
Ada, C, C++, and Java vs. The Steelman
David A. Wheeler

Institute for Defense Analyses
1801 N. Beauregard St.

Alexandria, VA 22311-1772
(703) 845-6662

dwheeler@ida.org

Abstract
This paper compares four computer programming languages (Ada95, C, C++, and Java) with the
requirements of "Steelman", the original 1978 requirements document for the Ada computer
programming language. This paper provides a view of the capabilities of each of these languages, and
should help those trying to understand their technical similarities, differences, and capabilities.

Introduction
In 1975 the U.S. Department of Defense (DoD) established a "Common High Order Language" program
with the goal of establishing a single high order computer programming language appropriate for DoD
embedded computer systems. A High Order Language Working Group (HOLWG) was established to
formulate the DoD requirements for high order languages, to evaluate existing languages against those
requirements, and to implement the minimal set of languages required for DoD use. The requirements
were widely distributed for comment throughout the military and civil communities, producing
successively more refined versions from Strawman through Woodenman, Tinman, Ironman, and finally
Steelman. Steelman was released in June 1978 [DoD 1978]. An electronic version of Steelman is
available at "http://www.adahome.com/History/Steelman/intro.htm". The original version of the Ada
computer programming language was designed to comply with the Steelman requirements.

Today there are a number of high order languages in commercial and military use, including Ada95, C,
C++, and Java. I thought it would be an interesting and enlightening exercise to compare these
languages to Steelman; this paper provides the results of this exercise. Other comparisons of these
languages do exist (for example, [Sutherland 1996, Seidewitz 1996]), but none use the Steelman
requirements as a basis.

This paper compares four computer programming languages (Ada95, C, C++, and Java) with the
requirements of "Steelman". The paper first describes the rules used in this comparison of these four
languages with Steelman. This is followed by conclusions summarizing how each language compares to
Steelman. After the references is a large table, the "meat" of this paper, showing how each of these
languages compare to each of the Steelman requirements.

This paper does not attempt to determine if the Steelman requirements are still relevant. In the author’s
opinion, most of the Steelman requirements are still desirable for general-purpose computer languages
when both efficiency and reliability are important concerns. Steelman is no doubt incomplete; in
particular, object-orientation is not a Steelman requirement but is widely considered desirable. However,

desirability and completeness need not be true for this comparison to be useful, because this paper
simply uses Steelman as a framework for examining technical issues of these computer languages.
Steelman is a useful framework because it was widely reviewed and is technically detailed.

Rules for Comparison
The primary rule used in this paper is that a language provides a feature if:

1. that feature is defined in the documents widely regarded as the language’s defining document(s),
and

2. that feature is widely implemented by compilers typically used for that language with essentially
the same semantics.

Features that are only provided by a single implementation, or are defined but cannot be depended upon
across the most commonly used implementations, are not considered to be part of the language.
Examples of features that cannot be depended on are features which are often unimplemented,
implemented incorrectly on widely-used compilers, or implemented with significantly differing
semantics. Subset compilers for research or student work are not considered unless they are widely used
by users of that language. One area where some "benefit of the doubt" is given is for C++ templates.
C++ templates are part of the C++ language definition, but current C++ compilers implement templates
with different semantics [FSF 1995] and with different levels of quality [OMG 1995]. As a result, C++
templates are currently difficult to use in a portable way. Still, credit is given for C++ templates since
the intent is clear and they can be used today (with trouble) on most compilers.

The defining documents used for each of these languages are as follows:

Ada95: The "Ada 95 Reference Manual" (referred to as the Language Reference Manual, or LRM)
[ISO 1995] is the official definition of Ada95. This document is freely available as a hypertext
document at "http://www.adahome.com/rm95/". Ada95 is a revision of the original Ada language
(now called Ada83), which added support for object-orientation and various other capabilities. The
rest of this paper will use the term "Ada" to mean "Ada95".

C: The official current definition of C is ISO/IEC 9899:1990, which is essentially the same as the
definition developed by ANSI as ANSI X3.159-1989 [ANSI 1989]. This has been extended by
Normative Addition 1 to support internationalization features, as described at
"http://www.lysator.liu.se/c/na1.html". Programmers often don’t have these costly standards
documents; instead, they often use the book by C’s developers, Kernighan and Ritchie [Kernighan
1988], so this book is also considered a defining document, along with its errata (see
"http://www.lysator.liu.se/c/c-errata.html").

C++: There is ongoing work to standardize C++ by 1998 but no final, approved standard. I have
used the documents closest to a standard yet widely available, namely, the Working Paper of ISO
Working Group WG21 (April 28, 1995). WG21 is developing the International Standard for the
C++ programming language. This document is available at
"ftp://ftp.research.att.com/dist/c++std/WP/". and an HTML version is available at
"http://www.cygnus.com/misc/wp/". There are more recent versions of this document, but access
to these revisions is more restricted, and changes from this widely-available version are less likely

to be fully implemented in a wide number of compilers. Two other key defining C++ documents
are the older books The Annotated C++ Reference Manual (ARM) [Ellis 1990] and Stroustrup’s
The C++ Programming Language [Stroustrup 1991]. In July 1994 the ANSI/ISO C++ Standards
committee voted to adopt the Standard Template Library (STL) as part of the C++ library, so the
STL is considered part of C++ in this paper. Other useful C++ references can be found at
"http://yoyodyne.tamu.edu/oop/oopcpp.html".

Java: The current defining documentation on Java is the documentation set available from Javasoft
(a Sun Microsystems business) at "http://java.sun.com/doc/language.html". Note that what is being
evaluated here is the Java language, not the underlying Java Virtual Machine. There is already a
compiler (by Intermetrics) that takes Ada source code and generates Java Virtual Machine code
(see "http://www.adahome.com/Tutorials/Lovelace/java.htm").

Conclusions
The appendix shows how well each language supports each Steelman requirement.

The following table shows the number of Steelman requirements met by each language. The leftmost
column shows the name of the language. The next columns are the number of requirements the language
does not meet, only partially meets, mostly meets, and completely meets. The final column shows the
percentage of Steelman requirements mostly or completely met by the language. Note that Ada meets
the most, followed by Java, C++, and C in that order. The Java and C++ percentages are probably too
close to be considered significantly different.

Language "No" "Partial" "Mostly" "Yes" Percentage of Answers with "Mostly" or "Yes"

Ada 3 5 11 94 93%

C 32 21 16 44 53%

C++ 19 17 23 54 68%

Java 20 12 22 59 72%

Caution is warranted, since differing percentages of "yes" values do not necessarily imply that a
particular language is more suitable than another for a given specific task. Note that the original version
of Ada was specifically designed to meet the Steelman requirements, while none of the other languages
were specifically designed to do so, so it is expected that Ada would meet more of the Steelman
requirements than the rest. Also, all of these languages have capabilities that are not Steelman
requirements. For example, direct support for object-orientation is a feature of Ada, C++, and Java, but
is not a Steelman requirement. Readers should use this comparison to gain additional understanding of
each of these different languages, and determine which "yes" and "no" values are of importance to them.

The following are high-level remarks comparing each language to Steelman based on the table in the
appendix, including remarks on the language support for reliability (requirement 1B):

Ada has the most "yes" responses to Steelman; this is no surprise, since Ada83 was designed to
meet the Steelman requirements, and Ada95 is a superset of Ada83. Ada has "no" responses to
only 3 Steelman requirements: 3-3F, 5D, and 10F. Requirement 3-3F requires a specific syntax for
constants and functions that Ada does not support. Requirement 5D restricts the kinds of values
supported by the language. Ada83 complied more fully with requirement 5D (e.g. by not
permitting access values to functions), but this Steelman requirement was found to be too
restricting. Ada95 removed these restrictions, resulting in noncompliance with Steelman
requirement 5D. Steelman requirement 10F requires simple assertion capabilities. Run-time
assertions can be trivially implemented in Ada, but Ada does not provide a built-in construct for
them. Some Steelman requirements are only supported by Ada, for example, fixed-point types
(requirements 3-1G and 3-1H).

C does not have a number of the Steelman capabilities. C does not have support for controlling
concurrency - calls to the local operating system must be used instead. C also does not have an
exception handling system nor generic processing (setjmp/longjmp and preprocessor commands
can perform similar actions in trivial cases, but they are not practical substitutes in larger
programs). Probably a more fundamental issue is that, while good programs can be written using
C, C does not substantially aid in reliability nor maintainability, and does not try to maximize
compile-time detection of errors. Those who believe otherwise need only compare C’s error
detection capabilities with C++, Java, and Ada.

C++ supports exception handling and templates (generics), although at this time using C++
templates is problematic. C++ does not support concurrency directly, taking the same approach to
this as C does. C++ does try to detect more errors at compile-time than C does by tightening up
C’s type system somewhat.

Java supports exception handling and concurrency, and in general tries to detect errors at compile
time. Java does not support enumerated types nor generics (templates). The former can be partly
simulated with a long series of constants, and the latter with Java interfaces and the root Object
type, but neither are very good mechanisms for simulating these capabilities. These weaknesses
are well-known; for example, "Pizza" is superset of Java that adds templates and other capabilities
(see "http://wwwipd.ira.uka.de/~odersky/papers.html#Pizza"). Java does not provide direct control
of low-level hardware (such as the size and bit structure of types), since it was not designed for
that purpose. Java does try to provide good compile-time and run-time protection; some of the
"no" answers in the table are specifically because of this (for example, Java initializes all variable
values which goes against requirement 5E and the efficiency issues of requirement 1D). Like Ada,
Java does not have a built-in run-time assertion mechanism (requirement 10F), but this is trivially
implemented in Java.

Again, users of this paper should apply caution; differing percentages of "yes" values and capabilities do
not necessarily imply that a particular language is more suitable than another for a given specific task.
Readers should examine each answer and determine which "yes" and "no" values are of importance to
them. This information is intended to help readers gain additional understanding of each of these
different languages.

References
[ANSI 1989] ANSI C. 1989. ANSI X3.159-1989.
[DoD 1978] U.S. Department of Defense. June 1978. ‘‘Department Of Defense Requirements for
High Order Computer Programming Languages: "Steelman"’’ Electronically available at
"http://www.adahome.com/History/Steelman/intro.htm".
[Ellis 1990] Ellis, Margaret A., and Bjarne Stroustrup. 1990. "The Annotated C++ Reference
Manual" (ARM). ISBN 0-201-51459-1 Reading, MA: Addison-Wesley.
[FSF 1995] Free Software Foundation. 1995. "Where’s the Template?". Using and Porting GNU
C. Available at many locations, e.g. "http://www.delorie.com/gnu/docs/gcc/gcc_toc.html".
[ISO 1995] ISO. January 1995. Ada 95 Reference Manual. ANSI/ISO/IEC-8652:1995. Available
at "http://www.adahome.com/rm95/".
[Kernighan 1988] Kernighan, Brian W., and Dennis M. Ritchie. 1988. "The C Programming
Language". Second Edition. ISBN 0-13-110362-8. Englewood Cliffs, NJ: Prentice-Hall.
[OMG 1995] Object Management Group. July 1995. The Common Object Request Broker:
Architecture and Specification. Revision 2.0. Section 15.1.2 says ‘‘Because C++ implementations
vary widely in the quality of their support for templates, this mapping does not explicitly require
their use ...’’.
[Seidewitz 1996] Seidewitz, Ed. October 1996. "Another Look at Ada 95". Object Magazine. NY,
NY: SIGS Publications Inc.
[Stroustrup 1991] Stroustrup, Bjarne. 1991. The C++ Programming Language. Second Edition.
ISBN 0-201-53992-6. Reading, MA: Addison-Wesley.
[Sutherland 1996] Sutherland, Jeff. September 1996. "Smalltalk Manifesto". Object Magazine.
NY, NY: SIGS Publications Inc.

This paper is not endorsed by, and does not necessarily represent the views of, the Institute for Defense
Analyses (IDA), the U.S. Department of Defense (DoD), or the U.S. Government.

I am grateful to Michael Kappel, Magnus Kempe, and James Kuehn for their constructive comments.

Appendix: Table Comparing Four Languages to
Steelman
In this table, the left-hand column gives the Steelman requirement. The next four columns show how
well Ada, C, C++, and Java meet this requirement. An entry of "yes" indicates that the language and its
major implementations generally meet the requirement, while a "no" indicates that requirement is
generally not met. There are two intermediate entries: "partial" indicates some of the requirement is met,
but a significant portion (or intent) of the requirement is not met, "mostly" indicates that the requirement
is generally met, but some specific capability of the requirement is not fully met. Underneath the
columns for each language is commentary explaining these entries.

I have tried to be fair to all of these languages. Nevertheless, some of these entries, particularly in
section 1, are judgement calls. Readers are encouraged to revisit each entry (particularly in section 1),
compare each language, and draw their own conclusions. Items which I felt are particularly questionable
have been marked with a question mark ("?").

Requirement Ada C C++ Java
1A. Generality. The language shall provide
generality only to the extent necessary to satisfy
the needs of embedded computer applications.
Such applications involve real time control, self
diagnostics, input-output to nonstandard peripheral
devices, parallel processing, numeric computation,
and file processing.

yes yes yes partial

Java can’t directly control hardware; Java programs must declare
native methods and implement such operations in another language.

1B. Reliability. The language should aid the design
and development of reliable programs. The
language shall be designed to avoid error prone
features and to maximize automatic detection of
programming errors. The language shall require
some redundant, but not duplicative, specifications
in programs. Translators shall produce explanatory
diagnostic and warning messages, but shall not
attempt to correct programming errors.

yes no partial? mostly?
Ada requires separate specifications for all modules other than
stand-alone subprograms. C and C++ contain many well-known traps
(= vs. ==, & vs. &&, premature semicolon in control structures,
fall-through behavior in switch statements when "break" is omitted);
some were removed or made less likely in Java but others were not. C
permits separate specifications (through prototypes) but are optional;
function names are globally accessible by default and can be
incorrectly redefined. C++ supports separate specifications and has a
slightly tighter type system than C. Also, good use of C++’s
object-oriented features should increase the likelihood of compile-time
detection of some kinds of errors. Java automatically generates
specifications (as opposed to using redundant specifications). C and
C++ do little checking at run-time. Both Ada and Java perform a
number of run-time checks (e.g. bounds checking and checks for null
values) to detect errors early.

1C. Maintainability. The language should promote
ease of program maintenance. It should emphasize
program readability (i.e., clarity, understandability,
and modifiability of programs). The language
should encourage user documentation of programs.
It shall require explicit specification of
programmer decisions and shall provide defaults
only for instances where the default is stated in the
language definition, is always meaningful, reflects
the most frequent usage in programs, and may be
explicitly overridden.

yes? partial? partial? mostly?
Ada was originally designed with readability in mind. C was not, and
can easily be (ab)used to make impenetrable code. C (and hence C++
and Java) includes a great deal of terse notation which reduces
readability (e.g. the "for" loop notation, using "&&" instead of "and",
and operators such as "<<"). C++’s object-oriented features, if used,
are likely to improve maintainability (because they force interfaces to
be defined and used). Java’s document comments (//*) and standard
documentation conventions aid in readability. Note that "readability"
of a programming language is extremely subjective - well-structured
programs can be read and maintained in any language by someone
who knows the language, and no language can prevent all poor
approaches. At issue in this requirement is how strongly the language
encourages readable and maintainable code.

1D. Efficiency. The language design should aid the
production of efficient object programs. Constructs
that have unexpectedly expensive implementations
should be easily recognizable by translators and by
users. Features should be chosen to have a simple
and efficient implementation in many object
machines, to avoid execution costs for available
generality where it is not needed, to maximize the
number of safe optimizations available to
translators, and to ensure that unused and constant
portions of programs will not add to execution
costs. Execution time support packages of the
language shall not be included in object code
unless they are called.

yes yes yes partial?

Ada functions returning unbounded size objects usually have hidden
extra efficiency costs (access types can be used where this is
important). C++ implicit conversion operations may be activated in
situations not easily recognizable by its users. C/C++ pointer
arithmetic and aliasing prohibit some optimizations. Java’s garbage
collection raises questions about efficiency and guaranteed timing,
especially in real-time systems.

1E. Simplicity. The language should not contain
unnecessary complexity. It should have a
consistent semantic structure that minimizes the
number of underlying concepts. It should be as
small as possible consistent with the needs of the
intended applications. It should have few special
cases and should be composed from features that
are individually simple in their semantics. The
language should have uniform syntactic
conventions and should not provide several
notations for the same concept. No arbitrary
restriction should be imposed on a language
feature.

yes yes mostly yes

Ada includes both Ada 83’s discriminated records and the newer (OO)
tagged types (these have many similarities). C is a very simple
language (though not necessarily simple to use). C++ has C operations
and its own operations (new/delete vs. malloc/free, cout vs. printf).

1F. Implementability. The language shall be
composed from features that are understood and
can be implemented. The semantics of each feature
should be sufficiently well specified and
understandable that it will be possible to predict its
interaction with other features. To the extent that it
does not interfere with other requirements, the
language shall facilitate the production of
translators that are easy to implement and are
efficient during translation. There shall be no
language restrictions that are not enforceable by
translators.

yes yes yes yes

All of these languages have been reasonably implemented.

1G. Machine Independence. The design of the
language should strive for machine independence.
It shall not dictate the characteristics of object
machines or operating systems except to the extent
that such characteristics are implied by the
semantics of control structures and built-in
operations. It shall attempt to avoid features whose
semantics depend on characteristics of the object
machine or of the object machine operating
system. Nevertheless, there shall be a facility for
defining those portions of programs that are
dependent on the object machine configuration and
for conditionally compiling programs depending
on the actual configuration.

yes yes yes yes

Approaches differ. Ada includes a number of mechanisms to query the
underlying configuration (such as bit ordering conventions) and
C/C++ include some querying mechanisms. Conditional compilation
in Ada and Java is handled through "if (constant)" statements (this
does not permit conditional compilation in cases where "if" statements
are not permitted). Java has few mechanisms for querying the
underlying configuration and imposes requirements on bit length and
semantics of numeric types that must be supported. Java strives for
machine independence by hiding the underlying machine.

1H. Complete Definition. The language shall be
completely and unambiguously defined. To the
extent that a formal definition assists in achieving
the above goals (i.e., all of section 1), the language
shall be formally defined.

yes yes yes yes

2A. Character Set. The full set of character
graphics that may be used in source programs shall
be given in the language definition. Every source
program shall also have a representation that uses
only the following 55 character subset of the
ASCII graphics: %&’()*+,-./:;<=>? 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ_ Each
additional graphic (i.e., one in the full set but not
in the 55 character set) may be replaced by a
sequence of (one or more) characters from the 55
character set without altering the semantics of the
program. The replacement sequence shall be
specified in the language definition.

yes
mostly (trigraphs

and digraphs)
mostly (trigraphs

and digraphs) no

C, C++, and Java usually use a number of characters (such as {, }, [,],
and #) that are not available on some European terminals (which only
offer the seven-bit ISO 646 character set and use these positions for
accented characters). C added trigraphs to help European users, but
trigraphs are horrible to use in practice. Normative Addition 1 to C
added digraphs and the <iso646.h> header in an attempt to make C
easier to use in such cases; while somewhat improved, such programs
are still more difficult to read. Note that supporting restricted character
sets is becoming less important as old 7-bit European terminals
disappear, and restrictions to support upper-case-only users are now
irrelevant.

2B. Grammar. The language should have a simple,
uniform, and easily parsed grammar and lexical
structure. The language shall have free form
syntax and should use familiar notations where
such use does not conflict with other goals.

yes yes partial yes
C has a few cases where parser state dependent feedback to the lexical
analyzer is necessary (e.g. typedef, preprocessor tokenization). C++ is
more difficult to parse because it isn’t LALR(1). Java isn’t really
LALR(1) either, but known techniques make it so it can be handled as
though it is LALR(1).

2C. Syntactic Extensions. The user shall not be
able to modify the source language syntax. In
particular the user shall not be able to introduce
new precedence rules or to define new syntactic
forms.

yes no no yes
C/C++ preprocessor can be used to create some (obscure) syntactic
forms. A preprocessor (such as cpp or m4) can be used with any
language, including Ada and Java, but neither include a preprocessor
in their definition.

2D. Other Syntactic Issues. Multiple occurrences
of a language defined symbol appearing in the
same context shall not have essentially different
meanings. Lexical units (i.e., identifiers, reserved
words, single and multicharacter symbols, numeric
and string literals, and comments) may not cross
line boundaries of a source program. All key word
forms that contain declarations or statements shall
be bracketed (i.e., shall have a closing as well as
an opening key word). Programs may not contain
unmatched brackets of any kind.

yes mostly mostly mostly

C comments (also supported by C++) cross multiple lines. C,C++, and
Java don’t have "closing" key words, but use matching opening and
closing braces. Matching braces have the advantage of being easy to
type and support with text editors, but permit errors in maintenance
when the "wrong" matching braces are used.

2E. Mnemonic Identifiers. Mnemonically
significant identifiers shall be allowed. There shall
be a break character for use within identifiers. The
language and its translators shall not permit
identifiers or reserved words to be abbreviated.
(Note that this does not preclude reserved words
that are abbreviations of natural language words.)

yes yes yes yes

All support this. Note that Ada is case-insensitive, while C, C++, and
Java identifiers are case-sensitive.

2F. Reserved Words. The only reserved words
shall be those that introduce special syntactic
forms (such as control structures and declarations)
or that are otherwise used as delimiters. Words that
may be replaced by identifiers, shall not be
reserved (e.g., names of functions, types,
constants, and variables shall not be reserved). All
reserved words shall be listed in the language
definition.

yes yes yes yes

2G. Numeric Literals. There shall be built-in
decimal literals. There shall be no implicit
truncation or rounding of integer and fixed point
literals.

yes mostly mostly yes
All support numeric literals for integers. C and C++ permit implicit
rounding, though many compilers will catch this. Only Ada directly
supports fixed point numbers (see 3-1G).

2H. String Literals. There shall be a built-in
facility for fixed length string literals. String
literals shall be interpreted as one-dimensional
character arrays.

yes yes yes mostly

Java String and String_Buffer are considered special types, not
one-dimensional character arrays.

2I. Comments. The language shall permit
comments that are introduced by a special (one or
two character) symbol and terminated by the next
line boundary of the source program.

yes no yes yes
Only C lacks comments automatically terminated by the end of line.
Note that in practice, many C compilers share the preprocessor with
C++ and can permit //-style comments with special compilation
options, but this is not permitted portably by the C standard.

3A. Strong Typing. The language shall be strongly
typed. The type of each variable, array and record
component, expression, function, and parameter
shall be determinable during translation.

yes partial mostly yes
Note that C and C++ have compile-time types but both are more
weakly typed. Typedef does not define a new type, just a name
synonym. A pointer to an array of objects is considered equivalent to a
pointer to an object. In C, enumerations are considered identical to int,
while in C++ enumerations are different types.

3B. Type Conversions. The language shall
distinguish the concepts of type (specifying data
elements with common properties, including
operations), subtype (i.e., a subset of the elements
of a type, that is characterized by further
constraints), and representations (i.e.,
implementation characteristics). There shall be no
implicit conversions between types. Explicit
conversion operations shall be automatically
defined between types that are characterized by the
same logical properties.

yes no partial? partial?

C, C++, and Java do not have subtypes (types with additional
constraints) for primitive types (such as int or float). Class structures
can be used in C++ and Java to implement additional constraints on
classes. C and C++ have some representation control using bitfield
locations; this is not considered separate from the type. C and C++
have a number of implicit conversions.

3C. Type Definitions. It shall be possible to define
new data types in programs. A type may be
defined as an enumeration, an array or record type,
an indirect type, an existing type, or a subtype of
an existing type. It shall be possible to process
type definitions entirely during translation. An
identifier may be associated with each type. No
restriction shall be imposed on user defined types
unless it is imposed on all types.

yes mostly mostly mostly

C and C++ don’t have subtypes. Java doesn’t have subtypes or
enumerated types; see 3B and 3-2A.

3D. Subtype Constraints. The constraints that
characterize subtypes shall include range,
precision, scale, index ranges, and user defined
constraints. The value of a subtype constraint for a
variable may be specified when the variable is
declared. The language should encourage such
specifications. [Note that such specifications can
aid the clarity, efficiency, maintainability, and
provability of programs.]

mostly no no no

Ada supports user definition of range, precision, scale, and index
ranges, but does not directly support arbitrary user-defined constraints.
With effort constructors and operations in C++ and Java could be used
to enforce constraints.

3-1A. Numeric Values. The language shall provide
distinct numeric types for exact and for
approximate computation. Numeric operations and
assignment that would cause the most significant
digits of numeric values to be truncated (e.g., when
overflow occurs) shall constitute an exception
situation.

yes partial? partial? partial?

All support integers and floats. C, C++, and Java don’t raise
exceptions on integer overflow. C/C++ implementations often define
ways to handle IEEE floating point exceptions. Java does throw an
exception for division by zero. The question marks are noted because
it’s not clear how much a penalty should be assessed for this.

3-1B. Numeric Operations. There shall be built-in
operations (i.e., functions) for conversion between
the numeric types. There shall be operations for
addition, subtraction, multiplication, division,
negation, absolute value, and exponentiation to
integer powers for each numeric type. There shall
be built-in equality (i.e., equal and unequal) and
ordering operations (i.e., less than, greater than,
less than or equal, and greater than or equal)
between elements of each numeric type. Numeric
values shall be equal if and only if they have
exactly the same abstract value.

yes mostly mostly mostly

In C, C++, and Java the exponentiation operator is pow(), not the usual
infix operator, and the built-in operation only takes arguments of type
double (not int). C provides an absolute value function for int but not
double.

3-1C. Numeric Variables. The range of each
numeric variable must be specified in programs
and shall be determined by the time of its
allocation. Such specifications shall be interpreted
as the minimum range to be implemented and as
the maximum range needed by the application.
Explicit conversion operations shall not be
required between numeric ranges.

yes yes yes yes

Counting built-in types (such as "Integer" or "int") as specifying a
range, all of these languages do so to some extent. C, C++ and Java do
not support user-defined numeric ranges (see 3D).

3-1D. Precision. The precision (of the mantissa) of
each expression result and variable in approximate
computations must be specified in programs, and
shall be determinable during translation. Precision
specifications shall be required for each such
variable. Such specifications shall be interpreted as
the minimum accuracy (not significance) to be
implemented. Approximate results shall be
implicitly rounded to the implemented precision.
Explicit conversions shall not be required between
precisions.

yes partial partial mostly

The standards for C and C++ define the minimum precision of double
and float, but no control over actual precision. Java defines specific
precisions for double and float, and no other control over precision.

3-1E. Approximate Arithmetic Implementation.
Approximate arithmetic will be implemented using
the actual precisions, radix, and exponent range
available in the object machine. There shall be
built-in operations to access the actual precision,
radix, and exponent range of the implementation.

yes yes yes no
Ada makes the precision, radix, and exponent range available through
language-defined attributes. C and C++ make these available through
<float.h>. Java defines these in the language itself. Java requires IEEE
arithmetic semantics (with specific options) to be used, regardless of
the underlying machine’s floating point mechanisms.

3-1F. Integer and Fixed Point Numbers. Integer
and fixed point numbers shall be treated as exact
numeric values. There shall be no implicit
truncation or rounding in integer and fixed point
computations.

yes partial partial mostly

C, C++, and Java don’t support fixed point numbers. C++ and Java
classes could be used to build fixed point functionality. C and C++
permit implicit truncation in integer computations.

3-1G. Fixed Point Scale. The scale or step size
(i.e., the minimal representable difference between
values) of each fixed point variable must be
specified in programs and be determinable during
translation. Scales shall not be restricted to powers
of two.

yes no no no

No built-in fixed point support in C, C++, or Java.

3-1H. Integer and Fixed Point Operations. There
shall be integer and fixed point operations for
modulo and integer division and for conversion
between values with different scales. All built-in
and predefined operations for exact arithmetic
shall apply between arbitrary scales. Additional
operations between arbitrary scales shall be
definable within programs.

yes no no no

All support "modulo" operators; C, C++, and Java don’t support fixed
point numbers.

3-2A. Enumeration Type Definitions. There shall
be types that are definable in programs by
enumeration of their elements. The elements of an
enumeration type may be identifiers or character
literals. Each variable of an enumeration type may
be restricted to a contiguous subsequence of the
enumeration.

yes mostly mostly no

Java doesn’t support enumerations. C enumerations are weakly typed
(integers can be freely assigned to them); C++ tightens this slightly
(but still permits quiet conversions from enum to int). C and C++ only
permit identifiers (not character constants) as enumeration elements.
Neither C nor C++ support sub-sequences.

3-2B. Operations on Enumeration Types. Equality,
inequality, and the ordering operations shall be
automatically defined between elements of each
enumeration type. Sufficient additional operations
shall be automatically defined so that the
successor, predecessor, the position of any
element, and the first and last element of the type
may be computed.

yes mostly? mostly? no

C and C++ don’t have operations to determine the first and last
enumerated value.

3-2C. Boolean Type. There shall be a predefined
type for Boolean values.

yes no yes yes
C doesn’t have a "bool" type; C++’s bool type is weakly typed. Both
Ada’s and Java’s boolean type is fully distinct from their integer types.

3-2D. Character Types. Character sets shall be
definable as enumeration types. Character types
may contain both printable and control characters.
The ASCII character set shall be predefined.

yes yes yes partial
All languages have a predefined character type, though it’s not
necessarily considered an enumerated type. C and C++ enumeration
types can be used to create "character sets", though this is rarely done.
Java lacks enumeration types.

3-3A. Composite Type Definitions. It shall be
possible to define types that are Cartesian products
of other types. Composite types shall include
arrays (i.e., composite data with indexable
components of homogeneous types) and records
(i.e., composite data with labeled components of
heterogeneous type).

yes yes yes yes

All have arrays and records (Java and C++ classes may be used as
records).

3-3B. Component Specifications. For elements of
composite types, the type of each component (i.e.,
field) must be explicitly specified in programs and
determinable during translation. Components may
be of any type (including array and record types).
Range, precision, and scale specifications shall be
required for each component of appropriate
numeric type.

yes yes yes yes

Range, precision, and scale specifications are included in numeric type
definitions (with support varying, see 3-1).

3-3C. Operations on Composite Types. A value
accessing operation shall be automatically defined
for each component of composite data elements.
Assignment shall be automatically defined for
components that have alterable values. A
constructor operation (i.e., an operation that
constructs an element of a type from its constituent
parts) shall be automatically defined for each
composite type. An assignable component may be
used anywhere in a program that a variable of the
component’s type is permitted. There shall be no
automatically defined equivalence operations
between values of elements of a composite type.

yes yes yes yes

The "constructor" meant here is simply the ability to declare or
allocate a value of the given type, which all support. Ada, C++, and
Java provide more sophisticated control over construction.

3-3D. Array Specifications. Arrays that differ in
number of dimensions or in component type shall
be of different types. The range of subscript values
for each dimension must be specified in programs
and may be determinable at the time of array
allocation. The range of each subscript value must
be restricted to a contiguous sequence of integers
or to a contiguous sequence from an enumeration
type.

yes mostly mostly mostly

C, C++, and Java array indexes may only start at zero and cannot use
enumerations to define array subscripts. In C enumerations may be
used to access array elements. In C++ enumerations can be cast into
int’s to access array values, while Java has no enumeration types.

3-3E. Operations on Subarrays. There shall be
built-in operations for value access, assignment,
and catenation of contiguous sections of
one-dimensional arrays of the same component
type. The results of such access and catenation
operations may be used as actual input parameter.

yes no no no

C and C++’s memcpy and memcmp can be used to do some of these
operations using an extremely low-level interface. C, C++, and Java
do not have array concatenation operators (Java has a string
concatenator as a special case).

3-3F. Nonassignable Record Components. It shall
be possible to declare constants and (unary)
functions that may be thought of as record
components and may be referenced using the same
notation as for accessing record components.
Assignment shall not be permitted to such
components.

no no yes yes

C++ and Java classes can include constants (and functions).

3-3G. Variants. It shall be possible to define types
with alternative record structures (i.e., variants).
The structure of each variant shall be determinable
during translation.

yes yes yes yes
Java and C++ class structures can be used to simulate at run time the
typical uses of variants. C and C++ also permit "unions" to define
types with alternative record structures without tag fields.

3-3H. Tag Fields. Each variant must have a
nonassignable tag field (i.e., a component that can
be used to discriminate among the variants during
execution). It shall not be possible to alter a tag
field without replacing the entire variant.

yes no yes yes

Java operations (e.g. instanceof) and C++ RTTI can be used to
simulate typical uses of tag fields. Note that C unions do not have
automatic tag fields.

3-3I. Indirect Types. It shall be possible to define
types whose elements are indirectly accessed.
Elements of such types may have components of
their own type, may have substructure that can be
altered during execution, and may be distinct while
having identical component values. Such types
shall be distinguishable from other composite
types in their definitions. An element of an indirect
type shall remain allocated as long as it can be
referenced by the program. [Note that indirect
types require pointers and sometimes heap storage
in their implementation.]

yes yes yes yes

Ada access values, C/C++ pointers, and Java object references support
this. Note that Java requires garbage collection and Ada permits
garbage collection as an option (with a pragma for controlling it).
C/C++ implementations usually do not include garbage collection,
although conservative garbage collection systems for C/C++ are
available. C and C++ permit pointers which reference deallocated
storage. Ada programs using Unchecked_Deallocation may reference
deallocated storage.

3-3J. Operations on Indirect Types. Each
execution of the constructor operation for an
indirect type shall create a distinct element of the
type. An operation that distinguishes between
different elements, an operation that replaces all of
the component values of an element without
altering the element’s identity, and an operation
that produces a new element having the same
component values as its argument, shall be
automatically defined for each indirect type.

yes yes yes mostly

Note that the "constructor" mentioned here is "new" (in Ada, C++, and
Java) or "malloc" (in C or C++). Note that Ada, C++, and Java (but
not C) provide additional control over constructors. Copying isn’t
defined automatically in Java.

3-4A. Bit Strings (i.e., Set Types). It shall be
possible to define types whose elements are
one-dimensional Boolean arrays represented in
maximally packed form (i.e, whose elements are
sets).

yes partial? yes yes
In Ada, declare a packed array of boolean values. In C, short bit
strings can be handled using "int" or "long", but longer bit strings are
best handled through user-defined functions or macros. In C++, use
the STL template class bitset (for short ones, use bitmask). In Java, use
class BitSet in package "java.util".

3-4B. Bit String Operations. Set construction,
membership (i.e., subscription), set equivalence
and nonequivalence, and also complement,
intersection, union, and symmetric difference (i.e.,
component-by-component negation, conjunction,
inclusive disjunction, and exclusive disjunction
respectively) operations shall be defined
automatically for each set type.

yes partial? yes mostly

In C, such operations can be easily created with the built-in operations
when there are sizeof(long) or fewer bits; longer bit strings are
typically handled by user-defined functions or macros. Java BitSet
doesn’t have a group negation ("not") operation.

3-5A. Encapsulated Definitions. It shall be
possible to encapsulate definitions. An
encapsulation may contain declarations of
anything (including the data elements and
operations comprising a type) that is definable in
programs. The language shall permit multiple
explicit instantiations of an encapsulation.

yes yes yes yes

Ada’s unit of encapsulation is the package. C’s is the ".h" file. C++’s
are classes and ".h" files. Java’s is the class.

3-5B. Effect of Encapsulation. An encapsulation
may be used to inhibit external access to
implementation properties of the definition. In
particular, it shall be possible to prevent external
reference to any declaration within the
encapsulation including automatically defined
operations such as type conversions and equality.
Definitions that are made within an encapsulation
and are externally accessible may be renamed
before use outside the encapsulation.

yes partial yes yes

C encapsulation requires extreme discipline using the "static" keyword
(the default is to make everything globally accessible). C++ more
strongly supports encapsulation when classes and the private modifier
are used.

3-5C. Own Variables. Variables declared within an
encapsulation, but not within a function,
procedure, or process of the encapsulation, shall
remain allocated and retain their values throughout
the scope in which the encapsulation is
instantiated.

yes yes yes yes

4A. Form of Expressions. The parsing of correct
expressions shall not depend on the types of their
operands or on whether the types of the operands
are built into the language.

yes yes yes yes

4B. Type of Expressions. It shall be possible to
specify the type of any expression explicitly. The
use of such specifications shall be required only
where the type of the expression cannot be
uniquely determined during translation from the
context of its use (as might be the case with a
literal).

yes yes yes yes

Ada qualifiers do this. C, C++, and Java "casts" can do this, but may
also quietly invoke a conversion operation.

4C. Side Effects. The language shall attempt to
minimize side effects in expressions, but shall not
prohibit all side effects. A side effect shall not be
allowed if it would alter the value of a variable that
can be accessed at the point of the expression. Side
effects shall be limited to own variables of
encapsulations. The language shall permit side
effects that are necessary to instrument functions
and to do storage management within functions.
The order of side effects within an expression shall
not be guaranteed. [Note that the latter implies that
any program that depends on the order of side
effects is erroneous.]

mostly partial mostly mostly

All permit side effects beyond their own variables of encapsulation
(e.g. global variables or other objects can be affected). C encourages
this, and combined with macros can cause unexpected results (e.g.
"putchar(*p++)"). Such use is not necessarily considered erroneous in
C/C++. C++ permits the same effects, though due to other language
features (such as OO features) they tend to receive less use.

4D. Allowed Usage. Expressions of a given type
shall be allowed wherever both constants and
variables of the type are allowed.

yes yes yes yes

4E. Translation Time Expressions. Expressions
that can be evaluated during translation shall be
permitted wherever literals of the type are
permitted. Translation time expressions that
include only literals and the use of translation time
facilities (see 11C) shall be evaluated during
translation.

yes yes yes yes

C, C++, and Java specifications do not require all literals to be
evaluated at compile time, but compilers typically do so.

4F. Operator Precedence Levels. The precedence
levels (i.e., binding strengths) of all (prefix and
infix) operators shall be specified in the language
definition, shall not be alterable by the user, shall
be few in number, and shall not depend on the
types of the operands.

yes mostly mostly mostly

C, C++, and Java have a large number of precedence levels.

4G. Effect of Parentheses. If present, explicit
parentheses shall dictate the association of
operands with operators. The language shall
specify where explicit parentheses are required and
shall attempt to minimize the psychological
ambiguity in expressions. [Note that this might be
accomplished by requiring explicit parentheses to
resolve the operator-operand association whenever
a nonassociative operator appears to the left of an
operator of the same precedence at the
least-binding precedence level of any
subexpression.]

yes yes yes yes

5A. Declarations of Constants. It shall be possible
to declare constants of any type. Such constants
shall include both those whose values-are
determined during translation and those whose
value cannot be determined until allocation.
Programs may not assign to constants.

yes yes yes yes

5B. Declarations of Variables. Each variable must
be declared explicitly. Variables may be of any
type. The type of each variable must be specified
as part of its declaration and must be determinable
during translation. [Note, "variable" throughout
this document refers not only to simple variables
but also to composite variables and to components
of arrays and records.]

yes mostly mostly yes

C and C++ permit "void *" as a type, which is really a pointer to an
unknown type and subverts the type system.

5C. Scope of Declarations. Everything (including
operators) declared in a program shall have a scope
(i.e., a portion of the program in which it can be
referenced). Scopes shall be determinable during
translation. Scopes may be nested (i.e., lexically
embedded). A declaration may be made in any
scope. Anything other than a variable shall be
accessable within any nested scope of its
definition.

yes partial mostly mostly

All support nested scopes of variable declarations. Ada supports
hierarchical packages, nested packages, and nested subprograms. C
only provides two scope levels for functions: static and non-static.
Java and C++ support class scoping mechanisms (private, protected,
and public) and larger structuring mechanisms (C++ namespaces and
Java nested packages). Neither Java nor C++ support nested functions
(functions declared in other functions).

5D. Restrictions on Values. Procedures, functions,
types, labels, exception situations, and statements
shall not be assignable to variables, be computable
as values of expressions, or be usable as
nongeneric parameters to procedures or functions.

no no no no
Ada, C, and C++ support the use of access/pointer to
subprograms/functions. The original Ada83 did not permit access to
subprograms; this was later found to be too limiting. Ada and C++
permit passing of exceptions as values. Java does not support pointers
to functions, though Java interfaces can be used as a somewhat clumsy
workaround. Java permits types and exceptions to be assigned and
used as nongeneric parameters.

5E. Initial Values. There shall be no default
initial-values for variables.

partial yes yes partial
Ada defines an initial value for access values. Java defines initial
values for all types, though recommends against using them and Java
compilers attempt to warn of such use. In both Java and Ada, this is to
support reliability.

5F. Operations on Variables. Assignment and an
implicit value access operation shall be
automatically defined for each variable.

yes yes yes yes

5G. Scope of Variables. The language shall
distinguish between open scopes (i.e., those that
are automatically included in the scope of more
globally declared variables) and closed scopes
(i.e., those in which nonlocal variables must be
explicitly Imported). Bodies of functions,
procedures, and processes shall be closed scopes.
Bodies of classical control structures shall be open
scopes.

yes yes yes yes

The languages differ significantly in their notions of "importing" and
how scoping is handled, but all support the essence of this
requirement.

6A. Basic Control Facility. The (built-in) control
mechanisms should be of minimal number and
complexity. Each shall provide a single capability
and shall have a distinguishing syntax. Nesting of
control structures shall be allowed. There shall be
no control definition facility. Local scopes shall be
allowed within the bodies of control statements.
Control structures shall have only one entry point
and shall exit to a single point unless exited via an
explicit transfer of control (where permitted, see
6G), or the raising of an exception (see 10C).

yes yes yes yes

C, C++, and Java have both "continue" and "break" operations, which
could be viewed as two "exit" points from a control structure. Java has
a multi-level break statement, but these goes to specific exit points in
specific control structures.

6B. Sequential Control. There shall be a control
mechanism for sequencing statements. The
language shall not impose arbitrary restrictions on
programming style, such as the choice between
statement terminators and statement separators,
unless the restriction makes programming errors
less likely.

yes yes yes yes

All use statement terminators.

6C. Conditional Control. There shall be
conditional control structures that permit selection
among alternative control paths. The selected path
may depend on the value of a Boolean expression,
on a computed choice among labeled alternatives,
or on the true condition in a set of conditions. The
language shall define the control action for all
values of the discriminating condition that are not
specified by the program. The user may supply a
single control path to be used when no other path
is selected. Only the selected branch shall be
compiled when the discriminating condition is a
translation time expression.

yes yes yes yes

6D. Short Circuit Evaluation. There shall be infix
control operations for short circuit conjunction and
disjunction of the controlling Boolean expression
in conditional and iterative control structures.

yes yes yes yes

6E. Iterative Control. There shall be an iterative
control structure. The iterative control may be
exited (without reentry) at an unrestricted number
of places. A succession of values from an
enumeration type or the integers may be associated
with successive iterations and the value for the
current iteration accessed as a constant throughout
the loop body.

yes mostly mostly mostly

In C, C++, and Java, the loop control variable is not considered a
constant.

6G. Explicit Control Transfer. There shall be a
mechanism for control transfer (i.e., the go to). It
shall not be possible to transfer out of closed
scopes, into narrower scopes, or into control
structures. It shall be possible to transfer out of
classical control structures. There shall be no
control transfer mechanisms in the form of
switches, designational expressions, label
variables, label parameters, or alter statements.

yes yes yes partial

The Java language does not include the "goto" (though it does reserve
the keyword). Java does have a multi-level break and continue
statement which can serve the role of "goto" in many cases. K&R does
not list any restrictions on C’s goto statement, so some
implementations may permit entry into control structures.

7A. Function and Procedure Definitions. Functions
(which return values to expressions) and
procedures (which can be called as statements)
shall be definable in programs. Functions or
procedures that differ in the number or types of
their parameters may be denoted by the same
identifier or operator (i.e., overloading shall be
permitted). [Note that redefinition, as opposed to
overloading, of an existing function or procedure
is often error prone.]

yes no yes yes

C does not permit multiple functions to share the same name even
when the parameter signatures differ.

7B. Recursion. It shall be possible to call functions
and procedures recursively.

yes yes yes yes

7C. Scope Rules. A reference to an identifier that
is not declared in the most local scope shall refer
to a program element that is lexically global, rather
than to one that is global through the dynamic
calling structure.

yes yes yes yes

7D. Function Declarations. The type of the result
for each function must be specified in its
declaration and shall be determinable during
translation. The results of functions may be of any
type. If a result is of a nonindirect array or record
type then the number of its components must be
determinable by the time of function call.

mostly mostly mostly mostly
Ada permits any type as a function return value, and does not require
the number of components to be determined by function call time
(which gives flexibility at the cost of efficiency when using this
capability). Java also permits a function to return an array without
knowning the number of components at call time; Java’s approach to
arrays is different than that implied by this requirement.

7F. Formal Parameter Classes. There shall be three
classes of formal data parameters: (a) input
parameters, which act as constants that are
initialized to the value of corresponding actual
parameters at the time of call, (b) input-output
parameters, which enable access and assignment to
the corresponding actual parameters, either
throughout execution or only upon call and prior to
any exit, and (c) output parameters, whose values
are transferred to the corresponding actual
parameter only at the time of normal exit. In the
latter two cases the corresponding actual parameter
shall be determined at time of call and must be a
variable or an assignable component of a
composite type.

yes partial partial no

C, C++, and Java do not identify in, out, and in-out parameters. C and
C++ can identify in-only parameters using "const" or by using
non-pointer types. C++ supports passing by reference as well as
passing by value (which implies that the item already exists).

7G. Parameter Specifications. The type of each
formal parameter must be explicitly specified in
programs and shall be determinable during
translation. Parameters may be of any type. The
language shall not require user specification of
subtype constraints for formal parameters. If such
constraints are permitted they shall be interpreted
as assertions and not as additional overloading.
Corresponding formal and actual parameters must
be of the same type.

yes mostly mostly yes

C and C++ permit re-specification in other places, permitting the
specifications to go "out of sync". C and C++ also permit recasting of
pointers that can subvert the type specification.

7H. Formal Array Parameters. The number of
dimensions for formal array parameters must be
specified in programs and shall be determinable
during translation. Determination of the subscript
range for formal array parameters may be delayed
until invocation and may vary from call to call.
Subscript ranges shall be accessible within
function and procedure bodies without being
passed as explicit parameters.

yes no no partial?

Subscript ranges are not accessible in C and C++. C, C++, and Java
don’t support multidimension arrays, though arrays of arrays permit
some similar operations (particularly in Java).

7I. Restrictions to Prevent Aliasing. The language
shall attempt to prevent aliasing (l.e., multiple
access paths to the same variable or record
component) that is not intended, but shall not
prohibit all aliasing. Aliasing shall not be
permitted between output parameters nor between
an input-output parameter and a nonlocal variable.
Unintended aliasing shall not be permitted
between input-output parameters. A restriction
limiting actual input-output parameters to variables
that are nowhere referenced as nonlocals within a
function or routine, is not prohibited. All aliasing
of components of elements of an indirect type shall
be considered intentional.

yes no no no

Aliasing is a well-known problem when trying to optimize C and C++
code. Java defines all non-primitives as references and does not permit
"internal" references, so in some sense all aliases are intended.

8A. Low Level Input-Output. There shall be a few
low level input-output operations that send and
receive control information to and from physical
channels and devices. The low level operations
shall be chosen to insure that all user level
input-output operations can be defined within the
language.

mostly? partial partial no

Ada, C, and C++ permit access to memory-mapped locations but do
not have standard I/O channel operations. Ada’s machine code
insertion capability can perform I/O channel operations in the
language.

8B. User Level Input-Output. The language shall
specify (i.e., give calling format and general
semantics) a recommended set of user level
input-output operations. These shall include
operations to create, delete, open, close, read,
write, position, and interrogate both sequential and
random access files and to alter the association
between logical files and physical devices.

yes yes yes yes

Ada and Java applets may be restricted further by the environment, but
this is determined by the local applet security manager and user, not by
the language.

8C. Input Restrictions. User level input shall be
restricted to data whose record representations are
known to the translator (i.e., data that is created
and written entirely within the program or data
whose representation is explicitly specified in the
program).

yes yes yes yes

8D. Operating System Independence. The
language shall not require the presence of an
operating system. [Note that on many machines it
will be necessary to provide run-time procedures
to implement some features of the language.]

yes yes yes yes

8E. Resource Control. There shall be a few low
level operations to interrogate and control physical
resources (e.g., memory or processors) that are
managed (e.g., allocated or scheduled) by built-in
features of the language.

mostly no partial partial
Ada supports memory storage pool management (managed by the
allocation/deallocation language features), task scheduling policies,
and task priorities. The C++ "new" operator can be overridden to
support memory storage pool management. Java supports thread
priorities.

8F. Formating. There shall be predefined
operations to convert between the symbolic and
internal representation of all types that have literal
forms in the language (e.g., strings of digits to
integers, or an enumeration element to its symbolic
form). These conversion operations shall have the
same semantics as those specified for literals in
programs.

yes partial partial partial

C and C++ don’t have built-in enumeration reading and writing; Java
doesn’t have enumerated types.

9A. Parallel Processing. It shall be possible to
define parallel processes. Processes (i.e., activation
instances of such a definition) may be initiated at
any point within the scope of the definition. Each
process (activation) must have a name. It shall not
be possible to exit the scope of a process name
unless the process is terminated (or uninitiated).

yes no no yes

C and C++ do not have have built-in thread or process facilities - the
assumption is that these are to be provided by operating system
dependent libraries (such as the POSIX p-threads library). Java’s
parallel processing facilities differ in approach from the wording of
this requirement, but can provide these facilities.

9B. Parallel Process Implementation. The parallel
processing facility shall be designed to minimize
execution time and space. Processes shall have
consistent semantics whether implemented on
multicomputers, multiprocessors, or with
interleaved execution on a single processor.

mostly no no mostly

Both Ada and Java leave some semantics open to permit efficient
implementation on different operating systems.

9C. Shared Variables and Mutual Exclusion. It
shall be.possible to mark variables that are shared
among parallel processes. An unmarked variable
that is assigned on one path and used on another
shall cause a warning. It shall be possible
efficiently to perform mutual exclusion in
programs. The language shall not require any use
of mutual exclusion.

partial no no partial
Neither Ada nor Java require shared variables to be marked with an
attendant warning. Ada 83’s obsolete pragma shared doesn’t really
meet this requirement. Both Ada and Java support shared variables and
high-efficiency locking (using protected types/synchronized guards),
and both permit the circumventing of such if the programmer
determines it to be necessary. Ada, C, and C++ support marking
variables as "volatile", and Ada supports marking variables as
"atomic".

9D. Scheduling. The semantics of the built-in
scheduling algorithm shall be first-in-first-out
within priorities. A process may alter its own
priority. If the language provides a default priority
for new processes it shall be the priority of its
initiating process. The built-in scheduling
algorithm shall not require that simultaneously
executed processes on different processors have
the same priority. [Note that this rule gives
maximum scheduling control to the user without
loss of efficiency. Note also that priority
specification does not impose a specific execution
order among parallel paths and thus does not
provide a means for mutual exclusion.]

yes no no mostly

Java in general runs the highest priority thread, but permits occasional
running of lower priority threads (see
"http://java.sun.com/Series/Tutorial/java/threads/priority.html"). Java
does not guarantee first-in first-out within a priority.

9E. Real Time. It shall be possible to access a real
time clock. There shall be translation time
constants to convert between the implementation
units and the program units for real time. On any
control path, it shall be possible to delay until at
least a specified time before continuing execution.
A process may have an accessible clock giving the
cumulative processing time (i.e., CPU time) for
that process.

yes no no yes

C/C++ provide some functions for handling local and calendar time;
real-time calls are operating system dependent. Java supports delays in
centiseconds and clock access in milliseconds.

9G. Asynchronous Termination. It shall be
possible to terminate another process. The
terminated process may designate the sequence of
statements it will execute in response to the
induced termination.

partial no no yes
C/C++ programs can call an OS-dependent library to perform this
task. Ada and Java permit asynchronous termination (via the abort
statement and stop() call respectively). Ada does not permit statement
sequences to be run on termination in general (though asynchronous
transfer of control and the terminate alternative can permit this in some
cases). Java can do this by catching Error ThreadDeath.

9H. Passing Data. It shall be possible to pass data
between processes that do not share variables. It
shall be possible to delay such data transfers until
both the sending and receiving processes have
requested the transfer.

yes no no yes

Ada rendezvous and Java synchronized calls permit controlled passing
of data.

9I. Signalling. It shall be possible to set a signal
(without waiting), and to wait for a signal (without
delay, if it is already set). Setting a signal, that is
not already set, shall cause exactly one waiting
path to continue.

mostly no no mostly
Java objects can be used as synchronized guards. Ada does not have a
"signal" type, but protected types can trivially implement them (see
Ada LRM D.12 for an example). C and C++ have a file "signal.h" but
this file does not provide this functionality.

9J. Waiting. It shall be possible to wait for,
determine, and act upon the first completed of
several wait operations (including those used for
data passing, signalling, and real time).

mostly no no mostly?
Ada select statement supports such capabilities. Java does not have an
equivalent structure, but intermediate structures could be used to easily
implement such functionality.

10A. Exception Handling Facility. There shall be
an exception handling mechanism for responding
to unplanned error situations detected in
declarations and statements during execution. The
exception situations shall include errors detected
by hardware, software errors detected during
execution, error situations in built-in operations,
and user defined exceptions. Exception identifiers
shall have a scope. Exceptions should add to the
execution time of programs only if they are raised.

yes no yes yes

C’s "signal.h" and setjmp/longjmp can be used to handle some
exceptions, but don’t really satisfy these requirements.

10B. Error Situations. The errors detectable during
execution shall include exceeding the specified
range of an array subscript, exceeding the specified
range of a variable, exceeding the implemented
range of a variable, attempting to access an
uninitialized variable, attempting to access a field
of a variant that is not present, requesting a
resource (such as stack or heap storage) when an
insufficient quantity remains, and failing to satisfy
a program specified assertion. [Note that some are
very expensive to detect unless aided by special
hardware, and consequently their detection will
often be suppressed (see 10G).]

mostly partial partial mostly

None normally detect uninitialized variables access. Ada’s
Normalize_Scalars pragma aids in detecting uninitialized variables.
Java attempts to detect uninitialized variables at compile-time. Ada
and Java don’t have assertions built into the language, while C and
C++ can detect assertion errors. C and C++ don’t detect out-of-bound
array accesses. C, C++, and Java don’t detect range errors (of either
kind) nor overflow. All can detect out-of-memory errors.

10C. Raising Exceptions. There shall be an
operation that raises an exception. Raising an
exception shall cause transfer of control to the
most local enclosing exception handler for that
exception without completing execution of the
current statement or declaration, but shall not of
itself cause transfer out of a function, procedure, or
process. Exceptions that are not handled within a
function or procedure shall be raised again at the
point of call in their callers. Exceptions that are not
handled within a process shall terminate the
process. Exceptions that can be raised by built-in
operations shall be given in the language
definition.

yes no yes yes

C has an assert macro, but it doesn’t have the kind of enclosure
described here.

10D. Exception Handling. There shall be a control
structure for discriminating among the exceptions
that can occur in a specified statement sequence.
The user may supply a single control path for all
exceptions not otherwise mentioned in such a
discrimination. It shall be possible to raise the
exception that selected the current handler when
exiting the handler.

yes no yes yes

10E. Order of Exceptions. The order in which
exceptions in different parts of an expression are
detected shall not be guaranteed by the language or
by the translator.

yes no yes yes

10F. Assertions. It shall be possible to include
assertions in programs. If an assertion is false
when encountered during execution, it shall raise
an exception. It shall also be possible to include
assertions, such as the expected frequency for
selection of a conditional path, that cannot be
verified. [Note that assertions can be used to aid
optimization and maintenance.]

no, not
built-in mostly mostly no, not built-in

C and C++ include a simple assert() facility. Neither Ada nor Java
have a built-in assert checking facility, though they can be trivially
implemented. GNAT Ada compiler has pragma assert, but this is
compiler-specific. None permit simple assertions of frequency.

10G. Suppressing Exceptions. It shall be possible
during translation to suppress individually the
execution time detection of exceptions within a
given scope. The language shall not guarantee the
integrity of the values produced when a suppressed
exception occurs. [Note that suppression of an
exception is not an assertion that the corresponding
error will not occur.]

yes no no no

11A. Data Representation. The language shall
permit but not require programs to specify a single
physical representation for the elements of a type.
These specifications shall be separate from the
logical descriptions. Physical representation shall
include object representation of enumeration
elements, order of fields, width of fields, presence
of "don’t care" fields, positions of word
boundaries, and object machine addresses. In
particular, the facility shall be sufficient to specify
the physical representation of any record whose
format is determined by considerations that are
entirely external to the program, translator, and
language. The language and its translators shall not
guarantee any particular choice for those aspects
of physical representation that are unspecified by
the program. It shall be possible to specify the
association of physical resources (e.g., interrupts)
to program elements (e.g., exceptions or signals).

yes partial partial no

C and C++ bitfields provide some data representation control, but
don’t control big-endian/little-endianness. Lack of endianness control
makes control over portable representation of lower-level constructs
very difficult. C and C++ also don’t provide mechanisms to control the
exact bit size of basic types, nor hooks to interrupts. Java does not
provide representation control.

11C. Translation Time Facilities. To aid
conditional compilation, it shall be possible to
interrogate properties that are known during
translation including characteristics of the object
configuration, of function and procedure calling
environments, and of actual parameters. For
example, it shall be possible to determine whether
the caller has suppressed a given exception, the
callers optimization criteria, whether an actual
parameter is a translation time expression, the type
of actual generic parameters, and the values of
constraints characterizing the subtype of actual
parameters.

partial partial partial no

Ada, C, and C++ all provide some mechanisms to query the
compilation environment, though not to the extent given in this
requirement.

11D. Object System Configuration. The object
system configuration must be explicitly specified
in each separately translated unit. Such
specifications must include the object machine
model, the operating system if present, peripheral
equipment, and the device configuration, and may
include special hardware options and memory size.
The translator will use such specifications when
generating object code. [Note that programs that
depend on the specific characteristics of the object
machine, may be made more portable by enclosing
those portions in branches of conditionals on the
object machine configuration.]

partial no no no?

Ada requires that separately compiled modules be compatible when
linked together, implying some of the requirements here. Java is
designed to make this generally unnecessary, by translating to
system-independent bytecodes first, so it’s arguable if this requirement
applies to Java.

11E. Interface to Other Languages. There shall be
a machine independent interface to other
programming languages including assembly
languages. Any program element that is referenced
in both the source language program and foreign
code must be identified in the interface. The source
language of the foreign code must also be
identified.

yes partial yes partial
Ada has standard interfaces to C, Fortran, COBOL, and machine
language, and standard pragmas Import, Export, and Convention for
interfacing to other languages. Some C implementations support the
"asm" keyword. C has little support for interfacing to other languages,
but on many systems it is the "standard" host language and serves as a
common interface standard for other languages. C++ has a general
external linkage system using extern "language", though often only C
is supported as the external language. Java has an external link to C.

11F. Optimization. Programs may advise
translators on the optimization criteria to be used
in a scope. It shall be possible in programs to
specify whether minimum translation costs or
minimum execution costs are more important, and
whether execution time or memory space is to be
given preference. All such specifications shall be
optional. Except for the amount of time and space
required during execution, approximate values
beyond the specified precision, the order in which
exceptions are detected, and the occurrence of side
effects within an expression, optimization shall not
alter the semantics of correct programs, (e.g., the
semantics of parameters will be unaffected by the
choice between open and closed calls).

yes partial? partial? no?

Ada programs can specify whether to optimize for speed or space. C
and C++ code cannot make such specifications, but do provide the
"register" keyword to provide optimization hints. Most compilers
support external optimization flags.

12A. Library. There shall be an easily accessible
library of generic definitions and separately
translated units. All predefined definitions shall be
in the library. Library entries may include those
used as input-output packages, common pools of
shared declarations, application oriented software
packages, encapsulations, and machine
configuration specifications. The library shall be
structured to allow entries to be associated with
particular applications, projects, and users.

yes yes yes yes

All provide mechanisms to make reusable components available to a
library.

12B. Separately Translated Units. Separately
translated units may be assembled into operational
systems. It shall be possible for a separately
translated unit to reference exported definitions of
other units. All language imposed restrictions shall
be enforced across such interfaces. Separate
translation shall not change the semantics of a
correct program.

yes partial mostly yes

All support separate compilation. C separately compiled units need not
agree on their interface. This is true for C++ as well, but C++
programs using classes and header files in normal ways obtain most
such protection.

12D. Generic Definitions. Functions, procedures,
types, and encapsulations may have generic
parameters. Generic parameters shall be
instantiated during translation and shall be
interpreted in the context of the instantiation. An
actual generic parameter may be any defined
identifier (including those for variables, functions,
procedures, processes, and types) or the value of
any expression.

yes no mostly no

Ada types cannot be directly made generic, but can be generic via
encapsulation. C/C++’s #define preprocessor is not sufficiently
powerful to meet these requirements. C++’s templates provide this
capability, though weaknesses and different semantics render C++
templates less useful at this time. Java lacks this ability.

13A. Defining Documents. The language shall
have a complete and unambiguous defining
document. It should be possible to predict the
possible actions of any syntactically correct
program from the language definition. The
language documentation shall include the syntax,
semantics, and appropriate examples of each
built-in and predefined feature. A recommended
set of translation diagnostic and warning messages
shall be included in the language definition.

yes mostly mostly yes

The C and C++ defining documents include a very large number of
undefined results.

13B. Standards. There will be a standard definition
of the language. Procedures will be established for
standards control and for certification that
translators meet the standard.

yes yes partial no
Official standards are available for Ada and C. There is no official
C++ standard, but work to develop one is ongoing. Work to
standardize Java is at an extremely early stage.

13C. Completeness of Implementations.
Translators shall implement the standard
definition. Every translator shall be able to process
any syntactically correct program. Every feature
that is available to the user shall be defined in the
standard, in an accessible library, or in the source
program.

mostly? yes in practice mostly? yes
Some Ada compilers have not completed their transition to Ada95; the
Ada validation process (including the ACVC test suite) helps to ensure
that Ada compilers implement the entire Ada language. C
implementations need not implement the entire language, but
production compilers generally do so. Since the definition of C++ is
changing, C++ compilers are mostly complete as of some version of
the C++ standard. Note that all compilers have bugs, so none can truly
process "any" correct program.

13D. Translator Diagnostics. Translators shall be
responsible for reporting errors that are detectable
during translation and for optimizing object code.
Translators shall be responsible for the integrity of
object code in affected translation units when any
separately translated unit is modified, and shall
ensure that shared definitions have compatible
representations in all translation units. Translators
shall do full syntax and type checking, shall check
that all language imposed restrictions are met, and
should provide warnings where constructs will be
dangerous or unusually expensive in execution and
shall attempt to detect exceptions during
translation. If the translator determines that a call
on a routine will not terminate normally, the
exception shall be reported as a translation error at
the point of call.

yes partial partial? yes

All provide at least some error reporting and warnings, all have
optimizing compilers, and all permit separate compilation. Translator
characteristics for detecting errors in the presence of separate
compilation are undefined by C and C++. Shared definitions are not
required in C; they are generally used in C++. Many C compilers do
not do full type checking; lint (where available) can supplement
checking.

13E. Translator Characteristics. Translators for the
language will be written in the language and will
be able to produce code for a variety of object
machines. The machine independent parts of
translators should be separate from code
generators. Although it is desirable, translators
need not be able to execute on every object
machine. The internal characteristics of the
translator (i.e., the translation method) shall not be
specified by the language definition or standards.

mostly mostly mostly mostly

Many compilers are implemented in their own language, though not
all. Java implementations may have two code production stages, one
that generates virtual machine code and a second that converts virtual
machine code to a specific machine’s code.

13F. Restrictions on Translators. Translators shall
fail to translate otherwise correct programs only
when the program requires more resources during
translation than are available on the host machine
or when the program calls for resources that are
unavailable in the specified object system
configuration. Neither the language nor its
translators shall impose arbitrary restrictions on
language features. For example, they shall not
impose restrictions on the number of array
dimensions, on the number of identifiers, on the
length of identifiers, or on the number of nested
parentheses levels.

yes partial yes yes

The C language definition still permits externally-visible identifiers to
be considered identical if the first 6 characters are equal ignoring case
(as a concession to old linkers). C++ recommends large maximums
(see "Implementation Quantities"), though these are not mandated.
Credit is given if the limits are sufficiently large that encountering
them is very unlikely.

13G. Software Tools and Application Packages.
The language should be designed to work in
conjunction with a variety of useful software tools
and application support packages. These will be
developed as early as possible and will include
editors, interpreters, diagnostic aids, program
analyzers, documentation aids, testing aids,
software maintenance tools, optimizers, and
application libraries. There will be a consistent
user interface for these tools. Where practical
software tools and aids will be written in the
language. Support for the design, implementation,
distribution, and maintenance of translators,
software tools and aids, and application libraries
will be provided independently of the individual
projects that use them.

yes yes yes yes

Many tools exist for all of these languages (particularly for C and
C++) from a wide variety of vendors.

