
Inheritance Using Contracts

� Object Composition

Wolfgang Weck

Turku Centre for Computer Science �TUCS� � �Abo Akademi� Turku� Finland

Abstract� Normal class�based code inheritance across component bound�
aries creates a dependency between the involved components� To avoid
this� a speci�cation of the inherited class must be part of the respective
component�s contract and the inheriting class must be speci�ed with ref�
erence to this speci�cation only� With this� inheritance can be replaced by
object composition without sacri�cing the possibility of static analysis�
yet being more 	exible�

� Introduction

One of the distinguishing properties of component�oriented programming is the
notion of late composition� This is to say� that component manufacturing and
component compostion are two separate steps� carried out one after the other�
During component manufacturing� other components are refered to by interfaces�
or contracts� only� Actual implementations are selected at composition time �����

Object�oriented programming is a foundation technology for components� A
typical component will specify a couple of classes or objects� To access services�
other components will obtain objects from the providing component and send
requests to them� In a running system� the hierarchy of components is comple�
mented by a mesh of objects� These objects and the references between them
are constructed� changed� and destructed at run time�

Object reuse and modi�cation is a key tool for component reuse� In this paper
we investigate language support for inheritance across component boundaries
under the aspect of late composition�

We do� however� not discuss the semantical problems of inheritance� such as
the fragile base class problem� We are interested solely in technical support of late
composition� The semantical problems of inheritance can be treated separately�
since our proposals apply also to various kinds of disciplined inheritance� In the
extreme� the compiler may restrict the power of inheritance to that of forwarding�

� Object Composition versus Class Composition

Two notions of classes and inheritance exist in the object�oriented programming
community� Many programming languages and their underlying models are class�
based �e�g� Ei	el� C

� Java� or Smalltalk�� Others� such as Cecil ��� or Self ���
are prototype�based�



Class�based approaches abstract from the many instances of objects by group�
ing them into classes� All the objects of one class have the same attributes� accept
the same messages� and exhibit the same behavior� Every new object is created
as an instance of some speci�ed class� and it will remain an object of this class
throughout its life time�

With prototype�based approaches� objects are created by cloning an existing
object� the prototype� and modifying the clone� Here� classes are sometimes seen
as a dynamic equivalence relation that can be infered at run time� By modifying
an object�s state� or structure� objects can be migrated from one class to another
at run time� This approach has the advantage of being more �exible� It allows
to change an object�s behaviour or to assign class membership via predicates on
the state ����

The �ip side of this �exibility is that static checking and reasoning becomes
almost impossible� It may not even be clear� which messages a given object
accepts� unless its complete history is examined� In a modular environment�
this makes static analysis very di�cult� Still� in a closed system� complete �ow
analysis may allow to make up for this ���� but in an extensible system this is
not possible anymore �����

With object�oriented programming� it is common to express composition
and reuse by means of inheritance� In short� some inheriting entity inherits from
one or several inherited entities by copying their implementation� Additionally�
the inheriting entity may specify some modi�cations of the copied material� In
principle� inheritance is equivalent to copying and modifying source code�

The above two views on object�orientation use inheritance between di	erent
kinds of entities� Class�based approaches support inheritance between classes�
whereas prototype�based approaches support inheritance between objects� The
latter is� for instance in Self ���� implemented through reference to a parent

object� to which the handling of unknown messages is delegated�

Class�based approaches �x the inheritance relations at compile time� Since
inheritance relates to implementation� class�based inheritance �xes the imple�
mentation to be inherited at compile time� i�e� before composition time in a
component�oriented context� This makes state�of�the�art class�based inheritance
unsuitable across components� because we want to delay the selection and bind�
ing of the base�class implementation until composition time�

We can conclude that� depending on the school you follow� you will get from
object�oriented programming either support of static analysis or the possibility
to compose implementations later than at compile time� but not both� A question
of interest is� whether a middle ground can be found� on which you get both static
analysis and late composition of implementations� Such a middle ground would
be necessary for component�oriented programming to allow for inheritance across
components�



� Contracts

On the component level� the above dilemma between static analysis and late com�
position is well known� There� the answer is the de�nition of contracts� which
specify the obligations component providers must meet and the expectations
component clients may have� For every component� it must be documented ac�
cording to which contracts it o	ers or requires services� Two components can
be composed� if one o	ers services that are requested by the other component
according to the same contract� Each component can be analysed separately�
based on the contracts it participates in� At composition time� one only needs to
check whether the two components actually claim to stick to the same contract�
If they don�t� the composition can be rejected�

In short� at compile time only speci�cations are bound� whereas implement�
ations are bound at composition time� The contract provides the necessary sep�
aration of the speci�cation from the implementation�

The practical e	ect of this separation is that static reasoning is still possible�
because the yet unknown partner can be substituted by the contract� Still� bind�
ings between implementations are established only at composition time� retaining
full �exibility of selecting components to the composer� Thus� with components�
we managed to eat the cake and have it too�

� Class Composition With Contracts

The same technique can be used with inheritance� Instead of refering to an
implementation� the inheriting class refers to a contract only� The contract states
what to expect from the inherited class� the inheriting class can be statically
analysed� We get the safety we want�

Only when an object is instantiated� the binding to a concrete base class
implementation must be established� Any class meeting the required contract can
be bound� Like with component composition� the contract can be used to check
at composition time� whether the speci�c composition is feasible� In addition to
safety� we get the late composition we want�

Note that it is because of the separation between speci�cation and imple�
mentation that the semantical problems of inheritance become so acute with
component�oriented programming� The inheriting class must simply be able
to cooperate with any base class that meets the speci�cation� In this paper�
however� we postulate speci�cations to be detailed enough and�or one of the
many approaches to disciplined inheritance to be in place�

Class inheritance with contracts is implemented in IBM�s SOM and in mod�
ular object�oriented programming languages� such as Modular Smalltalk ���� or
Oberon�� ���� an extended version of Oberon ����� These languages feature sep�
arate constructs for modules and classes� Modules are separately compilable�
similar to Modula��� It is possible to compile several modules implementing the
same interface� This allows for alternative implementations of the same speci�c�
ation�



In Oberon��� for instance� classes are implemented as record types� The latter
are extensible inside as well as outside the module in which they are de�ned�
Furthermore� procedures can be bound to such record types� Such type�bound
procedures resemble methods� In an extending type� they can be rede�ned� oth�
erwise they are inherited from the base type�

Exported record types resemble contracts for classes� because module inter�
faces contain only link information to be exploited at binding time� To avoid con�
fusion� note that the contract syntactically consists only of signatures� However�
we postulate some semantics being attached� e�g� as a comment� i�e� we use types
in the spirit of behavioural types ���� This semantics speci�cation just happens
not to be checked by the compiler�

New classes can be speci�ed� programmed� and compiled refering to a base
type� This happens whenever a record type is extended in a separate module� be�
cause compilation relies on the imported module�s interface� The implementation
is bound at load time only and therefore needs not to be selected earlier�

With modular object�oriented programming� only one component �module�
per contract can be used in a running system� As a consequence� all classes
meeting a given contract have the same implementation� It is just that this
implementation is selected very late�

Still� this has been used e	ectively for system refactoring� done one module
at a time� as long as the module�s interface had not to be changed� In some cases
of modules implementing device drivers� alternate implementations of a single
contract were provided to allow adoption to di	erent hardware� �These modules
seldomly actually de�ne classes� but they could do so��

� Can We Go Further�

Can we get rid of the aforementioned restriction and support di	erent imple�
mentations of a contract simultaneously� One could allow several modules im�
plementing the same interface to coexist in a running system� This would collide
with some assumptions being generally made about modules� Also� we would
need to �nd a way to refer to the di	erent module implementations� Currently�
identi�cations are made by refering to the module name� i�e�� the contract� which
is implemented by exactly one module�

Another� probably better� approach could be based on separating subclassing
from subtyping� as for instance done in Sather ����� Types would be employed
as contracts whereas classes would be bound as implementations later� At com�
ponent manufacturing time� subclasses would be speci�ed by refering to a type
instead of to a class� �Sather does not support this to avoid the semantical prob�
lems of inheritance� It rather de�nes class inheritance to be exactly equivalent to
textual inclusion and application of text editing operators� Obviously� this binds
an implementation at compile time��

With this� the base classes to be used with an object would need to be
speci�ed at object allocation time� the allocation procedure would need to accept
the respective additional parameters�



To make this useful� we would have to turn classes into �rst order objects�
Otherwise� the programmer of a component that contains a creation statement
would have to wire in which implementation to use� This would again create a de�
pendency between components� this time between those containing the creation
statement and implementing the base class�

� Object Composition With Contracts

This can be taken one step further by composing objects instead of classes� one
can specify a base object instead of a base class when allocating an object�

If a contract is used to specify statically the properties required from the
parent object� and if the parent object is bound for ever when the refering object
is created� static analysis is possible to exactly the same degree as before� i�e�
as with class�based inheritance with contracts� Though each object may be of a
class of its own now� the same information as before is available from the object
itself and the contract specifying the parent�

To retain the full amount of static information as with class inheritance�
we must prohibit to re�assign the parent or base object� Otherwise� unexpected
changes of state and�or behaviour of the composed object could occur�

This construction is indeed on a middle ground between static class in�
heritance and full dynamic inheritance as used with prototype�based object�
orientation� Compared to the former� we gain �exibility� even more than with
class composition based on contracts� Compared to prototype�based object�
orientation� we get more static information because of two restrictions� First�
only objects satisfying the required speci�cation can be used as a parent� Second�
the parent� once assigned� cannot be changed anymore�

Still� we get much of the �exibility of prototype�based object�orientation�
For instance� the user can interactively specify a parent object to be wrapped�
An example are wrappers for editors that add some functionality� The user can
compose these graphically� For instance� a normal text editor can be extended
to send noti�cations about text changes to other users� Note that this wrapper
would work with any text editor that implements the required contract� Other
applications of such wrappers can be found within the BlackBox component
framework �����

We take it as strong support of our proposal that it implements the formal
model used by Cook and Palsberg to describe inheritance ��� There� inheriting
classes are speci�ed as wrappers that only refer to the base class� signature� A
concrete base class is bound at instantiation time only�

An implementation inbetween our proposal and Self was proposed as �Del�
egation Through a Pointer� to be added to C

 ����� Compared to Self� the
pointer to the parent object is typed� Viewing types as approximations for spe�
ci�cations again� we see that one of our two restrictions applies� The parent has
to meet a certain speci�cation� In contrast to our�s� Stroustrup�s proposal would
still allow to re�assign the parent object�



An implementation that �xes the parent object can be found in Modula��
���� Its allocation procedure allows to specify a list of methods to be bound to
the new object� However� the base object�s class �i�e� its implementation� is �xed
statically by the type of the variable passed to NEW� Thus� Modula�� does not
allow a dynamic selection of the parent object at run time� In this sense� it is
less �exible than our construction�

In the rest of this section we sketch a simple implementation for proof of
concept� More e�cient implementations may be possible� in particular to short�
cut in deeply nested compositions� One way to approach this problem can be
found in Microsoft�s COM aggregation�

The wrapping �inheriting� object can refer to the parent �inherited� object�
Method calls� not handled by the wrapper� are forwarded to the parent� Cecil ���
translates an inheritance�like syntax to such object composition� To achieve the
same kind of self�recursiveness as with inheritance� this scheme can be enhanced
to delegation by passing an extra self parameter as shown in ���� ���� shows that
delegation is as powerful as inheritance� With our proposal� the extra parameter
needs not to be visible to the programmer� The compiler would generate what
elsewhere the programmer would need to do explicitly�

A contract may specify how to access instance variables of a base class�
The compiler would translate such access to superclass variables to dereferential
access of the parent object�s variables� Further� the compiler could easily enforce
certain restrictions� e�g� granting access to subclasses but not to clients�

The bene�t of compiling inheritance into delegation is that objects can be
composed instead of classes without losing the possibility of static analysis� For
the latter� the compiler asserts that the reference to the parent object cannot be
changed after creation�

It would further be possible� that the compiler enforces some kind of restric�
ted inheritance to avoid the semantic problems caused by inheriting an invisible
implementation �see above�� In the extreme� the run time data structure could
support plain forwarding only� but the programmer can still use the more con�
venient inheritance notation� Such an approach is also attractive for a program�
ming language to be compiled to Microsoft COM�s aggregation�

� Summary

To be applicable as a foundation technology for component�oriented program�
ming� object�oriented programming with inheritance must support a middle
ground between class�based and prototype�based object�orientation� Traditional
class�based object�orientation is not �exible enough� unless class speci�cations
rather than implementations are bound at component manufacturing time� On
the other hand� prototype�based object�orientation is too �exible� thereby pro�
hibiting e	ective static analysis�

As the above middle ground we suggest syntactical support for inheritance
but using only a speci�cation of the base class together with an implementation
as object composition �under the hood�� The compiler would have to hide the



details of the latter to assert that the objects are not composed arbitrarily� In
particular� the parent object must match the speci�cation� Also� the compiler
would have to prohibit that the parent object is re�assigned� once the composed
object has been created�

This scheme allows for full static analysis� limited only by the amount of
information stated with the speci�cation of the inherited object� It gives the
best possible �exibility� since the selection of the inherited code is delayed not
only until component composition time� but until object generation time� The
latter allows even the user to pick the code to be bound �see Fig� ���

Our proposal allows both to compose objects using delegation� somehow re�
stricted delegation� or plain forwarding� Delegation has the same power as class�
inheritance� Depending on the future solutions to the semantical problems of
inheritance and encapsulation� restrictions up to plain forwarding may become
appropriate� Our suggestion can be adopted as needed�

Support of
Static Analysis

Flexibility

full implementation can be analyzed

analysis based only on interfaces
implementing object may change at run time

interface can change at run time

1 2 3 4 5
1: bind when compiling
2: bind according to specification when loading modules
3: bind according to specification when creating objects (aggregates)
4: bind according to contract and rebind any time
5: bind anything any time

Fig� �� Static Analysis versus Flexibility

References


� Agesen� O�� Palsberg� J�� Schwartzbach� M�I�� Type Inference of SELF� Analysis
of Objects with Dynamic and Multiple Inheritance� In O�M�Nierstrasz �ed��� Proc�
ECOOP��� LNCS ���� Springer�Verlag Berlin� ISBN �������
����� pp� ��������

�� Brockschmidt� K�� Inside OLE �� Microsoft Press� ISBN 
����
���
���� 
����



� Cardelli� L�� Donahue� J�� Glassman� L�� Jordan� M�� Kalsow� B�� Nelson� G�� Modula�
 Report �revised�� SRC Report ��� Digital Systems Research Center� Palo Alto�
California� 
����

�� Chambers� C�� Predicate Classes� In O�M�Nierstrasz �ed��� Proc� ECOOP��� LNCS
���� Springer�Verlag Berlin� ISBN �������
����� pp� ��������

�� Chambers� C�� The Cecil Language� Speci�cation and Rationale� Version ��
� De�
partment of Computer Science
and Engineering University of Washington� Seattle as available at April ��� 
���
from http���www�cs�washington�edu�research�projects�cecil�www�Papers
�cecil�spec�html�

�� Cook� W�� Palsberg� J�� A Denotational Semantics of Inheritance and its Correctness�
In Norman K� Meyrowitz �ed��� Proc� OOPSLA���� SIGPLAN Notices ���
��

�� Johnson� R�E�� Zweig� J�M�� Delegation in C��� Journal of Object�Oriented Pro�
gramming ��� November 
��
�

�� Liskov� B�� Wing� J�M�� A New De�nition of the Subtype Relation� In O�M�Nierstrasz
�ed��� Proc� ECOOP��� LNCS ���� Springer�Verlag Berlin� ISBN �������
����� pp�


��
�
� 
���

�� M�ossenb�ock� H�� The Programming Language Oberon��� Structured Programming

���� 
��
�


�� The Oberon�F User�s Guide� Oberon microsystems� Inc�� Basel� CH�
�http���www�oberon�ch�customers�omi�� 
����



� Szyperski� C�� Omohundro� S�� Murer� S�� Engineering a Programming Language�
The Type and Class System of Sather� In Proc� International Conference on Pro�
gramming Languages and System Architectures� LNCS ���� March 
����


�� Szyperski� C�A�� P�ster� C�� Proc� �rst international Workshop on Component�
Oriented Programming �WCOP����� In M� M�uhlh�auser �ed��� Special Issues in
Object�Oriented Programming� dpunkt Verlag Heidelberg� ISBN ������������

����


� Stein� L�A�� Delegation is Inheritance� In Proc� OOPSLA���� October 
����

�� Stroustrup� B�� Multiple Inheritance for C��� In Proc� EUUG Spring Conference�

May 
����

�� Szyperski� C�� Independently Extensible Systems � Software Engineering Potential

and Challenges� In Proc� 
�th Australasian Computer Science Conference� Mel�
bourne� Australia� 
����


�� Ungar� D�� Chamber� C�� Chang� B��W�� H�olzle� U�� Organizing Programs Without
Classes� In Lisp and Symbolic Computation� July 
��
 ��� Kluwer Academic Pub�
lishers� pp� ������� 
��
�


�� Wirth� N�� Gutknecht� J�� Project Oberon� The Design of an Operating System
and Compiler� Addison�Wesley New York� ISBN ����
��������� 
����


�� Wirth� N�� The Programming Language Oberon� Software � Practice and Experi�
ence 
���� pp� ��
����� July 
����


�� Wirfs�Brock� A�� Wilkerson� B�� An Overview of Modular Smalltalk� In
N�K�Meyrowitz �ed��� Proc� OOPSLA���� SIGPLAN Notices ��

� 
����


