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Abstract. We present a concurrent compiler for Active Oberon built
itself with active objects. We describe the experience made on paralleliz-
ing the Oberon compiler, in particular explaining how concurrency and
synchronization are achieved by using active objects, and showing how
we achieved ensured deadlock freedom. Based on the implementation, we
discuss why we consider active objects beneficial for the implementation
of software frameworks and where their limitations are.

1 Introduction

It is almost a tradition to write a compiler in the language it compiles. There
are mainly two reasons for this: a compiler is usually a program complex enough
to challenge a language and possibly find weaknesses to be removed. The other
reason is that in the long range one wants to use only one programming language
in a system.

In this paper we show the implementation of a compiler for the Active Oberon
language written in Active Oberon. The compiler makes essential use of the con-
currency facilities of language. Since active objects are a new concept in the
language, we want to use them to gain experience and take advantage of the
increased implementation and design potentials they offer. The recent availabil-
ity of symmetric multiprocessor (SMP) machines at affordable prices is also a
motivation to investigate the use of concurrency constructs in the language.

In Section 2 the main features of the language are shortly recapitulated;
section 3 introduces the field of concurrent compilation and the previous projects
that inspired this work; section 4 discusses the implementation details of the
compiler, in particular the concurrent parser and the symbol table, which serves
as a common shared data structure; section 5 discusses a new problem introduced
in the compiler by the parallelism: deadlock; section 7 then draws the conclusions
of this work.

2 Active Objects in Oberon

This section recapitulates the Active Oberon language [7], an extension of the
Oberon language [16, 18]; it is a homogeneous integrated concurrent program-
ming language that embeds concurrency support in Oberon, by making just



minimal additions to the language and creating a unified framework for con-
current, object-oriented programming. This is done by introducing concurrent
activities, protected access and guarded assertions in the language. Figure 1 give
an example of an active object.

TYPE

MovieProjector* = POINTER TO RECORD

frame: ARRAY N OF Frame; in, out: INTEGER; window: Window;

PROCEDURE GetFrame*(): Frame;

VAR f: Frame;

BEGIN {EXCLUSIVE}

PASSIVATE(in # out);

f := frame[out]; out := (out+1) MOD N;

RETURN f

END GetFrame;

PROCEDURE PutFrame*(f: Frame);

BEGIN {EXCLUSIVE}

PASSIVATE((in+1) MOD N # out);

frame[in] := f; in := (in+1) MOD N

END PutFrame;

PROCEDURE & Init(window: Window);

BEGIN

SELF.window := window; in := 0; out := 0

END Init;

BEGIN

LOOP

time := Timer.Time();

DrawFrame(window, GetFrame());

Timer.WaitUntil(time + FrameDelay)

END

END MovieProjector;

Fig. 1. Example of an Active Object

Compared to Oberon, record types have been upgraded in Active Oberon to
have methods (also called type-bound procedures) and an own body. Syntacti-
cally, this is done by generalizing the scope concept and applying it to records as
well. The methods have privileged access to the record fields, while the body (to
be considered itself a method) represents the object’s own activity, started asyn-
chronously at the time of object instantiation. The object’s activity corresponds
to a thread of execution (the two terms will be used here as synonyms).



To protect the objects internal data structure against concurrent access, every
object instance acts as a monitor. Methods using the EXCLUSIVE clause make
use of protection by ensuring mutual exclusion in the sense that at most one
protected method is allowed to be active in an object instance. A module is
considered a singleton object instance, its procedures may also be protected.

Any thread of execution can be synchronized with a system or object state
by using guarded boolean assertions in a PASSIVATE statement; the thread is
preempted until the guarded condition becomes true. Such a thread is said to
be passivated. It is noteworthy that the operating system itself is in charge
of evaluating the conditions and eventually reschedule the passivated threads.
When a thread is passivated in an object, it releases its mutual exclusion on that
object as long as it remains passivated.

Some other minor adjustments in the language have been made to smoothly
integrate the previous changes. First, a symbol named SELF is implicitly defined
in every procedure scope, it refers to the current object the procedure is in.
Second, it is possible to extend a pointer-based record (a structure with only
dynamic instances), but the extending type must also allow only dynamic in-
stances. Third, forward declarations are no longer needed, because they express
only redundant information.

Our current system [10] has some implementation restrictions that had to
be considered during this work: 1) reentrant locks are not allowed; 2) shared
locks are not allowed; 3) global conditions to be passivated on are not allowed;
4) active modules are not allowed. We are conviced that these features should be
removed from the language, because they are either redundant or conceptually
wrong.

3 Building a Concurrent Compiler

3.1 Classical Compiler Architecture

There is a big experience in building compilers and many textbooks explain this
task in detail [15, 17, 1] (just to cite some). Compilation is divided in phases like
lexical analysis, parsing, semantical analysis, data allocation, register allocation,
optimization and code emission that may be grouped into passes. The number of
phases may vary, depending on the language parsed and the quality and expected
complexity of the generated code. The number of passes is a strategic decision
in building the compiler; merging all the phases in only one pass can make the
compiler very fast, but on the other hand not every language can be parsed
in one pass; also many optimizations require a separate pass. In general, more
phases allow for more flexibility, but also increase the program complexity [9,
15, 8, 14].

Many compilers have been developed at ETH under the supervision or inspi-
ration of N. Wirth [17]. All share the common goal of simplicity, compactness,
efficiency and the use of single pass top-down parsing. OP2 [2], currently used
in many ETH-Oberon systems, is an evolution that divides the compiler in a



front-end and a back-end with a shared syntax tree to allow easy re-targeting
and more aggressive code optimizations. We based our work on these previous
implementations.

3.2 Previous Work

The first multiprocessor machines in the 1970 already challenged the compiler
makers to investigate concurrent compilation.

C. Fischer [3] and R. Schell [12] where among the first to investigate the the-
oretical feasibility of concurrent compilation, by seeking for concurrent parsing
techniques. Two approaches are possible: dividing compilation into concurrent
phases that execute in a pipelined way or dividing the source code into pieces
that are compiled concurrently.

While phase pipelining is limited in its speedup, because the compiler can-
not be made faster than the slowest phase, splitting the code in concurrently
compiled pieces can result in a good speedup [6, 19].

The Toronto Modula-2+ compiler project [19] investigated the implemen-
tation of a parallel Modula-2+ compiler on a multiprocessor machine; in that
compiler every scope is compiled concurrently and the symbol table is used to
synchronize the concurrent parsers. Many of the results can be applied to our
compiler on account of the similarities between Active Oberon and Modula-2+.

One obvious problem found in the Toronto compiler is the doesn’t know yet
problem (DKY). It is possible that a visible symbol exists in a scope but has
not been processed by its parser and thus is not visible yet. In this case a parser
requiring it doesn’t know yet whether or not a valid declarations exists in the
incomplete scope.

Seshadri et al. [13] propose two strategies to handle the problem. DKY Avoid-
ance approaches the problem by ensuring that the scopes are complete before
their symbols are used; DKY Handling treats it by inserting fix-ups to be patched
at a later time or by making assumptions on the symbol. They assert that sim-
plest solution is to use DKY Handling in the declaration part of a scope and
DKY Avoidance in the implementation part. We will pursue this strategy in our
compiler: a parser will be passivated until the desired symbol has been processed
by another parser.

4 Implementation of the Compiler

4.1 Parser

The top-down recursive descent paring technology is used. Parsers can be very
easily generated by systematically translating the productions into procedures.

Concurrent parsing is implemented by a generic active parser object whose
activity is in charge of parsing the definition and implementation parts of a
scope, the DeclSeq and StatSeq productions of the language. Figure 2 shows
the generic Active Parser.



TYPE

Parser = POINTER TO RECORD

VAR scope: Scope; scanner: Scanner;

....

BEGIN (*active body*)

DeclSeq;

IF sym = begin THEN scanner.Get(sym); StatSeq END

END Parser;

Fig. 2. The generic Active Parser

For parsing modules, procedures and records we define extensions of the
generic parser each, in charge of initializing the parser depending on the specific
properties of the scope and positioning the scanner at the begin of the declaration
section. Figure 3 shows the declaration of the procedure parser object: it prepares
itself for the procedure parsing, while the rest of the scope is parsed by the
inherited generic parser, which is the same for all the scopes.

TYPE

ProcedureParser = POINTER TO RECORD (Parser)

PROCEDURE & InitProcedure(scope: Scope; scanner: Scanner);

BEGIN SELF.scope := scope; SELF.scanner := ForkScanner(scanner)

END InitProcedure

END ProcedureParser;

Fig. 3. The Module Parser

Every time a record or a procedure is encountered by a running, a new
parser for it is generated and the scope contents are ignored by the running
parser, delegating the parsing to the newly generated parser. Figure 4 shows the
parsing of a procedure. Instead of calling directly DeclSeq and StatSeq a new
parser is allocated.

4.2 Symbol Table

The symbol table uses three type hierarchies: Object, Struct and Scope. Object
models symbols in the table such as variables and procedures; Struct models
structures such as basic types and composed data types, Scope contains a list
of symbols and methods to manipulate it.

The symbol table is shared among all the concurrent parsers. It must be
protected against concurrent access. We want to hide the concurrency details in
the symbol table as much as possible, to minimize the knowledge (and so the
troubles) that the synchronization requires.



PROCEDURE ProcDecl;

VAR parser: ProcedureParser; procscope: ProcedureScope;

BEGIN

NEW(procscope);

CheckToken(Procedure); IdentDef(procscope.name, mark);

FormalParameters; CheckToken(semicolon);

NEW(parser, procscope, scanner);

SkipScope;

END ProcDecl;

Fig. 4. The ProcDecl production implementation

Scopes are used like state machines. There are three relevant scope states:
filling means that the scope is not complete and more symbols may still be added;
checking that all the symbols have been inserted, and are being semantically
checked; complete that the scope is ready to be used. The way scope operations
work, depends on the state a scope is in.

Figure 5 shows the implementation of the Scope type. Every scope is owned
by a parser; the owner is the only parser allowed to change the state of the scope.

Insert appends a symbol to the list. The owner is allowed to insert symbols
only while the scope is in the filling state.

Find is in charge of handling the DKY problem in a way, that hides the
details from the parser. In the filling state only the owner is allowed to access
the scope, because it needs it for completing the definitions; if a symbol cannot
be found in the current scope, a fix-up is created which will be resolved when
the scope is complete: at this point it is still not possible to tell if the symbol is
local to the scope or belongs to a parent scope or is not defined at all. Queries
from other parsers are passivated as long as the scope is not complete.

The given implementation already carries out DKY Handling for declara-
tions and DKY avoidance for implementation. The filling state correspond to
the parsing of the implementations for the current scope: only the current parser
is allowed to search for symbols in the scope; if no symbol is found, a fix-up is
created because the scope doesn’t know whether the symbol will be declared in
the same scope or not; the search doesn’t need to be propagated to the parent
scope (yet) and the fix-up will be patched later (DKY handling). Other parsers,
usually in the child scopes, may have to lookup symbols in the current scope
too; they are preempted until the scope is complete, thus avoiding the handling
of incomplete declarations (DKY avoidance). Note that only parsers in the im-
plementation section are allowed to lookup symbols in parent scopes. A parser
should not perform any semantic check or operations on the symbols during the
filling state, because they may be a fix-up, thus carrying no information.

The Insert and Find procedures do not need access protection but only
synchronization with the scope state, because the design ensures that only one
parser will change the scope, and during that time (state = filling) no other
parser is allowed to access the scope. Only the procedures to change a scope’s



TYPE

Scope* = POINTER TO RECORD

VAR parent: Scope; list: Object; state*: State;

....

PROCEDURE Insert*(p: Object);

BEGIN

ASSERT(CalledByOwner() & (state = filling));

Append(list, p)

END Insert;

PROCEDURE Find*(name: ARRAY OF CHAR): Object;

VAR p: Object;

BEGIN

(* code: DKY Avoidance *)

IF ~CalledByOwner() THEN PASSIVATE(state = complete) END;

p := Lookup(list, name);

(* declarations: DKY Handling *)

IF (p = NIL) & (state = filling) THEN p := <do fix-up> END;

IF (p = NIL) & (parent # NIL) THEN p := parent.Find(name) END;

RETURN p

END Find;

END Scope;

Fig. 5. The Scope type



state need to be protected. This is similar to a simplified readers-writers schema;
once the only writer has terminated the writers are free to access the scope and
no reader is allowed anymore.

Active Oberon removes forward declarations, hence forward references of
symbols must be handled by the compiler. Instead of using a 2-pass parsing
algorithm, we choose to take advantage of the concurrent parsers. Forward dec-
larations are just a special case of DKY problem: they are symbols whose decla-
ration come textually later than their use. As the compiler is already prepared
to handle DKY cases, this is just one restriction less on the parsing, namely that
declarations must come before their use.

4.3 Symbol Checking

The DKY handling for declarations is still not complete: when shall fix-ups be
resolved? Only when the scope is complete, the semantic check of its symbols and
related structures can be done. We show two approaches to solve this problem.

A first approach is to automatically check all the symbols in the scope after
the declarations are completely parsed. A second approach is to do the fixing and
checking on demand, when the symbol is first required. The Find procedure in
the scope can intercept the access to an unchecked symbol and start its checking,
which can trigger the checking of the associated structure, and return only after
the symbol is completely checked.

To ensure the table consistency, access to the data must be restricted during
the check operation. At first sight four lock granularities are possible: the whole
symbol table, the scope, the whole hierarchy of the structure or the structure to
be checked. Since using the first variant does check all the objects in a scope,
it is appropriate to use the scope as lock granularity and forbid access to it
during the whole operation. The implementation of the second variant (check
on request) can get very complex, depending on the granularity chosen: locking
single objects is not enough, since in case of circular structures (with pointers
or ill-declared ones) two parsers may start checking two different parts of the
structure hierarchy and then run into each other’s locks creating a deadlock
situation; locking the whole table is too coarse since only the current scope and
its parents are visible and thus may be used for the check; locking the scope is
exactly what is done in the first variant, with the disadvantage that later the
scope should still be traversed for unchecked symbols1.

Conceptually, the most appropriate lock granularity would be a type hierar-
chy (e.g. a type and its base types). A first problem is that we don’t know a type
hierarchy a priori, because we first have to check the single types of the hierar-
chy; we also don’t have an object modeling a type hierarchy nor it is possible to
model it (especially in the case of ill-defined structures2). Locking would be thus
1 the fact that a symbol is never used doesn’t make its declaration correct
2 Somebody could object that we don’t have to accept ill-defined types; to be able to

detect them, the types must first be checked and thus locked. This is a chicken-egg
problem.



done by locking the single structures, but this is cannot be done as explained
before.

We thus choose the first variant on account of its simplicity compared to the
minimal efficiency improvement of the second variant at the cost of a much more
complicated implementation.

A more subtle problem is caused by the built-in types of Oberon. These types
are not defined as keywords; this allows the programmer to redefine their names
with a new meanings. The consequence is evident: a parser must traverse all
the parent scopes to decide if an INTEGER is the built-in integer type or has
a user defined meaning. Since those types are the most heavily used ones and
Oberon supports nesting of scopes, this can cause an efficiency problem. The
parallel parsing doesn’t help either, since a parser can’t assume that the parent
scopes have already been checked; it may have to wait for their conclusion before
being able to access the build-in types, incurring in an even longer delay. We
thus implemented the built-in type’s names as reserved words and hence do not
allow their redefinition. This doesn’t change the expressiveness of the language,
because type aliasing is always possible. This did not cause any problem, since
no single module in the whole Native Oberon release does redefine a basic type.

5 Deadlock Avoidance

Using concurrent processes can create deadlock situations: the parsers may de-
pend on each other for the parsing and thus for making the symbols in their
scope available. Whenever a circular dependency between parsers exists, dead-
lock cannot be excluded.

As described in the previous sections, every scope goes through three stages:
filling, checking, complete. The only synchronization in the whole compiler is
done in the symbol table, in the Find procedure, thus this is the only place where
a deadlock situation may occur. The following two rules describe how Find (see
Figure 5) works: 1) lookups during the filling and checking phase are allowed
only for the parser owning the scope, other parsers lookups’ are passivated until
the scope reaches the complete state; 2) lookups during the filling phase are local
to the scope, otherwise they may be propagated to the parent scopes.

We assume that every parser will always lookup symbols in the own or in a
parent scope, never in a child one. To make this assumption hold, we aggregate
(conceptually is enough) the interface information of every symbol to the parent
scope where the symbol itself is declared. For procedures this means the formal
parameters, for records all the fields and methods3

We first analyze the case of the parser for the top scope (the one that has
no parent scope): in the filling state, Find always terminates, because a sym-
bol is either found or a fix-up for it is created and returned; in the checking
and complete states the lookup also always terminates: being the owner of the
scope, the thread doesn’t get preempted and being the top scope, the search is
3 In Oberon, record fields and methods are always visible in the whole module



not propagated to a parent scope, thus always terminating. Since Find always
terminates, the parser can process the declarations, check them and eventually
reach the complete state.

In the generic case, a scope has a finite number of parent scopes. In the filling
state, the lookup always terminates as in the top scope case; in the checking and
complete state, when the object is not locally declared, the lookup may have to
be done in the parent scopes. Since the top scope eventually reaches the complete
state, its children will be allowed to search through it, hence allowing them to
eventually reach the complete state themselves. Of course, a scope using only
local symbols will reach the complete state without having to wait for the parent
scope to be completed. It is possible to inductively show that every scope in the
hierarchy will eventually reach the complete state, and thus that the search
operation terminates.

6 Discussion

6.1 Data Structures in the Compiler

Using type extension as proposed in [5, 4] instead of records with many differ-
ent meanings made the compiler not only safer but also simpler to understand
and maintain. Invariants are hard-coded in the data structure, and inconsistent
structures can mostly be detected when created and not when first used. We
thus go one step further in using the language facilities to have invariants auto-
matically tested. Using all the language facilities to ensure program correctness
is very important and saves time with debugging. We can only agree with E.
Raymond’s quote [11] (paraphrasing F. Brooks): ”Smart data structures and
dumb code works a lot better than the other way around”.

On the other hand, having a separate type for every kind of object makes
the source code longer, while the program becomes slightly shorter, because less
invariants must be explicitly checked. It’s noteworthy that the data structures
don’t affect the size of the compiled code and that memory usage is reduced
because the structures are smaller. This also simplifies program documentation,
because the data structures are more expressive and don’t need to be interpreted
in terms of a mode field.

We also planned to protect our structures with information hiding, but finally
we did not. To execute efficiently, a compiler needs all the possible informations
available: hiding information would make the compiler slower, because the same
information would have to be recomputed many times or accessed through pro-
cedure calls. On the other hand we realized that there is no need to access the
information through methods: the compiler usually adds information, but never
changes it, thus the data must be only checked when created. Read-only export
of the data in this case would be enough to ensure that the invariant, once es-
tablished, will never be broken, while giving a fast and efficient access to the
data. Hence we think that a read-only export option is a necessary addition to
the language.



6.2 Concurrency in the Compiler

We used an active object to model a generic concurrent parser. Making pars-
ing parallel was rather simple and required just to encapsulate all the parsing
procedures and the global variables in the parser object, thus making them a
state of every single parser. Our concurrent parser is very similar to the usual
1-pass parser, but forks a new parser when a scope is encountered. The synchro-
nization is almost completely hidden in the symbol table, thus very local and
simple to understand. Nevertheless it makes the handling of the symbol table
more complex. Deadlock freedom becomes a new complex issue in the compiler.

Concurrent parsing elegantly allows to handle forward references in the im-
plementation section by using synchronization instead of a second parsing pass.
It is rather interesting that this is done by removing an artificial sequentializa-
tion, thus in fact by removing a restriction in the code4 and an anomaly in the
scope rules: in Oberon an identifier can have two meanings in the same scope,
depending on the position it is defined:

4 the check that a declaration comes before its use



TYPE BaseDesc = RECORD .... END;
PROCEDURE P;
TYPE
Base1 = POINTER TO BaseDesc;
BaseDesc = ARRAY 5 OF INTEGER;
Base2 = POINTER TO BaseDesc;
....

END P

In the previous piece of code, BaseDesc has two meanings in procedure P.
This contrast with of the Oberon language report: ”No identifier may denote
more than one object within a given scope (i.e. no identifier may be declared
twice in a block” (§4.1). By making the visibility only scope-based, BaseDesc
becomes unequivocal in the scope of P.

6.3 Using Active Objects

In our work, we found the protection of objects amazingly simple to use and
understand. It is very helpful to declare whole procedures as exclusive and it
makes the code readable, because the protected regions can be clearly identified.

Using active objects is simple, as long as the granularity needed to solve the
problem is the same as the granularity of the objects; protection and synchro-
nization become straightforward. It is thus convenient to consider the protection
granularity when modeling the data structures. In the compiler, the semantic
check of types in the symbol table (sec. 4.3) is a good example: granularities en-
suring a correct program are table, scope and type-hierarchy granularity. A finer
granularity has less collision chances and is thus more efficient. In our design
is not possible to lock a type-hierarchy, because we don’t have a data structure
modeling it, we thus use the scope granularity.

The use of guarded assertions (PASSIVATE) is a step toward better abstract
design facilities. A conventional implementation using signals has to disclose its
internal state to other threads in order to allow them to decide if and when
they should send the signal. Of course the other threads have to know that a
signal has to be sent and have to be willing to do the favor. This again is an
invariant enforced solely in the documentation! Especially when using software
frameworks, it is easy to forget these invariants. Using guarded assertions this
potential source of errors is removed, because the system is in charge of restart-
ing passivated threads whenever the condition is established, thus enforcing the
invariant automatically without requiring external intervention or even knowl-
edge. We can thus assert that conditional guarded assertions allow an improved
information hiding and safer synchronization for concurrent programs, and that
the architecture scales up well in software frameworks.

Proving deadlock freedom of a program is still a burden left to the implemen-
tor and the only help that active objects can give, is by making the programs
simpler to understand and thus simpler to reason about. In this project we used
the hierarchical ordering of the threads to prove that the program is structurally
deadlock free.



7 Conclusions

In this paper we reported the experiences made using active objects to implement
a concurrent compiler. A concurrent parsing technique allows us to parse forward
references by using a slightly modified recursive descent parser technology. The
complexity of the synchronization is almost completely hidden in the symbol
table.

With this project we challenged Active Oberon’s usability. Active objects
are a valuable tool that simplifies the implementation of concurrent programs.
Data protection from concurrent access is remarkably simple when the locking
granularity is the same as that of the designed structure; the synchronization
of threads by means of guarded assertions is very elegant and safe. Frameworks
can benefit from it, because it minimizes the needed knowledge of the whole
framework and ensures a safe resumption of passivated threads without user
intervention.

References

1. A. W. Appel. Modern Compiler Implementation In Java, basic techniques. Cam-
bridge University Press, 1997.

2. R. Crelier. OP2: A portable oberon compiler (vergriffen). Technical Report
1990TR-125, Swiss Federal Institute of Technology, Zurich, February, 1990.

3. C. N. Fischer. On parsing Context-Free Languages in Parallel Environments. PhD
thesis, Department of Computer Science, Cornell University, 1975.
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ber 2000. Springer Verlag.

11. Eric S. Raymond. The Cathedral & the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly & Associates, Inc., 1999.

12. R. M. Schell, Jr. Methods for Constructing Parallel Compilers For Use in a Multi-
processor Environment. PhD thesis, University Of Illinois at Urbana-Champaign,
1979.

13. V. Seshadri, S. Weber, D. B. Wortman, C. P. Yu, and I. Small. Semantic analysis
in a concurrent compiler. In Proceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation, pages 233–240, 1988.



14. J. C. Sheperd. Why a two pass front end? SIGPLAN Notices, 26(3):88–94, March
1991.

15. Aho; Sethi; Ullman. Compilers; Principles, Techniques and Tools. Addison-Wesley,
1986.

16. N. Wirth. The programming language oberon. Software Practice and Experience,
18(7):671–690, July 1988.

17. N. Wirth. Compiler Construction. Addison-Wesley, 1996.
18. N. Wirth and M. Reiser. Programming in Oberon - Steps Beyond Pascal and

Modula. Addison-Wesley, first edition, 1992.
19. D. Wortman and M. Junkin. Concurrent compiler for Modula-2+. ACM SIGPLAN

Notices, 27(7):68–81, 1992.


