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Abstract. The XDS framework has been developed since 1993. Dur-
ing this time, it has been serving as a production compiler construction
framework as well as a base for research projects. Completely written
in Oberon-2, XDS uses a mized design technique amalgamating modu-
lar and object-oriented approaches. It combines advantages of both ap-
proaches, at the same time avoiding drawbacks inherent to each of them if
used separately. In this paper we set out how the mixed design approach
contributes to extensibility of the framework with respect to including
support for new input languages and target architectures and implement-
ing new optimizations. In the first part of the paper we give an overview
of the XDS framework architecture emphasizing which parts are worth
applying the object-oriented design. In the second part, we describe our
experience of extending XDS with support for the Java language and
implementing interprocedural and object-oriented optimizations.
Keywords: object-oriented design, front-end, back-end, Java, perfor-
mance, native code

1 Introduction

Most modern compilers have a multi-layer hierarchical architecture with many
replaceable components. They also usually have many forms of intermediate rep-
resentation (IR) of a program being compiled. However, the advantages that can
be obtained from the system organization justify such a complexity. First, the
architecture allows implematation of compiler for new input languages at a lower
cost that is a good example of software reuse. In fact, a compiler designed in this
way may be considered as a compiler construction framework rather than a solid
application. This is the mainstream approach to compiler construction today and
many production compilers have a similar architecture, for instance the IBM’s
XL compilers for FORTRAN, C/C++, and Java [5]. Another advantage of a
multi-layer compiler design is the ability to produce code for different platforms
(target architectures) that contributes to portable software development. The
widespread virtual machine technology with portable byte-code is not the only
way to achieve portability. It also may be supported in a multi-layer compiler
construction framework by providing a component responsible for target-specific



code generation for each platform! just like it is supported by providing a vir-
tual machine for each of them. However, the multi-language and multi-platform
support may lead to sacrificing performance of generated code that is unaccept-
able for production compilers. In the next sections we describe our solutions of
that problem applied to the translation of Java to native compiled code. Finally,
the multi-layer architecture allows adding new optimizations to the compiler.
It is a very important point because code optimization is the subject of active
investigations today. Using new optimizing techniques obtained from the latest
research results is essential to construct ”state-of-the-art” optimizing compilers.

The rest of the paper is organized as follows: Section 2 describes the XDS
framework architecture, Section 3 focuses on the role of object-oriented design
in compiler construction. Our experience of extending the XDS framework is
described in Section 4. Finally, Section 5 summarizes the paper.

2 The XDS Framework Overview

XDS (eXtensible Development System) is a framework on which base several
compilers have been developed. Among input programming languages supported
by XDS are Modula-2, Oberon-2 [15], JVM bytecode, Java and two Nortel Net-
works’ proprietary languages intended for telecommunication software develop-
ment. Native code generation is implemented for the following target architec-
tures: Intel x86, m68k, SPARC, PowerPC and VAX. As many other compilers,
XDS also supports ”via C” cross-compilation in order to be available for a wide
variety of platforms. Furthermore, having the multi-component architecture, the
XDS framework may be used for other purposes than compiler construction. The
XDS family tools reusing particular framework components are built on top of
XDS. A converter from Modula-2 to C++ text has been developed for code mi-
gration purposes. The static analyzer [14] allows one to reveal run-time errors in
large programs written in Modula-2, Oberon-2 or Java without execution. The
InterView source code browser{18] is aimed at maintenance and reengineering
of large-scale software systems. With its help, developers are able to find and
visualize any program entity properties and non-trivial data-flow dependencies
across the whole project. InterView supports a project database and a compre-
hensive query language. The database generation component is built into the
XDS compilers for Modula-2, Oberon-2 and Java.

The XDS framework architecture is shown in Fig. 1. A common part of all
tools built on XDS is the project system which is a supervisor responsible for
system component management. In general, it takes a system configuration file
and a wuser project file and invokes the respective framework components, for
instance, compiling source files to object code. In particular, the project system
is responsible for smart recompilation of out-of-date modules. After compila-
tion, it produces a response file containing a list of files generated. The project

! Strictly speaking, a portable run-time support is also required, but this problem is
much simpler than retargetable code generation so it is left out of the scope of this
paper.
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Fig. 1. XDS framework architecture

system may also use a template provided as part of system configuration to
generate such a response file that allows XDS compilers to use any linker or
maker to create executable file or perform other types of further processing, if
required. Some points are worth noting here. The configuration of working sys-
tem, including source languages, target platforms, code generation settings (e.g.
optimization control, alignment etc.), is constructed on-the-fly. In other words,
given configuration and project settings the project system composes the actual
tool deciding on which components should be invoked. Note that such compiler
organization allows generating object code for two ”platforms” at the same time
that makes sense, for instance, if the either platform is the InterView database.

In XDS, as in most modern compilers, there are separate front-end (FE) and
back-end (BE) components. In general, FE parses source files to produce some



kind of IR, and BE, in turn, takes the resulting IR and generates object code.
However, strict meaning of the concepts usually varies from system to system.
The following questions can help to make it clear:

1. What kind of intermediate representation does FE produce?
2. Is FE target independent?
3. Is BE language independent?

The answer to question 1 for XDS is the attributed syntax tree denoted in Fig.
1 as the high-level intermediate representation (HLIR). Other alternatives used
in compiler construction research projects are either a stack-oriented bytecode of
some virtual machine [10] or a low-level instruction representation [7]. Nowadays,
it is widely acknowledged that the syntax tree keeps all information required for
further optimizations which is usually lost in the other forms of IR [8, 9]. Different
approaches have been proposed to solve the problem. One of them is to provide
low-level representation with extra information, which can be used, then for
some specific optimizations. In our opinion, this approach suffers from inability
to incorporate new optimizations into the compiler without reimplementing the
IR construction component. Another good reason to have IR as the syntax tree
is that XDS back-ends are not limited to object code generation. For instance,
the InterView data base generator and the static analyzer that we consider
as XDS back-ends, demand IR to preserve as much information about source
text as possible. In some cases, we had to carry out a large amount of work
to meet that requirement. For example, our JVM bytecode FE uses a special
technique based on symbolic computations to reconstruct the original syntax
tree from JVM instructions and type information residing in JVM class files [1].
Some of related works [8,11] do not follow this way and reconstruct syntax tree
only partially. However, our experience shows that it results in less optimized
code and decreases reusability of the FE component. Finally, the tree is the
most appropriate IR for converter to C++. Thus, we strongly believe that the
attributed syntax tree is the best choice for IR, which compiler’s FE should
produce.

The same reasoning may be taken into account when answering question
2. XDS FE is completely target-independent but in some of related works [10]
FE performs target-depended jobs, e.g. field offset computation, constant evalua-
tions depending on memory layout, etc. We deem the profits that can be obtained
from such a decision do not outweigh the disadvantages that come with the lack
of portability.

Another part of the XDS framework architecture is the HLIR optimizer. Its
mission is to perform optimizations on the tree. Procedure inlining, constant
propagation, object-oriented optimizations are implemented in the HLIR opti-
mizer. After optimization, HLIR is converted to the middle-level intermediate
representation (MLIR). This is implemented as an extra tree traversal and serves
as a preliminary phase for native code generation. At this stage, the initial tree
representation is simplified, for example, synchronized block in Java is trans-
formed to try-finally block [2], thus reducing the number of different operators
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in MLIR. In particular, it allows BEs to be language-independent to the max-
imum extent because the conversion unifies operators from different languages
to some common representation. MLIR, in turn, can be thought of as input
language for native BE.

An ideal compiler architecture should have language-independent BE com-
ponent. Theoretically, this goal may be achieved through appropriate BE design
and it would be a good solution in case of supporting only one input language.
Certainly, it is possible to implement a unified BE that takes MLIR generated
by any language-specific FE and produces code but at cost of worse code per-
formance. Several significant examples are given in Section 4. Thus, question 3
has the following answer: XDS native BEs contain language-dependent parts.

Fig. 2 shows a common structure of XDS native BE. At first stage, MLIR is
converted to the triad form [12] called the low-level intermediate representation
(LLIR). In fact, LLIR can be considered as an abstract (target-independent) low-
level instruction set. First, BE performs some simple optimizations just on the
representation, after that it is transformed to SSA (Static Single Assignment)
form to make the majority of optimizations such as common subexpression elim-
ination, dead code removal, etc. At the next phase LLIR is converted into the
DAG (Direct Acyclic Graph) form (set of trees) to accomplish an optimal code
selection with the bottom up tree rewriting technique [6]. We use the BURG tool
that produces rewriters in Oberon-2 from description of the rewriting grammars
representing the target architecture (instruction set and addressing modes). Each
grammar rule is attributed with a ”rule cost” that depends on target architecture
as well, so a rewriter always tries to minimize the entire inference cost. Along



with DAG rewriting, graph coloring-based register allocation is performed. Fi-
nally, code and debugging information emitters are invoked to produce object
code or assembler source text.

3 Object-Oriented Design in Compiler Construction

At present, object-oriented design (OOD) is widely used in the software indus-
try. Adherents of OOD assert that it offers better solutions for typical problems
arising during software life cycle. In particular, OOD eases program code main-
tainability and extensibility, increasing the degree of software reuse. Taking the
above reasons into account we, however, do not share the opinion that OOD is
the panacea for large system design problems. Many requirements that such sys-
tems have to meet may be fulfilled with help of the traditional modular design
approach. In our opinion, the bias to object-oriented programming and popu-
larity of C++ are to some extent caused by the availability of some modular
means in C++ which are not present in pure C. In fact, many C programmers
have missed the modular stage of their programming methodology evolution
and found themselves right in the object-oriented stage. Really, one should be a
strong-will person to write in C according to modular programming principles.

Our design approach is not a conventional OOD, although some of related
works recognize it as a preferable way in compiler construction [4]. We strongly
believe it would be wrong to use OOD for the whole system being designed
without special consideration of which components are worth applying OOD
and which are not. Thus, we keep the golden mean in design issues: on the one
hand, we remain staunch supporters of the modular design approach which is a
good way to achieve the main goal of large system design: to be able to manage
complexity; on the other hand, we accept the OO approach as a very useful
mean to improve reusability and extensibility of particular system components.
An outline of the approach that we call mized design looks as follows:

1. Design starts as the traditional modular approach: one defines module data
encapsulation and import-export relationships

2. If behavior of some previously designed module should be corrected at run-
time to fulfil system requirements, but module interface remains unchange-
able, then the module is converted to a class straightforward: module global
variables become instance fields and procedures make methods.

3. As a rule, aggregate data types (RECORD types in terms of Oberon-2)
are used to represent entities from problem domain. If such a type requires
polymorphic processing, it is immediately converted to class. Note that it
is usually quite obvious whether a data type is worth using polymorphism:
for the lack of OO features polymorphism is usually simulated with a tag
field that is checked in implementations of data type operations. The rule
is to avoid such implementation technique and use OO mechanisms instead.
The same reasoning concerns extending a RECORD type with new fields:
in languages without OO support, it is implemented by casting pointers to
different records from within data type operations.



Thus, according to rule 3, we use OO features just to implement data types
in a natural way. In other words, we distinguish the module notion from the
data type motion whereas in OOD they are both merged into the single class
notion. We think this design technique may be successfully applied to a broad
variety of projects and our own experience shows that it is sufficient to design a
compiler construction framework meeting the language and target independence
requirement. We suppose this is quite a representative large project. Several
significant examples of object-oriented compiler construction are given here.

— The abstract syntax tree has to be designed in OO manner because there
is a lot of polymorphic processing involving it: tree traversals for different
purposes, control graph markup and analysis, polymorphic containers with
HLIR objects for static analysis, IR conversions and so on. Besides, each tree
object has specific instance fields for its own that can be implemented by
inheritance in a natural way.

— FE and BE components configured on-the-fly in a multi-language retar-
getable compiler are worth implementing as instance objects of the FE and
BE classes, according to rule 2.

— Asshown in Fig. 1, the compile-time evaluation block is designed as a distinct
component providing its service for both FE and BE. FE usually performs
constant propagation on the syntax tree whereas BE requires the capability
of constant evaluation when optimizing the SSA form of LLIR. Note that
rules of compile-time evaluation vary for different languages. For instance,
in Modula- 2/Oberon-2, once integer overflow has happened during constant
evaluation, it has to be considered as a compile-time error whereas in Java, it
just should be computed as a 2’s complement even without issuing a warning.
There are many other differences so the constant evaluation module is a good
candidate for conversion to class by rule 2.

— Some other components of the XDS frameworks, for example object code and
debugging information emitters (see Fig. 1), are also designed as instance
objects of some class depending on the system configuration.

Summarizing this section we would like to emphasize that we have profited
from the motivated usage of OO mechanisms in compiler design and development
process.

4 The XDS Evolution

The primary goal of the XDS framework implementation was to bring high op-
timizing compiler solutions to Modula-2 and Oberon-2 (M2/02) programmers.
Nonetheless, from the very beginning XDS was designed with respect to soft-
ware reuse so it was not limited to compilation of specific languages. Finished
working at the M2/02 compilers, we were challenged to apply the XDS tech-
nology to another language and Java was chosen as the next step. Initially, we
supposed that the implementation of a Java compiler requires the development
of the respective FE and introducing some minor modifications into native BE.



However, we considerably underestimated the amount of work involved: many
BE optimization algorithms proved to be language-dependent with respect to
either correct code generation or performance. In fact, at the sacrifice of per-
formance, we would be able to implement a Java to native code compiler with
less efforts, but the usefulness of such a compiler would be doubtful. In this
section we describe our experience of extending the XDS framework with the
support for Java and implementation of new optimization techniques which are
now available in all compilers built on the XDS framework.

4.1 Java Implementation Notes

Despite many similarities between Oberon-2 and Java, implementation of many
language features had required significant efforts. It is debatable if they may be
considered as advantages of the Oberon-2 facilities or not, but anyway we had
to implement them carefully to meet the Java Language Specification.

Cyclic Import Cyclic import is prohibited in Oberon-2, but not in Java, and it
spoiled the separate compilation technique used in XDS compilers before. Apart
from smart recompilation of the whole project, every single module was com-
piled by the simple two-step scheme: firstly, module is parsed to build the syntax
tree and then BE is invoked to produce object code. In order to support sepa-
rate compilation, XDS compiler creates a precompiled version of each module,
so-called symbol file. All required information on the entities exported from the
module is resided in its symbol file: exported types, procedures, variables, etc.
Thus, if a module A, being compiled, imports a module B, the compiler just
reads B.sym file to complete the syntax tree for A with the entities from B.
The acyclic import graph always guarantees that each module may be compiled
separately. In Java, the same technique may be applied only if module does not
use cyclic import, otherwise all the modules which constitute such a cycle of
the import graph have to be compiled at the same time. Fortunately, the XDS
architecture did not require significant reengineering, because the modified com-
pilation scheme was easily implemented in the project system — the supervisor
responsible for invocation of components as described in Section 3.

Address Arithmetic Although Modula-2 does not encourage address arith-
metic and unrestricted type casting, it still leaves programmer a loophole to
write code in such a way. Just opposite to Modula-2, Java imposes ”pure type”
programming with no low-level operations. In addition, Java does not allow ref-
erence variables to point to values of primitive types. Those restrictions may have
strong influence on the performance of generating code, especially with respect
to pointer aliasing and register allocation algorithms. Thus, implementation of a
common Java/Modula-2 BE would result in poorer Java code performance. We
have modified the optimization algorithms that can benefit from the absence of
address arithmetic.



Bytecode Input Files It is known that Java applications and class libraries
are distributed in the form of .class (JVM bytecode) files. This new deployment
technology leaves the door open for further optimization of both Java applica-
tions and third-party libraries they use. It is a unique opportunity to achieve
high degree of optimization because programming languages and deployment
technologies used before did not allow libraries to be optimized. Really, C/C++
or Fortran libraries are usually distributed in some form of object code so com-
pilers can not perform global analysis and optimization of entire application
including libraries. In order to use that opportunity, Java compilers should be
able to compile .class files just like they compile other source files. For that pur-
pose, the JVM bytecode front-end component of the XDS framework has been
developed. In addition, the XDS project system was extended in order to be able
to process bytecode files.

Exception Handling There are good reasons to implement exception handling
for Java in a different way. First of all, according to the ISO Modula-2 standard
[3], try-block must (syntactically) coincide with procedure block whereas in Java,
it may comprehend an arbitrary set of operators [2]. It has a strong influence on
optimization at presence of exceptions, especially with respect to register alloca-
tion. The matter is that Java exception handling makes program control graph
complicated and requires a redesign of the BE algorithm determining life time
of local variables. Otherwise it may result in poor performance or even incorrect
generated code. Another point is intensive exploitation of exception handling
in fine-grain Java methods. The simple setjmp/longjmp technique implemented
for Modula-2 has some performance overhead for each try-block and being ap-
plied to Java makes performance twice as bad. Instead, we have implemented
the other, so-called frame-to-frame propagation technique [16] with some modifi-
cations that results in no try-block overhead at all in the case of non-exceptional
execution. The last solves the performance problem, but the cost is code size
increasing, which may be unacceptable for Modula-2 — the language often used
in software development for embedded systems.

Floating-Point Arithmetic According to the IEEE 754/854 standard [17] to
which Java complies, no floating-point (FP) operations cause an exception. For
instance, 1/0 or even 0/0 are well-defined FP values. It may seem to be curious
but they are even typed values, for instance there exists 0/0 of the double FP
type. The matter is that IEEE 754 /854 introduces two new binary-coded values:
signed infinity and NaN (not a number). Both of them are supported in Java,
so you may find a piece of Java code like this:

static final float negInfinity = -1.0/0;
As a consequence, some ordinary symbolic computations become incorrect,

for instance 0 - = 0 because 0 - co = NaN. The required modifications have
been made in the constant evaluation component which is language-specific as



described in Section 3. But the real Java challenge for the XDS BE optimizer
was that the axiom
r<y e (z>y)

is no longer valid. No, this is not the three-value logic, just result of comparison
between any FP value and NaN is always false. We have modified the optimizer to
make it IEEE 754 /854 compliant. Thus, it is quite obvious that FP optimizations
may not be implemented for Oberon-2 and Java in the same way. The last curious
thing is a very suspicious IEEE 754 feature, signed zero(!). In fact, there exist
both +0 and —0 as distinct binary-coded values such that +0 = —0. Only during
Java implementation we finally understood what is the difference between them:

1/+0=+00
1/-0=—-00

Heap Objects A known disadvantage of Java applications is exhaustive dy-
namic memory consumption. For the lack of stack objects — class instances put
on the stack frame, all objects have to be allocated on the heap by the new op-
erator. Presence of Java class libraries makes the situation much worse because
any service provided by some library class requires the allocation of its instance
object. To overcome the drawback we have implemented a static analysis that
allows the compiler to define the life time of dynamically allocated objects and
allocate short living objects on the stack. Note that the optimization technique
saves both memory and time resources, because stack allocation actually hap-
pens at compile-time rather than at run-time and the garbage collector does not
have to care about such objects after they die.

Multi-Threading Java has built-in multi-threading support that allows in-
stance methods to be synchronized if they operate on the same object simulta-
neously from different threads. Many library classes are designed with respect to
a possible use in a multi-threaded environment, so even fine-grain methods have
the synchronized specifier [2]. As a consequence, straightforward implementa-
tion of synchronization support results in a dramatic performance degradation.
In order to ensure an acceptable performance level, we have designed a special
technique, so-called lightweight synchronization, that engages the actual syn-
chronization only if several threads actually want to operate on the same object.
Note that the implementation of lightweight synchronization is only possible
with support from native BE.

The main conclusion we have drawn after development of the Java to native
code compiler is that in order to achieve the high degree of code optimization,
some parts of native BE have to be language-specific.

4.2 Optimizations

It is widely acknowledged that code written in OO programming languages has
some performance overhead due to dynamic method dispatch inherent to the



languages. Being implemented by VMT (Virtual Method Table), virtual method
invocation does not take much processor time itself but it hinders compiler to
use the traditional technique of interprocedural optimizations, such as inlining.
Type inference [13] is a static type analysis that allows compiler to replace virtual
calls with direct ones safely and, thus, to improve performance considerably. The
characteristic feature of type inference is so-called polyvariant analysis that typi-
cally performs repeated traversals of method control graph from within different
calling contexts. Note that even with virtual calls replaced we still need to have
the syntax trees of all methods at our disposal, for instance, to perform intermod-
ule procedure inlining or analyze the life time of dynamically allocated objects
as described above. For that purpose, we have implemented syntaz tree object
persistency allowing an arbitrary IR object graph to be saved to/restored from
file. This technique resembles the slim binaries approach [9] used for dynamic
compilation although we restrict its use to static code analysis and optimization
only. Since real world Java applications use OO features extensively, the imple-
mentation of OO optimizations allow us to improve performance of Java code
to a great extent. Benchmark results and other information related to the XDS
Native Java project may be found at [19].

5 Conclusion

This paper has presented a technique of multi-language, multi-platform compiler
construction. The technique has been used to integrate quite different program-
ming languages such as Modula-2, Oberon-2 and Java into a single compiler
construction framework. Our results refute the opinion that compiler should be
specially designed for certain programming language in order to produce high
performance code. The work has shown that language and platform indepen-
dence and high performance do not contradict, although they require specific
architectural decisions. The interesting direction for future works is to inves-
tigate a technique of seamless integration between Java and other languages,
such as Modula-2, and also probably C. As a rule, some part of a typical Java
application called native methods is written in other languages so Java program-
mers are compelled to use several tools including compilers in the development
process. It would be interesting to design and implement an integrated compiler
environment having all required means of Java application development.
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