
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(11), 1077–1095 (NOVEMBER 1994)

A Comparison of Object-oriented Programming in Four
Modern Languages

ROBERT HENDERSON

Indiana University, Computer Science Department, Lindley Hall 430A, Bloomington, IN 47405, U.S.A.
(e-mail: robh@cs.indiana.edu)

AND

BENJAMIN ZORN

Department of Computer Science, Campus Box #430, University of Colorado, Boulder 80309–0430, U.S.A.
(e-mail: zorn@cs.colorado.edu)

SUMMARY

Object-oriented programming has become a widely used, important programming paradigm that is sup-
ported in many different languages. C++ has become the most widely used object-oriented language and
many C++ programmers are unfamiliar with the different approaches taken by other languages in the
paradigm. This paper is intended as an introduction to a broad range of ideas in object-oriented pro-
gramming. Specifically, we introduce four modern programming languages that support object-oriented
programming (Oberon-2, Modula-3, Sather and Self), and show how a simple application is coded in
these languages. While each of these programming languages provide support for inheritance, dynamic
dispatch, code reuse, and information hiding, they do so in very different ways and with varying levels
of efficiency and simplicity. The use of a simple example, based on a common programming problem,
facilitates our comparison. We have coded the application in all of these languages, including C++, and
we compare the compile times, object code sizes, and run times of the available implementations. Im-
plementations of all the languages compared and all of the programs we measure are available on the
Internet. Ultimately, our goal is to encourage and facilitate programmers in understanding and exploring
a variety of object-oriented programming languages.

KEY WORDS: Object-oriented programming Inheritance Modern programming languages Language comparison

Compiler performance evaluation

INTRODUCTION

Object-oriented programming has become a widely-used, important programming paradigm
that is supported in many different languages. The C++ programming language is currently
the most widely available and widely used language in this paradigm and, as such, many
programmers are familiar with the object-oriented paradigm through their experience with
C++. While C++ provides efficient support for object-oriented programming, there are
many other languages that support the paradigm in different ways. Our goal is to introduce
programmers who have not been exposed to the broad range of object-oriented programming
concepts to four very different programming languages with object-oriented support. The
specific languages we consider are Oberon-2, Modula-3, Sather, and Self. We illustrate the

CCC 0038–0644/94/111077–19 Received 2 August 1993
Ó1994 by John Wiley & Sons, Ltd. Revised 20 June 1994

1078 R. HENDERSON AND B. ZORN

language differences using a simple program that represents a common problem with an
object-oriented solution. All of the languages we discuss, as well as our program examples,
are publicly available on the Internet. It is our hope that readers of this paper will be
encouraged to further explore these languages and be facilitated in this exploration by our
efforts.

The aspects of object-oriented programming that we explore in this paper are inheritance,
dynamic dispatch, code reuse, and information hiding. Based on our example application, we
discuss how each language supports these concepts in turn. We also compare the run-time
efficiency and compilation time of the language implementations, including C++. These
measurements are intended to provide the reader with an understanding of the approximate
performance of the current language implementations. Such an understanding is useful
because often performance considerations constrain what languages a programmer is likely
to consider using on a particular project.

The application

The application we selected to introduce and compare the object-oriented languages is a
database of university personnel files. The database includes files for students and teach-
ers, both of which contain a social security number and name. Student files also contain
information about courses in which the student is enrolled while teacher files include salary
information. Classes with inheritance provide the ideal framework for the implementation
of this hierarchy. Personnel files provide the parent class from which student and teacher
files can be subclassed. The database is implemented as a linked-list of personnel files. The
classes and the instance variables and methods they provide are shown in Figure1.

Our application program benefits from features that support object-oriented programming
and is not overly complex. We intentionally chose a simple application for two reasons.
First, simplicity made it possible to write implementations in several different languages in
a reasonable time. Secondly, the simplicity enhances the language comparison because the
languages considered all provide support for the set of features needed by the application.
If, for example, the application had required threads, it would have been more difficult to
compare the implementations, since support for threads is either vastly different between
languages or non-existent. However, one drawback of using a simple application is that we
cannot use it to compare the suitability of the languages for larger programming projects.

This application benefits from several features supported by the object-oriented paradigm.
The first is simply the need for inheritance since the teacher and student classes both use
instance variables and methods provided by the parent personnel class. The application also
benefits from the ability to override the definition of the print method in the subclasses
of the personnel class. To explore code reuse, we have the print methods for student and
teacher classes call the print method defined in the personnel class (where the social security
number is defined). Finally, the need for dynamic dispatch arises in the print method for
the database class. Because the database is a linked-list of personnel files, when the print
message is sent to the personnel file, we want the proper print method to be called depending
on whether the personnel file is actually a student file or a teacher file.

This application actually resembles many others that are commonly-used when examples
of object-oriented programming are presented. For instance, the structure of the application
resembles that of an interactive drawing program where a number of geometric shapes and/or
text are being manipulated. In that case, instead of a linked-list of personnel files, a list
of different geometric shapes is manipulated. Likewise, in a text-formating program, such

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1079

�
�

�
��7

S
S

S
SSo

salary

updatesalary

Teacher Class

Instance Variables:

print
Methods:

classes
numclasses

unenroll
addclass

Student Class

Instance Variables:

print
Methods:

Methods:

ssn
firstname
lastname

print
update

Instance Variables:

Personnel Class

Figure 1. The database application class hierarchy

as the Interviewsdoc application, a box of text is represented as a sequence of possibly
different glyphs. Finally, a simulation system that manipulates many different types of
similar objects, such as an airport simulation, could have a structure very similar to that of
our application.

The source code implementing the database application in each language is available
on the Internet via anonymous ftp from ftp.cs.Colorado.EDU as /pub/cs/misc/comparison-
code.tar.Z.

The languages

In this section, we explain why we chose these specific languages and describe each
briefly. First, these languages represent a broad spectrum of programming language design
principles, ranging from emphasis on minimality and simplicity to emphasis on support
for rapid prototyping. Secondly, implementations of all the languages are publicly available
making these languages easy for readers to obtain and use. Finally, all the languages chosen
were created through an evolution of existing successful languages. Oberon and Modula-
3 both evolved (in very different directions) from Modula-2, Sather evolved from Eiffel,
and Self evolved from Smalltalk. Thus, all these languages represent attempts to improve
existing languages with new and very different ideas. Of course, many other languages, such
as CLOS and Objective-C, could also have been included, however we felt that investigating
more than four languages was beyond the scope of a single paper. C++ is included in the
descriptions below because it is the most widely used object-oriented language. We assume

1080 R. HENDERSON AND B. ZORN

that readers have some familiarity with object-oriented programming, possibly through their
exposure to C++.

C++

C++1 is a widely-used object-oriented programming language and provides a well-known
baseline for comparison. C++ supports object-oriented programming by extending C with
classes that group functions and data, provide information hiding, and support inheritance.
C++ is statically-typed and attempts to significantly reduce the run-time overhead of object-
oriented programming. Programmers who do not use the object-oriented features of C++
get the same performance they would using C. If programmers need dynamic dispatch in
C++, they explicitly use ‘virtual functions’, otherwise functions are statically bound.

Oberon

Oberon2 was designed by Niklaus Wirth as a successor to Modula-2.3 Oberon is largely the
result of removing features from Modula-2, however a few features were added. The most
important addition istype extensions,4 which provide basic support for inheritance. Oberon
has evolved into Oberon-2, the most recent of the Oberon languages, and is described
by Mossenbock and Wirth.5 Oberon-2 was influenced by Object-Oberon6 and incorporates
type-bound procedures, which are equivalent to methods. Type-extensions and type-bound
procedures provide the support for object-oriented programming generally provided by ex-
plicit classes in object-oriented programming languages. As with each of the other languages
except C++, garbage collection is provided to free the programmer from the onerous task
of memory management.

Modula-3

While Oberon represents a minimal evolution of Modula-2 to support object-oriented
programming, Modula-37,8 is a larger language providing support for large, multi-person
programming projects with separate module interface specification and exception handling
as well as concurrency and garbage collection. Modula-3 is a strongly-typed language with
an emphasis on safety. However, the safety features of the language can be explicitly
circumvented when increased efficiency or functionality are necessary. Modula-3 supports
object-oriented programming by providingobject types, which are incorporated into the
basic module structure of the language.

Sather

Sather9,10 was derived from Eiffel with an emphasis on simplicity and efficiency. While
Oberon-2 and Modula-3 are procedural languages that support both modules and objects,
Sather places a central emphasis on objects and classes. Sather provides only classes as a
way of grouping related data (no modules) and all functions must be methods in some class.
While in many ways the philosophy of Sather is closer to that of Smalltalk and other pure
object-oriented languages, Sather is interesting because it also emphasizes static-typing and
performance.

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1081

Self

Self11 is a dynamically typed, object-oriented programming language with message passing
that was designed to support exploratory programming. Self represents a deviation from
organization by classes supported by most object-oriented programming languages. Instead
of classes with instance variables and methods, Self incorporatesprototypeswith slots.
Prototypes provide templates from which objects are cloned and slots combine instance
variables and methods into a single construct. The Self implementation we used is also
very interesting because there is a great deal of emphasis on using compiler optimization
to reduce the overhead of the dynamic features. Our results indicate the Self implementors
had success in achieving this goal.

RELATED WORK

A number of papers comparing the features of different object-oriented languages have been
published recently. Wolf’s comparison of object-oriented programming in C++ and Flavors
is based on building systems for designing electronic hardware.12 He qualitatively compares
the languages’ features, including support of objects, typing, memory management, etc.
Because the languages compared are so different, only a minimal quantitative comparison of
performance is included. In addition to having more quantitative performance comparisons,
our paper also considers a greater number of approaches; we examine a broad spectrum of
experimental approaches to object-oriented programming.

Blascheket al. compare the languages C++, Eiffel, Oberon, and Smalltalk-80.13 Their
comparison includes a general description of each language and a point-by-point comparison
of a number of specific features including inheritance, efficiency, complexity, and reliability.
Schmidt and Omohundro compare the features for object-oriented programming in CLOS,
Eiffel and Sather.14 Their comparison includes language features, program performance,
and available programming environments. While both of these comparisons are detailed
and complete, they are not conducted in the context of a single specific example.

Other comparisons of object-oriented techniques have also appeared. Wileden, Clark,
and Wolf evaluate object definition techniques in prototyping systems.15 Their investigation
focuses only on object definition and the utility of these techniques for building large
prototype systems.

This paper differs from others like it because it introduces the features for object-oriented
programming provided by a wide variety of languages using a simple and relevant example.
The simplicity of the example serves to highlight some fundamental differences in the
way that object-oriented programming is supported by these languages. By providing code
examples in the paper and complete programs via the Internet, we hope to facilitate and
encourage an understanding of these diverse programming languages. Furthermore this
paper compares not only the language designs but also compares the relative performance
of existing implementations of these languages in the context of our simple example.

SUPPORT FOR OBJECT-ORIENTED PROGRAMMING

In this section we discuss how each language supports inheritance, dynamic dispatch, code
reuse, and information hiding. In doing so, we present simplified code examples from each
language illustrating how a simple inheritance relation from our database application is
implemented.

1082 R. HENDERSON AND B. ZORN

Inheritance

Inheritance is one of the key features of object-oriented programming and all of the
languages studied provide support for it. Recall that Figure1 illustrates the relation between
the Student and Personnel classes in our database application. In the next four Figures, we
show how this inheritance relation is expressed in each of the languages we studied. We will
return to these code examples as we discuss how the languages support different features
in turn.

Figure shows the Oberon-2 module declarations for thePersonnel andStudent mod-
ules. In Oberon-2, names are not exported explicitly in an interface section but instead
exported names are indicated with a asterisk that appears after them. For example, the
Print procedure is exported from thePersonnel module. This form of specification al-
lows a module interface to be automatically constructed.

Figure also illustrates the use of type-extension in Oberon-2. Inheritance is supported
by type-extensions that allow record data types to be declared asextensionsof previ-
ously declared types. Objects of the extended type include fields from both the base and
extended types. In the example, the typeStudent.FileData extends the imported type
Personnel.Filedata. Oberon-2’s type-bound procedures make it possible to bind proce-
dures to types, providing the mechanism for linking a type with its behavior. Since a type
can be the extension of only a single other type, multiple inheritance is not possible.

Figure shows the Modula-3 module implementation and interface declarations for the
Personnel and Student modules. Unlike Oberon-2, module interfaces and interfaces are
specified separately in Modula-3. As is immediately clear from the example, even relatively
simple inheritance relationships are quite complex to express in Modula-3. Reasons for
this complexity include the separation between module interfaces and implementations,
mechanisms for information hiding, and the interaction between Modula-3 modules and
objects. While describing this example entirely is beyond the scope of this paper, we will
mention the object-oriented Modula-3 features used in this example both here and later in
the paper.

Modula-3 providesObject types, which embody both a data record and a method suite.
When an object type is declared (for example, in the interface of theStudent module),
another object type can be specified as the supertype, thus providing inheritance. An object
type declaration can include only a single supertype so multiple inheritance is not possible.

Figure shows the class declarations for thePersonnel andStudent classes in Sather.
This example illustrates how the complexity of specifying an inheritance relationship is
reduced if only classes and not modules with objects (or type-extensions) are supported
in a language. In Sather, all code is organized intoclassesand a class definition must be
contained within a single file. A class definition includesattribute specifications (instance
variables) androutine specifications (methods). Inheritance is achieved by a conceptually
simple model of textual inclusion. For example, notice that in the definition of the student
class, the personnel class is named. This reference toPERSONNEL has the same semantics as
if the text defining the personnel class were textually included in the definition of the student
class. Since multiple classes can be named in a class definition, multiple inheritance is
possible. By using the textual inclusion model, name conflicts between multiple parents are
resolved in a last-defined fashion; the redefinition of a name hides the previous declaration.

Finally, Figure shows thePersonnel andStudent traits and prototypes objects defini-
tions in Self. Self makes use of prototypes with cloning rather than classes with instantiation.
However, the behavior of classes with inheritance can be achieved in Self as described by

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1083

------------------------- Personnel.Mod -----------------------------------

MODULE Personnel;

IMPORT Out, Texts;

TYPE

File* = POINTER TO FileData;

FileData* = RECORD

ssn: INTEGER;

firstname, lastname: ARRAY 32 OF CHAR;

END;

(* Print method *)

PROCEDURE (pf: File) Print* ();

BEGIN

(* Body of method omitted *)

END Print;

END Personnel.

------------------------- Student.Mod -------------------------------------

MODULE Student;

IMPORT Out, Personnel;

TYPE

File* = POINTER TO FileData;

FileData = RECORD (Personnel.FileData)

nclasses: INTEGER;

class: ARRAY 10 OF INTEGER;

END;

(* Override the parent Print method *)

PROCEDURE (sf: File) Print*;

BEGIN

sf.Print^(); (* Invoke overridden print method *)

sf.PrintStudentInfo(); (* Print student specific information *)

END Print;

END Student.

Figure 2.Personnel andStudent modules in Oberon-2

Ungar et al.16 To explain how this is done, we will use our database application as an
example. Consider the relationship between student and personnel files. Student files inherit
data fields and behavior (ortraits) from personnel files.

In Self, the data and traits are divided into separate objects as illustrated in Figure6.
When a student file is created, the prototype student object iscloned, thereby creating local
copies of the student data fields, orslots. In addition, the prototype personnel object is also
cloned, thus creating local copies of the slots inherited from personnel files, as seen in the

1084 R. HENDERSON AND B. ZORN

------------------------- Personnel.i3 ------------------------------------

INTERFACE Personnel;

TYPE

File <: Public_File;

Public_File = OBJECT

METHODS

Print();

END;

END Personnel.

------------------------- Personnel.m3 ------------------------------------

MODULE Personnel;

IMPORT Stdio, Text, Wr;

FROM Stdio IMPORT stdout;

REVEAL File = Public_File BRANDED OBJECT

ssn: INTEGER;

firstname,lastname: Text.T;

OVERRIDES

Print := PrintFile;

END;

(* Print method *)

PROCEDURE PrintFile(pf: File) =

BEGIN

(* Body of print method omitted *)

END PrintFile;

BEGIN

END Personnel.

------------------------- Student.i3 --------------------------------------

INTERFACE Student;

IMPORT Text, Personnel;

TYPE

File <: Public_File;

Public_File = Personnel.File OBJECT

END;

END Student.

------------------------- Student.m3 --------------------------------------

MODULE Student;

IMPORT Stdio, Text, Wr, Personnel;

FROM Stdio IMPORT stdout;

REVEAL File = Public_File BRANDED OBJECT

nclasses: INTEGER;

class: ARRAY [1..10] OF INTEGER;

OVERRIDES

Print := PrintFile;

END;

(* Print method *)

PROCEDURE PrintFile(sf: File) =

BEGIN

Personnel.File.Print(sf); (* Invoke overridden print method *)

sf.PrintStudentInfo(); (* Print student specific information *)

END PrintFile;

BEGIN

END Student.

Figure 3.Personnel andStudent module interfaces and implementations in Modula-3

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1085

------------------------- personnel.sa ------------------------------------

class PERSONNEL is

private ssn:INT;

private firstname, lastname: STR;

-- Print method

print is

-- body of print method omitted

end; -- print

end; -- class PERSONNEL

------------------------- student.sa --------------------------------------

class STUDENT is

PERSONNEL; -- Inherit from PERSONNEL

private nclasses:INT; -- Add number of classes

private classes:ARRAY{INT}; -- and the array of classes

alias personnel_print print;

-- Print method

print is

self.personnel_print; -- Invoke overridden print method

self.print_student_info; -- Print student specific information

end; -- print

end; -- class STUDENT

Figure 4.Personnel andStudent classes in Sather

clone method forStudentTraits in Figure . These objects share behavior through the
parent pointers to the traits objects. However, the creation of a new student file does not
require that the traits objects be cloned since all student files can share a single copy of the
methods.

Since multiple parent pointers can be specified, multiple inheritance is possible. In fact, in
this simple example, multiple inheritance is necessary instudentProto even though there
is no multiple inheritance inherent in the problem being solved. Furthermore, a precedence
for the inheritance must be specified, since two distinct print methods are reachable via the
two parent pointers. In this example,dataparent has lower precedence, as indicated by
the two asterisks following the name, so that the print method fromstudentTraits is
used for student files.

An alternative approach eliminates data parents from the model.17 Using this approach,
the student prototype is created by cloning the personnel prototype and adding additional
slots, thereby eliminating the dynamic indirection associated with accessing data slots of the
parent. The parent pointer is also updated to point to the student traits object, eliminating
the problem of multiple inheritance.

1086 R. HENDERSON AND B. ZORN

------------------------- personnel.self ----------------------------------

traits dbbench personnelTraits _Define: (|

_ parent* = traits clonable.

^ print = ("body of print method omitted").

|)

prototypes dbbench personnelProto _Define: (|

_ traitsparent* = traits dbbench personnelTraits.

^ ssn.

^ firstname.

^ lastname.

|)

------------------------- student.self ------------------------------------

traits dbbench studentTraits _Define: (|

_ traitsparent* = traits dbbench personnelTraits.

^ clone = (_Clone dataParent: personnelProto clone).

^ print = (resend.print. "Invoke overridden print method"

printStudentInfo. "Print student specific information").

|)

prototypes dbbench studentProto _Define: (|

_ traitsparent* = traits dbbench studentTraits.

_ dataparent**.

^ nclasses.

^ classes.

|)

Figure 5.Personnel andStudent traits and prototypes in Self

Dynamic dispatch

Each of the languages provide a mechanism for the specification of dynamic dispatch. With
the exception of Self, each also provides a way to specify static binding so the overhead
associated with dynamic dispatch can be avoided. With Oberon-2, all type-bound procedures
are dispatched dynamically and standard procedures can be used to achieve static binding.

In Modula-3, methods may be declared using one of two mechanisms:METHODS and
OVERRIDES. If a method is declared in a parent class, then subclasses can either define a new
method with the same name (METHODS) or override the previous definition (OVERRIDES).
Both forms of declaration result in dynamically dispatched functions. The difference be-
tween the two forms of declaration is subtle and related to name scopes. In the case of
the OVERRIDES definition, the new method definition completely replaces the definition it
overrides; the overridden definition is not accessible even if the object’s type is narrowed∗
to the type of the parent. In the case of theMETHODS definition, both the old and the new
∗ The NARROW operation in Modula-3 makes it possible to view an object as being of the parent type and vice versa.

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1087

6

6

66

PersonnelTraits

print

update

nclasses

classes

StudentPrototype

dataparent**

traitsparent*

lastname

ssn

traitsparent*

print

addclass

traitsparent*

unenroll

firstname StudentTraits

PersonnelPrototype

Figure 6. Personnel/Student object hierarchy using Self prototypes

definition remain available, although normally the new definition shadows the original def-
inition. In this case, narrowing an object to its parent type will cause the original definition
to be used.

Sather is similar to C++ in that methods are statically bound unless explicitly declared
otherwise. However, the mechanism for the specification of dynamic binding in Sather is
quite different than it is in C++. With C++, a method can be declared avirtual function,
and calls to that method will be dynamically dispatched. In Sather, the declared type of a
variable determines whether method calls will be dispatched dynamically. Variables of a
dispatched type are declared by simply preceding the type specification with a dollar sign.
So, if file is declared of type$PERSONNEL, then the dotted accessfile.print will result
in the desired dynamic dispatch. However, this approach can result in unnecessary overhead
if the programmer is not cautious. Consider the two Sather code fragments in Figure7. In
the print method, we step through the database printing each personnel file. Since we want
the appropriate print routine to be called for student and teacher files, we want the call to
the print method,tmp.file.print, to be dynamically dispatched. We can achieve this by
declaring thefile field of the database class to be a dispatched type, namely$PERSONNEL.
However, consider the locate method that scans the database looking for a file with the
given social security number. Since thefile field of the database class was declared as a
dispatched type, the access of the social security number,tmp.file.ssn, is also incurring
the overhead of dynamic dispatch even though it may be an instance variable access instead
of a method invocation.

Code reuse

One of the advantages of object-oriented programming is the ability to reuse code. If a
function is implemented by a class, it can be made available to all subclasses. In addition, a

1088 R. HENDERSON AND B. ZORN

-- Print the database -- Locate a file in the database
print is locate(ssn:STR): PERSONNEL is

tmp: DATABASE; tmp: DATABASE;
tmp := self; tmp := self;
until tmp.next=void loop until tmp.next=void loop

tmp.file.print; if tmp.file.ssn = ssn then
tmp := tmp.next; res := tmp.file;

end; return;
end; -- print end;

tmp := tmp.next;
end;
res:=void;

end; -- locate

Figure 7. Sather code fragments from the database application

method can be reimplemented in the subclass and the new method has the option of calling
the method in the parent class that it is overriding. This ability is useful if the subclass
wants to extend the behavior of a function, while still reusing the code defined in the parent
class. Each of the languages provide support for explicit calling of the parent method from
within the overriding method, however there are some interesting differences.

In Oberon-2, the mechanism is quite straightforward; you simply append the method
name with a caret(̂). For example, in thePrint procedure for student files, you can call
the print procedure for personnel files by callingPrint^ (Figure).

In Modula-3, to invoke the overridden method it is necessary to name the parent type
and method to be called and explicitly pass the receiver of the message as an argument.
For example, to call the print method in the personnel class, you callPersonnel.File.
Print(file) wherefile is the receiver of the message (Figure). As mentioned in the
previous section, theNARROW mechanism does not give access to the overridden method.

The textual inclusion model of inheritance supported by Sather introduces a small prob-
lem, since the redefinition of the print method hides the original definition. Sather includes
an aliasing mechanism that addresses this problem. For example, after the inclusion of the
personnel class in the definition of the student class, we can alias print to another name, for
examplepersonnel print (Figure). We can then call this method using the aliased name.
With multiple inheritance, it is up to the programmer to include the proper alias statements
so that the correct methods are visible.

Self includes the concept of message resends, whereby a message can be resent to the
parent class from within the overriding method definition. There is no restriction that the
resent message must be the same as the current method. For example, from within the
print method for student files, we can invoke the print method for personnel files with
resend.print (Figure) or we can invoke some other method,foo, with resend.foo. It
is also possible to perform a directed resend where the resend is sent to a specified parent,
making it possible to override the specified multiple inheritance precedence.

Information hiding

Oberon-2 provides a familiar import/export mechanism for information hiding similar to
that found in the earlier Modula languages. Names are private to the module in which they
are declared unless explicitly exported. Similarly, names exported by a module can only

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1089

be used by a module that explicitly imports that module. Since modules are the grouping
mechanism used by the language, extended types appearing in a module other than that
in which the parent type is declared have no special access privileges to the fields of the
type being extended. This restriction is in contrast to many object-oriented programming
languages where subclasses have unrestricted access to the fields of the parent class.

Modula-3 is also built around modules, however the incorporation of object types com-
plicates the information hiding mechanism. In order to expose certain features of the class
(i.e. access methods) while hiding others (i.e. the actual data fields) it becomes necessary
to declare two actual classes for each conceptual class. A public class is declared in the
interface that contains the features of the class that are to be exported. Then, the actual
class is defined as a subclass of this public class. For example, in FigurePublic File
exports the method Print, whileFile, a subclass ofPublic File, defines the hidden in-
stance variables of the class and provides an implementation of thePrint method. As with
Oberon-2, subclasses have no special access privileges to their parent classes.

Sather takes a more direct approach to information hiding. Names within a class can
be declared private, thus prohibiting direct access by instantiations of the class. However,
subtypes have unrestricted access to the fields of the parent class. This is not surprising
considering the textual inclusion model of inheritance supported by Sather.

In Self, slots can be declared public, private, read-only, or write-only. A method defined
for an object has access to its private slots as well as the private slots of its ancestors.
However, the dynamic nature of Self adds additional flexibility, and with it complexity, to
the information hiding mechanism. Dynamic name binding only requires that the receiver
of a message has access to slots referenced in the corresponding method. There is no
requirement that slots referenced in a method be defined by that object. For example, a
method defined in the personnel class could access instance variables defined only in the
student class. As long as the receiver of this message is actually a student file, it can use
the method safely. Self performs run-time checking to ensure that the receiver of a message
provides the appropriate method and has access to any slots referenced within that method.

PERFORMANCE EVALUATION

In this section we evaluate the performance of publicly available implementations of the
languages considered. TableI describes the implementations we measured as well as how
they can be obtained on the Internet via anonymous FTP. It is important to note that
the results in this section reflect the performance of a particular implementation of these
languages and do not necessarily reflect performance limitations that exist in the languages
independent of these implementations. In particular, the maturity of an implementation can
have a profound effect on its performance. For example, the GNU C++ compiler,g++, is
much more mature than the Sather compiler that we measured.

In order to evaluate the performance of each implementation, a test program was written
to exercise the database code. This test program first adds a large number of records to the
database and then a series of file locates are performed. Next, the database is traversed a
number of times with a set of operations performed on each record. Finally, all records are
deleted from the database. This add/locate/traverse/delete process is repeated a small number
of times, resulting in a reasonable amount of dynamic memory allocation and deallocation.

The run-time numbers presented were obtained using various techniques, depending upon
the environment provided by the particular language implementation. The C++, Modula-3,
and Sather compilers generate standalonea.out format binaries and the run-times were

1090 R. HENDERSON AND B. ZORN

Table I. Publicly available implementations of the five languages that we measured

Internet Location
Language Implementation Machine Directory
C++ GNU 2.2.2 gatekeeper.dec.com pub/GNU
Modula-3 SRC 2.07 gatekeeper.dec.com pub/DEC/Modula-3
Sather Rel0.2i icsi.berkeley.edu pub/sather
Oberon-2 SPARC-2.5 neptune.ethz.ch Oberon/SPARC
Self 2.0.1 self.stanford.edu pub/Self-2.0.1

measured using the total elapsed time reported by the C-shell built-intime command. Since
the Oberon-2 and Self systems do not generate standalone executables, other mechanisms
were used. For Oberon-2, a call toOberon.Time() is made immediatedly upon entering
and prior to exiting the test program and the difference of the two reported times is taken.
In Self, the built-intime mechanism is used. In all cases, a set of five runs were performed
and the average of these runs is reported. The variance in execution time between runs in
all cases was small. All measurements were made on an otherwise idle Sun SparcStation-2
with 32 megabytes of memory.

Execution time

The run-time results are shown in TableII. Where the compiler provided optional opti-
mization, run-time numbers are shown for both the optimized and non-optimized cases. As
we have mentioned, the run-time numbers presented are as much, if not more, a measure
of the ability of the particular compiler to generate efficient code as they are a reflection
on the language itself. As can be seen by the large differences between the optimized and
nonoptimized cases, the quality of the generated code has a large effect on run-time perfor-
mance. However, some interesting observations can still be made related to the languages
themselves.

Not surprisingly, Self is the slowest of the five languages, due largely to the dynamic
nature of the language that requires a large amount of run-time checking not required by the
other languages. However, the Self system does perform extensive innovative optimizations
to reduce this run-time overhead.18,19 The Self database implementation used the optimiza-
tion described in the Inheritance Section to avoid the dynamic indirection associated with
data parents. Using the data parent model shown in Figure6 the execution time was 29·2
seconds, so by avoiding this dynamic indirection the execution time was reduced by 40 per
cent.

In order to achieve the performance numbers shown in TableII, the Oberon-2 and Modula-
3 database implementations did not make exclusive use of methods. Exclusive use of type-
bound procedures in Oberon-2 and METHODS in Modula-3 results in all calls incurring
the overhead of dynamic dispatch. In order to avoid this unnecessary overhead, standard
procedure calls were used for those calls that were not dispatched dynamically. The appli-
cation did require that 45 per cent of all calls be dispatched so the associated cost is quite
significant. The higher run-time of Oberon-2 as compared to C++ can be attributed largely
to the compilers. The Oberon-2 compiler does not perform the level of optimization being
performed by the C++ compilers. Another difference is that Oberon-2, as well as each of
the other languages, provides garbage collection that is typically more expensive, although
far less error-prone, than the explicit deallocation of memory provided by C++.

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1091

Table II. Execution time on a Sun SparcStation-2 with 32 Mbytes of memory

Language Compiler Optimization Run-Time (s)
C++ GNU 2.2.2 No 8·4
C++ GNU 2.2.2 -O 3·7
C++ AT&T 2.1 No 9·3
C++ AT&T 2.1 -O 3·5
Modula-3 SRC 2.07 No 13·7
Modula-3 SRC 2.07 -O 6·0
Sather Rel0.2i No 13·3
Sather Rel0.2i -O 7·2
Oberon-2 SPARC-2.5 Default 4·8
Self 2.0.1 Default 17·4

One reason for the higher run-time of Modula-3 as compared to C++ is that the instance
variable and method offsets for subtypes of opaque types are not known at compile time
and require an additional run-time indirection. By reorganizing the code, it is possible to
make the offsets known to the compiler, at a loss of information hiding, and by doing so the
run-time drops to 4·9 seconds. More aggressive optimization techniques could be employed
by the compiler to achieve this level of performance without the need for manual code
reorganization.

Furthermore, in Modula-3, it is possible to explicitly avoid the overhead of garbage
collection by using untraced references. By doing so, the run-time is further reduced to 4·5
seconds.

Sather is similar to C++ in that method binding is static unless explicitly specified other-
wise. However, Sather has a more general dispatch mechanism than C++ and, in the Rel0.2i
implementation, there is a higher associated overhead. The Sather compiler uses a single
word dispatch cache to minimize the cost of dispatch.20 As a result, the cost of dispatch
is highly dependent on the miss-rate of this cache. For example, in our application, where
45 per cent of all function calls were dispatched dynamically, the dispatch cache miss-rate
was 25 per cent, resulting in an execution time of 7·2 seconds. By artificially varying the
dispatch cache miss-rate from 0 to 50 per cent, while holding the percentage of calls that
were dispatched constant, the execution time varied from 3·5 to 10·8 seconds.

Our initial version of the database application implemented social security numbers as
strings. Because the test program searches the database using social security numbers, a
large number of string comparisons were performed in this version. Therefore, the run-time
numbers were significantly influenced by the efficiency of string comparisons. Even though
the efficiency of string comparisons may be important in certain applications, the goal of
this study was not to measure this effect. For this reason, the application was recoded in
each language, and social security numbers were implemented as integers. It is interesting
to note that this conversion required no changes to the database implementation in Self.
The test code that inserted records into the database was simply changed to use integers
instead of strings and the rest of the code was unchanged. This is certainly a testament to
the suitability of Self for exploratory programming. Even though the changes to the code for
the other languages were not drastic, there was still a non-trivial coding/debugging process
involved.

1092 R. HENDERSON AND B. ZORN

Code size and compile time

Table III shows the compilation times, not including the link phase, and resulting code
size for each of the language implementations. The compile times for the C++, Modula-3,
and Sather implementations are all comparable at 19–30 seconds, with optimization adding
a few additional seconds, while those for Self and Oberon-2 are significantly lower. It
is important to realize that the AT&T C++, Sather, and Modula-3 compilers all generate
intermediate C code that is then compiled usingcc.

It is obvious from the compile time for Oberon-2 that Wirth has succeeded in designing
a simple language for which an efficient compiler can be written. The SPARC Oberon 2.5
compiler is extremely efficient and generates object code directly rather than generating
intermediate C code. On the other hand, the Oberon-2 compiler performs far less optimiza-
tion than is performed when optimization is specified with the C++ compilers. However, by
comparing Oberon-2 with the unoptimized C++ implementations, we see that the compile
times for Oberon-2 are much lower while the run-times, from TableII, are also considerably
lower.

The compilation in the Self system is not a user-requested operation, but rather is per-
formed as needed during program execution, a behavior that is particularly convenient
during code development. The compile times listed represent the difference in run-time
between the first run, when compilation is performed, and subsequent runs.

Table III. Program code size and compile time. A stripped binary has had the symbol table and relocation bits
that are normally attached to a binary removed. The code size numbers for Self are only approximations based

on code information provided by thePrintMemory method. A standalonea.out format binary is not
generated

Compile Object Binary Stripped
Language Compiler Optimized time(s) size(bytes) size(bytes) binary(bytes)
C++ GNU 2.2.2 No 28 7004 311,296 147,456
C++ GNU 2.2.2 Yes 30 5748 311,296 147,456

C++ AT&T 2.1 No 30 12,128 65,536 49,152
C++ AT&T 2.1 Yes 35 10,464 65,536 49,152

Modula-3 SRC 2.07 No 24 24,560 1,015,808 352,256
Modula-3 SRC 2.07 Yes 30 21,716 1,015,808 352,256

Sather Rel0.2i No 19 5880 139,264 122,880
Sather Rel0.2i Yes 23 4660 139,264 122,880

Oberon-2 SPARC-2.5 Default 2 5587 — —

Self 2.0.1 Default 9 — 426,908 198,364

The code sizes also vary significantly between the language implementations. With the
C++, Sather, and Modula-3 compilers, linking was performed usingld to generate a stati-
cally linked a.out format binary. While the GNU compiler generates more compact code
than the AT&T compiler, the larger run-time library results in a larger executable. Modula-
3’s larger run-time system is also evident in the size of the binary. With the exception of
C++, all languages provide garbage collection so the code for this task must be included in
the binary.

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1093

CONCLUSIONS

In this paper we have introduced a variety of language features related to object-oriented
programming as provided by Oberon-2, Modula-3, Sather, and Self. We have used a simple
and relevant example to show how these languages support similar concepts in very differ-
ent ways. Specifically, we considered features that support inheritance, dynamic dispatch,
code reuse, and information hiding. Our goal has been to raise the reader’s awareness of
the many interesting approaches to object-oriented programming, specifically as supported
by languages that are not as yet widely used. By including code examples in the text
and providing complete implementations on the Internet, we hope to encourage readers to
investigate these interesting languages further.

Each of the languages considered support object-oriented programming, however they do
so in different ways. Oberon-2 provides the minimal extensions to a module-based language
necessary to support classes with inheritance. Modules form the basic building blocks of
the language and type extensions and type-bound procedures fit cleanly into this model.
Oberon, owing to its simplicity and clean design, appears to be a relatively easy language
to implement efficiently. The SPARC-2.5 Oberon compiler that we measured is very fast
and generates relatively efficient code without performing extensive optimizations. On the
negative side, the Oberon-2 implementation we used must be programmed in the context
of the Oberon-2 system, which requires the user to adopt a new interface and programming
environment. Also, because the SPARC-2.5 Oberon-2 implementation does not provide the
most extensive compiler optimizations, program execution time suffers somewhat.

Modula-3 also adds object types to a module-based language; however, Modula-3 is a
larger and more complex language than Oberon-2. Modula-3 provides a number of features
not found in Oberon-2, including threads for concurrency, exceptions, and separate module
interface specifications. All of these features support the use of Modula-3 in programming
large systems that may require many programmers. With both the Modula-3 and Oberon-2
implementations we measured, exclusive use of the object-oriented features in the language,
namely methods in Modula-3 and type-bound procedures in Oberon-2, results in slight run-
time penalties. While the code generated by the SRC 2.07 Modula-3 compiler was not as
fast as the C++ implementations, the performance differences can certainly be narrowed by
more aggressive optimization techniques.

Modula-3 is a language designed for creating large complex systems. As such, it contains a
number of features that make solutions to simple problems (e.g., our example problem) quite
verbose and difficult to understand. In addition, we found that the semantics ofOVERRIDES
versusMETHODS in Modula-3 to be quite likely to confuse new users of the language. We
also found the use of subclassing to hide private members of a class from public use to be
confusing because two actual classes needed to be declared for each conceptual class.

Because both Oberon-2 and Modula-3 do not support classes directly, they are both
best characterized as procedural languages with object-oriented extensions. Sather abandons
modules in favor of a more object-oriented approach with all code organized into classes.
This approach has yielded a simple, easy-to-use object-oriented programming language.
Instead of providing virtual functions as in C++, Sather includes dispatched types that
provide a more general dispatch mechanism. Even though this dispatch mechanism is more
expensive, a dispatch cache can be employed to reduce the associated overhead. One goal
of Sather was to avoid features that mainly support programming-in-the-large and make
programming-in-the-small more difficult. Based on programming our database application,
we conclude that the Sather design is successful in achieving this goal.

1094 R. HENDERSON AND B. ZORN

For new users, Sather’s simplicity provides a definite advantage over Modula-3 in learning
and using the language for writing simple programs. However, programmers should be
aware that the approach taken by Sather may have problems scaling to large programs.
For example, Sather allows name conflicts in classes and resolves them by using the last
specified definition. Often, especially as the object hierarchy gets deeper and more difficult
to fully understand, a programmer may want such conflicts to be flagged at compile time.
Otherwise, inadvertent redefinitions may lead to subtle bugs. Likewise, the use of dispatched
types instead of virtual functions (as provided in C++) may lead to subtle errors. Consider
that the inclusion or deletion of a single $ can have a significant impact on how the program
executes. In general, there is insufficient experience with the idea of dispatched types to
say whether such a mechanism has advantages in practice.

Self is an extremely simple and pure object-oriented language based on prototypes and
cloning. The simplicity of the semantics may allow programmers to quickly learn to pro-
gram in Self, even though the language is quite different from more familiar object-oriented
languages such as C++. The dynamic nature of the language and short compile times sup-
port rapid prototyping at a cost in run-time efficiency. Aggressive, innovative optimization
techniques have significantly reduced the run-time overhead of Self. Nevertheless, program
execution time is still substantially slower than that of statically typed object-oriented lan-
guages such as C++ or Sather. Furthermore, Self’s syntax is based on that of Smalltalk,
and may be difficult for procedural programmers to use initially. Finally, because Self has
such a flexible framework for object-oriented programming, new users may have a more
difficult time deciding how to structure their solutions. Because it is so flexible, Self offers
many choices that are simply not present in the other languages considered.

ACKNOWLEDGEMENTS

We would like to thank Urs Ḧolzle, Josef Templ, Eliot Moss, Dirk Grunwald, David Ungar,
Stephen Omohundro, Dain Samples, Martin Trapp, and Ralph Johnson for their valuable
help, comments, and criticisms. We would also like to thank all those involved with the
implementation of the Oberon-2, Modula-3, Sather, Self, and GNU C++ compilers for
making these tools available, without cost, to the programming community. We also thank
the anonymous reviewers for their insightful comments. This material is based upon work
supported by the U.S. National Science Foundation under Grant No. CDA-8922510.

REFERENCES

1. B. Stroustrup,The C++ Programming Language, Addison-Wesley, Reading, MA, 1986.
2. N. Wirth, ‘From Modula to Oberon’,Software—Practice and Experience, 18, 661–670 (1988).
3. N. Wirth, Programming in Modula-2, Springer-Verlag, New York, NY, 1982.
4. N. Wirth, ‘Type extensions’,ACM Transactions on Programming Languages and Systems, 10, 204–214

(1988).
5. H. Mossenbock and N. Wirth, ‘The programming language Oberon-2’,Structured Programming, 12, 179–

195 (1991).
6. H. Mossenbock and J. Templ, ‘Object Oberon — a modest object-oriented language’,Structured Program-

ming, 10, (4), 199–207 (1989).
7. L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow and G. Nelson, ‘Modula-3 language definition’,

SIGPLAN Notices, 27, 15–43 (1992).
8. S. Harbison,Modula-3, Prentice Hall, Englewood Cliffs, NJ, 1992.
9. S. M. Omohundro,The Sather Language, International Computer Science Institute, Berkeley, CA, June

1991.

A COMPARISON OF OBJECT-ORIENTED PROGRAMMING 1095

10. S. Omohundro and C.-C. Lim, ‘The Sather language and libraries’,Technical Report TR-92-017, Interna-
tional Computer Science Institute, Berkeley, CA, February 1992.

11. D. Ungar and R. B. Smith, ‘Self: the power of simplicity’,LISP and Symbolic Computation: An Interna-
tional Journal, 4, (3), 1–20 (1991).

12. W. Wolf, ‘A practical comparison of two object-oriented languages’,IEEE Software, 6, 61–68 (1989).
13. G. Blashek, G. Pomberger and A Stritzinger, ‘A comparison of object-oriented programming languages’,

Structured Programming, 10, (4), 187–197 (1989).
14. H. W. Schmidt and S. Omohundro, ‘CLOS, Eiffel and Sather: a comparison’,Technical Report TR-91-047,

International Computer Science Institute, Berkeley, CA, September 1991.
15. J. C. Wileden, L. A. Clarke and A. L. Wolf, ‘A comparative evaluation of object definition techniques

for large prototyping systems’,ACM Transactions on Programming Languages and Systems, 12, 670–699
(1990).

16. D. Ungar, C. Chambers, B.-W. Chang and Urs Hölzle, ‘Organizing programs without classes’,LISP and
Symbolic Computation: An International Journal, 4, (3), 37–56 (1991).

17. U. Hölzle, ‘Personal communications’. January 1993.
18. C. Chambers and D. Ungar, ‘Customization: optimizing compiler technology for Self, a dynamically-typed

object-oriented programming language’,Proceedings of the SIGPLAN’89 Conference on Programming
Language Design and Implementation, Portland, OR, June 1989, 146–160.

19. U. Hölzle, C. Chambers and D. Ungar, ‘Optimizing dynamically-typed object-oriented languages with
polymorphic inline caches’,Proceedings of the European Conference on Object-Oriented Programming,
July 1991.

20. C.-C. Lim and A. Stolcke, ‘Sather language design and performance evaluation’,Technical Report TR-91-
034, International Computer Science Institute, Berkeley, CA, May 1991.

	INTRODUCTION
	The application
	The languages
	C++
	Oberon
	{Modula-3}
	{Sather}
	{Self}

	RELATED WORK
	SUPPORT FOR OBJECT-ORIENTED PROGRAMMING
	Inheritance
	Dynamic dispatch
	Code reuse
	Information hiding

	PERFORMANCE EVALUATION
	Execution time
	Code size and compile time

	CONCLUSIONS
	REFERENCES

