
Applying Object-Oriented Metrics to Ada 95
:LOOLDP :� 3ULWFKHWW ,9

&$&,� ,QF��)('(5$/

���� 3HQGHU 'ULYH

)DLUID[� 9D �����
ESULWFKHWW#VWG�FDFL�FRP

"I often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it;
but when you cannot measure it, your knowledge is of a meagre
and unsatisfactory kind"

Lord Kelvin
Abstract

Ada 95 adds many new and notable features to the Ada 83 standard. The additions
include such aspects as object-oriented programming, hierarchical libraries, and
protected objects. The enhancements to the language may have a profound impact
on the way developers design software in Ada. Consequently, the way in which the
new software designs are assessed needs to be addressed. Recent studies
suggest traditional functionally-oriented metrics are not applicable to
object-oriented software. As a result, new measures are being proposed that may
be applicable to object-oriented design. Some of these metrics have been validated
on small to medium sized projects written in C++ and Smalltalk. This paper
demonstrates how to apply these metrics to Ada 95.

INTRODUCTION
In February 1995, Ada 95, the revision to the Ada programming language, became the first
internationally standardized object-oriented programming language. The new standard, officially
ISO/IEC 8652:1995 adds many new and important features to the language [ISO 95]. The most
notable of the new features include support for objectoriented programming, hierarchical library
units, and protected objects.
Support for object-oriented programming is probably the single most important feature added to
Ada. Ada 95 includes object-oriented facilities giving it the ability to implement programming by
extension (inheritance) and dynamic binding (polymorphism).
The insertion of any new technology into a software process has an impact not only on the process,
but on the products produced. This presents a challenge to organizations using established metrics
to monitor, control, and improve the way they develop and maintain software [Basili 95]. New
metrics may be needed L�� order to effectively assess the specifics of the new technology. These
metrics must be empirically validated in order to be used credibly in practice.

$&0 $GD /HWWHUV� 6HSO2FW ���� 3DJH �� YROXPH ;9, 1XPEHU �

62)7:$5(0(75,&6

Software metrics are necessary for any organization serious about assessing and improving its
development process as well as the quality of its products. There are two fundamental reasons to
measure software: to predict and to assess. Managers need to predict how long a project will take
or how much money the project will require. Developers need to assess the "ilities" of the system
such as reliability, maintainability, reusability, etc. These attributes cannot be evaluated without
first being measured.
A measure, in general, is the assignment of a number to an entity for the purpose of
characterizing a specific attribute of the entity. In software, that are three categories of entities in
which all measurable attributes fall: processes, products, and resources. The measures described
in this paper fall into the category of product metrics, that is, metric,, that measure an attribute of
a specific software artifact like a design or code.
Before moving on, a general word of caution regarding metrics is in order. While developing
software, it is very easy to "go overboard" with software measures. Many software attributes are
easy to measure and readily obtainable. The problem is, once collected, what next? Metrics are
only useful if they serve a specific goal such as improving the quality of your software or
reducing the time it takes to deliver a product. Metrics collected for metrics' sake serves no
useful purpose. Thorough descriptions of how metrics should be derived, collected, and
validated have been done by Basili et. al. [Basili n.d, 95][Briand 94] and Fenton[Fenton 94a,
94b].

2%-(&7�25,(17(' 0(75,&6

The topic of object-oriented metrics is relatively new. Although many metrics have been proposed,
few have been based on sound measurement theory or, further, have beer empirically validated.
One of the first attempts to do this was by Chidamber and Kernerer (C&K). They have proposed
six new 00 metrics based largely on theoretical concepts Chid 94]. These metrics are:

• weighted methods per class

• depth of inheritance

• number of children

• coupling between object classes

• response for a class

• lack of cohesion between methods.

$&0 $GD /HWWHUV� 6HSO2FW ���� 3DJH �� 9ROXPH ;9,� 1XPEHU �

Their metrics have been criticized, however, for being too ambiguous for practical
applications and for not being language independent [Churcher 95].
Basili, Briand and Melo have assessed the C&K metrics in the context of being predictors of
fault-prone classes (classes more likey to have problems) in medium-sized C.++ applications
[Basili 95]. They discovered that the majority of metrics under study can be used to predict
fault-prone C++ classes. This study, although performed following rigorous software
experimentation principles, used the classroom setting as the environment. This approach has been
criticized for not being scaleable to "real world" situations since most students are not software
professionals and most of the applications are too small to be of any interest. This study does,
however, provide the basis for further research in a more industrial setting.
Li, et. al. have also empirically evaluated C&K's metrics on C++ projects as being predictors of
maintenance effort [Li 95]. In addition, Li, et. al. proposed new metrics that were used in their
study including:

• message passing coupling,

• data abstraction coupling, and

• number of methods.

where message passing coupling and data abstraction coupling refine C&K's coupling between
objects metric. They found a significant correlation between many of the metrics and the number
of lines changed per class during maintenance.
The metrics proposed by C&K and Li, et. al. seem to offer the greatest potential as being valid
metrics for object-oriented design. The metrics have been properly derived and arse well on their
way to being empirically validated. Most of their metrics are also applicable to Ada 95 software
developed using an object-oriented methodology. To summarize, the relevant metrics are:

• weighted methods per class,

• depth of inheritance tree,

• number of children,

• response for a class,

• message passing coupling,

• data abstraction coupling, and

• number of methods.
The definition of each of the proposed metrics, with examples in Ada 95, are given below.

Metrics Definition

To better define and demonstrate how these metrics are calculated using Ada 95, an example is
used. The three listings of source code: Location, Point, and Circle are Ada 95 versions of the
classes used by Li, et. al. [Li 95] to demonstrate the metrics using C++.

ACM Ada Letters, SeplOct 1996 Page 50 Volume XVl, Number 5

Note that the majority of the 00 metrics presented are based on the notion of a class. While there is
no single construct for a class in Ada 95, Ada 95 packages can be constructed to provide the
analogous behavior as shown in the code below:

package Class is type Instance' is tagged private; -- Type for instance
variables -- of the class -- public methods procedure P1(The Class : in
Instance);

private
type Instance is tagged
record

Attribute' : This_Type;
Attribute2 : That_Type; end

record; end Class;

All mention of the term class will refer to this type of package organization. Also note that the
names of the metrics for Ada 95 may differ from the names originally proposed to accommodate
accepted Ada terminology.

Listing 1 - Class Location
--

-- Class Location
--
package Location is type Instance is

tagged private;
procedure Initialize(The_Location : in out Instance;

Init X : in Integer;
 Init Y : in Integer);
function X Coordinate of(The_Location : in Instance) return Integer;
function Y_Coordinate_of(The_Location : in Instance) return Integer;

private

type Instance is tagged
record

X : Integer := 0;
Y : Integer := 0; end

record; end Location;

--I Body of Location
package body Location is

procedure Initialize(The_Location : in out Instance;
 Init_X : in Integer;
 Init_Y : in Integer) is
begin
The Location.X :- Init_X;
The_Location.Y := Init_Y;
end Initialize;

function X Coordinate of(The Location : in Instance) return Integer is

' By convention, the term Instance will be used to denote all instance variables of a class. This was proposed by

Rosen [95], but is by no means universally excepted.

$&0 $GD /HWWHUV� 6HSO2FW ���� 3DJH �� 9ROXPH ;9,� 1XPEHU �

begin return
The_Location.X; end
X_Coordinate_ Of;

 function Y Coordinate Of(The_ Location : in Instance) return Integer is
 begin
 return The_Location.Y;
 end Y_Coordinate_ Of;
end Location;

Listing 2 - Class Point

-- class Point

package Location.Point is type Instance is new

Location.Instance with private;
procedure Initialize(The_Point : in out Instance;

Init X : in Integer;
Init Y : in Integer);

procedure Show (The_Point : in out Instance);
procedure Hide (The-Point : in out Instance);
procedure Drag (The_Point : in out Instance;

By : in Integer);
function Is Visible (The_Point : Instance) return Boolean;
procedure Move (The_Point : in out Instance;

New -X : in Integer;
New -Y : in Integer);

private
type Instance is new Location.Instance with
record
visible : Boolean := False; end

record; end Location.Point;
--I Body of Point
with Graphics; package body
Location.Point is

procedure Initialize(The_Point : in out Instance;
Init X : in Integer;
Init Y : in Integer) is

begin
Initialize(Location.Instance(The-Point), Init X, Init Y);
The_Point.Visible := False;

end initialize;

procedure Show (The_Point : in out Instance) is begin

The_Point.Visible := True;
Graphics.Put_Pixel(The_Point.X, The_Point.Y, Graphics.Current_ Color); end Show;

procedure Hide (The_Point : in out Instance) is begin

The_Point.Visible := False;
Graphics.Put_Pixel(The_Point.X, The_Point.Y, Graphics.Background_Color); end Hide;

procedure Drag (The Point : in out Instance;

ACM Ada Letters, Sep/Oct 1996 Page 52 Volume XVI, Number 5

--BY., in Integer) is
Delta_X, Delta _Y : Integer;
Figure X, Figure _Y : Integer;
begin
 Show(The Point);
 Figure_X := X Coordinate_Of(Location(The_Point));
 Figure_Y := Y Coordinate_Of(Location(The_Point)l;
 while Graphics.Delta Of(Delta_X, Delta Y) loop
 Figure -X :- Figure .X + (Delta _X * By);
 Figure_Y :- Figure_Y + (Delta Y * By);
 Move(The_Point, Figure X, Figure Y);
 end loop;
end Drag;
function Is Visible (The_Point : Instance) return Boolean is begin return The_Point.Visible; end Is Visible;
procedure Move (The-Point : in out Instance;
New _X : in Integer;
New_Y : in Integer) is
 begin
 Hide(The_Point);
 The_Point.X :- New X;
 The_Point.Y :- New Y;
 Show(The_Point);
 end Move;
end Location.Point;

Listing 3 - Class Circle

-- Class Circle
--
package Location.Point.Circle is
 type Instance is new Location.Point.Instance with private;
 procedure Initialize(The_Circle : in out Instance;
 Init X : in Integer;
 Init Y : in Integer;
 Init Radius: in Integer);
 procedure Show(The Circle : in out Instance);
 procedure Hide(The Circle : in out Instance);

procedure Contract(The Circle : in out Instance;
By : in Integer);

procedure Expand (The Circle : in out Instance;
By : in Integer);

private

type Instance is new Location.Point.Instance with record
Radius : Integer; end record; end

Location.Point.Circle; --I Body for Circle

with Graphics; package body Location.Point.Circle is

procedure Initialize(The_Circle : in out Instance;
 Init_X : in Integer;
 Init_Y : in Integer;
 Init Radius: in Integer) is

ACM Ada Letters, SeplOct 1996 Page 53 Volume XVI, Number 5

begin

Initialize(Point.Instance(The_ Circle), Init X, Init <��
The _Circle.Radius := Init Radius;

end Initialize;
procedure Show(The_ Circle : in out Instance) is begin

The-Circle.Visible :- True;
Graphics.Draw Circle(The_ Circle.X, The Circle.Y, The Circle.Radius); end

Show;
procedure Hide(The_ Circle : in out Instance) is

Temp Color : Integer;
begin

Temp Color := Graphics.Current_Color;
Graphics.Set Color(Graphics.Background Color);
The-Circle.Visible := False;
Graphics.Draw Circle(The Circle.X, The Circle.Y, The Circle.Radius);

Graphics.Set_Color(Temp Color);
end Hide;
procedure Expand(The Circle : in out Instance;

By : in Integer) is
begin

Hide(The_Circle);
The _Circle.Radius := The_Circle.Radius + By;
if The_Circle.Radius < 0 then

The_Circle.Radius :- 0;
end if;
Show(The_Circle);

end Expand;
procedure Contract(The Circle : in out Instance;

By : in Integer) is
 begin
 Expand(The Circle, -(By));
 end Contract;
end Location.Point.Circle;

Weighted Subunits per Class (WSC)
The weighted subunits per class is defined as being the sum of the "complexities" (i.e. Halstead,
McCabe, etc.) of the individual subunits in a class. The assumption behind this metric is that:
1. classes with a large number of functions and procedures are more likely to be application

specific, thus limiting the potential for reuse;
2. classes with a large number of functions and procedures are harder to maintain and have a

greater impact on any classes that inherit from them [Chidam 94], and
3. classes with a small number of "complex" functions and procedures are equally hard to

maintain.
From the example code, the WSC for Location is 3 since there are 3 methods, each with a McCabe
complexity of 1. Point has 5 local methods with a complexity of 1, and one method (Drag), with a
McCabe complexity of 2 for a WSC of 7. The WSC for Circle, however, is 6. Circle which has 4
local subunits with a complexity of 1 and one procedure, expand, with a complexity of 2.

$&0 $GD /HWWHUV� 6HS�2FW ���� 3DJH �� 9ROXPH ;9,� 1XPEHU �

Depth of Inheritance Tree (DIT)
Inheritance has also been called programming by extension. The key idea of programming by
extension is the ability to declare a new type that refines an existing type by inheriting, modifying
or adding to both the existing components and the operations of the parent type [Barnes 93]. The
depth of inheritance is defined to be the level of the class in the inheritance hierarchy, with the root
class being zero. The rationale behind this metric is that changes in the parent classes can
potentially ripple down to the child classes, thus deep class hierarchies are potentially harder to
maintain. This metric may need additional refinement to take into account Ada 95's ability to hide
inheritance by declaring the tagged type in the private part of the specification.
As seen in the example code, the class Location inherits from no other class so the DIT is 0.
Point, however, inherits from Location so DIT is 1. In turn, Circle inherits from Location, making
it two levels deep in the inheritance hierarchy so DIT for Circle is 2. Note that the definition of
this metric is dependent on the notion of a class as previously defined. This metric does not apply
to packages with more than one tagged type.
Number of Children (NOC)

The number of children is the number of direct descendants for a class. That is, in Ada 9`>, the
number of packages that extend the type of the package being measured. The rationale behind this
metric is that classes with a large number of children are difficult to modify because changes to the
parent can adversely impact the children. Again, the impact of this metric is subject to the type of
inheritance used. Also, classes with large numbers of children are usually very general, requiring a
greater number of contexts [Basili 95].
Examining the example code, Location has an immediate child, Point so NOC for Location
is 1. The same holds for Point which has one child - Circle. Circle has no children so its
NOC is 0.
Response for a Class (RFC)
The response for a class is the total of the number of functions or procedures that can potentially
be executed in a class. Specifically, this is the number of operations directly invoked by member
operations in a class plus the member operations themselves. The assumption is that classes with
a large response set are harder to understand and are more fault-prone.

As seen in the example code, the RFC for Location is 3 since it has 3 local methods (Initialize,
Get X, and Get Y) and makes no calls to external classes. Point has 6 local methods, plus makes
calls to Location.Initialize, Graphics.Put Pixel, Graphics.Current_Color, Point.X_ Coordinate
Of and Point. Y Coordinate Of for an RFC total of 11. Circle has 5 local methods plus calls to
Graphics.Draw_ Circle, Graphics.Current_Color, Graphics.Background_Color, and
Graphics.Set_ Color for an RFC of 9.

$&0 $GD /HWWHUV� 6HSO2FW ���� 3DJH �� 9ROXPH ;9W� 1XPEHU �

0HVVDJH 3DVVLQJ &RXSOLQJ �03&�

Message passing coupling is a count of the total number of function and procedure calls made to
external units (different calls to the same routine are counted separately). The assumption behind
this metric is that classes interacting with many other classes are harder to understand and maintain.
Measuring the example code reveals the a MPC for the class Location to be 0. There are
no calls to external subprograms. The MPC for class Point is 5. Point calls the external
units Graphics.Put_Pixel (twice), Graphics. Current - Color, and
Graphics.Background_Color and Graphics.Delta Of. The MPC for Circle is 6 because
Circle makes calls to Graphics.Set_Color (twice), Graphics.Background_Color,
Graphics.Draw Circle (twice), and Graphics.CurrentColor.
'DWD $EVWUDFWLRQ &RXSOLQJ �'$&�

Data abstraction coupling is a count of the total number of instances of other classes within a
given class. It is a count of the number of external classes the given class uses. Again, the
rationale is that classes using the services of many other classes are harder :o understand and
maintain. The value of DAC for each of the example classes is 0 beca .Use neither Location,
Point nor Circle declares variables whose type is an instance of another class.
1XPEHU RI 6XEXQLWV �186�

The number of subunits is the total number of functions and procedures defined for the: class. The
rationale behind this metric is that classes with a large number of operations are harder to maintain
and are more fault prone. Note that if the complexity for each operation is 1 then the NUS metric
is the same as the WSC metric.

From the examples, the NUS for Location is 3, with the subunits being Initialize, X Coordinate Of
and Y Coordinate-Of. The NUS for Location is 6 with the subunits being Initialize, Show, Hide,
Drag, Is-Visible, and Move. Finally, the NUS for Circle is 5 counting the subunits Initialize, Show,
Hide, Conti-act and Expand.

The values of each metric for the three example classes are summarized in the table below

7DEOH , � 0HWULF 9DOXHV IRU ([DPSOH

:6& � � �

',7 � � �

12& � � �

5)& � �� �

03& � � �

'$& � � �

186 � � �

$&0 $GD /HWWHUV� 6HS�2FW ���� 3DJH �� 9ROXPH ;9,� 1XPEHU �

6800$5< $1')8785(5(6($5&+

This paper identified several metrics which may be used to predict fault-prone classes in
Ada 95 as well as predict various aspects of maintainability for these classes. While some of these
metrics have been validated using languages such as C++ and Smalltalk, none of these metrics
have been proven for Ada 95. Individual organizations need to experiment on their own to
determine whether these metrics are applicable. Additional research needs to be done to validate
these metrics using rigorous experimental procedures in a controlled setting. The use of industrial
case studies can also be substituted for an experiment.
The metrics presented in this paper are, by no means, a complete set of object-oriented metrics
for Ada 95. Ada 95 has several language constructs that are not present in other 00 languages,
making it necessary to refine the current metrics and define additional metrics. This area is
reserved for future research.

$&.12:/('*0(176

I would like to thank my colleagues at CACI for providing comments, encouragement and
inspiration.

5()(5(1&(6

[Barnes 93] John Barnes, "Introducing Ada 9X," Ada Letters, Volume XIII, No. 6,
November/December 1993, pp. 61-132.

[Basili n.d.] Victor R. Basili, Gianlugi Caldiera, and H. Dieter Rombach, "The Goal
Question Metric Approach," Technical Report, University of Maryland, No Date.

[Basili 95] Victor R. Basili, Lionel Briand, and Walcelio L. Melo, A Validation RI
Object-Oriented Design Metrics, CS-TR-3443, University of Maryland,
[Briand 94] Lionel Briand, Sandro Morasca, and Victor R. Basili. A Goal-Driven
 Definition Process for- Product Metrics Based on Properties. Institute for
 Advanced Computer Studies, Dept. of Computer Science, Univ. of
 Maryland, September 1994.

[Chidam 94] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object-Oriented
Design," IEEE Transactions on Software Engineering, Volume 20, Number 6,
June 1994, pp. 476-493.

[Churcher 95] Neville I. Churcher and Martin J. Shepperd, "Comments on `A Metrics
Suite for Object-Oriented Design,"' IEEE Transactions On Software Engineering,
Vol. 21, No. 3, March 1995, pp. 263-265.

$&0 $GD /HWWHUV� 6HS�2FW ���� 3DJH �� 9ROXPH ;9, 1XPEHU �

[Fenton 94a] Norman E. Fenton, Software Metrics - A Rigorous Approach, Chapmaa & Hall,
London, 1991.

[Fenton 94b] Norman E. Fenton, "Software Measurement: A Necessary Basis," IEEE
Transactions of Software Engineering, Vol. 20, No. 3, March 1994.

[Li 95] Wei Li, Sallie Henry, Dennis Kafura, and Robert Schulman, "Measuring
 Object-Oriented Design," Journal of Object-Oriented Programming
 Volume 8, No. 4, July/August 1995.
[ISO 95] International Standards Organization. Reference Manual for the Ada
 Programming Language, ISO/8652-1995, 1995.
[Rosen 95] J. P. Rosen, "A Naming Convention for Classes in Ada 95," Ada Letters,
 Volume XV, Number 2, March/April 1995, pp. 54-58.

ACM Ada Letters, Sep/Oct 1996 Page 58 Volume XVI, Number 5

