
Refactoring of Aspect-Oriented Software

Stefan Hanenberg, Christian Oberschulte, Rainer Unland

University of Duisburg-Essen,
Institute for Computer Science and Business Information Systems (ICB)

45127 Essen, Germany
{cobersch|shanenbe|unlandr} @cs.uni-essen.de

Abstract. The application of refactorings during an object-oriented develop-
ment process improves the design and therefore the quality of software. Aspect-
orientation is a new programming paradigm that increases the modularity of
software. Hence, it seems natural to apply both aspect-orientation as well as
refactoring during a software development process since both techniques permit
to increase the modularity and comprehensibility of software. However, on the
one hand existing object-oriented refactoring techniques cannot directly be ap-
plied to aspect-oriented software because traditional object-oriented refactoring
applied in an aspect-oriented environment is no longer behavior preserving. On
the other hand, since the new features of aspect-oriented languages permit to
modularize software in different ways there is a large variety of new refactor-
ings based on these features. This paper discusses the relationship between ob-
ject-oriented refactoring and aspect-orientation. We show what aspect-oriented
elements conflict with existing refactorings and propose solutions for these con-
flicts for the aspect language AspectJ. Furthermore, we introduce a number of
new aspect-oriented refactorings which help on the one hand to migrate from
object-oriented to aspect-oriented software and on the other hand to restructure
existing aspect-oriented code.

1 Introduction

Aspect-Oriented Programming (AOP, [9]) provides means to encapsulate concerns
which cannot be modularized using traditional programming techniques. These con-
cerns are called crosscutting concerns. Prominent examples for such concerns are
tracing, concurrency control or transaction management. Aspect-oriented program-
ming techniques provide two new concepts: join points and aspects. Join points spec-
ify the elements to be modified by aspects. Aspects encapsulate the implementation of
crosscutting concerns and refer to a number of join points. Aspect-orientation is based
on weaving: a weaver integrates a number of aspects into a base system on the basis
of given join point definitions.

Meanwhile a number of aspect-oriented programming techniques are publicized
like AspectJ [1, 10], Sally [7], PROSE [13, 14] or AspectS [8] which are either exten-
sions of an object-oriented base language or frameworks written in such a base lan-
guage. These techniques provide features for specifying join points and aspects. As-

pectJ, which is an extension of the programming language Java, is the most popular
one and already has a large community.

Refactoring [3,15] is a technique to restructure object-oriented code in a disci-
plined way. Refactorings are behavior preserving program transformations [16]. The
intention of refactoring is to improve the readability and comprehensibility of object-
oriented code. For an efficient application of refactoring tool-support is needed.
Nowadays, refactoring tools are available for a large number of integrated develop-
ment environments. Such tool support is also a precondition for the successful appli-
cation of lightweight development processes like eXtreme Programming (XP, [2]). It
uses refactoring as one of its key components.

Most refactorings increase the modularity of code and eliminate redundancies.
Since the same advantages are gained by aspect-oriented software development it
seems to be natural to apply refactoring and aspect-oriented programming within the
same development process.

The benefit of using both approaches is threefold. First, refactoring can be used to
restructure the base program to which aspects are woven. This increases the compre-
hensibility of the base program without the need to understand the woven aspects.
Second, refactoring can help to restructure object-oriented code in an aspect-oriented
way. This permits to migrate from object-oriented to aspect-orientated software. And
third, refactoring can be applied to the aspect-oriented constructs to increase their
comprehensibility and modularity.

Transforming an application inevitably leads to a modification of join points to
which aspects might be woven to. Consequently, if aspects are not aware of those
modifications and their join point specification is not adapted refactorings are no
longer behavior preserving. As a result, current refactoring tools cannot be used to
refactor the object-oriented base system. Furthermore, refactorings are needed which
make use of aspect-oriented features to restructure software along those new features.

Hence, for the application of refactoring and aspect-oriented techniques within the
same software project refactoring needs to become aspect aware. This paper proposes
how to make refactorings aspect aware. That means we propose modifications of ex-
isting object-oriented refactorings to be used in conjunction with aspect-oriented tech-
niques. Furthermore, we propose a number of new refactorings which already make
use of aspect-oriented features.

In section 2 we give a small example which reveals the need for aspect-aware
refactorings. Afterwards, we discuss in detail the interplay of object-oriented refactor-
ings and aspect-oriented techniques and the resulting conflicts. In Section 4 we pro-
pose aspect-aware modifications of some well-known object-oriented refactorings
taken from the catalogue in [3]. Then, we propose a number of often used aspect-
oriented refactorings. In section 6 we present a tool we developed that supports As-
pectJ aware refactorings in Eclipse. Finally, we conclude the paper.

2 Example

Figure 1 shows a class TemperatureSensor from an AspectJ environment that
represents a temperature and humidity sensor. The physical temperature sensor sends

the current temperature every ten milliseconds to an instance of Temperature-
Sensor using the method setTemperatur. Every second the physical humidity
sensor sends the current humidity using setHumidity.

class TemperatureSensor {
 List _temp = new ArrayList();
 double _humidity;
 double getHumidity() { return _humidity;}
 void setHumidity(double hum) {
 _humidity = hum;
 Display.updateDisplay(hum);
 this.doInsert(hum);
 }
 double getAverageTemp() {Iterator it =_temp.iterator ...}
 void setTemperature(double temp) {
 _temp. add(new Double(temp));
 Display.updateDisplay(temp);
 this.doInsert(temp);
 }
 public void doInsert(double value) {
 //open database connection, insert new value, etc.
 ...
 }
}
public class Display {
 static void updateDisplay(double value) {
 ...
 }
}

Fig. 1. Temperature and Humidity Sensor

Whenever an application requests the current temperature and the current humidity
the last value of humidity is taken and the temperature of the last second is computed.
The latter means that the average temperature of the last hundred values is computed
(getAverageHumidtiy()). All temperature and humidity values are stored in a
database. Furthermore, a class Display is to be informed whenever a new value for
the temperature or humidity is stored. This implies to call the method doInsert
from within setTemperature and setHumidity. DoInsert writes the new
values into a database. The display is informed about new values by calling the
(static) method updateDisplay.

Although the class works in the required way there are a number of disturbing ele-
ments. They are responsible for the bad smell [3] which should drive the developer to
refactor the class. The first thing is, that the method doInsert belongs to the persis-
tency concern and somehow does not directly belong to the TemperatureSensor.
Hence, we create a new aspect PersistentTemperatureSensor which intro-
duces this method. Furthermore, we recognize that inside setHumidity and se-
tAverageTemp the calls for writing the new values into the database are redundant.

Hence, we move the statements to a piece of advice and specify a corresponding
pointcut (Figure 2).1

class TemperatureSensor {
 List _temp = new ArrayList();
 double _humidity;
 double getHumidity() { return _humidity;}
 void setHumidity(double hum) {
 _humidity = hum;
 }
 double getAverageTemp() {Iterator it =_temp.iterator ...}
 void setTemperature(double temp) {
 _temp. add(new Double(temp));
 }
}
public aspect PersistentTemperaturSensor {
 public void TemperatureSensor.doInsert(double value) {
 //store value in db}
 pointcut setter(TemperatureSensor ts, double value):
 target(ts) && args(value) && (
 call(void TemperatureSensor.set*(double)));
 after(TemperatureSensor ts, double v): setter(ts, v) {
 Display.updateDisplay(v);
 this.doInsert(v);
 }
}
public class Display {
 static void updateDisplay(double value) {
 ...
 }
}

Fig. 2. First Refactoring of TemperatureSensor

Another somehow disturbing thing is the name of the method setTemperatur.
Since the temperature is not only a single value but a list of values, it seems to be
worthwhile to rename this method to addTemperature. Hence, we apply the re-
name method refactoring [3, p. 273]. However, just renaming the method and its calls
does not lead to a behavior preserving application. Because of the aspect we also have
to modify the pointcut definition in PersistentTemperatureSensor.

The modification of the pointcut is not trivial: we used a wildcard within the point-
cut definition which we cannot use any longer since the methods' names do not start
with the same characters any longer. The most obvious modification of this pointcut
is that we use two pointcut designators, one for each method.

 pointcut setter(TemperatureSensor ts, double value):
 target(ts) && args(value) && (
 call(void TemperatureSensor.setHumidity(double))
 call(void TemperatureSensor.addTemperature(double)));

1 Note, that we performed in these last two steps behavior preserving transformations by shift-

ing object-oriented code to aspect-oriented constructs.

We consider TemperatureSensor once more and realize that the class not

only cares for the temperature but also for the humidity and thus represents two dif-
ferent sensors at the same time. From that point of view it is appropriate to design
TemperatureSensor as a class TemperatureHumidityController which
owns two different objects: a TemperatureSensor and a HumiditySensor.
Hence, we rename TemperatureSensor and apply the extract class refactoring
[3, p.149] two times, one time to extract TemperatureSensor and another time to
extract HumiditySensor.

However, the problem with the aspect PersistentTemperatureSensor
becomes even worse. First, we need to adapt the type pattern in the introduction since
we now need to introduce doInsert to two different classes:

 public void (TemperatureSensor || HumiditySensor).
 doInsert(double v) {...}
Furthermore, we have to adapt the pointcut once more. The problem here is now,

that the pointcut originally passed the target object as a parameter to the piece of ad-
vice. But the situation now is that the pointcut is related to different classes which do
not have any common superclass (except Object). Hence, first of all it is necessary
to restructure the original pointcut before thinking about how to adapt the pointcut ac-
cording to this transformation.

From the example the following can be learned: first of all we need some well-
defined rules about how to transform object-oriented constructs into aspect-oriented
ones. Then we realize that the application of pure object-oriented refactoring no
longer leads to behavior equivalent applications. And finally, we identified the need
for refactoring aspect-oriented code.

3 Join Point Specification and Refactoring

The reason for the conflicts between object-oriented refactoring and the aspect-
oriented features lies in the aspect specification. Aspects are woven with the help of
certain join points defined by the join point language which is the fundament of each
aspect-oriented technique. Hence, it is necessary to understand in detail how join
points are specified before it is possible to determine (and solve) the conflicts between
object-oriented refactorings and aspect-oriented features.

The join point language specifies those elements inside the base program to which
aspects are to be woven to. It depends on the underlying aspect-oriented techniques
how join points are identified2.

In AspectJ join points for introductions are specified by type patterns which deter-
mine the target types to which additional members are to be added. Join points to
change the runtime behavior of a system are specified by a pointcut definition. The
join point specification in AspectJ is mainly based on the model of lexical join points

2 For example in Sally [7] join points are specified by queries on source code of the base pro-

gram. In AspectS [8] a single join point consists of a class descriptor and a method selector.

[12, 11]: join points inside the base program are identified because of a lexical corre-
spondence. For example, a type pattern like Temp* determines all types which begin
with the characters Temp. In the same way a pointcut designator's parameter is lexi-
cally compared to the base program's sources. For example a pointcut "call(void
TemperatureSensor.set*(double)))" specifies all calls of methods that begin
with the characters set and contain a parameter of type double on an instance of a
class with the name TemperatureSensor3. Method calls can be directly extracted
from the base program's abstract syntax tree. For the target class and the parameter
types additional informations from the type system are needed. Such informations are
extracted by a static analysis.

Furthermore, AspectJ provides pointcut designators for dynamic join points. Dy-
namic join points depend on run-time information which cannot be determined by a
static analysis. For example the args pointcut designator chooses method or con-
structor calls whose actual parameters have a certain type4.

Finally, AspectJ permits to specify structural join points. Such join points are cho-
sen because of a certain context. For example, the within pointcut designator
chooses all join points within a certain class (described by a type pattern). In the same
way the cflow pointcut designator selects those (dynamic) join points which occur
in the control flow initiated by another join point.

Aspects are woven to a set of join points provided by the base program. Since
refactorings are transformations of the base program they change the set of join
points. For example, rename method as shown in the introducing example changes a
lexical join point. That means that all join points in an aspect specification which
lexically refer to the method that is about to be renamed no longer refer to the same
join point after the refactoring.

Most refactorings (like extract class) change the structure of the program. Hence,
those refactorings conflict with structural join points. Almost every pointcut specifica-
tion in AspectJ applications contains structural join points. Even a call pointcut like
"call(void TemperatureSensor.setTemperature(double)))" contains
structural elements because it refers to the method setTemperature defined in
class TemperatureSensor. Hence, refactorings like push up method or push
down method [3, p. 328] which move a method to a super- or a subclass conflict with
these structural join points since the type pattern " TemperatureSensor " is no
longer valid.

Therefore, when applying a certain refactoring to an application the affected join
points must be determined. For this, the join point language needs to be analyzed with
respect to what constructs are used to determine what kinds of join points. In an As-
pectJ environment it needs to be analyzed what pointcut designators are used to de-
termine those affected join points. Then, we need to determine all aspects which make
use of those constructs since those aspects potentially lead to some conflicts. Then, it
needs to be analyzed what existing aspects refer to the join points which are about to
be affected.

Then we need to determine how the join points are affected by the refactoring. On
the one hand the quantity of join points can be affected by a refactoring. For example

3 Note that TemperatureSensor and double are just type patterns.
4 Which is again lexically checked by a type pattern.

extract class [3, p. 149] creates a new class which provides a number of new join
points while inline method [3, p. 117] reduced the number of join points. On the other
hand the quality of join points can be affected. For example remove parameter [3, p.
277] does not decrease the number of join points, but reduces the ability for an exact
definition of where an aspect should be woven to (e.g. in cases where aspects are
woven to messages of a certain parameter type list).

Then it needs to be determined whether those aspects that potentially lead to some
conflicts are influenced by the way how the join points are affected. That means it
must be determined whether the way how they are woven to the application is
changed. In such a case strategies need to be determined that modify the correspond-
ing join point specification.

Hence, it is necessary to analyze for each refactoring its effect on the join points to
provide strategies to solve conflicts in the aspect specification.

4 Aspect-aware Refactorings

Aspect-aware refactorings are refacorings that can be applied to the base program of
an aspect-oriented system. In order to provide behavior preservation, aspect-aware
refactorings not only transform the base program but also all necessary join point
specifications.

In [15] Opdyke proposes a set of enabling conditions to preserve the observable
behavior. We suggest the following additional enabling conditions to ensure that be-
havior is preserved by refactorings in aspect-oriented system.

1. The quantity of those join points which are addressed by a particular pointcut
is not changed after refactoring.

2. Those join points which are addressed by a particular pointcut have an
equivalent position within the program control flow in comparison to the state
before refactoring.

3. The join point information offered by each pointcut does not decrease.
The first condition describes that whenever a transformation changes the base pro-

gram of an aspect-oriented system and thereby increases or decreases the number of
available join points each pointcut needs to address the same number of join points as
before. The second condition means, that each join point occurs at the same position.
The last condition says that the information available at a join point should not
decrease. This becomes necessary if an aspect’s behavior is supposed to vary depend-
ing on the information offered by its pointcut.

In this section we introduce aspect-aware versions of rename method [3, p. 273],
extract method [3, p. 110] and move method [3, p. 217], because on the one hand they
are supported by most refactoring tools and on the other hand those refactorings con-
flict with different kinds of join points.

We concentrate in this section on the impact of known refactorings on the join
point specification in AspectJ and describe what further needs to be considered to pre-
serve behavior. It is not our intention to repeat the well-known proceedings of each
refactoring in detail. Such descriptions can be found for example in [3].

4.1 Rename Method

Sometimes a method name is not chosen adequately in the first attempt or the name is
no longer appropriate since the implementation changed. In such situations rename
method [3, p. 273] is to be applied.

class C {
 void foo() {…}
}
..
pointcut pc1():
 call(void *.foo());

..
pointcut pc2():
 call(void *.bar());

class C {
 void bar(){…}
}

pointcut pc1():
 call(void *.foo()) ||
 call(void C.bar());

pointcut pc2():
 call(void *.bar()) &&
 !call(void C.bar());

Fig. 3. Renaming a method foo() with pointcuts pc1 and pc2.

We have to consider all pointcut designators that deal with signature patterns, be-

cause renaming a method means to change a signature. Such designators are call,
execution and withincode.

To make rename method aspect-aware we need to do the following additional
steps. First, we have to identify all pointcuts related to this signature using the above
mentioned designators. Second, we rename the method and rename all method calls to
it, too5. The further proceeding at each pointcut depends on whether each one ad-
dresses just one single join point or a collection of join points.

If the pointcut addresses just a single join point we simply propose to replace the
signature pattern. If a pointcut refers to a collection of join points (caused e.g. by
wildcard utilization, see Figure 3) the following steps are to be applied:

• If the pointcut is anonym, create a named one. If it is a multifid pointcut we apply
Composite Pointcut as described in [4].

• Copy the affected pointcut designator and replace the signature pattern according
to the new method name.

• Compose the pointcuts using the || operator.

This approach maintains the original set of join points addressed by the pointcut
(see pc1 in Figure 3). Hence, we fulfill the first enabling condition. Finally, we have
to check whether the new method signature is referred by a pointcut that did not refer
to it before. In such a case we propose the following steps to remove the method from
the focus of that pointcut:

• If the pointcut is anonym, create a named one. In the case of a multifid pointcut it
is useful to apply Composite Pointcut as described in [4].

5 Take into account that the aspect code may contain calls to the relevant method which need to

be renamed, too.

• Create a new named pointcut from a copy of the existing one. Replace the signa-
ture pattern with the new method signature and negate it by using the operator !.

• Compose the pointcuts using the && operator.

The negation excludes the join point described by the method from the collection of
join points addressed by the pointcut pc2. Thereby the first enabling condition is ful-
filled. Note that the further enabling conditions are not violated by rename method.

4.2 Extract Method

Extract Method [3, p. 110] is usually applied to decrease the complexity of the
method and to increase the reusability of the extracted code. As a result a new method
and a corresponding method call are created.

Naturally the number of join points is increased by adding a new method. This
method represents a new node into the run-time object call graph of the program and
can be affected by call and execution pointcuts. Since the number of join points
is increased inside a class additional pointcut designators of interest are within and
withincode (because of changed control flow inside the original method).

The newly created method signature could violate the first enabling condition. In
the previous section, we already described a suitable countermeasure that is able to
fulfill the condition. However, within depicts an exception. This designator picks
all available join points inside a class designated by its type pattern. We can avoid the
violation by negating the additional call and execution join points.

A second pitfall depicts the alteration of control flow within the initial method. By
performing the transformation, one or more statements will be extracted into a new
method and a reference to that is added. Assuming the new signature is addressed by
a signature pattern used in withincode, the pointcut’s collection of actual matched
join points changes. We have discovered that the following proceeding is appropriate
to avoid that pitfall (see also the example from Figure):

• If the initial pointcut is anonym, create a named one. If the pointcut is multifid, use
the Composite Pointcut strategy.

• Build a call pointcut that refers to the extracted method signature, negate it and
compose it with the initial pointcut using the && operator. After that enclose the
outcome in round brackets.

• Create a cflow pointcut that comprises a withincode pointcut whose signature
pattern refers to the initial method we had extracted the code fragments from. This
cflow pointcut causes that solely invocations of C.bar inside of C.foo adds
join points to the collection of pointcut x.

• Create a second withincode pointcut referred to the extracted method.
• Build a negated execution pointcut that refers to the extracted method signature,

compose these last three described pointcuts using the && operator and enclose it in
round brackets.

• Finally, compose both bracketed pointcuts using the | | operator.

This proceeding maintains the pointcut’s set of actual picked join points. All join
point positions within the program control flow are equivalent. Even if join point in-
formation is not used in this example, note that all relevant join points possess the
same kind (set, call, etc.) than before the transformation and the information supply at
the join points is not decreased.
class C {
 void foo(int a, int b){
 goo();
 System.out.println(a + b);
 this.x = a;
 }…

pointcut x():
 withincode(void *.foo(..));

class C
 void foo(int a, int b){
 goo();
 bar(a, b);
 }
 void bar(int a, int b){
 System.out.println(a+b);
 this.x = a;
 }
} ...
pointcut x():
 (withincode(void *.foo(..)) &&
 !call(void C.bar(int, int)))||
 (withincode(void C.bar(int, int))&&
 !execution(void C.bar(int, int))&&
 cflow(withincode(void C.foo(..))));

Fig. 4. Extract method bar from foo.

4.3 Move Method

Move method [3, p. 142] is applied if the method rather belongs to a different class
than where it is currently defined.
class C {
 void foo() {...}
...
}

pointcut x(C c):
 execution(void *.foo())&&
 this(c);

class D {
 void foo() {...}
...
}

pointcut x(C c):
 execution(void *.foo())&&
 this(c);

pointcut y(D d):
 execution(void D.foo())&&
 this(d);

Fig. 5. Move method example with context exposure

We have to consider that in consequence of the moving action the type patterns
might not address the new destination type. Hence, the pointcut designators of interest
are all designators which contain a type pattern. Such designators are in addition to
the above explained ones target and this.

If the method we want to move to another class is already referred by a pointcut the
further proceeding depends on whether the pointcut exposes parts of the execution
context by applying target or this. If the relevant pointcut does not capture con-
text at the join point, the following proceeding is suitable:

• If the relevant pointcut is anonym create a named one.
• Copy the affected pointcut and replace the type pattern within the signature pattern

with the new type.
• Compose both pointcuts using the || operator in a third named pointcut.

Assuming that the pointcut deals with context exposure, we propose the following
steps to maintain the relation (see also Figure 5):

• Copy the affected pointcut and create a new named pointcut. Replace the type pat-
tern within the signature pattern by the new type.

• Change the object type of the pointcut arguments used by the target or this
pointcut.

• Copy the pieces of advice applied by the initial pointcut and replace the
corresponding pointcut.

• Check whether the pieces of advice are still type correct in respect to the changed
type. If they are not, consider introducing or moving further elements.

It is not possible to make use of a composite pointcut due to the varied execution
contexts. These steps preserve the first enabling condition. Note that the relevant join
point information supply is not decreased.

5 Aspect-Oriented Refactorings

In contrast to the previously described refactorings the intention of aspect-oriented
refactorings is to restructure the underlying object-oriented base program using AO
language features or transforming pure aspect code.

5.1 Extract Advice

It is often observable that different methods scattered throughout the program have
calls to comparable methods or include similar behaviour that cannot be factored out
straightforward into method declarations. Often such a situation is given if extract
method has been applied for several times and the extracted method is often reused.
That means although redundant code is already extracted into a method, there are still
a number of redundant method calls. In such a situation the redundant code is to be
extracted into a piece of advice. This would modularize the redundant parts and
coincidentally spreads out the behaviour over the program.

The participants of the refactoring are the code fragment we want to factor out, the
signature of the method we want to extract from, the pointcut that should pick out the
join point and the piece of advice.

The hardest problem of Extract Advice is to deal with local and temporary vari-
ables. Hence, Extract Advice is restricted in many ways. Because of the AspectJ in-
herent limitations of context exposure, it is not possible to expose local variables from
the execution context. Method arguments depict an exception. Nevertheless, we are
able to factor out local variables as well, if the variable declaration is part of the se-

lected code fragment and the remaining method control flow is not including further
applications of the variable.
class C extends B {
 static void goo(int a, int b){
 ...
 }
 void foo(int a, int b){
 goo(a, b);
 this.bar();
 System.out.println(a + b);
 }
...
}

class C extends B {
 static void goo(int a,int b){
 ...
 }
 void foo(int a, int b){
 System.out.println(a + b);
}...

aspect A {
 pointcut x(C c, int a ,int b):
 execution(void C.foo(int,int))
 && target(c) && args(a, b);

 around(C c, int a,int b): x(c,a,b){
 C.goo(a, b);
 c.bar();
 proceed(c, a, b);
 }...
}

Fig. 6. Extract advice example

A second restriction depicts method calls to private members. We cannot gain ac-
cess to private members within an advice, except we declare the aspect in which the
advice is located as privileged.

Furthermore, we have detected a restriction at applying the keywords this and
super in an extracted piece of advice. In the body of an advice this and super
refer to the instance of the aspect. An object-identifier of the target or this point-
cut can substitute the keyword this.

The first step to extract an advice is to create a pointcut that targets at the relevant
method. In case the method is non-static we have to utilize context exposure, which
means we have to pass the caller and callee as a parameter.

The second step is to make a decision on what kind of piece of advice the refactor-
ing is to be applied. Depending on the position of the code fragment within the initial
methods and the availability of a return type, we have to choose an appropriate kind
of advice. It is recommended to use the around advice. The around advice
substitutes the join point rather than running before or after it. Further advantageous
properties are around’s capability to return a value and the ability to execute the
computation of the original join point with the proceed form. Proceed takes as
arguments the context exposed by the pointcut and returns the same type as declared
by the piece of advice. Conditioned by the code fragment position proceed has to
be placed as first or last statement in the advice body.

The third step is to copy the selected code fragment into the advice body and trans-
form all member calls. Static calls are to be extended with their type names and mem-
ber calls with the context exposing parameter of a target or this pointcut. Fi-
nally, we are able to remove the code fragment from the initial method.

This refactoring also suffers from the withincode problem as already men-
tioned in Extract Method. If the join points within the original method body were af-
fected by a pointcut previously, we can not perform the code transformation without
violating the enabling conditions.

5.2 Extract Introduction

Often class definitions contain members which are part of the concern the classes
were originally defined for and members which are part of the implementation of fur-
ther features, which need to be added to the class, but which do not directly belong to
the original intention. Extract introduction removes a class's extrinsic features and
adds them to an aspect.
class C {
 void foo(int a, int b){
 ...
 }
 void bar(int c) {
 }
}

class C {
 public void foo(int a,int b){
 ...
 }
 ...
}

aspect ExtrinsicC {
 public void C.bar(int c) {
 ...
 }
}

Fig. 6. Extracting method bar to aspect ExtrinsicC

In order to transform a method into an introduction6, we first have to check
whether the selected destination aspect includes already existing field introductions
with private access to the same target class. Then, have to check whether calls within
the method body referring to identically named members could become ambiguous
after the introduction. In AspectJ private introductions to a target class are accessible
from other introductions within the aspect. Hence, this might cause a number of con-
flicts. Those ambiguous references cause no compilation errors, but yield to unin-
tended behavior change. Because the introduction access modifier applies in relation
to the aspect, not in relation to the target type, we have to check whether existing ref-
erences referring to the focused method are valid any more. If one does not, we must
consider weakening the access modifier of the introduction.

When all preconditions are fulfilled, we can introduce the method, since pointcuts
are valid on method introductions as well. Hence, we do not have to check the ena-
bling conditions.

6 In this section we concentrate on method introductions. However, field and parent introduc-

tions work likewise.

5.3 Separate Pointcut

If one starts to evolve a new aspect from scratch, it requires less effort and is at first
more comfortable to implement the pointcuts as anonymous pointcut definitions.
Anonymous pointcut means that someone defines a pointcut as right hand side part of
a piece of advice without to declare an autonomous pointcut name. It is often observ-
able that one applies such pointcuts with the intention to test first whether the newly
defined pointcuts address the correct join points.

This approach is suitable as long as just a handful pieces of advice exist and the
logical composed pointcut definitions do not evolve too large. When the aspect code
evolves there are situations where pointcut definitions need to be reused in order to
avoid numerous redundancies.

A first step is to transform the anonymous into a named pointcut. That facilitates
the overview if large and complex pointcut compositions are further extended. Point-
cut designators can be primitive or composite. Composite pointcut designators are
composed primitive pointcut designators using the operators ||, &&, and !.

pointcut x(C c, int a,int b):
 call(void C.foo(int, int))
 && target(c) && args(a, b);

pointcut y(C c, int a,int b):
 call(void C.bar(.., int))
 && target(c) && args(a, b);

after(C c, int a, int b) :
 x (c, a, b) || y(c, a, b){…}

pointcut x():
 call(void C.foo(int,int));

pointcut y():
 call(void C.bar(..,int));

pointcut z(C c, int a,int b):
 target(c) && args(a, b);

after(C c, int a, int b) :
 (x () || y()) && z(c, a, b) {…}

Fig. 7. Separating pointcuts

The second step is to separate the composite pointcut into its single logical inde-
pendent component pointcuts. Figure 7 illustrates partial redundant composite point-
cut designators. These should better be separated in order to facilitate the composition
and adaptability of pointcuts in the case of future refactorings or program adaptions.
This is also an enabling approach to the redefinition of existing pointcuts in sub-
aspects as described in [6].

Let us assume we have to compose the pointcut call(void C.bar(..,
int)) in a different context and want to negate it. The drawback would be that we
have to define a new primitive pointcut designator in order to avoid the simultaneous
negation of the two dynamic pointcuts in pointcut y. On the right side of figure 7 we
present a more flexible implementation. After that transformation we can effortlessly
build an expression like !y() and compose it with additionally named pointcuts. In
this example we have just separated the context exposure and the signature matching
parts to reduce redundancy and foster reusability. In other contexts it could be neces-
sary to further separate the context exposing pointcut z as well.

6 Automated Aspect-Oriented Refactoring Eclipse

In this paper the term automated refactoring refers to tool supported AspectJ code-
transformations and enabling condition checking. The essence of an aspect-aware
refactoring tool is to provide the user with reliable information on enabling condition
violations while performing various refactorings.

Already in small implementations, it is an exhausting task to manually verify only
the first and the second enabling condition after each transformation. In larger appli-
cations is the manual verification of the third condition not feasible.

An aspect-aware refactoring tool has to automate these tasks and provide the de-
veloper with a kind of refactoring workflow. Due to the possible complexity of com-
posed pointcut definitions, the user should still be integrated in this workflow. A tool
is meant to visit all enabling condition violating pointcuts, making proposals and ask
the user for a confirmation. Tool supported transformations should create new code
and modify existing as long as the application provides the semantically same behav-
iour.

We developed an Eclipse plug-in tool that supports AspectJ aware refactorings in
that IDE in order to achieve most of these requirements. This plug-in is based on As-
pectJ version 1.0.6. It provides the developer with the claimed refactoring workflow.
The tool consists of three collaborating parts. We implemented coding wizards, which
make the transformation operations transparent and offer graphical user interfaces
used to configure and provide parameters for these transformations. Secondly, the tool
possesses as a key component a transformation and code generation functionality
which is based on the abstract syntax tree provided by the AspectJ compiler. The third
part is an enabling condition checking functionality that we evolved through utiliza-
tion of further features of the AspectJ compiler.

Similarly, to the large OO-Refactorings, this refactoring tool can automate the
creation of parts of AspectJ idioms [4, 5]. The tool offers following refactorings: Ex-
tract Advice, Extract Introduction, Introduce into Container [4], Separate Pointcut
[4], Rename Method and Rename Pointcut. Currently, our tool does not support a
more sophisticated workflow as described above.

7 Conclusion

In this paper we discussed the interplay between object-oriented refactorings and as-
pect-oriented code. We showed that the application of object-oriented refactorings to
the (object-oriented) base program of an aspect-oriented system is not behaviour pre-
serving. The reason for it lies in the join point specification of aspects. As a conse-
quence, current available refactoring tools cannot be applied to the base programs of
aspect-oriented software. For development processes that highly depend on refactor-
ing those aspect-oriented techniques cannot be applied. In detail, we discussed the
fragility of join points specifications in AspectJ in conjunction with object-oriented
refactorings.

We proposed AspectJ-aware modification of the well-known and often used refac-
torings rename method, move method and extract method. Those modifications permit

to transform the base program without changing the behaviour of the final woven As-
pectJ application. Furthermore, we proposed three aspect-oriented refactorings which
are often needed either to migrate from object-oriented code to aspect-oriented code
(extract advice and extract introduction) or to increase the comprehensibility of exist-
ing aspect-oriented code (separate pointcut). Afterwards we briefly introduced our
refactoring browser for AspectJ applications.

The here proposed solution is closely related to AspectJ which highly makes use of
lexical join point specifications. Since, AspectJ is currently used by a large commu-
nity and plays already an important role in numerous software projects, the proposed
refactorings and its tool support is of high practical interest. On the other hand, the
proposed solution cannot be directly applied to other aspect-oriented techniques since
different aspect-oriented techniques differ widely in their join point language. For ex-
ample, join points in Sally [7] not necessarily depend that much on lexical join points.
Hence, it is a future task to analyze different aspect-oriented techniques regarding
their fragility of join point language in the context of refactoring.

Acknowledgement

Many thanks to Jan Wloka for his valuable comments on the paper.

References

1. AspectJ Team: AspectJ Programming Guide, available at: http://www.eclipse.org/aspectj/,
2001.

2. Beck, K.: Extreme Programming Explained, Addison-Wesley, 1999
3. Fowler, M.; Beck, K.; Brant, J.; Opdyke, W. F.; Roberts, D.: Refactoring: Improving the

Design of Existing Code, Addison-Wesley, 1999.
4. Hanenberg, S.; Costanza, P.: Connecting Aspects in AspectJ: Strategies vs. Patterns, 1st

Workshop on Aspects, Components and Patterns for Infrastructure Software, AOSD'01,
Enschede, April, 2002.

5. Hanenberg, S.; Schmidmeier, A.: Aspect-Oriented Idioms in AspectJ, To appear in: pro-
ceedings of EUROPLOP 2003.

6. Hanenberg, S.; Unland, R.: Using and Reusing Aspects in AspectJ. Workshop on Advanced
Separation of Concerns, OOSPLA, 2001.

7. Hanenberg, S.; Unland, R.: Parametric Introductions, Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development (AOSD), Boston, MA, March 17 -
21, 2003, pp. 80-89.

8. Hirschfeld, R.: Aspect-Oriented Programming with AspectS, Proceedings of NetObject-
Days 2002, Erfurt, pp. 219-235.

9. Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J.-M.; Irwing,
J.: Aspect-Oriented Programming. Proceedings of European Conference on Object-
Oriented Programming (ECOOP), LNCS 1241, Springer-Verlag, 1997, pp. 220-242.

10. Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, J.: An Overview of
AspectJ, Proceedings of European Conference on Object-Oriented Programming (ECOOP),
LNCS 2072, Springer-Verlag, 2001, pp. 327-353.

11. Lieberherr, K.; Lorenz, D.; Mezini, M.: Programming with Aspectual Components, College
of Computer Science, Northeastern University, Technical Report, NU-CCS-99-01, Boston,
MA, 1999.

12. Masuhara, H.; Kiczales, G.; Dutchyn, C.: A Compilation and Optimization Model for As-
pect-Oriented Programs, Proceedings of Compiler Construction (CC2003), LNCS 2622,
pp.46-60, 2003

13. Popovici, A.; Gross, T.; Alonso, G.: Dynamic Weaving for Aspect-Oriented Programming,
Proceedings of the 1st International Conference on Aspect-Oriented Software Development
(AOSD), Enschede, The Netherlands, April 22-26, 2002, pp. 141 - 147.

14. Popovici, A.; Gross, T.; Alonso, G.: Just in Time Aspects, Proceedings of the 2nd Interna-
tional Conference on Aspect-Oriented Software Development (AOSD), Boston, MA,
March 17 - 21, 2003.

15. Opdyke, W. F.: Refactoring Object-Oriented Frameworks, Ph.D. thesis, University of Illi-
nois, 1992.

16. Tokuda, L. A.: Evolving Object-Oriented Designs with Refactorings, Ph.D. thesis, Univer-
sity of Texas at Austin, 1999.

