Component Oriented Software

Java Perspectives

By
Robin Sharp

[www.sottwarereality.com|

[Www._Javelinsoft.com]

21 April 2002

Copyright © Robin Sharp 2002

This article may be freely distributed, under the following conditions:

1. The article is not modified in any way.
2. The article and this Acrobat file are left intact, i.e. nothing is left out (including this title page).

3. Distribution of the article is strictly for personal and not-for-profit use (e.g. forwarding it to a
colleague). To discuss distribution for other purposes (e.g. magazine publication), please contact

Robin Sharp at:|robin.sharp@javelinsoft.com|

http://www.softwarereality.com
http://www.javelinsoft.com
mailto:robin.sharp@javelinsoft.com

Table of Contents:

a1 o [T3 1T o 3
LanQUAGgE EVOIULIONuiii ettt et e 4
LanNQUAGJE LITECYCIE ... ettt et 5
(O o] [=Toi @] g T=T o] (=To I o7 NPT PTPPT 7
Component-OrieNted SOfWAIE.o e e e et et e et e e e eeans 9
(070 pa] oTo] aT=T a1 S @ 41T a1 (=To BN -\ - PSS 10
Yy o oTo @ =Y o1 =T oY PP 11
1070] (o3 1013 o E PP RUPT PPN 12

[LY (] (=] 41011 13

1. Introduction

This paper introduces the concept of Component-Oriented software from a Java
perspective. The purpose of this paper is to provide a high level description of
the direction and momentum behind Java, its associated architectures, and to
show where Java as a programming language could be heading.

Components are an over-used word in the Java language, and there is often confusion
about where the classification begins and ends. This paper tries to put some flesh on
the bones and explain how Java programming language features and architectures
relate to Component-Oriented concepts.

In this discussion the paper makes a comparison between Java, C++ and .Net and
takes a look at the evolution of the languages.

The paper concludes that languages develop by moving closer to the solutions, but
evolve by moving closer to the problems. It further concludes that Java as a language
has stagnated by focusing too much on moving closer to solutions and needs to make
greater efforts in moving closer to the problems.

The paper is divided into the following sections:

Introduction

Language Evolution
Language Lifecycle
Object-Oriented Java
Component-Oriented Software
Component-Oriented Java
Aspect-Oriented Java

O N o Ok wbdPR

Conclusion & References

About the author:
Robin Sharp is the Managing Director of Javelin Software (http://www.javelinsoft.com).
He can be reached at{robin.sharp@javelinsoft.com|

http://www.javelinsoft.com
mailto:robin.sharp@javelinsoft.com

2. Language Evolution

The evolution of programming languages is best characterized as moving closer to the
problem (business) domain. Moving closer to the problem domain means allowing a
language to better express problem domains. This is contrasted to language
development, which can be expressed as moving closer to the solution (technical)
domain.

A classic example of moving closer to the problem domain is the move from functional
programming to Object-Oriented programming. A classic example of moving closer to
the technical domain is the development of networking API's from TCP to HTTPS.

Programming language evolution must be differentiated from technological evolution.
Language and technical evolution have different frequencies and different
manifestations. Technology's lifecycle is based on innovation and technical evolution
and is generally manifested in declarative standards, for example TCP, SQL, HTML and
XML. These standards, whilst disrupted by new languages, continue evolving
independently.

As a programming language goes through its lifecycle, API's evolve to solve problems.
When the language becomes inefficient, a new language emerges by extracting
patterns from previous generation solutions.

Interesting fuel for language evolution does not come from the positive path of API
successes, but the negative path of API inefficiencies. For example, the motivation for
the uptake of C++ was that rigorously well written Object-Oriented software ended up
passing a this pointer to method pointers on structures.

When watching language evolution it is important to separate the emergence of API
features that represent language evolution from the emergence of APIs that represent
technical evolution.

In terms of programming language evolution less is often more. Language evolution
often takes the form of small extensions and small restrictions - assumptions are
everything, and one-step backward means two-steps forward. Adding and removing a
few small features often opens the door to new and efficient programming models. An
example of an extension would be the movement from function pointers in C structures
to methods as first class objects. An example of a restriction would be the removal of
goto statements and then functions.

To date languages have evolved in 10-year cycles, and have taken off in economic
upswings. The current state of the computing market sees Java and C# competing as
two dominant programming models with enormous barriers to entry in terms of their
libraries. Given these barriers to entry, Java and C# will probably remain competing
languages over at least the next generation. The component oriented aspects of C#
means it has leapfrogged over Java's libraries and VM.

It is important to understand where Java and C# are in their lifecycles. Java is on the
cusp of its maturity phase and its inefficient stage, whilst C# is still early in it's adoption
stage.

3. Language Lifecycle

In order to understand the direction of a programming language, it is important to
understand its dynamics from both a technical and economic perspective. | have divided
the lifecycle into the following stages:

Conception
Adoption
Acceptance
Maturation
Inefficiency
Deprecation

N o gk onN e

Decay

Conception

A language is conceived to meet a requirement that other languages do not meet.
Countless languages have been written, but those C++ and Java have come from
corporate research labs, rather than Universities (C++ from AT&T) and (Java from Sun),
both have take off.

Adoption

Languages are adopted to make the programmer more efficient. This is driven by the
programmers because they are bright and don't like mundane coding. Languages have
API's back into the libraries of those they are replacing.

Acceptance

Once the market sees that tools are sufficiently bug free and early adopters have made
profits there is a general acceptance of a language. Green field projects expose
requirements and ideas for tools and libraries are conceived.

Maturation

Languages, libraries and tools mature. They are capable and deliver profitable
solutions. There is an increased demand for functionality, rather than efficiency, in order
to reap profits. Standards bodies attempt to control the spread of ideas.

Inefficiency

Development has become slow as libraries become more inefficient. The rush to
provide functionality has created a market that is fragmented subtly fragmented by
vendors implementing standards differently. There is a large increase in the number of
case tools and code generators.

Deprecation

Developers start to understand that it is costly to develop using the language.
Frustration begins to set in a designers take a deeper look at the issues causing the
inefficiencies.

Decay

A young pretender appears and challenges the leader. Lean, mean and fast the new
language has apparently come from a research department of a large technology
company. Marketing departments lock horns and invariably the old order is over thrown.

4. Object-Oriented Java

Now that Java has passed the maturation point, it has fragmented into several
architectures, such as J2SE (standard), J2EE (enterprise) and J2ME (mobile), each
designed to cope with the different requirements imposed on it.

In addition to architecture fragmentation, within these architectures we are now seeing
2nd and even 3rd generation iterations. This has led to problems of API bloom,
particularly in the area of User Interface and Persistence APISs.

Here is a list of just some of the various User Interface and Persistence APIs:

User Interface Persistence

AWT - JDBC/SQL-J
Swing - EJB
Standard . JDO
JavaSpaces

Long Term Persistence

HTML DOM - Java Cache
Java Faces - Orthogonal Persistence
JSP Tag Library - MIDP
Community . MIDP
Java TV
Long Term

Persistence

Some circles have argued that J2EE represents a new language. In reality J2EE is the
antithesis of Java in that it represents an attempt to build on the Java language. The
early specification was oriented around remote entities. The current thinking is that the
Sessions should be remote and that entities should be local, and the JDO camp is
currently jostling for a place at the high table. J2EE has been stumbling from one
solution to another, with no theoretical underpinning. Remarkably, they look no closer to
understanding why they need a clear separation between data and architecture.

With all these various persistence APIs, we (atJavelinSoft) set about building a code
generator to provide a generic persistence API to hide the ever-changing
implementations. The Component-Oriented solution we achieved blended the Beans
types with the EJB Session modules. With JGenerator we are able to generate
persistence layers for In-memory, JDBC and EJB objects. Our Beans are Types and our
Sessions are Modules.

One of the most telling moments when developing JGenerator was when we discovered
that the ratio between our business descriptors and the (optimised) EJB code we had
generated was a whopping 1:100 (and this code was minimal). We needed no further
proof that Java had moved too close to the solution and too far from the problem.

http://www.javelinsoft.com

Another area of class bloom is Java Ul's. The Java Server Faces early goals made a
reference to provide a universal Ul interface. This has since been watered down to
provide a server Ul interface. Sun is not alone in maintaining this separation. The .NET
Grid component has both a client and server implementation, both with different
interfaces.

With all these Ul API's we set about developing a generic Ul API called Swinglets. The
solution we achieved was almost identical to the Swing API. With Swinglets we are able
to render a Ul component model as HTML, WML, JFC or PDF.

5. Component-Oriented Software

The component-oriented thesis is best expressed as making the distinctions:

Modules vs. Types
and

Methods vs. Messages

Modules refer to the static architecture in a system, whilst Types refer to the dynamic
data in a system. Modules are then supported in a framework (or matrix). The best
analogy is between a product and the production line, where the framework is the
factory.

When designing a system using an Object-Oriented language, the developer has to be
disciplined not to merge the two aspects. This discipline is similar to that required when
treating a functional language as Object-Oriented: such as C and C++.

You'd think the separation of architecture from data was easily achieved, but it's
surprising how often you see the mistake made. Once you spot the mistake once, you'll
see it repeated. For example the EJB Object has a remove method. The data has
wrongly become part of the architecture.

The distinction in Component Oriented Software that's harder to make is the separation
of Methods vs. Messages. Simply put, a method is an implementation whilst a message
defines a set of interfaces. The thesis here is that modules conform to a message
interface and can be implemented differently.

The idea that modules such as a Ul or a persistence API can be generalized seems
difficult to achieve, but Swing/Swinglets and JGenerator show that it is possible. The
separation is more easily achieved by keeping a clear separation between data and
architecture. The Model, View, Control design is a less abstract form of the Module,
Type, Framework thesis.

6. Component-Oriented Java

So what is the best way for Javasoft to move, in order to provide a fully Component-
Oriented language?

Component-Oriented class modifiers, if added to the language, let you declare a class
or interface as a type, or module.

For example:

public type class Invoice

{
}

public nodul e class |Invoi ceSession

{
}

publ i ¢ doubl e anpunt;

public void process(lnvoice invoice) throws ProcessException

Declaring classes with these modifiers should give instructions to compilers to treat the
classes meaningfully as data or architecture. Module and Type hooks could be included
in the compiled code. The benefits of the Component-Oriented programming model
would be immediate through the use of introspection.

Classes that were declared with the type modifier would allow accessor methods to be
assumed as method declarations with the same access as the member declaration. The
compiler could also make some compile time checks to enforce the bean standards,
such as the existence of a default constructor.

Classes declared as types should be assumed to be Serializable. In addition type
classes should be capable of mapping to XML binding and Persistence modules, and
type classes should not reference module classes.

Classes that were declared with the module modifier would allow the methods to be
assumed to be services. The compiler could also make some compile time checks to
ensure that their methods only passed Serializable objects. This would mean they could
be exposed either locally or remotely.

Classes declared as modules should be assumed to be Remotable. In addition module
classes Remote Interfaces would need to be extended to seamlessly handle other
protocols such as XML Schema or SOAP method bindings.

If these features were added to Java, aspect and feature oriented extensions would
have something to get their teeth into. Property methods could be designed to have
hooks for prefix and postfix processing.

7. Aspect-Oriented Java

Aspect-Orientated is often related to Component-Oriented programming. Aspect-
Orientated software is the idea that code fragments need to be applied in a consistent
manner across a large number of classes.

Some good examples of this are:

Pre and post method calls
Validation

Logging

Debugging

Monitoring

Firing Property Change Events

Languages like AspectJ allow Java developers to consistently modify their code by
modularising crosscutting concerns. AspectJ applies declared aspects by modifying the
bytecode.

Component-orientation and aspect-orientation are orthogonal. Aspect-oriented
programming adds most value when there are standard components to be modified. For
example, the ability to add pre and post actions and conditions to out of the box
components is extremely useful functionality.

A useful addition to providing Component-Oriented features in the next phase of Java
would be to add Aspect-Oriented features.

8. Conclusion

Java is entering into its inefficient phase. C# is in the middle of its acceptance phase.

When the .NET architect, Hejlsberg, says, "Yeah, and | just think that we're a generation
ahead when it comes to the thinking in this space," he is probably right. In the scheme
of things the .NET language extensions are particularly small. However .NET now offers
Component-Oriented support in the form of properties and events as first class
language constructs.

There is a lot of talk amongst senior figures about where Java is heading. JavalLobby,
The Server Side and Java Developer Journal have all carried articles in recent months
about the way ahead for Java. Looking at the readers' responses to these articles I'd
say the vast majority of Java developers don't even appreciate what Hejlsberg is saying.

Many Java programmers can't see that C# has leapfrogged Java. Whilst many of its
Component-Oriented aspects are supported by Java, they are not built in, and they
involve significant programmer effort to get to work. Thankfully the next version of Java
(1.5) is planned to have boxed types built in, which shows they are at least responding
to .NET.

When languages evolve, they move closer to problems rather than the solutions.
Javasoft should stop thinking about solutions and start thinking about our problems. The
publication of module interfaces or displaying a type and its related dependents in a Ul
should be one line of code.

It's time for Javasoft to start getting aggressive in their vision of what Java is. It's easy to
get self-congratulatory and lazy when you're in a dominant market position. | believe
that Javasoft can deliver the next big thing but it's going to involve swallowing a lot of
pride, and I'm not sure they can do that.

9. References

Brown W, et.al, AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis, 2001.

Javelin Software: JGenerator, November 2001 (http://www.javelinsoft.com/)
Javelin Software: Swinglets, May 1999 (http://www.swinglets.com/)

Jonathan Aldrich Craig Chambers David Notkin, Component-Oriented Programming in
ArchJava

http://www.cs.washington.edu/homes/jonal/archjava/oopsla01-cop.pdf
Microsoft Corporation: The Component Object Model 0.9. July 1995.

P. H. Frohlich, Component-Oriented Languages: Messages vs. Methods, Modules vs.
Types. (http://nil.ics.uci.edu/~phf/pub/honnef-2000.pdf)

Sun Microsystems : The Java Beans Specification 1.01. July 1997.
(http://java.sun.com/products/javabeans/)

Sun Microsystems: JavaTM Architecture for XML Binding (JAXB), May 2001.
(http://www.javasoft.com)

Sun Microsystems: JavaDataObjects, version 1.0, 2000.
(http://jcp.org/aboutJava/communityprocess/first/jsr012/index.html)

Sun Microsystems : JavaTM Architecture for XML Binding (JAXB), May 2001.
(http://www.javasoft.com)

W3C. Simple Object Access Protocol (SOAP) 1.1, May 2000
(http://lwww.w3.0rg/TR/SOAP).

W3C, XML Schema Part 2: Datatypes XML, May 2001
(http://www.w3.org/TR/xmlschema-2)

Xerox. AspectJ™: Aspect-Oriented Programming Using Java Technology.
http://aspectj.org.

JavaWorld: Aspect-Oriented Programming.
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html
http://www.javaworld.com/javaworld/jw-03-2002/jw-0301-aspect2.html
http://www.javaworld.com/javaworld/jw-04-2002/jw-0412-aspect3.html

