Implementing the C++ Standard Template Library in Ada 95

Ulfar Erlingsson Alexander V. Konstantinou
Computer Science Department*
Rensselaer Polytechnic Institute

Troy, NY 12180

January 31, 1996

Abstract

The Standard Template Library (STL), a recent addition to the ANSI C+ stan-
dard, “provides a set of well structured generic C++ components that work together
in a seamless way” [SL94]. The popularity of STL stems from its combination of an
orthogonal design, solid theoretical foundation, and strong emphasis on efficiency. This
paper presents a design scheme for implementing the C++ STL library components in
Ada, using features introduced in the 1995 Ada standard [Ada95a]. Discussion is based
on a prototype Ada 95 implementation, segments of which illustrate the paper. This
work was prepared under the supervision of Dr. David Musser at Rensselaer Polytechnic
Institute.

*Email: {ulfar,akonstan}@cs.rpi.edu

Contents
1 Introduction

2 CtH+ STL Overview
2.1 STL Categories i e
2.2 CH+ Considerations e

3 STL in Ada 95
4 TIterators

5 Function Objects
5.1 Packages as Function Objects

5.2 Function Signatures o

6 Containers
6.1 Lists e e e
6.2 Vectors e e e e

7 Stream Iterators
8 Algorithms

9 Adaptors
9.1 Stack Adaptors
9.2 Function Adaptors L L e

10 Critique of Ada 95

11 Conclusion

A Ada STL Bidirectional Example

B Ada STL Random Access Example

C Ada STL Adaptors Example

10

11
11
11

12

13

15

19

23

1 Introduction

The C+- Standard Template Library (STL), a recent addition to the ANSI language stan-
dard [LRM], “provides a set of well structured generic C+- components that work together
in a seamless way” [SL94]. The design of the library emphasizes component decomposition,
orthogonality, and strict semantic and complexity requirements. Efficiency is another impor-
tant consideration, and the library components closely exploit the C+- template mechanism
to minimize run time overhead. The library approach results in a design based on a solid
theoretical foundation, while remaining natural and easy to grasp. This paper will present
an implementation scheme for porting the the C+- Standard Template Library to Ada 95.

The availability of generics in Ada, as early as 1983, has long attracted researchers of
generic library components, including the designers of the C+- Standard Template Library
[MS89]. Language restrictions in the 1983 standard, however, prevented the implementation
of some of the main STL components. Now that the long awaited revised 9X standard for
Ada has been finalized into Ada 95, many of the earlier restrictions have been lifted, making
it appropriate to re-examine the issue.

The following sections will briefly introduce the main components of STL, highlight the
relevant changes in the Ada 95 standard, and propose a design for an Ada STL imple-
mentation. For demonstrational purposes, a representative subset of the STL components
has been implemented in Ada 95. The aim has been to show the feasibility of translating
the component interrelations from the CH+ model to the Ada model. In this sense, lit-
tle attention had been paid to important details such as run-time exceptions and efficient
memory allocation. Details concerning this prototype implementation can be found in the

appendix.

2 CHt+ STL Overview

The CH Standard Template Library, see [SL94], provides a set of generic components and a
consistent interface between them. The main considerations in the design of STL were that
all algorithms and data structures work in a similar manner to their native C+- equivalents,
that the implementations be efficient, and that the library should provide an easy-to-grasp

orthogonal interface based on a sound theoretical foundation.

2.1 STL Categories

STL groups its components into a few distinct categories. Following is a brief listing and
discussion of each category. Interested readers should refer to [SL94| for a more detailed

discussion.

Containers Containers in STL are generic in their element types; associative containers
are also generic in an ordered key type. STL provides vectors, lists and deques as sequence

containers, and sets, multisets, maps and multimaps as sorted associative containers.

Iterators Iterators in STL are based on the CH+ concept of accessing elements in data
structures through pointers. STL iterators provide the functionality of pointers for STL
containers. Informally, iterators are classified into the following categories based on which

operations they support:

Input/Output There is no decrement. Input iterators are read-only. Output iter-
ators are write-only. You should not assign twice to the same output iterator

position. Both iterators categories only support single pass algorithms.
Forward Supports increment, and read/write with no restrictions.
Bidirectional Supports increment/decrement, and read/write with no restrictions.

Random Access Supports all operations a CH- pointer would, i.e. increment /decrement,

read/write, pointer-arithmetic, comparisons, and overloaded index operator (operator[]).

Another iterator concepts supported in the C++- STL are constant and reverse iterators.
Constant iterators allow for the provision of read-only access to container elements. Re-
verse iterators have the functionality suggested by their name; e.g., the incrementing and

decrementing operations have their meanings interchanged.

Function Objects Function objects offer an encapsulation of a function, and perhaps
some state information, into an object. Function objects in C++ STL are used to support
the instantiation of generic components with function arguments. However, since function
objects can also encapsulate state information, they allow for a form of functional program-
ming in C+H STL.

Algorithms The STL generic algorithms provide various common algorithms on iterators

and function objects. Examples include for_each, which calls a function object with each

element in a range, reverse, which reverses the contents of a range by repeated swaps, and

the more complicated sort, which sorts a range given a comparator function object.

Adaptors Adaptors compose new components from existing ones. There are tree main

types of adaptors:

Containers The STL sequence containers are adapted into stacks, queues and prior-

ity_queues.

Iterators The most important STL iterator adaptors are perhaps the ones which
provide reverse iterators based on normal ones, and those which provide insert

iterators for containers.

Function Objects Function objects can be adapted in several useful ways in the style
of functional programming. Function object parameters can be bound, composing
new functions objects taking fewer parameters. Function objects can also be

negated. There are also adaptors allowing the use of pointers to functions.

2.2 CHt+ Considerations

Even though it is written in C++, an object-oriented programming language, STL does not
use inheritance to any great extent. Instead it relies heavily on composition of its generic
components to provide for specialization. Thus stack does not inherit from list, deque
or vector. It is instead a generic composition from any container providing the required
functionality.

The components of STL make heavy use of the CH- template facility for generic pro-
gramming. In C++, when defining a class or function using templates, you implicitly require
any operations or functions used with arguments of the generic type to be defined for the
instantiation type. This is not checked until the template code is instantiated with an actual
type.

This approach to generic programming in CH++ is very flexible at the cost of not being
safe. It is not always clear when instantiating a template which operations or functions are
going to be used in the instantiated code. This “late compile-time binding” of templates
can easily lead to various unexpected behavior. This problem is highly aggravated by the

implicit type-casting often performed in C+.

3 STL in Ada 95

The 1995 Ada standard adds numerous new features to the 1983 standard, some of which
make an Ada implementation of the Standard Template Library possible. One of the most
important extensions, for our purposes, involves access types. Unlike Ada 83, where access
type variables can only refer to objects created dynamically, Ada 95 has a general access
type. Instances of types defined as aliased can now be referenced through the Access
attribute. Remaining restrictions on pointer arithmetic, which can lead to inefficiencies
in the implementation of random access iterators, can be circumvented through the C
language interface library package. These issues are further discussed in Section 6.2 on
vector containers.

A second change that simplifies presentation and adds to safety is the ability to declare
generic formal packages. Thus, a generic package can be instantiated with one of the param-
eters being an instance of a certain generic package. This feature allows for the definition of
signature packages that help to cleanly define and enforce the interface between the library
components. Moreover, signature packages can add to safety by requiring explicit instan-
tiation of their generic formal component operators, instead of the implicit requirement by
use. (as is the case in C+t). The next section, on iterators, expands on this feature.

There are numerous other changes, notably those involving object oriented programming
features, which are not used by this Ada STL implementation. Interested readers are
referred to [Ada95a] and [Ada95b].

4 Iterators

In C++ STL, container iterators are objects providing a certain functionality imported from
their container. Depending on this functionality five iterator categories are defined: input,
output, forward, bidirectional, and random access iterators. These categories form a hi-
erarchy, with forward iterators satisfying all the input and output iterator requirements,
bidirectional iterators satisfying all those of forward iterators, and random access iterators
satisfying all those of bidirectional iterators. At compile time, iterator objects are mapped
into simple pointers, and their operations inlined, thus providing run-time efficiency. Be-
cause iterators provide the only interface between containers and algorithms, it is essential
that they be compiled efficiently without the need for any run-time binding.

The above scheme cannot be directly ported to Ada because types used to instantiate a

generic package do not pass along the operations defined on them. Although it is possible

for the generic package to require that the operations be passed along explicitly by the
caller, this enforces a copious style. For implementing STL in Ada, a better solution is to
use an intermediate generic package to define a signature. This package is subsequently
used as a generic formal by an algorithms package. For every iterator category, a generic
signature package is defined and acts as the mapping abstraction. The resulting hierarchy of
algorithms packages with iterator formal parameters reflects that of iterators, for example,
random access algorithms, bidirectional algorithms, and input-output algorithms.

A signature package forward iterators is shown here:

generic type f_value_type is private;
type f_iterator is private;
with procedure Assign(i: in f_iterator; v: f_value_type);
with function Val(i: in f_iterator) return f_value_type;
with procedure Inc(i: in out f_iterator);

package forward_iterators is end;

Any algorithm using forward iterators has to restrict itself to the three operations defined
above. Respectively, any container that exports iterators to be used with forward algorithms
has to implement all three operations, something which is checked by the Ada 95 compiler.
There is no way to obtain the corresponding checking with C+- templates.

Our current implementation does not provide constant or reverse interators. The in-
tention is to provide constant iterators through another set of signature functions which
exclude the Assign operation. Reverse iterators, however, are to be provided though an

iterator adaptor.

5 Function Objects

Since packages can have function or procedure parameters, function objects play a much
less significant role in an Ada implementation of STL than in the C++ one. There is in
fact, in Ada, no need to provide any of the predefined function objects in STL. However,

the concept of associating state with a function, or procedure, is still a very useful one.

5.1 Packages as Function Objects

Ada allows a package to contain state information accessible only to the functions, or
procedures, in the package. By using this we can create packages having side-effects, similar

to function objects in C+ STL and to closures in functional languages. However by using

only this approach we are constrained to having only one instance of any function object
in our code. Therefore we cannot, for example, have two accumulator objects with two
different sums.

We can, however, easily get away from this limitation by making the package generic.
This allows us to construct as many instances of the package as we require. An example of

the specification of a simple accumulator package follows:

with unary_procedures;
generic type T is private;
Nil: T;
with function "+"(x: T; y: T) return T;
package accumulator is
function Sum return t;
procedure Add(x: in T);
procedure Reset;
package signature is new unary_procedure(T, Add);
private sum_value: t := Nil;

end accumulator;

5.2 Function Signatures

As is the case with iterators, signature packages are used to provide a standard interface to
functions and procedures. The Ada implementation has to provide such generic packages
for both functions and procedures, something which C++ STL does not require, since a C+-
procedure is a function with a void return type. This somewhat awkward code duplication
is required in several parts of the Ada STL library, because of the Ada distinction between
functions and procedures.

The Ada implementation has the following signature packages: unary procedures,
binary procedures, unary_functions and binary_functions. In Ct++, mode informa-
tion is part of the instantiation type for a generic function, whereas in Ada it is a syntactic
construct. This seems, at first glance, to force us to provide different signature packages
for procedures of all possible modes. However, since procedures are not used often in STL,
except in read-only situations, we only provide in-mode procedures in this implementation.

Following is the signature package for unary functions:

generic type argument_type is private;

type result_type is private;

with function Op(x: argument_type) return result_type;

package unary_functions is end;

6 Containers

For this study we implemented two of the STL containers, lists and vectors. This allowed us
to make use of the full range of iterators, and to create examples for all types of algorithms.

Perhaps the biggest difference between C++ STL and Ada STL containers stems from
the fact that Ada packages do not define object types in the sense that CH+ classes do,
but rather represent the traditional concept of abstract data types. Thus when using a list,
one passes an instance of a special List type to functions defined in the Lists package.
This means the CH- “dot”-notation x.y(), where x is an instance of a class with a member
function y (), has a corresponding y(x) Ada equivalant.

The container components instantiate all possible iterator signature packages as sub-
packages, e.g., lists has input_iterator, output_iterator, forward_iterator, and
bidirectional iterator, all as subpackages. This relieves the user from having to in-
stantiate any iterator signatures, since they are predefined in each container package. The
user need only pass the correct subpackage to an algorithms package to instantiate the

algorithms for a container.

6.1 Lists

The Ada implementation of lists is modeled very closely on the C++ reference implementa-
tion in [STL]. Lists are doubly linked and circular with a sentinel node before the beginning
and after the end.

In order to keep the Ada implementation as simple as possible, only a subset of the
member functions of lists were implemented. These functions are empty, size, push_back
and pop_back. There is also a constructor function Create in the Ada version.

The list iterator is implemented in the subpackage Lists.Iterators. An iterator is
defined there as a normal Ada access all type to an aliased cell in an instance of the
List type. While not sufficient for vectors, this suffices for lists since lists do not need to
support pointer arithmetic. The C++ STL functions begin() and end() are implemented
in Iterators as Start and Finish. The list iterator satisfies the signature of bidirectional
iterators, with the functions Inc, Dec, Val and Assign allowing increment /decrement, deref-
erencing and assignment on iterators.

Following is an overview of the Ada specification for lists:

with input_iterators, ..., bidirectional_iterators;
generic type T is private;
package Lists is

subtype Value Type is T;

type List is private;

function Create return List;

package Iterators is
type Iterator is private;
procedure Assign(i: in Iterator; v: in Value_Type);

function Start(l: List) return Iterator;

private type Iterator is record ... end record;
end Iterators;
package input_iterator is new input_iterators

(Value_Type, Iterators.Iterator, Iterators.Inc, Iterators.Val);

private type List is record ... end record;

end Lists;

6.2 Vectors

An STL vector supports random access iterators, and is a generalization of a dynamic array.
Besides the usual array operations, there is support for linear time insert, nd erase in
the middle, as well as amortized constant time insert and erase at the end of the vector.
Storage management is not visible to the user, although tuning parameters may be supplied.

The main issue in an Ada implementation of the vector container involves the choice
of the iterator type. Even with aliased types, Ada does not allow for pointer arithmetic.
Therefore, one cannot increment a pointer to a vector element, or subtract two pointers.
One solution would be to define the vector iterator as a record containing an index position
and a pointer to the array. Getting the value (dereferencing) of the iterator would involve
the computation of the array address for the given index. A second solution employs the
C interfaces library package for unchecked conversions between array pointer types and

address types. The second solution provides the most direct mapping to the C+- STL

vector container, and is the one used in our Ada implementation.

It is important to note that the choice in iterator implementation does not affect the
other components of the Ada STL implementation. One can argue that basic containers
supplied with an Ada STL implementation should use the more efficient, if less secure,
solution. Additional container construction can use an adaptor approach, wrapping the
efficient implementation with safety checks. This discussion pertains to the internal validity
of the container implementation. There is a separate issue concerning the extent of run-time
range error checking, discussed earlier, which applies equally to both solutions.

The Ada specification for the vector container is similar to the one for lists, differing in

the iterator specification:

generic type T is private;
package vectors is

subtype Value Type is T;

package Iterators is

type Iterator is private;
function "-"(i: in Iterator; j: in Iterator) return ptrdiff_t;

private type Iterator is access all Value_Type;
end iterators;

end vectors;

The above example uses the C interfaces package for unchecked conversion, implementing

the above "-" function:
function "-"(i: in Iterator; j: in Iterator) return ptrdiff_t is
begin
return(To_Ptrdiff(To_Addr(i) - To_Addr(j)) / Elmt_Size);
end n_n ;

7 Stream Iterators

Stream iterators in C+ provide an iterator-like interface for the input/output streams. An

istream iterator is an input iterator on a given input stream, while an ostream iterator

is an output iterator on a given output stream. A special iterator is the end-of-stream
iterator. Two end-of-stream iterators are always equal, a non-end-of-stream iterator is
always not equal to an end-of-stream iterator, while two non-end-of-stream iterators are
equal if and only if constructed from the same stream.

In terms of our Ada implementation, stream iterators are radically different from other
iterators, in that they provide basic functionality, and are not just signatures or adaptors.
The stream iterators are instantiated with a type and a procedure to put an element of that
type on the stream. In fact, the Put operation need not operate only on streams, but can
be a simple file operation, since the values placed are all of the same type. In accordance
with the C+H STL reference implementation [STL], the output stream iterator increment
operator is implemented as a null operation.

A sample output stream iterator specification:

generic type value_type is private;
with procedure Put(v: in value_type);
package ostream_iterators is
type Iterator is private;
procedure Inc(i: in out Iterator);
procedure Assign(i: in Iterator; v: in value_type ;
private type Iterator is null record;

end ostream_iterators;

Here the iterator is a type, defined as a null record, which ensures type-safety, while

not incurring any overhead since it is purely a compile-time construct.

8 Algorithms

Algorithms, in the Ada implementation of STL, are categorized into packages based on
the iterator types they require, with input_output_algorithms, forward algorithms,
bidirectional_algorithms and random access_algorithms all being distinct packages,
non-overlapping in functionality. Algorithms are instantiated with iterator signature pack-
ages providing the necessary operations.

The algorithms implemented for this study represent a small, but varied, subset of the
C++ STL algorithms. Implemented algorithms include copy, find, for_each, transform,
reverse, and random_shuffle. The algorithms implemented span all the algorithm classes
found in C++ STL.

10

Following is the specification of bidirectional_algorithms:

with bidirectional_iterators;
generic with package iterators is new bidirectional_iterators(<>);
use iterators;
package bidirectional algorithms is
procedure reverse(first: in b_iterator; last: in b_iterator);

end bidirectional_algorithms;

The implementation of these algorithms raised some unresolved issues in the renaming
of overloaded functions. In particular there were several problems with instantiating in-
put/output algorithms with a single iterator type for both input and output. In order to
work around these issues some of our functions are in categories different from their C+

counterparts.

9 Adaptors

Only a subset of the C+- adaptors were implemented for this study. One container adaptor,
stack, was implemented, but no iterator adaptor. We implemented binders in a manner very
similar to that of C++ STL. Negators, however, are an instance of function composition.
Function composition is not implemented in C+- STL, but is a good test of the concepts

of function adaption and was therefore included in the Ada implementation.

9.1 Stack Adaptors

Stacks are implemented as a signature package, adapting any container with the proper
functionality into a stack. This allows algorithms and packages which require stacks to use

any implementation through the use of generic stack signature parameters.

9.2 Function Adaptors

Function adaptors in C++ STL make use of inheritance to specify the category of their
instantiation function objects. Hence a Ci++ STL binder only accepts arguments derived
from the binary function class. In the Ada implementation this is done using function
signatures, which turn out to be particularly handy for this application.

Following is part of the function_adaptors package specification, showing the Ada STL

specification of bind2nd and unary_composition.

11

with unary_functions, binary_functions;

package function_adaptors is

generic with package bound is new binary_functions(<>); use bound;
second_val: second_argument_type;
function bind2nd(first_val: first_argument_type) return result_type;
generic
with package composition is new unary_composed_functions(<>);
use composition;

function unary_composition(x: argument_type) return result_type;

end function_adaptors;

As can be seen above, compositions are instantiated with special composition signatures.
This guarantees that the composed functions be of compatible types. This is a good example

of how Ada signatures catch conflicts which might pass undetected through a CH+-compiler.

10 Critique of Ada 95

In this section we will try to present an evaluation of Ada 95 based on our experience in
implementing the Standard Template Library, and from the standpoint of two long time
CH users.

We were favorably impressed with the capability of signature packages to represent sets
of operations on an abstraction. We also found the strong typing of Ada to be an advantage,
although it is important that the facility for unchecked conversions exist. Through explicit
instantiation of generic packages and functions the user is aware of the exact parameters
used. Generics, as should be expected in a language which has had them since 1983, are
cleanly integrated in the language. The out-mode in function and procedure parameters
is another useful feature of the language. Ada also offers what C++ compilers have yet to
standardize on, namely an integrated partial compilation system.

On the negative side, we found the separation of type and parameter passing mode in
functions and procedures to be a problem when mapping some of the C+- STL abstrac-
tions. The syntactic separation of functions from procedures, along with the lack of a void
type, restricts generality. Also, the fact that you cannot overload assignment or the index

operator prevents Ada STL from ever achieving the same orthogonality as C++ STL. The

12

restriction that generic formal package parameters be instances of a given generic pack-
age can repeatedly surprise programmers used to the type freedom of template macros.
The need for explicit package and function instantiations can also make for very verbose
declaration sections in Ada code.

Our code was compiled with GNAT, the GNU Ada 95 compiler, which is a very capable
Ada compiler. The GNAT project is demonstrative of the high level of support Ada users
are now getting. We made extensive use of this support while doing our Ada implementa-
tion, in particular the GNAT compiler and the “Home of the Brave Ada Programmer” at
http://lgluww.epfl.ch/Ada/.

11 Conclusion

From this report it should be clear that implementing STL in Ada 95 is quite feasible.
The additional support for access types and generic formal package parameters has made
Ada as capable as C++, while maintaining the safety of traditional Ada. Our prototype
implementation, presented in this report, can, in our opinion, easily be fleshed out into a
full STL implementation. This will be pursued by one of the authors as a Master’s project
under the supervision of Dr. David Musser, and is expected to be completed by May 1996.

To be fair, we have not dealt at all with two of the pillars of the C++ STL design
philosophy, i.e., orthogonality and efficiency. Orthogonality with regard to built in types is
not easily implemented in Ada, since Ada does not support pointers to array elements in a
flexible manner, nor does it allow the overloading of some operations. It is our belief that
our prototype implementation can be efficient when compiled with a good compiler. This,

however, remains to be proven.

References

[Ada95a] Ada 95 language reference manual. Technical Report ISO/IEC 8652:1995, AD
A293760, Intermetrics, Inc., 1995.

[Ada95b] Ada 95 rationale : The language, the standard libraries. Technical Report AD
A293708, Intermetrics, Inc., January 1995.

[LRM] Working paper for draft proposed international standard for information systems
— programming language CH-. Technical Report X3J16/95-0185 WG21/N0785,

American National Standards Institute.

13

[MS89]

[SL94]

[STL]

David R. Musser and Alexander Stepanov. The Ada generic library : linear list

processing packages. Springer-Verlag, 1989.

Alexander Stepanov and Meng Lee. The standard template library. Technical
Report HPL-94-34, Hewlett-Packard Laboratories, April 1994.

The Hewlett-Packard Standard Template Library reference implementation.
Hewlett-Packard Laboratories, August, 1994, revised October 31, 1995.
ftp://butler.hpl.hp.com/stl.

14

A Ada STL Bidirectional Example

with Gnat.IO; use Gnat.IO;

-- Containers

with Lists;

-— Iterators

with Input_Iterators;

with Output_Iterators;

with Bidirectional_Iterators;

with Forward_Iterators;

-— Algorithms

with Input_Output_Algorithms;
with Forward_Algorithms;

with Bidirectional_Algorithms;

-- Other
with Accumulator;

with Ostream_Iterators;

procedure Test_Bidirectional is
package IL is new Lists(Integer, 0);
use IL;
package IL_Iter renames IL.Iterators;

use IL_Tter;

procedure My_Put(V : Integer) is
begin

Put (V) ;

Put (" ");
end My_Put;

package 0S_Iter is new Ostream_Iterators(Integer, My_Put);

15

use 0S_Iter;

-- Instantiate special iterators (i.e. instantiated differently than in
-- the container)
package IL_Output_Iter is

new Output_Iterators(Integer, 0S_Iter.Iterator);

-- Instantiate required algorithms packages
package IL_Input_Output_Algo is
new Input_Output_Algorithms(IL.Input_Iterator, IL_Output_Iter);
use IL_Input_Output_Algo;
package IL_Forward_Algo is
new Forward_Algorithms(IL.Forward_Iterator);
use IL_Forward_Algo;
package IL_Bidirectional_Algo is
new Bidirectional_Algorithms(IL.Bidirectional_Iterator) ;

use IL_Bidirectional_Algo;

-- Instantiate required generic algorithms
function Find is new IL_Forward_Algo.Find("=");
package IL_Accumulator is new Accumulator(Integer,0,"+");

procedure Sum_Up is new IL_Forward_Algo.Apply(IL_Accumulator.Add);

-- Variables

Cnt : Integer;

I : IL_Iter.Iterator;
E : IL_Iter.Iterator;
L : List;

0S : 0S_Iter.Iterator;

begin
Put_Line ("Welcome to test_bidirectional !");
New_Line;

Put ("Please enter a positive integer now followed by <CR> ");

16

Get (Cnt);

Put ("Inserting 1.."); Put (Cnt); Put (" into a list."); New_Line (2);
L := Create;
for T in 1 .. Cnt loop
Push_Back(L, I);
end loop;
Put("The list now contains ");
Put(Size(L));
Put(" elements.");

New_Line;

Put_Line("Printing from Start to Finish.");
0S := Copy(Start(L), Finish(L), 0S);

New_Line; New_Line;

Put("Removing the latter half of the list using pop_back"); New_Line;
for I in 1 .. Cnt/2 loop
Pop_Back(L);
end loop;
Put("The list now contains "); Put(Size(L));

Put(" elements."); New_Line;
Put_Line ("Printing from Start to Finish.");
0S := Copy(Start(L), Finish(L), 0S);

New_Line; New_Line;

Put_Line("Reversing the list");
IL_Bidirectional_Algo.Reverse_Range(Start(L), Finish(L));

Put_Line ("Printing from Start to Finish.");
0S := Copy(Start(L), Finish(L), 0S);

New_Line; New_Line;

Put("Looking for "); Put(Cnt/4); Put(" ... ");

17

if Find(Start(L), Finish(L), Cnt/4) /= Finish(L) then
Put_Line("Found ! (OK)");

else
Put_Line("Not Found ! (ERROR)");
end if;
Put("Looking for "); Put(Cnt); Put(" ... ");

if Find(Start(L), Finish(L), Cnt) /= Finish(L) then
Put_Line("Found ! (ERROR)");

else
Put_Line("Not Found ! (OK)");

end if;

Put("Accumulating contents of list ... ");

Sum_Up(Start(L), Finish(L));

Put("Sum is: "); Put(IL_Accumulator.Sum); New_Line;
Put("Accumulating another pass..."); New_Line;

Sum_Up(Start(L), Finish(L));

Put("New sum is: "); Put(IL_Accumulator.Sum); New_Line;

Put ("Printing from Start to Finish."); New_Line;
0S := Copy(Start(L), Finish(L), 0S);

New_Line; New_Line;

New_Line;

Put_Line("End of Test_Bidirectional");

end Test_Bidirectional;

18

B Ada STL Random Access Example

with Gnat.IO; use Gnat.IO;

with Interfaces.C; use Interfaces.C;

-- Containers

with Vectors;

-— Iterators

with Input_TIterators;

with Output_Iterators;

with Ostream_Iterators;

with Bidirectional_Iterators;
with Forward_Iterators;

with Random_Access_Iterators;

-— Algorithms

with Input_Output_Algorithms;

with Bidirectional_Algorithms;
with Forward_Algorithms;

with Random_Access_Algorithms;

—-- Other
with Accumulator;

with Ptrdiff_Random;

procedure Test_Random is
package IV is new Vectors(Integer);
use IV;
package IV_Iter renames IV.Iterators;

use IV_Iter;
procedure My_Put(V : Integer) is

begin
Put (V) ;

19

Put(" ||);
end My_Put;

package 0S_Iter is new Ostream_Iterators(Integer, My_Put);

use 0S_Iter;

-- Instantiate all necessary algorithms packages

package IV_Input_Iter is new Input_Iterators
(Integer, IV_Iter.Iterator);

package IV_Output_Iter is new Output_Iterators
(Integer, 0S_Iter.Iterator);

package IV_InputOutput_Algo is new Input_Output_Algorithms
(IV_Input_Iter, IV_Output_Iter);

use IV_InputOutput_Algo;

package IV_Forward_Algo is new Forward_Algorithms
(IV.Forward_Iterator);

use IV_Forward_Algo;

package IV_Bidirectional_Algo is new Bidirectional_Algorithms
(IV.Bidirectional_Iterator);

use IV_Bidirectional_Algo;

package IV_Random_Access_Algo is new Random_Access_Algorithms
(IV.Random_Access_Iterator);

use IV_Random_Access_Algo;

-- Instantiate required generic algorithms
function Find is new IV_Forward_Algo.Find("=");
package I_Accumulator is new Accumulator(Integer,0,'"+");

procedure Sum_Up is new IV_Forward_Algo.Apply(I_Accumulator.Add);

-- Local functions
function My_Random(Gen : Ptrdiff_Random.Generator;
Max : Ptrdiff_T) return Ptrdiff_T is
begin
return(Ptrdiff_Random.Random(Gen) mod Max);

end My_Random;

20

procedure Rshuffle is new IV_Random_Access_Algo.Random_Shuffle(My_Random) ;

—— Variables
Os : 0OS_Iter.Iterator;
Cnt : Integer;

I : IV_Iter.Iterator;
E : IV_Iter.Iterator;
Vv : Vector;

Gen: Ptrdiff_Random.Generator;

begin
Put_Line ("Welcome to Test_Random !");
New_Line;
Put ("Please enter a positive integer now followed by <CR> ");
Get (Cnt);

Put ("Inserting 1.."); Put (Cnt); Put (" into a list."); New_Line (2);
Create (D=>V);
for T in 1 .. Cnt loop
Push_Back(V, I);
end loop;
Put("The vector now contains ");
Put(Size(V));
Put(" elements.");

New_Line;

Put_Line("Printing from Start to Finish.");
Os := Copy(Start(V), Finish(V), 0s);
New_Line; New_Line;

Put_Line ("Calling random shuffle ...");
Ptrdiff_Random.Reset(Gen, 28752341);

Rshuffle(Start(V), Finish(V), Gen);

Put ("Printing from Start to Finish."); New_Line;

21

Os := Copy(Start(V), Finish(V), 0s);

New_Line; New_Line;

I_Accumulator.Reset;

Put("Accumulating contents of vector (after initialization)..."); New_Line;
Sum_Up(Start(V), Finish(V));
Put("And the sum is: "); Put(I_Accumulator.Sum); New_Line;

end Test_Random;

22

C Ada STL Adaptors Example

with Gnat.IO; use Gnat.IO;

with Lists;

with Forward_Algorithms;

with Unary_Functions, Binary_Functions;

with Unary_Composed_Functions, Binary_Composed_Functions;
with Function_Adaptors;

with Stack_Adaptors;

procedure Test_Funcadapts is
—-- Basic operations on lists
package IL is new Lists(Integer,0); use IL; use IL.Iterators;
package IL_Forward_Algo is new Forward_Algorithms(IL.Forward_Iterator);
package IL_Stack is new Stack_Adaptors(IL.List, IL.Size_Type, IL.Value_Type,
IL.Create, IL.Empty, IL.Size,
IL.Push_Back, IL.Pop_Back, IL.Back);

use IL_Forward_Algo;

-- Define some functions.
procedure Int_Put(I: Integer) is
begin
Put(I); Put(" ");
end;
function Square(I: Integer) return Integer is
begin
return I*I;

end;

-- Some function adaptors

use Function_Adaptors;

procedure Put_Range is new Apply(Int_Put);

package Add_Sig is new Binary_Functions(Integer, Integer, Integer, "+");
function Addone is new Bind2nd(Add_Sig, 1);

23

procedure Inc_Range is new Transform(Addone);
package Square_Inc_Sig is

new Unary_Composed_Functions(Integer, Integer, Integer, Addone, Square
function Square_Incs is new Unary_Composition(Square_Inc_Sig);

procedure Inc_Square_Range is new Transform(Square_Incs);

-- Some variables

Cnt : Integer;

L : List;

I, E : IL.Tterators.Iterator;
S : IL_Stack.Stack;

begin
Put_Line ("Hello. Welcome to Test_List" & "!"); New_Line;
Put ("Please enter a positive integer now followed by <CR> ");
Get (Cnt);

Put ("Inserting 1.."); Put (Cnt); Put (" into a list."); New_Line;
L := Create;
for T in 1 .. Cnt loop

Push_Back(L, I);
end loop;
Put("The list now contains "); Put(Size(L)); Put(" elements.");
New_Line(2);

Put ("Output from Start to Finish."); New_Line;
Put_Range(Start(L), Finish(L)); New_Line(2);

Put ("Incrementing all by one."); New_Line;
Inc_Range(Start(L), Finish(L), Start(L));

Put ("Output again from Start to Finish."); New_Line;
Put_Range(Start(L), Finish(L)); New_Line(2);

Put ("For all x: x := (x+1)*(x+1)."); New_Line;

24

Inc_Square_Range(Start(L), Finish(L), Start(L));

Put ("Output again from Start to Finish."); New_Line;
Put_Range(Start(L), Finish(L)); New_Line(2);

Put ("Pushing the list onto a stack."); New_Line;
S := IL_Stack.Create;
I :=Start(L);
while I /= Finish(L) loop
IL_Stack.Push(8, Val(I));
Inc(I);
end loop;
Put ("Output the elements from the stack"); New_Line;
while not IL_Stack.Empty(S) loop
Int_Put(IL_Stack.Top(S));
IL_Stack.Pop(S);
end loop; New_Line;

end;

25

