interface ideas floating around
PARC at the time. One such idea was
modelessness, promoted by Larry Tesler3
and exemplified in Tesler’s prototype text
editor, Gypsy. Simonyi et al. also added
styles, enhancing users’ ability to control
the appearance of their documents. The
new version was called BravoX.

Shortly thereafter, Simonyi joined Mi-
crosoft, where he led the development of

Microsoft Word, a direct descendent of
BravoX. Another member of the BravoX
team, Tom Malloy, went to Apple and
wrote LisaWrite.

Draw, Sil, Markup, Flyer, and Doodle.
Star’s graphics capability (its provisions
for users to create graphical images for
incorporation into documents, as opposed
to its graphical user interface) owes a great
deal to several graphics editors written for
the Alto and later machines.

Draw, by Patrick Beaudelaire and Bob
Sproull, and Sil (for Simple Illustrator)
were intellectual successors of Suther-
land’s Sketchpad (see above): graphical
object editors that allowed users to con-
struct figures out of selectable, movable,
stretchable geometric forms and text. In
turn, Star’s graphic frames capability is in
large measure an intellectual successor of
Draw and Sil.

Markup was a bitmap graphics editor
(that is, a paint program) written by Wil-
liam Newman for the Alto. Flyer was an-
other paint program, written in Smalltalk
for the Alto by Bob Flegel and Bill Bow-
man. These programs inspired Doodle, a
paint program written for a later machine
by Dan Silva. Doodle eventually evolved
into Viewpoint’s Free-Hand Drawing
application. Silva went on to write De-
luxepaint, a paint program for PCs.

Laser printing. Fancy graphics capa-
bilities in a workstation are of little use
without hard-copy capability to match it.
Laser printing, invented at PARC, pro-
vided the necessary base capability, but
computers needed a uniform way to de-
scribe output to laser printers. For this pur-
pose, Bob Sproull developed the Press
page-description language. Press was
heavily used at PARC, then further devel-
oped into Interpress, Xerox’s commercial
page-description language and the lan-
guage in which Star encodes printer out-
put. Some of the developers of Interpress
later formed Adobe Systems and devel-
oped Postscript, a popular page descrip-
tion language.

Laurel and Hardy. A network of per-
sonal workstations suggests electronic
mail. Though electronic mail was not in-
vented at PARC, PARC researchers
(mainly Doug Brotz) made it more acces-
sible to nonengineers by creating Laurel,
a display-oriented tool for sending, re-
ceiving, and organizing e-mail. The expe-
rience of using Laurel inspired others to
write Hardy for an Alto successor ma-

chine. Laurel and Hardy were instrumen-
tal in getting nonengineers at Xerox to use
e-mail. The use of e-mail spread further
with the spread of Star and Viewpoint
throughout Xerox.

OfficeTalk. One more Alto program
that influenced Star was OfficeTalk, a
prototype office automation system writ-
ten by Clarence (“Skip”) Ellis and Gary
Nutt. OfficeTalk supported standard of-
fice automation tasks and tracked jobs as
they went from person to person in an or-
ganization. Experience with OfficeTalk
provided ideas for Star because of the two
systems’ similar target applications.

Summing up. The debt that Star owes to
the Alto and its software is best summed up
by quoting from the original designers,
who wrote in 1982:

Alto served as a valuable prototype for
Star. Alto users have had several thousand
work-years of experience with them over a
period of eight years, making Alto perhaps
the largest prototyping effort in history.
There were dozens of experimental pro-
grams written for the Alto by members of the
Xerox Palo Alto Research Center. Without
the creative ideas of the authors of these sys-
tems, Star in its present form would have been
impossible. . In addition, we ourselves pro-
grammed various aspects of the Star design
on the Alto.

Star. To develop Star and other office
systems products, Xerox created the
Systems Development Department. SDD
was staffed by transferring people from
other parts of Xerox, including PARC, as
well as by hiring from outside. Thus, con-
trary to what has often been stated in the
industry press, Star was not developed at
PARC, but rather in a separate product-
development organization.

When SDD was formed, a decision was
made to use Mesa, an “industrial-
strength” dialect of Pascal conceived at
SRI and further developed at PARC, as the
primary product programming language.
SDD took over development and mainte-
nance of Mesa from the Computer Science
Laboratory at PARC, freeing CSL to de-
velop Mesa’s research successor, Cedar.

Star hardware. Star is often discussed
as if it were a computer. In fact, Star is a
body of software.* However, using the

*The official name for Star was the Xerox 8010 Infor-
mation System. The machine was called the 8CNlO Se-
ries Network Systems Processor. Originally, “Star”
was only an internal name.

September 1989 23

name Star to refer to the machine is under-
standable since the machine was designed
in conjunction with the software to meet
the needs of the software design. This is in
sharp contrast to the usual approach, in
which software is designed for existing
computers.

The 8000 Series workstation was based
upon a microcoded proc&sor designed
within Xerox especially to run the object
code produced by the Mesa compiler. Be-
sides being microprogrammed to run
Mesa, the processor provided low-level
operations for facilitating display opera-
tions. For example, the bitblt operation for
manipulating rectangular arrays of screen
pixels is implemented as a single instruc-
tion. As sold, the machine was configured
with at least 384 kilobytes of real memory
(expandable to 1.5 megabytes), a local
hard disk (10, 29, or 40 megabytes), a 17-
inch display, a mechanical mouse, an
eight-inch floppy disk drive, and an Eth-
ernet connection. The price was initially
$16,500 with software.

Even though the machine was designed
to run Star, it also ran other software. In
addition to selling it as the 8010 “Star”
workstation, Xerox sold it as a server ma-
chine and as an Interlisp and a Smalltalk
workstation.

Star software. Alhough Star incorpo-
rated ideas from a number of predecessors,
it still required a mammoth design effort to
pull all of those ideas - as well as new
ideas - together to produce a coherent
design. According to the original design-
ers, “. . . it was a real challenge to bring
some order to the different user interfaces
on the Alto.“’ About 30 person-years went
into the design of the user interface, func-
tionality, and hardware.

To foster uniformity of specifications
as well as thoughtful and uniform design,
Star’s designers develo+d a strict format
for specifications. Applications and sys-
tem features were to be. described in terms
of the objects that users would manipulate
with the software and the actions that the
software provided for manipulating ob-
jects. This “objects and actions” analysis
was supposed to occur at a fairly high level,
without regard to how the objects would
actually be presented or how the actions
would actually be invoked by users. A full
specification was then written from the
“objects and actions” version. This ap-
proach forced designers to think clearly
about the purpose of each application or
feature and fostered recognition of similar
operations across specifications, allow-

ing what might have seemed like new op-
erations to be handled by existing com-
mands.

When SDD was formed, it was split be-
tween two locations: Southern California
(El Segundo) and Northern California
(Palo Alto). Few people were willing to
transfer one way or the other, leaving SDD
with the choice of losing many competent
engineers or being creative. SDD’s man-
agement took the creative route: they put
the Ethernet to work, attaching the devel-
opment machines at both sites to a net-
work, connecting the two sites with a 56-
kilobit-per-second leased line, encourag-
ing heavy use of electronic mail for work-
related communication, and developing
tools for facilitating distributed, multi-
party development.

As might be expected from Star’s ori-
gins, most of the design and prototyping
work was done in Palo Alto, whereas most
of the implementation was done in El
Segundo. Though this split was handled
creatively, some of Star’s designers now
believe it caused problems not overcome
by extensive use of e-mail. For example,
the implementors did not benefit from
much of the prototyping done at PARC.

The development process has been re-
counted in detail elsewhere6 and will not be
repeated here. Suffice it to say that the Star
development effort

l involved developing new network
protocols and data-encoding schemes
when those used in PARC’s research
environment proved inadequate;

l involved a great deal of prototyping
and user testing;

l included a late redesign of the proces-
sor;

l included several software redesigns,
rewrites, and late additions, some
based on results from user testing,
some based on marketing considera-
tions, and some based on systems con-
siderations (see below);

l included a level of attention to the re-
quirements of international custom-
ers unmatched in the industry; and

l left much of what was in the Star Func-
tional Specification unimplemented.

Tajo/XDE. Since the machine upon
which Star ran was developed in parallel
with the software, it was not available
early-on for use as a software development
platform. Early prototyping and develop-
ment was done on Altos and successor re-
search machines developed at PARC.
Though the Mesa language ran on these

machines, development aids for Mesa
programmers were lacking.

When the 8000 Series workstation be-
came available, the systems group within
SDD began working on a suitable develop-
ment environment. Known internally as
Tajo and externally as Xerox Develop-
ment Environment (XDE), the completed
development environment and the numer-
ous tools written to run in it were quickly
adopted by programmers throughout
SDD. Star’s later improvements adopted
many good ideas from Tajo.

ViewPoint. Though Star’s introduc-
tion at NCC ‘81 was lauded in the industry
press, initial sales were not what had been
hoped. Almost immediately, efforts were
launched to improve its performance, ex-
tensibility, maintainability, and cost.

Viewpoint software. Even before Star
was released, the implementors realized
that it had serious problems from their
point of view. Its high degree of integra-
tion and user-interface consistency had
been achieved by making it monolithic:
the system “knew” about all applica-
tions, and all parts of the system “knew”
about all other parts. It was difficult to cor-
rect problems, add new features, and in-
crease performance. The monolithic
architecture also did not lend itself to dis-
tributed, multiparty development.

This created pressure to rewrite Star.
Bob Ayers, who had been heavily involved
in the development of Star, rewrote the
infrastructure of the system according to
the more flexible Tajo model. He built, on
top of the operating system and low-level
window manager, a “toolkit” for building
Star-like applications.

In the new infrastructure, transfer of
data between different applications was
handled through strict protocols involv-
ing the user’s selection, thus making appli-
cations independent from one another.
The object-oriented user interface, which
requires that the system associate applica-
tions with data files, was preserved by
having applications register themselves
with the system when started, telling it
which type of data file they correspond to
and registering procedures for. handling
keyboard and mouse events and generic
commands. User-interface consistency
was fostered by building many of the stan-
dards into the application toolkit. The de-
velopment organization completed the
toolkit and then ported or rewrote the exist-
ing applications and utilities to run on top
of it.

24 COMPUTER

Other software changes included . stylesheets. for facilitating control of
document appearance.

. the addition of several applications
and utilities. including a Free-Hand
Drawing prograrn and an IBM PC

Lessons from
emulation application: experience

. optional window tiling constraints. so
that users can have
dews if desired:

overlapping bill

. rcdexigned screen graphics (icons.

mands of a more sophisticated public:

windous. property sheets. command
buttons. and menus) to accommodate
a smaller screen and to meet the de-

So what have we learned
We believe. the following:

from all this’?

Pay attention to industr! trends.
Partly out of excitement over

designers didn’t pa> enough attention to

what they
were doing. PARC researchers and Star’s

and

. impro\ ‘ed performance
the “other” personal computer rrvolu-
tion occurring outside of Xerox. B) the
late seventies. Xerox had its o&n powerful

To underscore the fact that the new \y\- technical tradition (mouse-driven. nrt-
tern has 3

Viewpoint. VieM Point I .O was released in

substantial miprovemcnt over
the old. the name uas changed from Star to

WOI

applications). blinding Star’\ designers to

-hcd workstations uith large bitmap-
ped screens and multIpIe. simultaneou\

19x5. the need to approach the marhet with
cheap. stand-alone PCs. The result uas a

I ic~f’oi~l Irrrr-tlw~ur~ In addition to re- product that uas highly unfamiliar to its

hardu are up
vising the software. Xerox brought the

60X5 workstation. The new machine was

to date by designing a com-

plctelq neu cchicle for VtewPoint: the
days. of course. such systems are no
intended customers: businesses. Noua-

unusual.
DeLcloping Star and Viewpoint In-

longer

de\ipned to take advantage of advances in

ory costs, new disk technologies. and new
integrated circuitry. reduction5 in rnern-

Lolved developing several enabling tech-
nologies. for networking. cornmunicat-
ing with servers. describing pages to laser

standards in keyboard design. as well a5 to printer,. and developing software. At the
provide IBM PC compatibility. The 60X5 time they were developed, these technolo-
workstation has a Mesa processor plus an gies were unique in the industry. Xerox
optional IBM-PC-compatible processor. elected to keep them proprietary for fear of
one megabyte of real memory (expand- losing its competitive advantage. U’lth
able to 3 megabytes). a hard disk (I(1 to X0 hindsight. ue can say that it might habe
megabytes). a choice of a IS- or a 19.inch been better to release these technologies
display. an optical mouse. a ne* key- into the public domain or to market them

cost was initially $6.340 with the Vieu-

board. a 5%mch floppy disk drive. and. of

Point software. Like the 8010. the 6085 is

course. an Ethernet connection. The base

sold as a vehtcle for Interlisp and Smalltalk
as well as for Viewpoint.

proaches developed at other companies

early. so that they rnight have become in-

have become the industry standards.
Xerox’s current participation In the devel-

dustry standards. Instead. alternative ap-

opment of various industry standards indi-
cates its desire to reverse this trend.

Rcc,cr~t l’iclw,Poinf c~/~on~q~~s. The re-
cently released Viewpoint 2.0 adds man\
features relevant to desktop publishing.
These include

l Xerox ProIllustrator. a new vector
graphics editing application designed
mainly for professional illustrators:

l Shared Books, support for groups of
users working on multipart docu-
ments;

l a Redlining feature. for tracking dele-
tions and insertions in documents:

l cursor keys, for moving the insertion
point during keyboard-intensive
work; and

Pay attention to what customers
want. The personal computer revolution
has shown the futility of trying to antici-
pate all of the applications that customers
WIII want. Star should have been designed
from the start to be open and extensible by
users, as the Alto was. In hindsight, exten-
sibility was one of the keys to the Alto’s
popularity. The problem wasn’t that Star
lacked functionality, it was that It didn’t
have the functionality customers wanted.
An example is the initial lack of a spread-
sheet application. The designers failed to
appreciate the significance of this applica-
tion, which may have been more important

even than M ord-processing in expanding
the personal computer re\ olution beyond
enpineers and hobb\,ists into business.
E\entualll realizing that Star’s closed-
ne\s M as a problem. Xerox replaced it M ith
VieuPotnt. a more “open” sl3tcrn that
altoNs user\ to pick and choose applicu-
ttons that the) need. including a spread-
sheet and IBM PC software. Apple Corn-
puter learned the \ame lesson \\ith its LIU
computer and similarI> replaced it with a

cheaper one ha\ ing it rnorc open dtx are

architecture: the Macintosh.

linofi your competition. Star’s initial
per-workstation price uas near that ot
time-shared minicomputers. dedicated
uord-processors. and other Glared con-
puting facilrties. Star was. hour\er. corn

peting for desktop \pace with microcon-
puter-based PCs. VleNPoint has cor-
rccted that problem: The 6085 co\ts about
the same as its competition.

Establish firm performance goals.
Star‘s designers should have established
performance goals. documented them 111

the functional specifications. and stuck to
thern as the! dehcloped Star. Where per-
formance goats couldn‘t be met. the corrc-
spending functionality should have been
cut.

In lieu of speed. the designer\ should
habe made the user interface more respon-
\ive. Designing systems to handle user
input more intelligentI> can mahc them
more responsive without necessaril!
mahing them execute functions taster.
The) can operate as>,nchronouslq u Ith
respect to user input. making use of bach-
ground processes. keeping up uith impor-
tant user action\. dela),ing unimportant
tasks (such as refreshing irrelevant areas
of the screen) until t ime permits. and ship-
ping tasks called for by early user actlons
but rendered moot by later ones. Vieu-
Point nob makes use of background proc-
esses to increase its responsiveness.

Avoid geographically split develop-
ment organizations. Having a develop-
ment organization split between Palo Alto
and El Segundo was probably a mlstahe.
less for reasons of distance per se than for
lack of shared background in “PARC-
style” computing. However. the adverse
effect of sheer distance on communrcation
was certainly a factor.

Don’t be dogmatic about the Desktop
metaphor and direct manipulation. Di-
rect manipulation and the Desktop meta-

September 1989 25

phor aren’t the best way to do everything.
Remembering and typing is sometimes
better than seeing and pointing. For ex-
ample, if users want to open a file that is one
of several hundred in a directory (folder),
the system should let users type its name
rather than forcing them to scroll through
the directory trying to spot it so they can
select it.

Many aspects of Star were correct.
Though certain aspects of Star perhaps
should have been done differently, most of
the aspects of Star’s design described at
the beginning of this article have with-
stood the test of time. These include

l Iconic, direct-manipulation, object-
oriented user interface. The days of cryp-
tic command languages and scores of
commands for users to remember (a la
Unix and MS-DOS) should have passed
long ago.

l Generic commands and consistency
in general. Even Macintosh could use
some lessons in this regard: the Duplicate
command copies files within a disk, but
users must drag icons to copy them across
disks and must use Copy-Paste to copy
anything else.

l Pointing device. Although cursor
keys have some advantages and certainly
would have enhanced Star’s market ap-
peal (as they have Viewpoint’s), Star’s
designers stand by the system’s primary
reliance on the mouse. This does not imply
a commitment to the mouse per se, but
rather to any pointing device that allows
quick pointing and selection. As inter-
faces evolve in the future, high-resolution
touch screens and other more exotic de-
vices may replace mice as the pointing
devices of choice.

l High-resolution display. Memory is
now cheap, so the justification for charac-
ter displays is gone.

l Good graphic design. Screen graphics
designed by computer programmers will
not satisfy customers. The Star designers
recognized their limitations in this regard
and hired the right people for the job. As
color displays gain market presence, the
participation of graphic designers will
become even more crucial.

l 16-bit character set. An eight-bit char-
acter set (such as ASCII) cannot accom-
modate international languages ade-
quately. Star and Viewpoint’s use of a
16-bit character set and of special typing
and rendering algorithms for foreign lan-
guages is the correct approach.

l Distributed, personal computing.

26

Though the reorientation of the industry
away from batch and time-shared comput-
ing toward personal computing had noth-
ing to do with Xerox, PARC, or Star, it was
an important part of the computing phi-
losophy that led to Star.

S tar has had an indisputable influ-
ence on the design of computer sys-
tems. For example, the Lisa and

Macintosh might have been very different
had Apple’s designers not borrowed ideas
from Star, as the following excerpt of a
Byte magazine interview of Lisa’s design-
ers shows:

Byte: Do you have a Xerox Star here that you
work with?
Tesler: No, we didn’t have one here.. We went
to the NCC [National Computer Conference]
when the Star was announced and looked at it.
And in fact it did have an immediate impact.
A few months after looking at it we made some
changes to our user interface based on ideas
that we got from it. For example, the desktop
manager we had before was completely dif-
ferent; it didn’t use icons at all, and we never
lied it very much. We decided to change ours
to the icon base. That was probably the only
thing we got from Star, I think. Most of our
Xerox inspiration was Smalltalk rather than
Star.7

Elements of the Desktop metaphor ap-
proach also appear in many other systems.

The history presented here has shown,
however, that Star’s designers did not in-
vent the system from nothingness. Just as
it has influenced systems that came after it,
Star was influenced by ideas and systems
that came before it. It is difficult to inhibit
the spread of good ideas once they are ap-
parent to all, especially in this industry.
Star was thus just one step in an evolution-
ary process that will continue both at
Xerox and elsewhere. That is how it should
be.0

Acknowledgments
When Star was anuounced, several articles on

it appeared in trade magazines, journals, and ai
conferences. Many of these were reprinted in
the Xerox publication Office Systems Technol-
ogy.* Since then, several more articles have been
published that are relevant to this retrospective.
They include an article from MacWorld9 that
described the historical antecedents of Apple
Computer’s Lisa and Macintosh computers,
which share much of Star’s history. This retm-
spfzctive owes a great deal to those previous writ-
ings. We also acknowledge the valuable contri-
butions that Joe Becker, Bill Mallgren, Doug
Carothers, Linda Bergsteinsson, and Randy
Polen of Xerox, and Bob Ayers, Ralph Kimball,
Dave Fylstra, and John Shoch made to this retro-

spective. Finally, we acknowledge the helpful
suggestions made by the first and second au-
thors’ colleagues at US West Advanced Tech-
nologies and several anonymous reviewers to
improve the quality of the article.

References
1.

2.

3.

4.

5.

6.

I

8.

9.

D.C. Smith et al., “The Star User Interface:
An Overview,” Proc. AFIPS Nat’1 Com-
puter Conf.. June 1982, pp. 515-528.

D.C. Smith, “Origins of the Desktop Meta-
phor: A Brief History,” presented in a panel
discussion, “The Desktop Metaphor as an
Approach to User Interface Design,” in
Proc. ACM Annual Conf., 1985, p. 548.

L. Tesler, “The Smalltalk Environment,”
Byte, Vol. 6, No. 8, Aug. 1981, pp. 90-147.

L. Winner, “Mythinformation,” Whole
Earth Review, No. 44, Jan. 1985.

J. Becker, “Multilingual Word
Processing,” Scientific American, Vol.
251, No. 1, July 1984, pp. 96-107. (See
“Further reading” for other articles on
Star’s multilingual capability.)

E.F. Harslem and L.E. Nelson, “A Retro-
spective on the Development of Star,”
Proc. Sixth Id1 Conf. on Sofiware Engi-
neering, Sept. 1982, Tokyo, Japan. Re-
printed in Office Systems Technology,
OSD-R8203A, Xerox Corp., pp. 261-269.

G. Williams, “The Lisa Computer
System,” Byte, Vol. 8, No. 2, Feb. 1983, pp.
33-50.

Ofice Systems Technology, OSD-R8203A,
Xerox Corp.

T. Nate, “The Macintosh Family Tree,”
MacWorld, Nov. 1984, pp. 134-141.

Further reading
For interested readers, we provide here a

guide to further reading on Star and related top-

of this retrospecive will appear in an upcoming
Prentice-Hall book series. Also, the September
issue of ZEEE Spectrum includes an article, “Of
Mice and Menus,” on graphical user interfaces
past and present. The authors of that article con-
sulted several people who contributed to or are
mentioned in this Star retrospective.

In the following bibliography, readings are
categorized according to whether they pertain
to work done prior to the establishment of Xerox
PARC, to work done at PARC, to the original
Star design done at Xerox SD?,8 to enhance-
ments to Star and ViewPoint, and to work on re-
lated topics.

Pre-Xerox

Bush, V., “As We May Think,” Atlantic
Monthly, Vol. 176, No. 1, July 1945, pp. lOl-
108.

COMPUTER

Engelbart, D.C., and W.K. English, “A Re-
search Center for Augmenting Human Intel-
lect,” Proc. FJCC, Vol. 33, AFIPS, 1968, pp.
395-410.
English, W.K., D.C. Engelbart, and M.L. Ber-
man, “Display-Selection Techniques for Text
Manipulation,” IEEE Trans. Human Factors in
Electronics, HFE-8, 1967, pp. 21-31.
Kay, A.C., The Reactive Engine, PhD thesis,
University of Utah, Salt Lake City, 1969.
Sutherland, I.E., Sketchpad: A Man-Machine
Graphical Communications System, PhD the-
sis, MIT., Cambridge, Mass., 1963.

Xerox pre-Star

Card, S., W.K. English, and B. Burr, “Evalu-
ation of Mouse, Rate-Controlled Isometric
Joystick, Step Keys, and Text Keys for Text Se-
lection on a CRT.” Emonomics. Vol. 21, 1978.
pp. 601-613. -
Ellis, C., and G. Nutt, “Computer Science and
Office Information Systems,” Xerox PARC
Tech. Report SSL-79-6, 1979.
Geschke, CM., J.H. Morris, Jr., and E.H. Satter-
thwaite, “Early Experience with Mesa,”
Comm. ACM, Vol. 20, No. 8, 1977, pp. 540-553.
Ingalls, D.H., “The Smalltalk Graphics
Kernel,” Byte, Vol. 6, No. 8, Aug. 198 1, pp. 168-
194.
Kay, A.C., and A. Goldberg, “Personal Dy-
namic Media,” Computer, Vol. 10, No. 3, March
1977, pp. 31-41.
Kay, A.C., “Microelectronics and the Personal
Computer,” Scientific American, Vol. 237, No.
3, Sept. 1977, pp. 230-244.
Smith, D.C., Pygmalion: A Computer Program
to Model and Simulate Creative Thought, Birk-
hauser Verlag, Base1 and Stuttgart, 1977.
Thacker, C.P., et al., “Alto: A Personal Com-
puter,” in Computer Structures: Principles and
Examples, D. Siewioek, C.G. Bell, and A. New-
ell, eds., McGraw Hill, New York, 1982.

Star

Curry, G., et al., “Traits- An Approach to Mul-
tiple-Inheritance Subclassing,” Proc. ACM
Conf. on Office Automation Systems (SIGOA),
1982.
Dalal, Y.K., “Use of Multiple Networks in the
Xerox Network System,” Computer, Vol. 15,
No. 10, Oct. 1982, pp. 82-92.
Johnsson, R.K., and J.D. Wick, “An Overview
of the Mesa Processor Architecture,” SlGPlan
Notices, Vol. 17, No. 4, 1982.
Lipkie, D.E., et al., “Star Graphics: An Object-
Oriented Implementation,” Computer Graph-
ics, Vol. 16, No. 3, July 1982, pp. 115-124.
Shoch, J.F., et al., “Evolution of the Ethernet
Local Computer Network,” Computer, Vol. 15,
No. 9, Aug. 1982, pp. 10-27.
Smith, D.C., et al., “Designing the Star User
Interface,” Byte, Vol. 7, No. 4, April 1982, pp.
242-282.
Sweet, R.E., and J.G. Sandman, Jr., “Empirical
Analysis of the Mesa Instruction Set,” SlGPlan
Notices, Vol. 17, No. 4, 1982.

Star/Viewpoint enhancements

Becker, J., “Typing Chinese, Japanese, and

Korean,” Computer, Vol. 18, No. 1, Jan. 1985,
pp. 27-34.
Becker, J., “Arabic Word Processing,” Comm.
ACM, Vol. 30, No. 7, July 1987, pp. 600-610.
Bewley, W.L., et al., “Human Factors Testing
in the Design of Xerox’s 8010 Star Office
Workstation,” Proc. ACM Conf. on Human
Factors in Computing Systems, 1983, pp. 72-
77.
Bushan, A., and M. Plass, “The Interpress Page
and Document Description Language,” Com-
puter, Vol. 19, No. 6, June 1986, pp. 72-77.
Curry, G., and R. Ayers, “Experience with
Traits in Star,” Programming Productivity: Is-
sues for the Eighties, IEEE Computer Society
Press, Los Alamitos, Calif., 1986, Order #681.
Halbert, D., “Programming by Example,”
Xerox OSD Tech. Report OSD-T84-02, 1984.
Lewis, B., and J. Hodges, “Shared Books: Col-
laborative Publication Management for an Of-
fice Information System,” Proc. ACM Conf. on
Office Information Systems, 1988.

Miscellaneous

Bly, S., and J. Rosenberg, “A Comparison of
Tiled and Overlapping Windows,” Proc. ACM
Conf. on Computer-Human Interaction, 1986,
pp. 101-106.
Goldberg, A., Smalltalk-80: The Interactive
Programming Environment, Addison-Wesley
Publishing, Reading, Mass., 1984.
Goldberg, A., and D. Robson, Smalltalk-80:
The Language and its Implementation, Ad-
dison-Wesley Publishing, Reading, Mass.,
1984.
Halasz, F., and T. Moran, “Analogy Consid-
ered Harmful,” Proc. ACM Conf. on Human
Factors in Computing Systems, Gaithersburg,
MD, 1982, pp. 383-386.
Houston, T., ‘The Allegory of Software: Be-
yond, Behind, and Beneath the Electronic
Desk,” Byte, Dec. 1983, pp. 210-214.
Johnson, J., “Calculator Functions on Bitmap-
ped Computers,” SIGCHI Bulletin, Vol. 17,
No. 1, July 1985, pp. 23-28.
Johnson, J., “How Closely Should the Elec-
tronic Desktop Simulate the Real One?”
SIGCHI Bulletin, Vol. 19, No. 2, Oct. 1987, pp.
21-25.
Johnson, J., “Modes in Non-Computer De-
vices,” in press, Int’l J. Man-Machine Studies,
1989.
Johnson, J., and R. Beach, “Styles in Document
Editing Systems,” Computer, Vol. 21, No. 1,
Jan. 1988, pp. 32-43.
Malone, T.W., “How Do People Organize
Their Desks: Implications for the Design of
Office Information Systems,” ACM Trans. on
Office Information Systems, Vol. 1, No. 1, 1983,
pp. 99-l 12.
Rosenberg, J.K., and T.P. Moran, “Generic
Commands,” Proc. First Int’l Conf. on Human-
Computer Interaction (Interact-84), 1984, pp.
1,360-l ,364.

Jeff Johnson is a user-interface researcher at
Hewlett-Packard Labs. While working on this
article, he was a member of the Advanced User
Interfaces Group of US West Advanced Tech-
nologies. Before that, he worked at Xerox de-
signing and implementing enhancements to the
Star/ViewPoint system, and at Cromemco as a
software engineer and manager. He received BA
and PhD degrees in cognitive psychology from
Yale and Stanford universities, respectively.

Teresa L. Roberts is a user-interface researcher
in the Advanced User Interfaces Group at US
West Advanced Technologies. She spent 10
years at Xerox, designing and evaluating parts
of the Star user interface. She received a PhD in
computer science from Stanford University.

William Verplank is an interaction &sign con-
sultant with IDTwo and a lecturer in human fac-
tors and design at Stanford University. He

Teitelman, W., “A Tour Through Cedar,” worked at Xerox from 1978 to 1986, doing user
IEEE Software, April 1984. testing and user-interface design for Star and

ViewPoint. He received a BS in mechanical en-
Whiteside, J., et al., “User Performance with
Command, Menu, and Iconic Interfaces,”

gineering from Stanford University and MS and
PhD degrees in man-machine systems from

Proc. ACM SIGCHI ‘85, 1985, pp. 185-191. MIT.

28 COMPUTER

Keader~ ma! contact Jett Johnxm at He* tett-P;~cLard Lab\. t SO t Page
.Mlll Rd.. I ALI, Palo Alto. CA 03303.

September 1989

At GTE’s Computer and Intelligent Systems
Laboratory, we are creating opportunities to
apply new ideas to research and development
projects for improved information and telecom-
munication systems. By expanding our scope
and responsibility, we can better support GTE’s
telecommunications businesses. And our ac-
tivities create challenges for individuals at the
MSiPhD level in Computer Science. Join us as
we continue to make history in teIecommunica-
tions technology.
Our present areas of interest include:

Distributed Operating
Systems

We are currently growing a group that is conduct-
ing research in distributed operating systems and
distributed transaction systems. These systems
will unify a network of cooperating autonomous,
heterogeneous processors and replicated data-
bases. Issues concern not only the tradeoffs between
network and distributed operating systems, but
the interoperability of software components imple-
mented on a mix of platforms and languages; included
are such topics as transport, access, apphcation,
distributed control and control migration. Research
is conducted using synthesis and prototyping with
emphasis on architectural and applicability issues.
We are looking for individuals at all levels of ex-
perience, however, we require a PhD in Computer
Science along with a familiarity with the various
current approaches to the design of distributed
systems. Significant experience with at least one
such system is highly desirable.

Intelli
f?

ent Database
ystems

Our Distributed Object Management (DOM) pro-
ject is conducting research into interconnectivity
and intelligent interoperability among heterogeneous
computer systems. We require PhD-level re-
searchers at all levels with a minimum of 2 years’
experience in databases, operating systems,
distributed systems or artificial intelligence.

Software Reusability
Topics of interest in the area of software
reusability include domain analysis, object-oriented
development, reuse centered software pro-
cesses, tools support for reusability and software
classification. This area requires an MSiPhD in
Computer Science and a minimum of 2 years’
experience in at least one of the above areas.
GTE Laboratories offers attractive facili-
ties located in a quiet, wooded setting just
outside of Boston, as well as a highly
competitive salary and benefits package.
We invite you to send a resume to
Vanessa Stern, GTE Laboratories, Inc.,
Box CACMS, 40 Sylvan Road, Waltham,
MA 02254. An equal opportunity
emnlover. M/F/H/V. m Laboratories
THE POWER IS ON

