
Implementing the C�� Standard Template Library in Ada ��

�Ulfar Erlingsson Alexander V� Konstantinou

Computer Science Department�

Rensselaer Polytechnic Institute

Troy� NY �����

January ��� ���	

Abstract

The Standard Template Library �STL�� a recent addition to the ANSI C�� stan�

dard� �provides a set of well structured generic C�� components that work together

in a seamless way� �SL�	
� The popularity of STL stems from its combination of an

orthogonal design� solid theoretical foundation� and strong emphasis on e�ciency� This

paper presents a design scheme for implementing the C�� STL library components in

Ada� using features introduced in the 
��� Ada standard �Ada��a
� Discussion is based

on a prototype Ada �� implementation� segments of which illustrate the paper� This

work was prepared under the supervision of Dr� David Musser at Rensselaer Polytechnic

Institute�

�

Email� fulfar�akonstang�cs�rpi�edu



Contents

� Introduction �

� C�� STL Overview �

��� STL Categories � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� C�� Considerations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� STL in Ada �� �

� Iterators �

� Function Objects �

��� Packages as Function Objects � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Function Signatures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Containers �

��� Lists � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Vectors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Stream Iterators �

	 Algorithms �


� Adaptors ��

	�� Stack Adaptors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Function Adaptors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
 Critique of Ada �� ��

�� Conclusion ��

A Ada STL Bidirectional Example ��

B Ada STL Random Access Example ��

C Ada STL Adaptors Example ��

i



� Introduction

The C�� Standard Template Library 
STL�� a recent addition to the ANSI language stan


dard �LRM�� �provides a set of well structured generic C�� components that work together

in a seamless way� �SL	��� The design of the library emphasizes component decomposition�

orthogonality� and strict semantic and complexity requirements� E�ciency is another impor


tant consideration� and the library components closely exploit the C�� template mechanism

to minimize run time overhead� The library approach results in a design based on a solid

theoretical foundation� while remaining natural and easy to grasp� This paper will present

an implementation scheme for porting the the C�� Standard Template Library to Ada 	��

The availability of generics in Ada� as early as �	��� has long attracted researchers of

generic library components� including the designers of the C�� Standard Template Library

�MS�	�� Language restrictions in the �	�� standard� however� prevented the implementation

of some of the main STL components� Now that the long awaited revised 	X standard for

Ada has been �nalized into Ada 	�� many of the earlier restrictions have been lifted� making

it appropriate to re
examine the issue�

The following sections will brie�y introduce the main components of STL� highlight the

relevant changes in the Ada 	� standard� and propose a design for an Ada STL imple


mentation� For demonstrational purposes� a representative subset of the STL components

has been implemented in Ada 	�� The aim has been to show the feasibility of translating

the component interrelations from the C�� model to the Ada model� In this sense� lit


tle attention had been paid to important details such as run
time exceptions and e�cient

memory allocation� Details concerning this prototype implementation can be found in the

appendix�

� C�� STL Overview

The C�� Standard Template Library� see �SL	��� provides a set of generic components and a

consistent interface between them� The main considerations in the design of STL were that

all algorithms and data structures work in a similar manner to their native C�� equivalents�

that the implementations be e�cient� and that the library should provide an easy
to
grasp

orthogonal interface based on a sound theoretical foundation�

�



��� STL Categories

STL groups its components into a few distinct categories� Following is a brief listing and

discussion of each category� Interested readers should refer to �SL	�� for a more detailed

discussion�

Containers Containers in STL are generic in their element types� associative containers

are also generic in an ordered key type� STL provides vectors� lists and deques as sequence

containers� and sets� multisets� maps and multimaps as sorted associative containers�

Iterators Iterators in STL are based on the C�� concept of accessing elements in data

structures through pointers� STL iterators provide the functionality of pointers for STL

containers� Informally� iterators are classi�ed into the following categories based on which

operations they support�

Input�Output There is no decrement� Input iterators are read
only� Output iter


ators are write
only� You should not assign twice to the same output iterator

position� Both iterators categories only support single pass algorithms�

Forward Supports increment� and read�write with no restrictions�

Bidirectional Supports increment�decrement� and read�write with no restrictions�

Random Access Supports all operations a C�� pointer would� i�e� increment�decrement�

read�write� pointer
arithmetic� comparisons� and overloaded index operator 
operator����

Another iterator concepts supported in the C�� STL are constant and reverse iterators�

Constant iterators allow for the provision of read
only access to container elements� Re


verse iterators have the functionality suggested by their name� e�g�� the incrementing and

decrementing operations have their meanings interchanged�

Function Objects Function objects o�er an encapsulation of a function� and perhaps

some state information� into an object� Function objects in C�� STL are used to support

the instantiation of generic components with function arguments� However� since function

objects can also encapsulate state information� they allow for a form of functional program


ming in C�� STL�

Algorithms The STL generic algorithms provide various common algorithms on iterators

and function objects� Examples include for each� which calls a function object with each

�



element in a range� reverse� which reverses the contents of a range by repeated swaps� and

the more complicated sort� which sorts a range given a comparator function object�

Adaptors Adaptors compose new components from existing ones� There are tree main

types of adaptors�

Containers The STL sequence containers are adapted into stacks� queues and prior


ity queues�

Iterators The most important STL iterator adaptors are perhaps the ones which

provide reverse iterators based on normal ones� and those which provide insert

iterators for containers�

Function Objects Function objects can be adapted in several useful ways in the style

of functional programming� Function object parameters can be bound� composing

new functions objects taking fewer parameters� Function objects can also be

negated� There are also adaptors allowing the use of pointers to functions�

��� C�� Considerations

Even though it is written in C��� an object
oriented programming language� STL does not

use inheritance to any great extent� Instead it relies heavily on composition of its generic

components to provide for specialization� Thus stack does not inherit from list� deque

or vector� It is instead a generic composition from any container providing the required

functionality�

The components of STL make heavy use of the C�� template facility for generic pro


gramming� In C��� when de�ning a class or function using templates� you implicitly require

any operations or functions used with arguments of the generic type to be de�ned for the

instantiation type� This is not checked until the template code is instantiated with an actual

type�

This approach to generic programming in C�� is very �exible at the cost of not being

safe� It is not always clear when instantiating a template which operations or functions are

going to be used in the instantiated code� This �late compile
time binding� of templates

can easily lead to various unexpected behavior� This problem is highly aggravated by the

implicit type
casting often performed in C���

�



� STL in Ada ��

The �		� Ada standard adds numerous new features to the �	�� standard� some of which

make an Ada implementation of the Standard Template Library possible� One of the most

important extensions� for our purposes� involves access types� Unlike Ada ��� where access

type variables can only refer to objects created dynamically� Ada 	� has a general access

type� Instances of types de�ned as aliased can now be referenced through the Access

attribute� Remaining restrictions on pointer arithmetic� which can lead to ine�ciencies

in the implementation of random access iterators� can be circumvented through the C

language interface library package� These issues are further discussed in Section ��� on

vector containers�

A second change that simpli�es presentation and adds to safety is the ability to declare

generic formal packages� Thus� a generic package can be instantiated with one of the param


eters being an instance of a certain generic package� This feature allows for the de�nition of

signature packages that help to cleanly de�ne and enforce the interface between the library

components� Moreover� signature packages can add to safety by requiring explicit instan


tiation of their generic formal component operators� instead of the implicit requirement by

use� 
as is the case in C���� The next section� on iterators� expands on this feature�

There are numerous other changes� notably those involving object oriented programming

features� which are not used by this Ada STL implementation� Interested readers are

referred to �Ada	�a� and �Ada	�b��

� Iterators

In C�� STL� container iterators are objects providing a certain functionality imported from

their container� Depending on this functionality �ve iterator categories are de�ned� input�

output� forward� bidirectional� and random access iterators� These categories form a hi


erarchy� with forward iterators satisfying all the input and output iterator requirements�

bidirectional iterators satisfying all those of forward iterators� and random access iterators

satisfying all those of bidirectional iterators� At compile time� iterator objects are mapped

into simple pointers� and their operations inlined� thus providing run
time e�ciency� Be


cause iterators provide the only interface between containers and algorithms� it is essential

that they be compiled e�ciently without the need for any run
time binding�

The above scheme cannot be directly ported to Ada because types used to instantiate a

generic package do not pass along the operations de�ned on them� Although it is possible

�



for the generic package to require that the operations be passed along explicitly by the

caller� this enforces a copious style� For implementing STL in Ada� a better solution is to

use an intermediate generic package to de�ne a signature� This package is subsequently

used as a generic formal by an algorithms package� For every iterator category� a generic

signature package is de�ned and acts as the mapping abstraction� The resulting hierarchy of

algorithms packages with iterator formal parameters re�ects that of iterators� for example�

random access algorithms� bidirectional algorithms� and input
output algorithms�

A signature package forward iterators is shown here�

generic type f�value�type is private�

type f�iterator is private�

with procedure Assign�i� in f�iterator� v� f�value�type��

with function Val�i� in f�iterator� return f�value�type�

with procedure Inc�i� in out f�iterator��

package forward�iterators is end�

Any algorithm using forward iterators has to restrict itself to the three operations de�ned

above� Respectively� any container that exports iterators to be used with forward algorithms

has to implement all three operations� something which is checked by the Ada 	� compiler�

There is no way to obtain the corresponding checking with C�� templates�

Our current implementation does not provide constant or reverse interators� The in


tention is to provide constant iterators through another set of signature functions which

exclude the Assign operation� Reverse iterators� however� are to be provided though an

iterator adaptor�

� Function Objects

Since packages can have function or procedure parameters� function objects play a much

less signi�cant role in an Ada implementation of STL than in the C�� one� There is in

fact� in Ada� no need to provide any of the prede�ned function objects in STL� However�

the concept of associating state with a function� or procedure� is still a very useful one�

��� Packages as Function Objects

Ada allows a package to contain state information accessible only to the functions� or

procedures� in the package� By using this we can create packages having side
e�ects� similar

to function objects in C�� STL and to closures in functional languages� However by using

�



only this approach we are constrained to having only one instance of any function object

in our code� Therefore we cannot� for example� have two accumulator objects with two

di�erent sums�

We can� however� easily get away from this limitation by making the package generic�

This allows us to construct as many instances of the package as we require� An example of

the speci�cation of a simple accumulator package follows�

with unary�procedures�

generic type T is private�

Nil� T�

with function ����x� T� y� T� return T�

package accumulator is

function Sum return t�

procedure Add�x� in T��

procedure Reset�

package signature is new unary�procedure�T	 Add��

private sum�value� t �
 Nil�

end accumulator�

��� Function Signatures

As is the case with iterators� signature packages are used to provide a standard interface to

functions and procedures� The Ada implementation has to provide such generic packages

for both functions and procedures� something which C�� STL does not require� since a C��

procedure is a function with a void return type� This somewhat awkward code duplication

is required in several parts of the Ada STL library� because of the Ada distinction between

functions and procedures�

The Ada implementation has the following signature packages� unary procedures�

binary procedures� unary functions and binary functions� In C��� mode informa


tion is part of the instantiation type for a generic function� whereas in Ada it is a syntactic

construct� This seems� at �rst glance� to force us to provide di�erent signature packages

for procedures of all possible modes� However� since procedures are not used often in STL�

except in read
only situations� we only provide in
mode procedures in this implementation�

Following is the signature package for unary functions�

generic type argument�type is private�

type result�type is private�

�



with function Op�x� argument�type� return result�type�

package unary�functions is end�

� Containers

For this study we implemented two of the STL containers� lists and vectors� This allowed us

to make use of the full range of iterators� and to create examples for all types of algorithms�

Perhaps the biggest di�erence between C�� STL and Ada STL containers stems from

the fact that Ada packages do not de�ne object types in the sense that C�� classes do�

but rather represent the traditional concept of abstract data types� Thus when using a list�

one passes an instance of a special List type to functions de�ned in the Lists package�

This means the C�� �dot�
notation x�y��� where x is an instance of a class with a member

function y��� has a corresponding y�x� Ada equivalant�

The container components instantiate all possible iterator signature packages as sub


packages� e�g�� lists has input iterator� output iterator� forward iterator� and

bidirectional iterator� all as subpackages� This relieves the user from having to in


stantiate any iterator signatures� since they are prede�ned in each container package� The

user need only pass the correct subpackage to an algorithms package to instantiate the

algorithms for a container�

��� Lists

The Ada implementation of lists is modeled very closely on the C�� reference implementa


tion in �STL�� Lists are doubly linked and circular with a sentinel node before the beginning

and after the end�

In order to keep the Ada implementation as simple as possible� only a subset of the

member functions of lists were implemented� These functions are empty� size� push back

and pop back� There is also a constructor function Create in the Ada version�

The list iterator is implemented in the subpackage Lists�Iterators� An iterator is

de�ned there as a normal Ada access all type to an aliased cell in an instance of the

List type� While not su�cient for vectors� this su�ces for lists since lists do not need to

support pointer arithmetic� The C�� STL functions begin�� and end�� are implemented

in Iterators as Start and Finish� The list iterator satis�es the signature of bidirectional

iterators� with the functions Inc� Dec� Val and Assign allowing increment�decrement� deref


erencing and assignment on iterators�

Following is an overview of the Ada speci�cation for lists�

�



with input�iterators	 ���	 bidirectional�iterators�

generic type T is private� ���

package Lists is

subtype Value Type is T�

type List is private�
���

function Create return List�
���

package Iterators is

type Iterator is private�

procedure Assign�i� in Iterator� v� in Value Type��

function Start�l� List� return Iterator�
���

private type Iterator is record ��� end record�

end Iterators�

package input�iterator is new input�iterators

�Value�Type	 Iterators�Iterator	 Iterators�Inc	 Iterators�Val��
���

private type List is record ��� end record� ���

end Lists�

��� Vectors

An STL vector supports random access iterators� and is a generalization of a dynamic array�

Besides the usual array operations� there is support for linear time insert� nd erase in

the middle� as well as amortized constant time insert and erase at the end of the vector�

Storage management is not visible to the user� although tuning parameters may be supplied�

The main issue in an Ada implementation of the vector container involves the choice

of the iterator type� Even with aliased types� Ada does not allow for pointer arithmetic�

Therefore� one cannot increment a pointer to a vector element� or subtract two pointers�

One solution would be to de�ne the vector iterator as a record containing an index position

and a pointer to the array� Getting the value 
dereferencing� of the iterator would involve

the computation of the array address for the given index� A second solution employs the

C interfaces library package for unchecked conversions between array pointer types and

address types� The second solution provides the most direct mapping to the C�� STL

�



vector container� and is the one used in our Ada implementation�

It is important to note that the choice in iterator implementation does not a�ect the

other components of the Ada STL implementation� One can argue that basic containers

supplied with an Ada STL implementation should use the more e�cient� if less secure�

solution� Additional container construction can use an adaptor approach� wrapping the

e�cient implementation with safety checks� This discussion pertains to the internal validity

of the container implementation� There is a separate issue concerning the extent of run
time

range error checking� discussed earlier� which applies equally to both solutions�

The Ada speci�cation for the vector container is similar to the one for lists� di�ering in

the iterator speci�cation�

generic type T is private�

package vectors is

subtype Value Type is T�
���

package Iterators is

type Iterator is private�
���

function ����i� in Iterator� j� in Iterator� return ptrdiff�t�
���

private type Iterator is access all Value�Type�

end iterators�

end vectors�

The above example uses the C interfaces package for unchecked conversion� implementing

the above ��� function�

function ����i� in Iterator� j� in Iterator� return ptrdiff�t is

begin

return�To�Ptrdiff�To�Addr�i� � To�Addr�j�� 
 Elmt�Size��

end ����

� Stream Iterators

Stream iterators in C�� provide an iterator
like interface for the input�output streams� An

istream iterator is an input iterator on a given input stream� while an ostream iterator

	



is an output iterator on a given output stream� A special iterator is the end�of�stream

iterator� Two end�of�stream iterators are always equal� a non
end�of�stream iterator is

always not equal to an end�of�stream iterator� while two non
end�of�stream iterators are

equal if and only if constructed from the same stream�

In terms of our Ada implementation� stream iterators are radically di�erent from other

iterators� in that they provide basic functionality� and are not just signatures or adaptors�

The stream iterators are instantiated with a type and a procedure to put an element of that

type on the stream� In fact� the Put operation need not operate only on streams� but can

be a simple �le operation� since the values placed are all of the same type� In accordance

with the C�� STL reference implementation �STL�� the output stream iterator increment

operator is implemented as a null operation�

A sample output stream iterator speci�cation�

generic type value�type is private�

with procedure Put�v� in value�type��

package ostream�iterators is

type Iterator is private�

procedure Inc�i� in out Iterator��

procedure Assign�i� in Iterator� v� in value�type �

private type Iterator is null record�

end ostream�iterators�

Here the iterator is a type� de�ned as a null record� which ensures type
safety� while

not incurring any overhead since it is purely a compile
time construct�

	 Algorithms

Algorithms� in the Ada implementation of STL� are categorized into packages based on

the iterator types they require� with input output algorithms� forward algorithms�

bidirectional algorithms and random access algorithms all being distinct packages�

non
overlapping in functionality� Algorithms are instantiated with iterator signature pack


ages providing the necessary operations�

The algorithms implemented for this study represent a small� but varied� subset of the

C�� STL algorithms� Implemented algorithms include copy� find� for each� transform�

reverse� and random shuffle� The algorithms implemented span all the algorithm classes

found in C�� STL�

��



Following is the speci�cation of bidirectional algorithms�

with bidirectional iterators�

generic with package iterators is new bidirectional iterators�����

use iterators�

package bidirectional algorithms is

procedure reverse� first� in b iterator� last� in b iterator ��

end bidirectional algorithms�

The implementation of these algorithms raised some unresolved issues in the renaming

of overloaded functions� In particular there were several problems with instantiating in


put�output algorithms with a single iterator type for both input and output� In order to

work around these issues some of our functions are in categories di�erent from their C��

counterparts�

� Adaptors

Only a subset of the C�� adaptors were implemented for this study� One container adaptor�

stack� was implemented� but no iterator adaptor� We implemented binders in a manner very

similar to that of C�� STL� Negators� however� are an instance of function composition�

Function composition is not implemented in C�� STL� but is a good test of the concepts

of function adaption and was therefore included in the Ada implementation�

��� Stack Adaptors

Stacks are implemented as a signature package� adapting any container with the proper

functionality into a stack� This allows algorithms and packages which require stacks to use

any implementation through the use of generic stack signature parameters�

��� Function Adaptors

Function adaptors in C�� STL make use of inheritance to specify the category of their

instantiation function objects� Hence a C�� STL binder only accepts arguments derived

from the binary function class� In the Ada implementation this is done using function

signatures� which turn out to be particularly handy for this application�

Following is part of the function adaptors package speci�cation� showing the Ada STL

speci�cation of bind�nd and unary composition�

��



with unary�functions	 binary�functions�

package function�adaptors is
���

generic with package bound is new binary�functions����� use bound�

second�val� second�argument�type�

function bind�nd�first�val� first�argument�type� return result�type�

generic

with package composition is new unary�composed�functions�����

use composition�

function unary�composition� x� argument�type � return result�type�
���

end function�adaptors�

As can be seen above� compositions are instantiated with special composition signatures�

This guarantees that the composed functions be of compatible types� This is a good example

of how Ada signatures catch con�icts which might pass undetected through a C��compiler�

�
 Critique of Ada ��

In this section we will try to present an evaluation of Ada 	� based on our experience in

implementing the Standard Template Library� and from the standpoint of two long time

C�� users�

We were favorably impressed with the capability of signature packages to represent sets

of operations on an abstraction� We also found the strong typing of Ada to be an advantage�

although it is important that the facility for unchecked conversions exist� Through explicit

instantiation of generic packages and functions the user is aware of the exact parameters

used� Generics� as should be expected in a language which has had them since �	��� are

cleanly integrated in the language� The out
mode in function and procedure parameters

is another useful feature of the language� Ada also o�ers what C�� compilers have yet to

standardize on� namely an integrated partial compilation system�

On the negative side� we found the separation of type and parameter passing mode in

functions and procedures to be a problem when mapping some of the C�� STL abstrac


tions� The syntactic separation of functions from procedures� along with the lack of a void

type� restricts generality� Also� the fact that you cannot overload assignment or the index

operator prevents Ada STL from ever achieving the same orthogonality as C�� STL� The

��



restriction that generic formal package parameters be instances of a given generic pack


age can repeatedly surprise programmers used to the type freedom of template macros�

The need for explicit package and function instantiations can also make for very verbose

declaration sections in Ada code�

Our code was compiled with GNAT� the GNU Ada 	� compiler� which is a very capable

Ada compiler� The GNAT project is demonstrative of the high level of support Ada users

are now getting� We made extensive use of this support while doing our Ada implementa


tion� in particular the GNAT compiler and the �Home of the Brave Ada Programmer� at

http�

lglwww�epfl�ch
Ada
�

�� Conclusion

From this report it should be clear that implementing STL in Ada 	� is quite feasible�

The additional support for access types and generic formal package parameters has made

Ada as capable as C��� while maintaining the safety of traditional Ada� Our prototype

implementation� presented in this report� can� in our opinion� easily be �eshed out into a

full STL implementation� This will be pursued by one of the authors as a Master�s project

under the supervision of Dr� David Musser� and is expected to be completed by May �		��

To be fair� we have not dealt at all with two of the pillars of the C�� STL design

philosophy� i�e�� orthogonality and e�ciency� Orthogonality with regard to built in types is

not easily implemented in Ada� since Ada does not support pointers to array elements in a

�exible manner� nor does it allow the overloading of some operations� It is our belief that

our prototype implementation can be e�cient when compiled with a good compiler� This�

however� remains to be proven�

References

�Ada	�a� Ada 	� language reference manual� Technical Report ISO�IEC ������		�� AD

A�	����� Intermetrics� Inc�� �		��

�Ada	�b� Ada 	� rationale � The language� the standard libraries� Technical Report AD

A�	����� Intermetrics� Inc�� January �		��

�LRM� Working paper for draft proposed international standard for information systems

� programming language C��� Technical Report X�J���	�
���� WG���N�����

American National Standards Institute�

��



�MS�	� David R� Musser and Alexander Stepanov� The Ada generic library � linear list

processing packages� Springer
Verlag� �	�	�

�SL	�� Alexander Stepanov and Meng Lee� The standard template library� Technical

Report HPL
	�
��� Hewlett
Packard Laboratories� April �		��

�STL� The Hewlett
Packard Standard Template Library reference implementation�

Hewlett
Packard Laboratories� August� �		�� revised October ��� �		��

ftp�

butler�hpl�hp�com
stl�

��



A Ada STL Bidirectional Example

with Gnat�IO� use Gnat�IO�

�� Containers

with Lists�

�� Iterators

with Input�Iterators�

with Output�Iterators�

with Bidirectional�Iterators�

with Forward�Iterators�

�� Algorithms

with Input�Output�Algorithms�

with Forward�Algorithms�

with Bidirectional�Algorithms�

�� Other

with Accumulator�

with Ostream�Iterators�

procedure Test�Bidirectional is

package IL is new Lists�Integer	 ���

use IL�

package IL�Iter renames IL�Iterators�

use IL�Iter�

procedure My�Put�V � Integer� is

begin

Put�V��

Put�� ���

end My�Put�

package OS�Iter is new Ostream�Iterators�Integer	 My�Put��

��



use OS�Iter�

�� Instantiate special iterators �i�e� instantiated differently than in

�� the container�

package IL�Output�Iter is

new Output�Iterators�Integer	 OS�Iter�Iterator��

�� Instantiate required algorithms packages

package IL�Input�Output�Algo is

new Input�Output�Algorithms�IL�Input�Iterator	 IL�Output�Iter��

use IL�Input�Output�Algo�

package IL�Forward�Algo is

new Forward�Algorithms�IL�Forward�Iterator��

use IL�Forward�Algo�

package IL�Bidirectional�Algo is

new Bidirectional�Algorithms�IL�Bidirectional�Iterator��

use IL�Bidirectional�Algo�

�� Instantiate required generic algorithms

function Find is new IL�Forward�Algo�Find� �
� ��

package IL�Accumulator is new Accumulator�Integer	�	�����

procedure Sum�Up is new IL�Forward�Algo�Apply� IL�Accumulator�Add ��

�� Variables

Cnt � Integer�

I � IL�Iter�Iterator�

E � IL�Iter�Iterator�

L � List�

OS � OS�Iter�Iterator�

begin

Put�Line ��Welcome to test�bidirectional ����

New�Line�

Put ��Please enter a positive integer now followed by �CR� ���

��



Get �Cnt��

Put ��Inserting ������ Put �Cnt�� Put �� into a list���� New�Line ����

L �
 Create�

for I in � �� Cnt loop

Push�Back� L	 I ��

end loop�

Put� �The list now contains � ��

Put� Size�L� ��

Put� � elements�� ��

New�Line�

Put�Line��Printing from Start to Finish����

OS �
 Copy�Start�L�	 Finish�L�	 OS��

New�Line� New�Line�

Put� �Removing the latter half of the list using pop�back� �� New�Line�

for I in � �� Cnt
� loop

Pop�Back� L ��

end loop�

Put� �The list now contains � �� Put� Size�L� ��

Put� � elements�� �� New�Line�

Put�Line ��Printing from Start to Finish����

OS �
 Copy�Start�L�	 Finish�L�	 OS��

New�Line� New�Line�

Put�Line� �Reversing the list� ��

IL�Bidirectional�Algo�Reverse�Range� Start�L�	 Finish�L� ��

Put�Line ��Printing from Start to Finish����

OS �
 Copy�Start�L�	 Finish�L�	 OS��

New�Line� New�Line�

Put� �Looking for � �� Put� Cnt
� �� Put� � ��� � ��

��



if Find� Start�L�	 Finish�L�	 Cnt
� � 

 Finish�L� then

Put�Line� �Found � �OK�� ��

else

Put�Line� �Not Found � �ERROR�� ��

end if�

Put� �Looking for � �� Put� Cnt �� Put� � ��� � ��

if Find� Start�L�	 Finish�L�	 Cnt � 

 Finish�L� then

Put�Line� �Found � �ERROR�� ��

else

Put�Line� �Not Found � �OK�� ��

end if�

Put� �Accumulating contents of list ��� � ��

Sum�Up� Start�L�	 Finish�L� ��

Put� �Sum is� � �� Put� IL�Accumulator�Sum �� New�Line�

Put� �Accumulating another pass���� �� New�Line�

Sum�Up� Start�L�	 Finish�L� ��

Put� �New sum is� � �� Put� IL�Accumulator�Sum �� New�Line�

Put ��Printing from Start to Finish���� New�Line�

OS �
 Copy�Start�L�	 Finish�L�	 OS��

New�Line� New�Line�

New�Line�

Put�Line� �End of Test�Bidirectional���

end Test�Bidirectional�

��



B Ada STL Random Access Example

with Gnat�IO� use Gnat�IO�

with Interfaces�C� use Interfaces�C�

�� Containers

with Vectors�

�� Iterators

with Input�Iterators�

with Output�Iterators�

with Ostream�Iterators�

with Bidirectional�Iterators�

with Forward�Iterators�

with Random�Access�Iterators�

�� Algorithms

with Input�Output�Algorithms�

with Bidirectional�Algorithms�

with Forward�Algorithms�

with Random�Access�Algorithms�

�� Other

with Accumulator�

with Ptrdiff�Random�

procedure Test�Random is

package IV is new Vectors�Integer��

use IV�

package IV�Iter renames IV�Iterators�

use IV�Iter�

procedure My�Put�V � Integer� is

begin

Put�V��

�	



Put�� ���

end My�Put�

package OS�Iter is new Ostream�Iterators�Integer	 My�Put��

use OS�Iter�

�� Instantiate all necessary algorithms packages

package IV�Input�Iter is new Input�Iterators

�Integer	 IV�Iter�Iterator��

package IV�Output�Iter is new Output�Iterators

�Integer	 OS�Iter�Iterator��

package IV�InputOutput�Algo is new Input�Output�Algorithms

�IV�Input�Iter	 IV�Output�Iter��

use IV�InputOutput�Algo�

package IV�Forward�Algo is new Forward�Algorithms

�IV�Forward�Iterator��

use IV�Forward�Algo�

package IV�Bidirectional�Algo is new Bidirectional�Algorithms

�IV�Bidirectional�Iterator��

use IV�Bidirectional�Algo�

package IV�Random�Access�Algo is new Random�Access�Algorithms

�IV�Random�Access�Iterator��

use IV�Random�Access�Algo�

�� Instantiate required generic algorithms

function Find is new IV�Forward�Algo�Find� �
� ��

package I�Accumulator is new Accumulator�Integer	�	�����

procedure Sum�Up is new IV�Forward�Algo�Apply� I�Accumulator�Add ��

�� Local functions

function My�Random� Gen � Ptrdiff�Random�Generator�

Max � Ptrdiff�T � return Ptrdiff�T is

begin

return�Ptrdiff�Random�Random�Gen� mod Max��

end My�Random�

��



procedure Rshuffle is new IV�Random�Access�Algo�Random�Shuffle� My�Random ��

�� Variables

Os � OS�Iter�Iterator�

Cnt � Integer�

I � IV�Iter�Iterator�

E � IV�Iter�Iterator�

V � Vector�

Gen� Ptrdiff�Random�Generator�

begin

Put�Line ��Welcome to Test�Random ����

New�Line�

Put ��Please enter a positive integer now followed by �CR� ���

Get �Cnt��

Put ��Inserting ������ Put �Cnt�� Put �� into a list���� New�Line ����

Create�D
�V��

for I in � �� Cnt loop

Push�Back� V	 I ��

end loop�

Put� �The vector now contains � ��

Put� Size�V� ��

Put� � elements�� ��

New�Line�

Put�Line��Printing from Start to Finish����

Os �
 Copy�Start�V�	 Finish�V�	 Os��

New�Line� New�Line�

Put�Line ��Calling random shuffle ���� ��

Ptrdiff�Random�Reset�Gen	 ����������

Rshuffle� Start�V�	 Finish�V�	 Gen ��

Put ��Printing from Start to Finish���� New�Line�

��



Os �
 Copy�Start�V�	 Finish�V�	 Os��

New�Line� New�Line�

I�Accumulator�Reset�

Put� �Accumulating contents of vector �after initialization����� �� New�Line�

Sum�Up� Start�V�	 Finish�V� ��

Put� �And the sum is� � �� Put� I�Accumulator�Sum �� New�Line�

end Test�Random�

��



C Ada STL Adaptors Example

with Gnat�IO� use Gnat�IO�

with Lists�

with Forward�Algorithms�

with Unary�Functions	 Binary�Functions�

with Unary�Composed�Functions	 Binary�Composed�Functions�

with Function�Adaptors�

with Stack�Adaptors�

procedure Test�Funcadapts is

�� Basic operations on lists

package IL is new Lists�Integer	��� use IL� use IL�Iterators�

package IL�Forward�Algo is new Forward�Algorithms�IL�Forward�Iterator��

package IL�Stack is new Stack�Adaptors� IL�List	 IL�Size�Type	 IL�Value�Type	

IL�Create	 IL�Empty	 IL�Size	

IL�Push�Back	 IL�Pop�Back	 IL�Back ��

use IL�Forward�Algo�

�� Define some functions�

procedure Int�Put� I� Integer � is

begin

Put� I �� Put� � � ��

end�

function Square� I� Integer � return Integer is

begin

return I�I�

end�

�� Some function adaptors

use Function�Adaptors�

procedure Put�Range is new Apply� Int�Put ��

package Add�Sig is new Binary�Functions� Integer	 Integer	 Integer	 ��� ��

function Addone is new Bind�nd� Add�Sig	 � ��

��



procedure Inc�Range is new Transform� Addone ��

package Square�Inc�Sig is

new Unary�Composed�Functions� Integer	 Integer	 Integer	 Addone	 Square ��

function Square�Incs is new Unary�Composition� Square�Inc�Sig ��

procedure Inc�Square�Range is new Transform� Square�Incs ��

�� Some variables

Cnt � Integer�

L � List�

I	 E � IL�Iterators�Iterator�

S � IL�Stack�Stack�

begin

Put�Line ��Hello� Welcome to Test�List� � ����� New�Line�

Put ��Please enter a positive integer now followed by �CR� ���

Get �Cnt��

Put ��Inserting ������ Put �Cnt�� Put �� into a list���� New�Line�

L �
 Create�

for I in � �� Cnt loop

Push�Back� L	 I ��

end loop�

Put� �The list now contains � �� Put� Size�L� �� Put� � elements�� ��

New�Line����

Put ��Output from Start to Finish���� New�Line�

Put�Range� Start� L �	 Finish� L � �� New�Line����

Put ��Incrementing all by one���� New�Line�

Inc�Range� Start� L �	 Finish� L �	 Start� L � ��

Put ��Output again from Start to Finish���� New�Line�

Put�Range� Start� L �	 Finish� L � �� New�Line����

Put ��For all x� x �
 �x�����x������� New�Line�

��



Inc�Square�Range� Start� L �	 Finish� L �	 Start� L � ��

Put ��Output again from Start to Finish���� New�Line�

Put�Range� Start� L �	 Finish� L � �� New�Line����

Put ��Pushing the list onto a stack���� New�Line�

S �
 IL�Stack�Create�

I �
 Start� L ��

while I 

 Finish� L � loop

IL�Stack�Push� S	 Val� I � ��

Inc� I ��

end loop�

Put ��Output the elements from the stack��� New�Line�

while not IL�Stack�Empty� S � loop

Int�Put� IL�Stack�Top� S � ��

IL�Stack�Pop� S ��

end loop� New�Line�

end�

��


