
Jaos, a JVM for the Aos Kernel

Patrik Reali Institut für Computersysteme
ETH Zurich

CH-8092 Zurich, Switzerland

reali@acm.org

ABSTRACT
The Java VM is the key to the Java world. Implementing a
JVM is close to implementing an operating system. To sim-
plify the JVM construction, we build it on top of the Aos
kernel, which provides an active object-based high-level pro-
gramming model along with services like garbage collection
and dynamic module loading.

The underlying high-level model of the kernel makes this
project an exercise in programming model mapping. The
extensive reuse of existing services and programming con-
ventions allows to construct the JVM with a very modest
manpower. Using the symbol table of the Active Oberon
compiler opens the doors to language interoperability among
compilation-units.

This paper provides an overview of the problems encoun-
tered and solutions adopted in the realization of the Jaos
JVM; it also presents the first preliminary results obtained.

Categories and Subject Descriptors
D.4 [Operating Systems]: Aos, Java; D.4.7 [Operating
Systems]: Organization and Design; D.2.12 [Software En-
gineering]: Interoperability

Keywords
JVM, Aos, Active Objects, Active Oberon, Java, System
Design, System Implementation, Language Interoperability
Support

1. INTRODUCTION
The Java Virtual Machine is one of the key components

to Java success. Java programs can run on any JVM, and
the JVM specification [8] is relatively easy to port to differ-
ent run-time environments. The implementation of a JVM
is closely related to the implementation of an operating sys-
tem, because more or less the same components are required.
To simplify and speed up the implementation of a JVM,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

preexisting software components can be used instead of im-
plementing functionalities from scratch.

This paper presents the Jaos JVM—Java on Active Ob-
ject System—implemented on top of the Aos/Bluebottle
kernel1 [10], a modern kernel and run-time environment first
implemented for the Active Oberon language [6, 11, 12].

The Aos Kernel.The Active Object System Kernel (Aos)
is a lean multiprocessor kernel developed in the spirit of the
ETH Oberon Project. It is the base of the Bluebottle system
and provides a runtime environment for the Active Oberon
language, supporting active objects directly. It allows the
construction of efficient active object-based systems that run
directly on the hardware. Above the kernel layer is a flexi-
ble collection of modules providing generic abstractions for
devices and services, e.g., file systems, user interfaces and
networking.

The Aos kernel is currently implemented for Intel IA32
SMP multi- and single-processor systems and severals com-
puters based on StrongARM-processors.

The Kernel provides a runtime environment for dynami-
cally-loaded compilation-units, support for object-oriented
programs, exception-handling, memory management with
garbage collection, and multi-threading (using the active ob-
ject model). It is an ideal base for strong-typed, imperative
and object-oriented programming languages.

The Jaos JVM.The Aos model and the Java programming
model have many affinities, thus it is very tempting to imple-
ment a JVM on top of it. In particular, most of the run-time
services required to support Java are already available, al-
lowing to implement the JVM with a limited effort. Second
goal of the project is to prove that the Aos Kernel is generic
enough to support languages and systems other than Active
Oberon.

The core of Jaos is implemented using the Active Oberon
language. The Java Libraries are provided by the GNU
Classpath project [4]. The native implementation is kept
to the bare minimum required to bootstrap the VM and to
provide the native parts of the Java Libraries. The rest of
the implementation is provided by the Java Libraries.

From services to data layout, Jaos reuses as much as possi-
ble from the underlying kernel. This allows to use a proven
design, and to reuse much of the kernel services. By us-
ing the same symbol tables as the Active Oberon compiler,

1Aos stands for Active Object System, the programming
model used in the kernel; Bluebottle is the codename of the
current release, which includes the whole Oberon IDE

seamless language interoperability is also achieved. Interop-
erability is only limited by the differencies in the program-
ming models.

The modular design of Aos lets the designer decide which
modules to deploy, depending on the configuration of the
target machine. In fact, Jaos can be configured to run alone
on top of the kernel, in such a way that the result is very close
to a Java native environment. Although being a generic
kernel, Aos is small enough allow us putting a reduced Java
native system on a floppy disc.

Paper Overview.This paper is structured as follows. Sec-
tion 2 presents the main design choices in Jaos; section 3
introduces the implementation details of Jaos, in particular
the model mapping from Java to Aos; section 4 relates the
first preliminary results obtained with Jaos; section 5 indi-
cates our future research directions; and section 6 concludes
the paper by resuming the most important results achieved.

2. JAOS DESIGN
One of Jaos goals is to minimize the development work

by leveraging the existing Aos software and APIs. Reusing
the data-layout and the system components, in particular
the Active Oberon compiler’s symbol tables, creates the pre-
conditions for language interoperability between Oberon and
Java.

Only a few services required by Java are not available
in kernel and had to be implemented in Jaos. The most
important ones are interfaces2 and exception handling, im-
plemented during a 4 months student assignment [7].

The core of the JVM consists of a class loader, a bytecode
compiler, and a linker. An important part of the JVM are
the native methods that anchor the Java libraries to the
underlying run-time environment.

2.1 Reuse-driven design
Jaos reuses the features of the Aos kernel at two distinct

levels. First, it allocates the Java data structures using the
same data-layout used by the kernel; the bytecode compiler
has to enforce that all data manipulations are translated
accordingly. This includes the hidden structures associated
with every object instance, like the type descriptor. All in-
stances with the same type share the same type descriptor,
which contains informations for the type-accurate garbage
collector, the method table, and the type hierarchy (for type
testing). Another implicit convention is the calling conven-
tion.

Second, Jaos uses the kernel API to invoke services like
loading a compilation-unit, creating new types, or allocating
object instances. The kernel itself is designed to be extensi-
ble and system-independent, thus relies on a plugin pattern
for all features that shall be provided by an application or
system using it. This is particularly useful for all operations
triggered by the kernel but implemented outside it, like load-
ing compilations-units, loading metadata information, and
handling exceptions.

2.2 Language Interoperability
Using the same data layout, data structures, and calling

convention is a first step towards language interoperability.

2in fact, the newly introduced Active Oberon interfaces
reuse the Jaos interface’s implemententation

This allows to use compilation-units implemented in another
language in a seamless way, completely avoiding glue code
and routines.

The second important step towards automated language
interoperability is the use of the same symbol tables to rep-
resent the metadata in a common way among al languages.
This way, the data is available in a language-agnostic form,
although using a model which may be closer to one lan-
guage than another. To allow separate compilation with
compilation-units from various languages, each language pro-
cessor installs a metadata loader plugin into the symbol ta-
ble. When the public interface information from an external
module is queried, the symbol table asks each loader to pro-
vide such information.

In fact, this plugin design makes the symbol table inde-
pendent of the persistency format used by the various lan-
guage. Furthermore, each language is free to choose the
persistency format that better suits it. This is a major ad-
vantage, because it allows us to take the Java classfiles as
they are without having to first convert them into another
format.

2.3 VM Core Components
The core components of the VM are the class-loader, the

bytecode compiler, and the linker.
The class-loader internalizes a classfile, inserting the con-

stant pool, the class and its member definitions into the
shared symbol tables. During this step, it maps the Java
types into Active Oberon types; allocation (i.e. assigning
an offset to each field, and an entry in the method table
to each method) is performed automatically by the symbol
table. For each class, the loader checks if a native implemen-
tation exists, in which case it checks the definition’s consis-
tency (the native implementation must at least define the
same members) and includes the additional member defini-
tions present in the native implementation.

The bytecode compiler translates the Java bytecode into
intel IA32 code. In particular, it encodes all data access
instructions (load, store, get, put) and all invoke in-
structions using the kernel’s data-layout and calling conven-
tion. To test different implementations, the compilers are
designed as a plugins. We currently implemented two com-
pilers: first, a pattern-expansion compiler, in which every
bytecode is compiled to a fixed code pattern; second, an op-
timizing compiler using a virtual stack to minimize needless
stack operations as described in [1]. Both compilers compile
a whole classes on-demand. No code is compiled ahead-of-
time.

The linker resolves dependencies between compilation-
units; this includes the dependencies to the native imple-
mentations of methods. Module containing native methods
are dynamically loaded, and jumps to the java method im-
plementation are patched into them; the type descriptor and
global data section3 of the native implementation is used for
by the Java implementation too.

2.4 Java Libraries
Jaos uses the GNU Classpath Java Libraries [4] out-of-

the-box (version 0.5).
All the classes containing native methods must be de-

clared in Active Oberon; the native methods are then given
an implementation in Active Oberon. These methods are

3the static fields of the class are stored there

usually gateways to low-level functionalities provided by the
underlying kernel.

2.5 Kernel Plugins
To react to kernel-triggered events, Jaos installs three plu-

gins in the kernel: a metadata loader, a compilation-unit
loader, and an exception handler.

The metadata and compilation-unit loaders allow the ker-
nel to ask an application to provide metadata, respectively
compiled code, on-demand. This allows separate compila-
tion to import the definitions of units compiled in another
language, and the kernel to load the needed modules when-
ever the user executes a command, or loading one module
requires other modules.

The exception handler plugin is installed per-thread and
invoked whenever an exception happens during the code ex-
ecution.

3. JAOS IMPLEMENTATION
The implementation of Jaos in an exercise in mapping

programming models and information from Java to Aos and
back. Jaos consists of three groups of modules: the VM
core, the Aos plugins, and the libraries’ native implemen-
tations. This section presentes the implementation details
of Jaos, focussing on the programming model mapping, and
the changes made to the kernel to make it system indepen-
dent.

In this section we present the generated in code using
Active Oberon. This is possible, because the kernel uses
the same types as the language. However the code is con-
verted directly to the native machine language, only the
native methods are actually in Active Oberon.

3.1 Jaos Core

Jaos Bytecode Compiler.Jaos has currently two compil-
ers: a pattern expansion compiler, and an optimizing com-
piler.

The optimizing compiler issues all load operations in a
virtual stack [1]. The stack elements can be registers, abso-
lute memory addresses, register-indirect addresses, and con-
stants. Code is emitted only when the operation cannot
be fitted in the virtual stack. This allows to avoid pushing
of elements onto the real stack and use register and Intel’s
complex addressing modes instead as much as possible. This
technique also bears some similitudes to the Oberon’s com-
piler items [9]

Both compilers ensure that the Java bytecode is com-
piled according to the kernel’s data-layout. In particular,
the Java calling-convention must be converted into the Aos
calling-convention, whose main difference lies in the posi-
tion of the self parameter in a virtual invocation4. In the
pattern-expansion compiler, this is achieved by pushing a
copy of this parameter before the invocation, and by remov-
ing the unused original parameter after the call. The opti-
mizing compiler can avoid this copy operation: if no method
parameter has been pushed on the physical stack, the pa-
rameters in the virtual stack can be reordered according to
the calling convention, and only then flushed to the actual
stack.

4in Java it is the first parameter, in Aos the last one

Some bytecodes require information which is not avail-
able to the compiler, or whose computation would require
to generate a too much of code. In this cases, a system-call
to a native routine is emitted instead. Table 1 shows the
system-calls used.

System Call Description

Lock lock an object
Unlock Unlock an object
New Instantiate an object
NewArray Instantiate an array of primitive

types
NewArrayA Instantiate an array of objects
NewMultiArray Instantiate a multidimensional ar-

ray
Throw Throw an exception
InstanceOf Check the dynamic object type
CheckInitialized Perform static class initialization, if

needed
ILookup Lookup interface method table
Trace Trace a method invocation

Table 1: Jaos System-Calls

Java Libraries.The Java Libraries belong to the platform
specification and are by far the biggest part of the soft-
ware required by a JVM. These libraries are provided as
Java classfiles, and are loaded and executed by the JVM
like every other Java class. Classes containing native meth-
ods must be declared in Active Oberon, and an implemen-
tation for each native method must be provided. The Java
Libraries define the whole JVM; the JVM itself relies on
the libraries to perform many operations. For a few op-
erations we had to provide a native implementation, be-
cause the JVM is not completly bootstrapped when they are
needed: such operations are in the classes Object, String,

System, Runtime, Throwable.

Package Classes

java.lang Double, Float, Class,

Object, Math, String,

System, Runtime, Thread,

Throwable

java.lang.reflect Constructor, Method,

Field

java.io File, FileDescriptor,

FileInputStream,

FileOutputStream

Table 2: Classes with an Active Oberon

implementation

The classes with native methods currently implemented
in Active Oberon are shown in table 2.

When available, the Active Oberon implementation over-
rides the Java one even if the Java method is not native.
This is particularly useful when debugging and bootstrap-
ping the VM.

Loading, Compilation, Linking, and Initialization time.
Each Java class is in a state. The states are non-loaded,
loaded, compiled, linked, and initialized. Because classes are
related among each other, one class’ state transition may
trigger transitions in other classes too. Table 3 shows the
static state dependencies among classes. These dependen-
cies are stronger than those required by the JVM Specifica-
tion.

State(c) Precondition

loaded superclass of c is loaded
compiled superclass of c is compiled

interfaces of c are loaded
all classes referenced in c are loaded

initialized superclass of c is initialized

Table 3: Static State Dependencies among Classes

The static dependencies are designed to simplify the JVM.
Having the superclass already loaded allows to perform field
and method allocation while loading one class; requiring all
referenced classes to be loaded simplifies the code generation
because external member access can be encoded using the
allocation information, thus avoid patching the addresses at
a later stage, and reducing the administrative information
kept.

On the down-side, these dependencies can cause classes
to be loaded needlessly. However, only classes—and their
superclasses—actually executed are compiled.

Class static initialization is performed using the technique
presented in Cierniak et al. [3]: the compiler inlines a Check-

Initialized system call before each access to an external
static member. This call checks if a class is already initial-
ized (if not, the static initializer is executed); the system call
is then removed from the caller5.

The compiler emits CheckInitialized only when the ref-
erenced class is in the loaded or compiled state at the time
of compilation. In average, around 70 - 80% of the system
calls can be avoided this way.

3.2 Kernel Plugins
A few changes to the Aos kernel were required to support

Jaos. Common to all of them is to remove direct depen-
dencies to the Oberon System by using multiple installable
plugins. For each service provided outside of the kernel, the
kernel has to define a service interface with the required op-
erations, and provide methods to install and deinstall the
plugins. When multiple plugins are supported, a function
to determine which plugin is to be called must be supplied.

With these modifications the kernel becomes de facto sys-
tem-agnostic and can provide run-time support to multiple
systems at the same time. This is of course needed, as Jaos
is able to interoperate with Active Oberon and both systems
must be able to run on the same kernel at the same time;
both systems can also execute alone.

Module Loader.The kernel module loader has been split
into a shared part, and a plugin for loading the Active
Oberon object-files. The common part defines the loader
plugin interface, and provides two methods to add, respec-
tively remove, the plugins.
5the system call is overwritten with NOP instructions.

TYPE
(** load an object file *)
LoaderProc* = PROCEDURE (

name, fileName: ARRAY OF CHAR;
VAR res: LONGINT;
VAR msg: ARRAY OF CHAR): Module;

PROCEDURE AddLoader*(ext: ARRAY OF CHAR; proc: LoaderProc);
PROCEDURE RemoveLoader*(ext: ARRAY OF CHAR; proc: LoaderProc);

Jaos provides an own loader plugin for loading Java classes
into the system. This plugin forward the requests to the
classfile loader, the compiler, and the linker, and returns
the compiled and linked compilation-unit to the kernel.

This simple modification has interesting consequences: the
kernel is able to load modules persisted in different object-
file formats and becomes de-facto format agnostic.

Symbol Tables and Metadata Loader.Instead of imple-
menting a new symbol table for Jaos, we decided to reuse
the existing Active Oberon compiler’s symbol table.

We removed the dependencies between the symbol table
and the compiler, such that the tables can be shared among
more than one application.

The symbol-table persistency mechanism has been moved
out of the table and wrapped in an installable plugin. This
plugin loads the persisted Active Oberon symbol-files into
the symbol-table. Jaos also provides such a plugin to provide
metadata on request from the Java classfiles.

This change makes the symbol table independent of any
persistency format, and allows to perform separate compi-
lation in a format agnostic fashion. In practice, it doesn’t
matter—and the compiler won’t be able to tell the diffe-
rence—whether the external information comes from an Ac-
tive Oberon symbol-file or from a Java classfile.

Besides the obvious code reuse aspect, this design allows
language interoperability with a compilation-unit granular-
ity. An Active Oberon module can import a Java class:
the symbol table will provide the interface information from
the Java class in a transparent fashion. The common model
used here is the Active Oberon type system. Interoperability
from Active Oberon to Java is possible but limited, because
Java’s type system is only a subset of Active Oberon one:
only types supported by Java can be mapped.

Interface Support.The Aos Kernel provides no support
for interfaces and interface calls. This required to modify
the symbol table implementation to provide interfaces, and
the runtime support for storing the interface method tables.

To avoid changing the type descriptor format, we decided
to implement an global shared repository for all interface
method tables. Class and interface type are used as index to
retrieve the corresponding table from the repository. Inter-
face method tables and (class) method tables have the same
layout, thus the compiler can reuse the same code pattern
to invocation.

PROCEDURE Insert*(class, interface: TypeDescriptor; vtable: VTable);
PROCEDURE Lookup*(class, interface: TypeDescriptor): VTable;

The shared repository is currently implemented with a
hashtable, but the abstract interface allows us to change
the implementation with a more performing one without
breaking the code.

The linker creates an interface method table for each in-
terface implemented by a class and registers it to the shared

hash-table. Interface calls (invokeinterface) extract the
type descriptor from the self-pointer and query the reposi-
tory for the method table registered with this type descriptor
and the interface descriptor. If no method table is found,
the class does not implement the interface.

The interface support is now part of the kernel. With
the run-time and symbol table support available, adding
interfaces to the Active Oberon language required mostly a
parser change.

Exception Handling.The kernel catched all interrupts and
exceptions. Exceptions not handled by the kernel are for-
warded to a user-defined handler. Instead of having one
global handler, the kernel was modified to associate one user-
defined handler with each thread .

This approach implicitly assumes that the whole code ex-
ecuted by one thread uses the same handler, and thus is
implicitly written in the same language. Although not very
flexible, this nevertheless suffices our needs, because the Ac-
tive Oberon language has no exception handling yet, and
only Java handling is used.

We implement zero-overhead exception handling [5]. The
generated code in not instrumented; the compiler substi-
tutes the bytecode-offsets of each Exceptions attribute en-
try with the offsets within the compiled-code; the linker then
registers the absolute code address to the exception handler.
The exception handler keeps a balanced tree of all the reg-
istered entries to make access faster [7].

Whenever an exception happens, the kernel calls the Java
exception handler. The handler searches for an entry match-
ing the exception location. If no entry is found, or the
matched entries do not handle the exception thrown, the
procedure activation frame is removed, the caller’s program
counter taken, and the lookup repeated.

3.3 Type Mapping
This section explains how Java types are mapped to the

kernel types. We use the Active Oberon type names and
concepts for clarity.

Basic Types.All Java basic types can be mapped to an
equivalent Active Oberon type, but char. For experimen-
tal purposes, the symbol table already provides character
types with 8, 16, and 32 bit widths: Jaos maps char to the
corresponding 16-bit char type.

Active Oberon uses ASCII-encoded chars, whereas Java
Unicode-encoded chars. For this reason, interoperating be-
tween compilation-units requires character conversion func-
tions. In fact, migrating the whole kernel and Active Oberon
system to the Unicode charset could be also considered. Ta-
ble 4 shows the mapping of the basic types.

Java Type Oberon Type

byte SHORTINT
short INTEGER
int LONGINT
long HUGEINT

Java Type Oberon Type

boolean BOOLEAN
float REAL
double LONGREAL
char CHAR16

Table 4: Basic Type Mappings

Classes.Java classes define both static and instance mem-
bers, and are at the same time visibility, compilation and
deployment units. No single type in Active Oberon fullfils
all these requirements, thus we have to map Java classes to a
composition of Active Oberon constructs: module and class.

A Java class is mapped to a module having the full class
name (e.g. java.util.Properties) containing a object type
(named Class6). The class’ static members are declared in
the module, whereas the instance members are declared in
the object.

Public and private visibility modifiers are converted to
the equivalent Oberon visibility modifiers7. Members with
protected and package visibility are declared as public in
Oberon. Jaos keeps track of the Java visibility modifiers,
and enforces them according to the Java semantic; an Active
Oberon module would nevertheless be able to access them.

Interfaces.Interfaces are mapped—similar to classes—to
a module containing an interface. The module as code con-
tainer is required because an interface may conterintuively
have a static initializer, whenever the static final fields are
no compile-time constants.

Without this, it would be possible to map interfaces only
to symbol table entries.

Arrays. Java arrays are dynamically allocated and dynam-
ically sized; they have a class semantic (methods defined in
Object can be invoked on an array), but are no compila-
tion-units, and carry no code.

To achieve the same semantic, we declare a class contain-
ing one field, a dynamic array. Because the JVM has only
eight array types8, and because no code is associated to
them, we declare these eight array types once in the JVM,
and map the Java declarations to them instead of redeclar-
ing them everytime.

For Active Oberon, the single declaration of the array
types avoids compatibility problems due to the name-com-
patibility semantic of the Active Oberon types.

3.4 Concurrency Mapping
The Java concurrency model consists of threads, reen-

trant locks, and signals. Active Oberon has active objects
with non-reentrant locks, and arbitrary conditions. The
Java features must be mapped to semantically equivalent
Active Oberon constructs. This mapping is performed in
the java/lang/Object and java/lang/Thread classes na-
tive implementations, because Java concurrency is realized
in the class library.

Threads.In Aos, each object instance can have an associ-
ated thread of execution9.

With the exception of java.lang.Thread, all Java object
are instantiated without thread (i.e. as passive objects). Ac-
cording to the Java semantic, the execution of the thread’s

6we first used the class name, but this caused conflicts with
some classes that declared fields with the same name
7note that in Oberon private members have a module-wide
visibility, thus private instance members can access private
static members and vice-versa, like in Java
8one per built-in type and an array of references
9passive objects are special case: they have no thread. Note
that the life-span of an object instance can be longer than
the associated thread.

code has to be delayed until the start() method is invoked.
The following class shows the native implementation of the
Thread class.

TYPE
Thread* = OBJECT(JavaLangObject)

VAR
state: LONGINT;

...

PROCEDURE Start*;
BEGIN {EXCLUSIVE}

state := running
END Start;

BEGIN {ACTIVE}
BEGIN {EXCLUSIVE}

AWAIT(state = running);
END;
SELF.run; (* overloaded method *)
state := dead

END Thread;

In our active object model, objects are truly self-control-
led. To force each developer in this mindset—and to avoid
the the invariant breaches caused by forcefully freeing all the
locks owned by one thread—the kernel provides no means
to terminate or passivate a thread (object can only termi-
nate themselves). For this reason, we cannot implement
the Thread.suspend(), Thread.resume(), Thread.kill()

methods. This is no huge problem, because those meth-
ods are deprecated, and we never encountered classes using
them.

Locks. The object locking semantic of Active Oberon and
Java is almost the same. Both languages provide atomicity
by making each object instance a monitor and providing
exclusive locks on each instance. The difference lies in lock
reentrancy: Java allows a thread to lock an object multiple
times, whereas Oberon doesn’t.

To implement lock reentrancy, the native implementation
has to keep the count of the times a locks was taken by
one thread. Only one counter is needed, as other threads
a denied of access to the object while it is locked. This
information is associated to the lock itself: Java locks are
instance based and every instance is an subclass of Object,
thus we keep track of the count in that class.

TYPE
(* Native implementation of Java.lang.Object *)

JavaLangObject = OBJECT
VAR

depth: LONGINT; (* Lock Depth *)
...

END JavaLangObject;

PROCEDURE JavaLock(obj : JavaLangObject);
BEGIN (* no synchronization required *)

IF AosActive.LockedByCurrent(obj) THEN
INC(obj.depth)

ELSE
AosActive.Lock(obj);
obj.depth := 1

END
END JavaLock;

PROCEDURE JavaUnlock(obj : JavaLangObject);
BEGIN

DEC(obj.depth);
IF obj.depth = 0 THEN AosActive.Unlock(obj) END

END JavaUnlock;

There is one caveat to this implementation: calling wait()

releases the lock. This is done automatically by our kernel

synchronization primitive (see next section), but the count
is not saved automatically, in case another thread locks the
object before the passivated one. Thus we have to save the
lock count whenever the lock is released (i.e. when wait()

is called).

PROCEDURE wait*(); (* Java.lang.Object.wait() *)
VAR savedCount: LONGINT;
BEGIN

savedCount := SELF.depth;
...
SELF.depth := savedCount

END wait;

Synchronization performed in an Active Oberon objects
(e.g. when reading from a file’s buffer) poses no problem,
because Active Oberon objects can be locked only once, thus
no counter is needed.

Synchronization.Java synchronization uses signals (wait,
notify, and notifyAll), whereas Active Oberon uses arbi-
trary boolean conditions (AWAIT(condition)).

We implement signals using conditions with a ticketing
algorithm [2]: a call to wait takes a numbered ticket, and
awaits for the number to be called; notify calls the next
available ticket, notifyAll calls all the available tickets.

TYPE
(* Java.lang.Object native implementation *)
Object* = OBJECT

VAR
in: LONGINT; (*next ticket to assign*)
out: LONGINT; (*next ticket to service*)

PROCEDURE CheckLock;
BEGIN

IF ~AosActive.LockedByCurret(SELF) THEN
Throw("Java/lang/IllegalMonitorStateException")

END
END CheckLock;

PROCEDURE wait*;
VAR ticket, savedDepth: LONGINT;
BEGIN

(* wait while (out <= ticket < in) *)
CheckLock;
savedDepth := depth;
ticket := in; INC(in);
AWAIT(ticket - out < 0);
depth := savedDepth;

END Wait;

PROCEDURE notify*;
BEGIN

CheckLock;
IF out # in THEN INC(out) END

END Notify;

PROCEDURE notifyAll*;
BEGIN

CheckLock;
out := in

END NotifyAll;

...

END Signal;

Java’s wait can also have a timeout parameter. In this
case, a timer must awake the awaiting thread whenever the
timeout is reached, and the ticket is returned; the implemen-
tation of notify must then take into account the returned
ticket when chosing the next available one. This implemen-
tation is not included here.

3.5 Bootstrapping
Loading a Java class can have a domino effect, and re-

quire to recursively load other classes10. Furthermore, the
JVM itself uses the Java implementations from a few key
classes (Object, String, Thread, Throwable, System!, and
Runtime), which must be preloaded by the JVM. A few ex-
ception classes are also preloaded, because they cannot be
loaded by the exception handler. The JVM initialization
causes the loading of little less than 70 classes.

Thus, even the execution of a simple HelloWorld program
requires the compilation of 75 classes. One third of these
classes are the many stream-kinds and converters involved.

This is mostly due to the design of the Java language, in
which classes cannot be topologically sorted. This problem
is already rooted in java.lang.Object which uses its own
subclasses (e.g. java.lang.String). This makes the in-
cremental development of a JVM a daunting task, because
everything must work and be supported at once (”all or
nothing”).

To mitigate this problem, we instructed the class-loader
to load only one limited set of classes11. We also did over-
ride some methods of the Java Libraries to avoid them from
calling unimplemented features. These temporary native
implementations dump the method’s parameters to prove
their correctness, or provide a simplified native implemen-
tation.

As work progressed, it was possible to reduce the class
black-list and remove the native overrides, thus in fact re-
moving code from Jaos and taking advantage of the existing
Java code.

The method overriding trick is also used when Jaos needs
to execute Java code before the VM is bootstrapped. As an
example, all the strings created in the VM (e.g. the strings
in the constant pool) are instances of java.lang.String,
but when the first classes are loaded, the VM is still not
bootstrapped. Thus, we have to provide a string constructor
in Oberon.

4. RESULTS
The current Jaos implementation consists of a VM core,

the GNU Classpath libraries, and the native method imple-
mentation for part of the libraries. The whole Java VM spec-
ification is implemented; furthermore, Java concurrency, ex-
ception handling, file support, and console output are pro-
vided. The GNU Classpath libraries are used out-of-the-
box, and Jaos depends on their progress.

The main missing features are the native implementation
for network and graphical user interface (AWT and Swing).

Nevertheless, the first results are very promising and Jaos
is already able to execute a few non-trivial Java applica-
tions. These include the SPEC benchmark 201-compress,
202-jess, and 209-db.

4.1 Jaos Size and Deployment
Jaos runs directly on the Bluebottle kernel. Additional

services and applications are either kernel plugins or run
on top of the kernel. This allows to have different Jaos
configurations, depending on the installed components.

10Measured on GNU Classpath 0.5, the transitive closure
(classes referenced directly and indirectly in the constpool)
of java.lang.Object contains 394 classes.

11it returned java.lang.Object for the censured classes

Please note that these are preliminary results: in particu-
lar, the Jaos and Paco projects are still in development and
contain additional debug, trace and experimental code.

Components Count Code Vars Consts

Jaos 25 156386 62396 13384
ZipFS 8 47052 2164 1024
Paco 10 94009 3960 4364
Utilies 4 17483 832 652
File system 7 62370 116 1888
Service support 5 33754 136 1624
Kernel 10 50460 18100 1308

Table 5: The components sizes

The Service Support modules include the Oberon module
loader, the Oberon exception-handler, and the streams; the
File System modules include the file system implementation,
a RAM-disk, and an IDE driver; the Utilites include the
keyboard, mouse, and display12 drivers; Paco part of the
Active Oberon compiler (the symbol tables and part of the
code generation modules13); ZipFS is a file system’s plugin
to mount zip files as a file system (in this case glibj.zip).

Components Count Code Vars Consts
Jaos (on-demand) 9 3710 28 744
HelloWorld.Java 75 111247 176 300
201-Compress 117 196557 528 468

Table 6: Optional components sizes

The previous tables shows the sizes of the modules im-
plementing native Java functions that are loaded only on
demand, and the size of the compiled Java classes used by
two Java applications.

For the above results, it seems to be feasible to put the
whole Jaos including a reduced set of libraries on a single
floppy disc.

4.2 Jaos speed
This sections shows the preliminary results obtained with

Jaos. We did absolutely no profiling to try to understand
and improve where the bottlenecks are. With little effort, it
should be possible to improve these results.

Table 7 presents our results, which are the average of 3
runs on a Dell Latitude 600 machine with a Pentium-III 750
MHz processor and 256 MB of memory.

5. FUTURE WORK
Altough already functional, Jaos can be improved in many

ways. The missing native implementation for the network

12in this case a Permidia2 driver
13these will be removed in a future refactoring phase

Test Time [s]

201 Compress 46.3
202 Jess 50.0
209 DB 127.9

Table 7: Preliminary Benchmark Results

and the graphical user interface is the only real missing fea-
ture. Otherwise, the platform will be useful for understand-
ing performace issues of a Java system. In particular, we still
have to profile the benchmarks and find weaknesses and bot-
tlenecks to optimize in our implementation. We think that
some performance issues may be hidden in the library imple-
mentation, and would like to prove or refute this thesis; in
particular, we suspect java/lang/String—combined with
our mapping—to be sub-optimal.

Another interesting application is to retarget Jaos for the
StrongARM processor, the other processor family supported
by Aos. This requires to write a new JIT-Compiler, whereas
the rest of the system—written in a high-level language—
should not change.

We are still considering if interoperability is an advantage
or a burden. The use of the shared symbol tables makes the
JVM 20% bigger. Only an extensive usage of this feature
can legitimate such costs.

6. CONCLUSIONS
This paper presented our experience with Jaos, a Java VM

build on top of the Aos Kernel. The Aos Kernel provides
an high-level and typed native runtime environment. It sup-
ports an active object programming model (thus classes and
concurrency), and provides many services like garbage col-
lection and dynamic module loading.

We managed to construct a whole JVM minimizing the
implementation and maximizing the reuse of existing com-
ponents and design. The man-power required by the imple-
mentation was modest: it was the authors spare-time pet
project plus a student’s diploma thesis14.

Thanks to the extensive use of the plugin pattern, it was
possible to build a different system on top of Aos. In fact,
the JVM can run as only system on top of the kernel. This
proves that the Aos Kernel is generic enough to successfully
support systems other than Active Oberon.

Besides the implementation simplifications, the high-level
programming model used by the kernel makes the construc-
tion of a JVM (or other similar system) an exercise in pro-
gramming model mapping, but without sacrifying effeciency
and performance because we emit native code.

The use of the same structures and programming conven-
tions, associated with reuse of the Active Oberon symbol
tables, provide a rudimental language interoperability plat-
form.

7. REFERENCES
[1] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh,

V. Parikh, and J. Stichnoth. Fast, Effective Code
Generation in a Just-In-Time Java Compiler. In
Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and
Implementation (PLDI-98), ACM Sigplan Notices,
pages 280–290. ACM Press, 1998.

[2] G. Andrews. Concurrent Programming: Principles and
Practice. Addison-Wesley, 1991.

[3] M. Cierniak, G.-Y. Lueh, and J. Stichnoth. Practicing
JUDO: Java under Dynamic Optimizations. In
Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and

14a 4 month work

Implementation (PLDI-00), ACM Sigplan Notices,
pages 13–26. ACM Press, May 2000.

[4] GNU Classpath. http://www.classpath.org/.

[5] S. Drew, K. Gouph, and J. Ledermann. Implementing
zero overhead exception handling. Technical Report
95-12, Faculty of Information Technology, Queensland
University of Technology, 1995.

[6] J. Gutknecht. Do the Fish Really Need Remote
Control? A Proposal for Self-Active Objects in
Oberon. In Proc. of Joint Modular Languages
Conference (JMLC). LNCS 1024, Linz, Austria, Mar.
1997. Springer Verlag.

[7] R. Laich. A Java Virtual Machine for Aos. Master’s
thesis, Institut für Computersysteme, ETH Zürich,
2000.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. The Java Series. Addison-Wesley, 2nd
edition, 1999.

[9] H. Mössenböck. Compiler Construction - The Art of
Niklaus Wirth. In L. Böszörményi, J. Gutknecht, and
G. Pomberger, editors, The School of Niklaus Wirth,
pages 55–68. dpunkt.verlag/Copublication with
Morgan-Kaufmann, 2000.

[10] P. Muller. The Active Object System – Design and
Multiprocessor Implementation. PhD thesis, Institut
für Computersysteme, ETH Zürich, 2002.

[11] P. Reali. Active Oberon Language Report.
http://www.bluebottle.ethz.ch/languagereport/, Mar.
2002. Bluebottle System Documentation.

[12] P. Reali. Using Oberon’s Active Objects for Language
Interoperability and Compilation. PhD thesis, Institut
für Computersysteme, ETH Zürich, 2003.

