Inheritance Using Contracts
& Object Composition

Wolfgang Weck

Turku Centre for Computer Science (TUCS) & Abo Akademi, Turku, Finland

Abstract. Normal class-based code inheritance across component bound-
aries creates a dependency between the involved components. To avoid
this, a specification of the inherited class must be part of the respective
component’s contract and the inheriting class must be specified with ref-
erence to this specification only. With this, inheritance can be replaced by
object composition without sacrificing the possibility of static analysis,
yet being more flexible.

1 Introduction

One of the distinguishing properties of component-oriented programming is the
notion of late composition. This is to say, that component manufacturing and
component compostion are two separate steps, carried out one after the other.
During component manufacturing, other components are refered to by interfaces,
or contracts, only. Actual implementations are selected at composition time [12].

Object-oriented programming is a foundation technology for components. A
typical component will specify a couple of classes or objects. To access services,
other components will obtain objects from the providing component and send
requests to them. In a running system, the hierarchy of components is comple-
mented by a mesh of objects. These objects and the references between them
are constructed, changed, and destructed at run time.

Object reuse and modification is a key tool for component reuse. In this paper
we investigate language support for inheritance across component boundaries
under the aspect of late composition.

We do, however, not discuss the semantical problems of inheritance, such as
the fragile base class problem. We are interested solely in technical support of late
composition. The semantical problems of inheritance can be treated separately,
since our proposals apply also to various kinds of disciplined inheritance. In the
extreme, the compiler may restrict the power of inheritance to that of forwarding.

2 Object Composition versus Class Composition

Two notions of classes and inheritance exist in the object-oriented programming
community. Many programming languages and their underlying models are class-
based (e.g. Eiffel, C++, Java, or Smalltalk). Others, such as Cecil [5] or Self [16]
are prototype-based.



Class-based approaches abstract from the many instances of objects by group-
ing them into classes. All the objects of one class have the same attributes, accept
the same messages, and exhibit the same behavior. Every new object is created
as an instance of some specified class, and it will remain an object of this class
throughout its life time.

With prototype-based approaches, objects are created by cloning an existing
object, the prototype, and modifying the clone. Here, classes are sometimes seen
as a dynamic equivalence relation that can be infered at run time. By modifying
an object’s state, or structure, objects can be migrated from one class to another
at run time. This approach has the advantage of being more flexible. It allows
to change an object’s behaviour or to assign class membership via predicates on
the state [4].

The flip side of this flexibility is that static checking and reasoning becomes
almost impossible. It may not even be clear, which messages a given object
accepts, unless its complete history is examined. In a modular environment,
this makes static analysis very difficult. Still, in a closed system, complete flow
analysis may allow to make up for this [1], but in an extensible system this is
not possible anymore [15].

With object-oriented programming, it is common to express composition
and reuse by means of inheritance. In short, some inheriting entity inherits from
one or several inherited entities by copying their implementation. Additionally,
the inheriting entity may specify some modifications of the copied material. In
principle, inheritance is equivalent to copying and modifying source code.

The above two views on object-orientation use inheritance between different
kinds of entities. Class-based approaches support inheritance between classes,
whereas prototype-based approaches support inheritance between objects. The
latter is, for instance in Self [16], implemented through reference to a parent
object, to which the handling of unknown messages is delegated.

Class-based approaches fix the inheritance relations at compile time. Since
inheritance relates to implementation, class-based inheritance fixes the imple-
mentation to be inherited at compile time, i.e. before composition time in a
component-oriented context. This makes state-of-the-art class-based inheritance
unsuitable across components, because we want to delay the selection and bind-
ing of the base-class implementation until composition time.

We can conclude that, depending on the school you follow, you will get from
object-oriented programming either support of static analysis or the possibility
to compose implementations later than at compile time, but not both. A question
of interest is, whether a middle ground can be found, on which you get both static
analysis and late composition of implementations. Such a middle ground would
be necessary for component-oriented programming to allow for inheritance across
components.



3 Contracts

On the component level, the above dilemma between static analysis and late com-
position is well known. There, the answer is the definition of contracts, which
specify the obligations component providers must meet and the expectations
component clients may have. For every component, it must be documented ac-
cording to which contracts it offers or requires services. Two components can
be composed, if one offers services that are requested by the other component
according to the same contract. Each component can be analysed separately,
based on the contracts it participates in. At composition time, one only needs to
check whether the two components actually claim to stick to the same contract.
If they don’t, the composition can be rejected.

In short: at compile time only specifications are bound, whereas implement-
ations are bound at composition time. The contract provides the necessary sep-
aration of the specification from the implementation.

The practical effect of this separation is that static reasoning is still possible,
because the yet unknown partner can be substituted by the contract. Still, bind-
ings between implementations are established only at composition time, retaining
full flexibility of selecting components to the composer. Thus, with components,
we managed to eat the cake and have it too.

4 Class Composition With Contracts

The same technique can be used with inheritance. Instead of refering to an
implementation, the inheriting class refers to a contract only. The contract states
what to expect from the inherited class; the inheriting class can be statically
analysed. We get the safety we want.

Only when an object is instantiated, the binding to a concrete base class
implementation must be established. Any class meeting the required contract can
be bound. Like with component composition, the contract can be used to check
at composition time, whether the specific composition is feasible. In addition to
safety, we get the late composition we want.

Note that it is because of the separation between specification and imple-
mentation that the semantical problems of inheritance become so acute with
component-oriented programming. The inheriting class must simply be able
to cooperate with any base class that meets the specification. In this paper,
however, we postulate specifications to be detailed enough and/or one of the
many approaches to disciplined inheritance to be in place.

Class inheritance with contracts is implemented in IBM’s SOM and in mod-
ular object-oriented programming languages, such as Modular Smalltalk [19] or
Oberon-2 [9], an extended version of Oberon [18]. These languages feature sep-
arate constructs for modules and classes. Modules are separately compilable,
similar to Modula-2. It is possible to compile several modules implementing the
same interface. This allows for alternative implementations of the same specific-
ation.



In Oberon-2, for instance, classes are implemented as record types. The latter
are extensible inside as well as outside the module in which they are defined.
Furthermore, procedures can be bound to such record types. Such type-bound
procedures resemble methods. In an extending type, they can be redefined, oth-
erwise they are inherited from the base type.

Exported record types resemble contracts for classes, because module inter-
faces contain only link information to be exploited at binding time. To avoid con-
fusion, note that the contract syntactically consists only of signatures. However,
we postulate some semantics being attached, e.g. as a comment, i.e. we use types
in the spirit of behavioural types [8]. This semantics specification just happens
not to be checked by the compiler.

New classes can be specified, programmed, and compiled refering to a base
type. This happens whenever a record type is extended in a separate module, be-
cause compilation relies on the imported module’s interface. The implementation
is bound at load time only and therefore needs not to be selected earlier.

With modular object-oriented programming, only one component (module)
per contract can be used in a running system. As a consequence, all classes
meeting a given contract have the same implementation. It is just that this
implementation is selected very late.

Still, this has been used effectively for system refactoring, done one module
at a time, as long as the module’s interface had not to be changed. In some cases
of modules implementing device drivers, alternate implementations of a single
contract were provided to allow adoption to different hardware. (These modules
seldomly actually define classes, but they could do so.)

5 Can We Go Further?

Can we get rid of the aforementioned restriction and support different imple-
mentations of a contract simultaneously? One could allow several modules im-
plementing the same interface to coexist in a running system. This would collide
with some assumptions being generally made about modules. Also, we would
need to find a way to refer to the different module implementations. Currently,
identifications are made by refering to the module name, i.e., the contract, which
is implemented by exactly one module.

Another, probably better, approach could be based on separating subclassing
from subtyping, as for instance done in Sather [11]. Types would be employed
as contracts whereas classes would be bound as implementations later. At com-
ponent manufacturing time, subclasses would be specified by refering to a type
instead of to a class. (Sather does not support this to avoid the semantical prob-
lems of inheritance. It rather defines class inheritance to be exactly equivalent to
textual inclusion and application of text editing operators. Obviously, this binds
an implementation at compile time.)

With this, the base classes to be used with an object would need to be
specified at object allocation time; the allocation procedure would need to accept
the respective additional parameters.



To make this useful, we would have to turn classes into first order objects.
Otherwise, the programmer of a component that contains a creation statement
would have to wire in which implementation to use. This would again create a de-
pendency between components, this time between those containing the creation
statement and implementing the base class.

6 Object Composition With Contracts

This can be taken one step further by composing objects instead of classes: one
can specify a base object instead of a base class when allocating an object.

If a contract is used to specify statically the properties required from the
parent object, and if the parent object is bound for ever when the refering object
is created, static analysis is possible to exactly the same degree as before, i.e.
as with class-based inheritance with contracts. Though each object may be of a
class of its own now, the same information as before is available from the object
itself and the contract specifying the parent.

To retain the full amount of static information as with class inheritance,
we must prohibit to re-assign the parent or base object. Otherwise, unexpected
changes of state and/or behaviour of the composed object could occur.

This construction is indeed on a middle ground between static class in-
heritance and full dynamic inheritance as used with prototype-based object-
orientation. Compared to the former, we gain flexibility, even more than with
class composition based on contracts. Compared to prototype-based object-
orientation, we get more static information because of two restrictions. First,
only objects satisfying the required specification can be used as a parent. Second,
the parent, once assigned, cannot be changed anymore.

Still, we get much of the flexibility of prototype-based object-orientation.
For instance, the user can interactively specify a parent object to be wrapped.
An example are wrappers for editors that add some functionality. The user can
compose these graphically. For instance, a normal text editor can be extended
to send notifications about text changes to other users. Note that this wrapper
would work with any text editor that implements the required contract. Other
applications of such wrappers can be found within the BlackBox component
framework [10].

We take it as strong support of our proposal that it implements the formal
model used by Cook and Palsberg to describe inheritance [6]. There, inheriting
classes are specified as wrappers that only refer to the base class’ signature. A
concrete base class is bound at instantiation time only.

An implementation inbetween our proposal and Self was proposed as ”Del-
egation Through a Pointer” to be added to C++ [14]. Compared to Self, the
pointer to the parent object is typed. Viewing types as approximations for spe-
cifications again, we see that one of our two restrictions applies. The parent has
to meet a certain specification. In contrast to our’s, Stroustrup’s proposal would
still allow to re-assign the parent object.



An implementation that fixes the parent object can be found in Modula-3
[3]. Its allocation procedure allows to specify a list of methods to be bound to
the new object. However, the base object’s class (i.e. its implementation) is fixed
statically by the type of the variable passed to NEW. Thus, Modula-3 does not
allow a dynamic selection of the parent object at run time. In this sense, it is
less flexible than our construction.

In the rest of this section we sketch a simple implementation for proof of
concept. More efficient implementations may be possible, in particular to short-
cut in deeply nested compositions. One way to approach this problem can be
found in Microsoft’s COM aggregation.

The wrapping (inheriting) object can refer to the parent (inherited) object.
Method calls, not handled by the wrapper, are forwarded to the parent. Cecil [5]
translates an inheritance-like syntax to such object composition. To achieve the
same kind of self-recursiveness as with inheritance, this scheme can be enhanced
to delegation by passing an extra self parameter as shown in [7]. [13] shows that
delegation is as powerful as inheritance. With our proposal, the extra parameter
needs not to be visible to the programmer. The compiler would generate what
elsewhere the programmer would need to do explicitly.

A contract may specify how to access instance variables of a base class.
The compiler would translate such access to superclass variables to dereferential
access of the parent object’s variables. Further, the compiler could easily enforce
certain restrictions, e.g. granting access to subclasses but not to clients.

The benefit of compiling inheritance into delegation is that objects can be
composed instead of classes without losing the possibility of static analysis. For
the latter, the compiler asserts that the reference to the parent object cannot be
changed after creation.

It would further be possible, that the compiler enforces some kind of restric-
ted inheritance to avoid the semantic problems caused by inheriting an invisible
implementation (see above). In the extreme, the run time data structure could
support plain forwarding only, but the programmer can still use the more con-
venient inheritance notation. Such an approach is also attractive for a program-
ming language to be compiled to Microsoft COM’s aggregation.

7 Summary

To be applicable as a foundation technology for component-oriented program-
ming, object-oriented programming with inheritance must support a middle
ground between class-based and prototype-based object-orientation. Traditional
class-based object-orientation is not flexible enough, unless class specifications
rather than implementations are bound at component manufacturing time. On
the other hand, prototype-based object-orientation is too flexible, thereby pro-
hibiting effective static analysis.

As the above middle ground we suggest syntactical support for inheritance
but using only a specification of the base class together with an implementation
as object composition "under the hood”. The compiler would have to hide the



details of the latter to assert that the objects are not composed arbitrarily. In
particular, the parent object must match the specification. Also, the compiler
would have to prohibit that the parent object is re-assigned, once the composed
object has been created.

This scheme allows for full static analysis, limited only by the amount of
information stated with the specification of the inherited object. It gives the
best possible flexibility, since the selection of the inherited code is delayed not
only until component composition time, but until object generation time. The
latter allows even the user to pick the code to be bound (see Fig. 1).

Our proposal allows both to compose objects using delegation, somehow re-
stricted delegation, or plain forwarding. Delegation has the same power as class-
inheritance. Depending on the future solutions to the semantical problems of
inheritance and encapsulation, restrictions up to plain forwarding may become
appropriate. Our suggestion can be adopted as needed.

Support of
Static Analysis

A

full implementation can be analyzed L yw¢

) _analysis based only oninterfaces__{__ X X
implementing object may change at run time
— X

interface can change at runtime_]__ X

I I I I I - Flexibility
1 2 3 4 5

1: bind when compiling

2: bind according to specification when loading modules

3: bind according to specification when creating objects (aggregates)
4: bind according to contract and rebind any time

5: bind anything any time

Fig. 1. Static Analysis versus Flexibility

References

1. Agesen, O., Palsberg, J., Schwartzbach, M.I.: Type Inference of SELF: Analysis
of Objects with Dynamic and Multiple Inheritance. In O.M.Nierstrasz (ed.), Proc.
ECOOP’93, LNCS 707, Springer-Verlag Berlin, ISBN 3-540-57120-5, pp. 247-267.

2. Brockschmidt, K.: Inside OLE 2. Microsoft Press, ISBN 1-55615-618-9, 1994.



3. Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B., Nelson, G.: Modula-
3 Report (revised). SRC Report 52, Digital Systems Research Center, Palo Alto,
California, 1989.

4. Chambers, C.: Predicate Classes. In O.M.Nierstrasz (ed.), Proc. ECOOP’93, LNCS
707, Springer-Verlag Berlin, ISBN 3-540-57120-5, pp. 268-296.

5. Chambers, C.: The Cecil Language, Specification and Rationale, Version 2.1. De-
partment of Computer Science
and Engineering University of Washington, Seattle as available at April 25, 1997
from http://www.cs.washington.edu/research/projects/cecil/www /Papers
/cecil-spec.html.

6. Cook, W., Palsberg, J.: A Denotational Semantics of Inheritance and its Correctness.
In Norman K. Meyrowitz (ed.), Proc. OOPSLA’89, SIGPLAN Notices 24:10.

7. Johnson, R.E., Zweig, J.M.: Delegation in C++. Journal of Object-Oriented Pro-
gramming 4:3, November 1991.

8. Liskov, B., Wing, J.M.: A New Definition of the Subtype Relation. In O.M.Nierstrasz
(ed.), Proc. ECOOP’93, LNCS 707, Springer-Verlag Berlin, ISBN 3-540-57120-5, pp.
118-141, 1993.

9. Mossenbock, H.: The Programming Language Oberon-2. Structured Programming
12:4, 1991.

10. The Oberon/F User’s Guide. Oberon microsystems, Inc., Basel, CH,
(http://www.oberon.ch/customers/omi), 1994.

11. Szyperski, C., Omohundro, S., Murer, S.: Engineering a Programming Language:
The Type and Class System of Sather. In Proc. International Conference on Pro-
gramming Languages and System Architectures, LNCS 782, March 1994.

12. Szyperski, C.A., Pfister, C.: Proc. first international Workshop on Component-
Oriented Programming (WCOP’96). In M. Miihlhduser (ed.), Special Issues in
Object-Oriented Programming, dpunkt Verlag Heidelberg, ISBN 3-920993-67-5,
1997.

13. Stein, L.A.: Delegation is Inheritance. In Proc. OOPSLA’87, October 1987.

14. Stroustrup, B.: Multiple Inheritance for C++. In Proc. EUUG Spring Conference,
May 1987.

15. Szyperski, C.: Independently Extensible Systems - Software Engineering Potential
and Challenges. In Proc. 19th Australasian Computer Science Conference, Mel-
bourne, Australia, 1996.

16. Ungar, D., Chamber, C., Chang, B.-W., Hélzle, U.: Organizing Programs Without
Classes. In Lisp and Symbolic Computation, July 1991 4:3, Kluwer Academic Pub-
lishers, pp. 223-242, 1991.

17. Wirth, N.; Gutknecht, J.: Project Oberon. The Design of an Operating System
and Compiler. Addison-Wesley New York, ISBN 0-201-54428-8, 1992.

18. Wirth, N.: The Programming Language Oberon. Software - Practice and Experi-
ence 18:7, pp. 671-690, July 1988.

19. Wirfs-Brock, A., Wilkerson, B.: An Overview of Modular Smalltalk. In
N.K.Meyrowitz (ed.), Proc. OOPSLA’88, SIGPLAN Notices 23:11, 1988.



