
Peter Müller

Modular
Specification and Verification
of Object-Oriented Programs

October 8, 2001

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
HongKong Barcelona
Budapest

Foreword

Software systems play an increasingly important role in modern societies.
Smart cards for personal identification, e-banking, software-controlled med-
ical tools, airbags in cars, and autopilots for aircraft control are only some
examples that illustrate how everyday life depends on the well-behavior of
software. Consequently, techniques and methods for the development of high-
quality, dependable software systems are a central research topic in computer
science.

A fundamental approach in this area is to use formal specification
and verification. Specification languages allow one to describe the crucial
properties of software systems in an abstract, mathematically precise, and
implementation-independent way. By formal verification, one can then prove
that an implementation really has the desired, specified properties. Although
this formal methods approach has been a research topic for more than thirty
years, its practical success is still restricted to domains in which develop-
ment costs are of minor importance. Two aspects are crucial to widen the
application area of formal methods:

– Formal specification techniques have to be smoothly integrated into the
software and program development process.

– The techniques have to be applicable to reusable software components.
This way, the quality gain can be exploited for more than one system,
thereby justifying the higher development costs.

Starting from these considerations, Peter Müller has developed new tech-
niques for the formal specification and verification of object-oriented soft-
ware. The specification techniques are declarative and implementation-
independent. They can be used for object-oriented design and programming.
To illustrate the techniques and to make them directly applicable, his book
develops a detailed framework for the specification and verification of classes
and interfaces written in a Java subset.

The main contributions of his work concern the modularity problem. In
this context, modularity means that software modules can be specified and
verified independently and that their specifications and proofs remain valid
under composition. In addition, the specification techniques have to be suf-
ficiently complete to verify a module based on the specifications of the im-

VI Foreword

ported modules. Modularity is of critical importance for reuse and the emerg-
ing paradigm of component-based programming, and yet something that is
by far underdeveloped in the literature.

One of the difficult aspects of modular verification is the so-called frame
problem, that is, the treatment of the modification behavior of methods and
procedures. The frame problem is particularly interesting when software mod-
ules have an encapsulated state the implementation details of which should
not be exposed to the public. Thus, the frame problem is not restricted to
object-oriented programming, but is relevant for classical procedural modules
as well. To handle encapsulation and modularity, state changes have to be
specified in an abstract way, that is, without referring to the hidden vari-
ables. The main technique to do that is to use so-called abstract variables.
However, this approach leads to dependencies between abstract and concrete
variables, which cause a major problem for modular verification.

The developed solution to the frame problem builds on and clearly goes
beyond existing approaches. It supports very general and expressive depen-
dencies which are important to increase the flexibility of frame property spec-
ification. In addition, the higher expressiveness allows one to apply the ap-
proach to class invariants by regarding them as abstract boolean variables.
That simplifies the formal framework, because a special treatment of invari-
ants becomes dispensable. The key to the developed solutions is a new, type-
based technique for alias control. The so-called universe type system enforces
a hierarchical structure in the object store and is a valuable contribution in
its own right.

All presented concepts and techniques are well motivated and precisely
described. In particular, the different aspects of modular programming are
nicely explained so that their implications can be followed into the detailed
formal framework. I can only wish that many readers take the time to dive
into the deep waters of the following chapters. They will be rewarded by
interesting and valuable insights and by the beauty of a coherent formal
framework solving the sketched problems. I even more wish that the work
encourages other researchers to further develop the theory, techniques, and
tools for modular specification and verification.

Hagen, October 2001 Arnd Poetzsch-Heffter

Preface

The paradigm shift from procedural to object-oriented programming pro-
moted modular software development. Especially reuse of prefabricated soft-
ware modules increases the demand for precise specifications and quality
certification, and thus for modular specification and verification techniques.
Such techniques must be capable of handling object-oriented language fea-
tures such as subtyping, inheritance, and dynamic method binding, and have
to support modular development of specifications and proofs. In particular,
they should enable specifications and proofs to be reused along with imple-
mentations.

This book presents modular specification and verification techniques
for the functional behavior, frame properties, and type invariants of OO-
programs. The key idea underlying this work is the formal integration of
state-of-the-art specification and verification techniques with a type system
for alias control.

We present the universe type system that can be used to control aliasing
statically. It combines strong type constraints for readwrite references with
the flexibility of readonly references. This combination guarantees an invari-
ant that enables modular verification while retaining enough flexibility to
handle most common implementation patterns, especially patterns such as
binary methods and iterators that are not supported by related approaches.

The declarative interface specification technique presented in this book
provides pre-post-specifications, abstract fields with explicit dependencies,
modifies-clauses, and type invariants. Functional method behavior can be
covered by pre-post-specifications. Abstract fields are used to map object
structures to values of an abstract domain. The dependencies of an abstract
field on the concrete fields that represent it are explicitly declared. Together
with modifies-clauses, these declarations are used to express frame properties.
Frame properties are particularly difficult to verify in a modular way since
they require one to prove that certain abstractions are not modified by a
method even if these abstractions are declared in other modules. To cope
with this problem, we exploit the invariant guaranteed by the universe type
system to define a novel semantics for modifies-clauses and to restrict the
permissible dependencies of abstract fields in a way that makes modular
verification of frame properties possible. Regarding type invariants as special

VIII Preface

abstract fields allows us to apply the specification and verification technique
for frame properties to invariants.

For verification, we use a Hoare-style programming logic that is capable of
handling OO-features and modularity. In particular, it ensures that only those
properties of a module can be proved that hold in all well-formed contexts
in which the module might be reused. That is, the logic guarantees modular
soundness of our verification technique.

Our techniques are presented for a programming language similar to se-
quential Java, but can be adapted to procedural and other object-oriented
languages as well.

This book is based on my dissertation which was accepted by FernUni-
versität Hagen, Germany, in April 2001. The underlying research was carried
out at FernUniversität Hagen, Germany, Iowa State University, USA, and
Technische Universität München, Germany, over the last five years.

During that time, I have been advised by Prof. Dr. Arnd Poetzsch-Heffter.
His thoroughness and his focus on the essential semantics of the artifacts un-
der consideration guided me during my work on my thesis. I’m especially
grateful for his ample support, his confidence, numerous inspiring discus-
sions, and for always taking my ideas and concerns seriously. Far beyond
his guidance in professional matters, Arnd has substantially influenced my
perspective on life, making the past five years such a valuable experience.

I would like to express my gratitude to Prof. Gary T. Leavens, Ph.D., for
serving on my thesis committee. He raised my interest in the frame problem
and pointed me to promising approaches to its solution. His valuable sugges-
tions and several fruitful discussions had an important impact on my work.
In particular, I would like to thank Gary and his wife Janet for being such
great hosts during my stay at Iowa State University.

For the encouraging working atmosphere in our group as well as for con-
tinuous helpfulness, I am indebted to my team members Monika Lücke and
Jörg Meyer. Jörg played an important role in my work on this book. I’m
thankful for the close collaboration, countless discussions, and Jörg’s great
sense of humor. Moreover, I’d like to thank him and his wife Ilka for their
friendship during the past years.

The contents of this book benefited from numerous discussions and joint
work with my advisor and my fellow team members. To express my apprecia-
tion for this team work, I use the first person plural in the following, although
I am the only author of this book.

Prof. Dr. Jürgen Eickel gave me the opportunity to work in his group at
the Technical University of Munich before I moved to Hagen. I am especially
grateful to him for making my frequent visits to Munich possible by hosting
me as a guest at his chair.

This book benefited from the valuable comments of several proof read-
ers. I highly appreciate the efforts of Marco Avitabile, Marcel Labeth,

Preface IX

Volker Markl, Jörg Meyer, David von Oheimb, Günther Rackl, and Chris-
tian Schiller. Furthermore, I thank those who have directly or indirectly con-
tributed to my work.

Last, but not least, my special thanks go to my girlfriend Annette Boseck
for her understanding and encouragement as well as to my sister Sabine
Müller and my parents Josephine and Claus Müller for their ongoing support.

Frankfurt, September 2001 Peter Müller

Contents

1. Introduction . 1
1.1 Motivation . 2
1.2 Specification and Verification Technique 4
1.3 The Problem. 5

1.3.1 Modular Correctness . 7
1.3.2 The Frame Problem . 8
1.3.3 Modular Verification of Type Invariants 10
1.3.4 The Extended State Problem . 11
1.3.5 Alias Control . 13

1.4 Modularity Aspects of Programs, Specifications, and Proofs . . 16
1.4.1 Modularity of Programs . 17
1.4.2 Modularity of Universal Specifications 21
1.4.3 Modularity of Interface Specifications 22
1.4.4 Modularity of Correctness Proofs 26

1.5 Approach, Outline, and Contributions . 27
1.5.1 Approach . 28
1.5.2 Outline . 31
1.5.3 Contributions . 32

1.6 Related Work . 33
1.6.1 Specification Techniques . 33
1.6.2 Verification and Analysis Techniques 36

2. Mojave and the Universe Type System 39
2.1 Mojave: The Language . 39

2.1.1 The Language Core . 39
2.1.2 Modularity . 45

2.2 Universes: A Type System for Flexible Alias Control 51
2.2.1 The Ownership Model . 52
2.2.2 The Universe Programming Model 54
2.2.3 Programming with Universes . 58
2.2.4 Examples . 60
2.2.5 Formalization of the Universe Type System 66
2.2.6 Discussion . 70

2.3 Related Work . 74

XII Contents

3. The Semantics of Mojave . 77
3.1 Programming Logic . 77

3.1.1 Formal Data and State Model . 77
3.1.2 Axiomatic Semantics . 92
3.1.3 Programming Logic . 97

3.2 Language Properties . 97
3.2.1 Type Safety . 99
3.2.2 Liveness Properties . 108
3.2.3 Properties of Readonly Methods . 109

3.3 Correctness . 110
3.3.1 Correctness of Closed Programs . 110
3.3.2 Correctness of Open Programs: Modular Correctness . . 110
3.3.3 Modular Soundness . 112
3.3.4 Composition of Modular Correct Open Programs 112

3.4 Related Work . 120

4. Specification and Verification of Functional Behavior 123
4.1 Foundations of Interface Specifications . 123
4.2 Specification of Functional Behavior . 125

4.2.1 Abstract Fields . 125
4.2.2 Pre-Post-Specifications . 131

4.3 Verification of Functional Behavior . 135
4.3.1 Verification of Method Bodies . 135
4.3.2 Proofs for Virtual Methods . 136
4.3.3 Example . 137

4.4 Related Work . 139
4.4.1 Specification of Functional Behavior 139
4.4.2 Verification of Functional Behavior 141

5. Modular Specification and Verification of Frame Properties143
5.1 Approach . 144

5.1.1 Meaning of Modifies-Clauses . 145
5.1.2 Explicit Dependencies . 147
5.1.3 Modularity Rules . 148

5.2 Formalization of Explicit Dependencies . 155
5.2.1 Declaration of Dependencies . 156
5.2.2 Axiomatization of the Depends-Relation 156
5.2.3 Consistency with Representation 157
5.2.4 Formalization of the Modularity Rules 159
5.2.5 Axiomatization of the Notdepends-Relation 160
5.2.6 Example . 167
5.2.7 Discussion . 169

5.3 Formalization of Modifies-Clauses . 176
5.4 Verification of Frame Properties . 178

5.4.1 Verification of Method Bodies . 178

Contents XIII

5.4.2 Local Update Property . 180
5.4.3 Accessibility Properties . 181
5.4.4 Modularity Theorem for Frame Properties 183
5.4.5 Example . 184

5.5 Related Work . 188
5.5.1 Leino’s and Nelson’s Work on Dependencies 188
5.5.2 Other Work on the Frame Problem 193

6. Modular Specification and Verification of Type Invariants 195
6.1 Motivation and Approach . 195

6.1.1 Invariant Semantics for Nonmodular Programs 195
6.1.2 Problems for Modular Verification of Invariants 197
6.1.3 Approach . 198

6.2 Specification of Type Invariants . 201
6.2.1 Declaration of Type Invariants . 201
6.2.2 Example . 203
6.2.3 Formal Meaning of Invariants . 204

6.3 Verification of Type Invariants . 204
6.3.1 Verification Methodology . 205
6.3.2 Example . 206

6.4 Discussion . 207
6.4.1 Module Invariants . 207
6.4.2 History Constraints . 208

6.5 Related Work . 209

7. Conclusion . 213
7.1 Summary and Contributions . 213
7.2 The Lopex Project . 217
7.3 Tool Support . 217
7.4 Directions for Future Work . 219

A. Formal Background and Notations . 223
A.1 Formal Background . 223
A.2 Notations . 225

B. Predefined Type Declarations . 227

C. Examples . 229
C.1 Doubly Linked List . 229
C.2 Property Editor . 235

D. Auxiliary Lemmas, Proofs, and Models 237
D.1 Auxiliary Lemmas and Proofs from Chapter 3 237
D.2 Auxiliary Lemmas and Proofs from Chapter 5 243
D.3 Auxiliary Lemmas and Proofs from Chapter 6 261
D.4 A Model for the Axiomatization of the Depends-Relation 266

XIV Contents

Bibliography . 271

List of Figures . 283

Index . 285

1. Introduction

“Life is like a box of chocolates...You never know what you’re gonna get.”
[Forrest Gump as played by Tom Hanks

in the movie Forrest Gump, 1994]

Building reliable computer systems is one of the central goals of computer
science. The failure of Ariane 5’s maiden flight and the Year 2000 Problem
have brought to everybody’s mind to which extent our economic system and
even our lives depend on correctly working software.

To guarantee software quality levels beyond those that can be achieved by
syntax checking, type checking, and testing, mathematical reasoning has been
applied to computer programs. Formal specifications can be used to precisely
describe the desired properties of a program, and verification techniques allow
one to prove that a program meets its specification. Since specifications can
still be flawed in the sense that they do not reflect the developer’s intention,
even verified programs might not behave like they are supposed to. Still,
specifications are an important step towards more reliable software because
they improve development methodology and abstract from implementation
details, which simplifies reasoning about software systems and allows verifiers
to rule out coding errors.

In this book, we investigate modular specification and verification of
object-oriented programs. We focus on programs written in object-oriented
languages since these languages are the state-of-the-art in commercial soft-
ware development. By facilitating modular development, they form the basis
for the component industry many experts expect to emerge. Furthermore,
most procedural languages are essentially subsets of the common object-
oriented languages. Thus, the techniques presented here can be adapted to
this language family.

This introduction is structured as follows: In the next section, we mo-
tivate our work on modular specification and verification of object-oriented
programs and present a typical application scenario for the techniques devel-
oped in this book. Section 1.2 introduces the basic formal specification and
verification technique used in this book. To illustrate the main problems of
modular specification and verification, we present a number of motivating
examples in Section 1.3. In Section 1.4, we systematically analyze modular-

2 1. Introduction

ity aspects of programs, specifications, and correctness proofs. Based on this
analysis, we summarize the technical problems tackled in this book, explain
our approach to their solution, and present the structure of this book as well
as a summary of its main contributions in Section 1.5. Section 1.6 contains
an overview of general approaches to specification, verification, and program
analysis.

1.1 Motivation

Techniques for formal specification and verification have been available for
more than 30 years. Since the early work by Floyd and Hoare, researchers
have invented new techniques and adapted the existing ones to new program-
ming language features such as procedures, exception handling, pointers, and
concurrency. In particular, specification and verification techniques have been
developed that are capable of handling the new features of object-oriented
languages such as subtyping, inheritance, and dynamic method binding. How-
ever, the step from procedural to object-oriented programming was more than
the invention of new language features. It turned out to be a paradigm shift
that affected the whole software life cycle from analysis over design and im-
plementation to maintenance.
Modular Development. For implementation, one of the most prominent ef-
fects of this paradigm shift is that object-oriented languages lead to a break-
through of code reuse. The large number of Java APIs bears witness to this de-
velopment. Accordingly, OO-programs are usually not developed from scratch
in a purely top-down manner like the functional decomposition methodology
in procedural programming. Instead, large parts of OO-programs are imple-
mented by reusing, adapting, and composing prefabricated classes or modules
(often called software components). This form of bottom-up software devel-
opment is called modular or component-based software development.

To be suitable for modular development, specification and verification
techniques have to meet two requirements:

1. They must be capable of handling the language features for modular
object-oriented programming such as module concepts, subtyping, and
inheritance.

2. They must support modular development of specifications and proofs.
For instance, specifications and proofs should be reusable together with
program modules. In particular, correctness proofs for a module should
stay valid when the module is reused. Furthermore, it should be possible
to derive the correctness of composite programs from the correctness of
their constituents.

Whereas many aspects of requirement 1 have already been solved, require-
ment 2 is not met in a satisfying way by existing specification and verifica-
tion techniques. In particular, modular specification and verification of alias

1.1 Motivation 3

properties, the absence of certain side-effects (so-called frame properties), and
invariants bear several open problems. It is the aim of this book to analyze
and illustrate open problems related to both requirements and to present
solutions to the most important ones.

Application Scenario. Although OO-languages provide powerful support for
reuse, truly component-based software development has not become current
practice yet. Instead of plugging together prefabricated components, OO-
programs are typically implemented by writing significant portions of new
code (so-called client code) based on reused classes from general-purpose class
libraries. These libraries provide implementations for basic functionality such
as container classes or GUI frameworks. Usually, libraries and client code are
implemented by different development teams or companies.

Even though publicly-available class libraries such as the Java API are
frequently used, commercial development of libraries is still uncommon. Be-
sides economic reasons, a component industry is hampered by the following
technical problems:

– Clients have to rely on documentation to properly reuse libraries. However,
documentation tends to be imprecise and incomplete. Referring to the li-
brary implementation instead is not appropriate for several reasons: (1) To
protect its intellectual property, a library vendor will usually sell binaries
and won’t give away source code. (2) Source code is not an appropriate
abstraction level to describe library properties. (3) Implementations are
in general subject to changes in future releases of the libraries, whereas
explicitly documented properties are supposed to be stable.

– There is no quality certification for software components available yet.
Therefore, clients have to trust the vendors that libraries meet certain qual-
ity standards and have the properties specified in their documentation. In
particular for business-critical applications such as e-commerce products,
this is extremely unsatisfactory.

In a nutshell, customers have no reliable basis for using class libraries from
third parties: They don’t know what they are going to get when they buy a
library. In this sense, the quote at the top of this chapter characterizes the
status-quo of component-based programming.

Techniques for formal specification and verification of object-oriented soft-
ware modules can help to solve these problems: Formal specifications provide
clients with precise documentations of libraries. They are a basis for contracts
between clients and library vendors and make formal reasoning possible. For-
mal verification allows a component industry to define quality standards and
certify libraries according to these standards.

Reusable libraries do not only lead to a strong demand for specification
and verification techniques. They are also a particularly interesting applica-
tion area for such techniques:

4 1. Introduction

– To be suitable for class libraries, specification and verification techniques
have to be both formal and modular. Formality guarantees the necessary
precision and allows tools to be applied for the retrieval and analysis of
software components as well as to check proofs. Modularity allows one to
reuse specifications and proofs along with library classes.

– Since libraries focus on designated domains and usually provide basic func-
tionality only, most of them have a simple structure, that is, rather flat class
hierarchies and little interaction between different modules (see e.g., the
Java API). This reduces complexity, which makes modular specification
and verification feasible.

– Library classes are frequently reused which justifies the effort of formal
specification and verification economically since bugs in libraries poten-
tially affect thousands of client programs.

To sum up the previous paragraphs, the paradigm shift from procedural
to object-oriented software development promoted modular development of
reusable software components. In particular, class libraries lead to new chal-
lenges for formal specification and verification. Adequate techniques have
to be modular in a sense that they support the OO-language features for
modular programming and that they support modular development of speci-
fications and proofs, especially reuse. We present such modular specification
and verification techniques for object-oriented programs in this book.

1.2 Specification and Verification Technique

In this book, we build as much as possible on well-known languages and tech-
niques, and enhance them to support modularity. For specification, we use
an interface specification technique that is based on the two-tiered approach
developed by the Larch project [GH93]. Specifications consist of two major
parts:

1. A program-independent specification (universal specification1) that pro-
vides the mathematical vocabulary (e.g., definitions of abstract data
types) used to formulate interface specifications. We use multisorted first-
order logic and recursive data types to formalize universal specifications
(see App. A.1).

2. Program-dependent behavioral interface specifications (or interface spec-
ifications for short) that describe properties of implementations in terms
of the underlying universal specification. Interface specifications of OO-
programs describe (1) the behavior of methods and (2) properties of data
representations. We follow the classical way of specifying method behav-
ior by pre- and postconditions. Frame properties of methods are captured

1 sometimes called auxiliary specification [LG86]

1.3 The Problem 5

by modifies-clauses. Properties of data structures are expressed by type
invariants.

The formal meaning of interface specifications is defined by translating them
into triples of a Hoare-style programming logic. To verify a program w.r.t. its
interface specification, these triples have to be proved in the programming
logic.

In combination with our programming logic, two-tiered interface specifi-
cation techniques are well-suited for the verification of OO-programs:

1. The formal framework based on first-order logic provides a clean seman-
tical foundation for specifications and proofs. Pre- and postconditions,
modifies-clauses, and type invariants can be translated into proof obli-
gations in terms of triples of the programming logic. Therefore, interface
specifications have a precise formal meaning.

2. Specifications can be based on a formal data and state model of the
programming language that allows one to specify both low-level imple-
mentation properties and abstract behavior. Thus, the specification tech-
nique is powerful enough to express all relevant program properties such
as functional behavior, side-effects, frame properties, sharing properties,
and invariants.

3. The data and state model enables us to explicitly specify abstraction
of objects and object structures. A strong support for data abstrac-
tion is necessary (a) to handle subtyping; (b) to make implementation-
independent specification of program properties possible, which is partic-
ularly important in the presence of information hiding; (c) to provide an
abstract view to program elements for clients that are in general not inter-
ested in implementation details; (d) to enable the application of standard
verification techniques for programs with complex data representations
[Hoa72]; (e) to establish a connection to formal design specifications. See
[LG86] for a detailed discussion on abstraction and specification in pro-
gram development.

We illustrate these properties along with the discussion of the formal data and
state model (Subsection 3.1.1) and the specification primitives (Chapters 4
to 6).

1.3 The Problem

In this section, we describe the core problems for modular specification and
verification of OO-programs and illustrate them by examples. We sketch our
approaches to these problems and compare them to nonmodular solutions.
Based on a systematic analysis of modularity of programs, specifications, and
proofs, we discuss these problems and our approaches on a more technical
level in Sections 1.4 and 1.5.

6 1. Introduction

As explained in Section 1.1, specification and verification techniques sup-
port modularity if they meet two requirements.

1. They must be capable of handling the language features for modular
object-oriented programming such as subtyping, dynamic binding, and
inheritance.

2. They must support modular development of specifications and proofs.

We consider the specification and verification of functional method behavior,
frame properties, and type invariants. In these areas, the above requirements
entail several problems, the most prominent of which are:

– Modular correctness: Due to dynamic method binding, a method invocation
can lead to the execution of code that is declared outside the module that
contains the invocation. Therefore, in a modular setting, the correctness
of a module relies on properties of the context in which it can be reused.
These properties have to be formally specified and then verified when the
module is reused. Moreover, a precise definition of modular correctness has
to take requirements for contexts into account.

– The frame problem: Frame properties describe which instance variables
and abstractions of objects must not be modified by a method execution.
Sophisticated techniques are necessary to modularly specify and verify the
effects of a method execution on abstractions that are not visible in the
method.

– Modular verification of type invariants: Type invariants lead to proof obli-
gations for at least all public methods of a program. That is, invariants
introduced by program extensions lead to proof obligations for imported
public methods. Since re-verification of imported methods is prevented by
information hiding, invariants have to be restricted such that these proof
obligations can be proved based on the specifications of the imported meth-
ods.

– The extended state problem: Subclasses inherit from their superclasses and
can introduce additional fields, so-called extended state. To be able to refine
the behavior of inherited methods, their specifications of frame properties
must be loose enough to allow subclasses to modify the extended state.

The above problems are inherently related to modular specification and ver-
ification of OO-programs (the second and third problem also occur in proce-
dural programs). They are not due to a certain programming language, spec-
ification, or verification technique, but occur whenever functional method
behavior, frame properties, and type invariants of OO-programs are specified
and verified modularly.

Modular solutions to the frame problem and modular verification of in-
variants require alias control. Since alias control is very important for the
techniques presented in this book, we discuss it here among the more funda-
mental problems:

1.3 The Problem 7

– Alias control: Aliasing occurs when several local or instance variables hold
references to the same object. Alias control is necessary for the modular
verification of frame properties and invariants, but difficult to achieve in
modular programs by means of classical interface specification and verifi-
cation.

In the following subsections, we illustrate each of the above problems by an
example. The examples are written in a Java-like language and use a fictitious
Larch-style specification language. We abstract from technical details where
appropriate. In particular, we are a bit sloppy about the difference between
fields and instances of fields (instance variables). In the following, we assume
that the reader is familiar with two-tiered interface specifications and their
formal verification. If that is not the case, we recommend to continue with
Section 1.4 and follow the references back to this section.

1.3.1 Modular Correctness

The first example illustrates a problem caused by dynamic method binding.

Example 1.3.1.

module COUNTER;
public class Counter {

int val;
public void increment()

ensures val’ = val^ + 1;
{ val++; }

...
}

module CLIENT imports COUNTER;
public class Client {

public static void useCounter(Counter c)
ensures c.val’ = c.val^ + 1;
{ c.increment(); }

}

Class Counter implements a simple counter that can be incremented. The
specification of increment ensures that the value of the counter in the post-
state (denoted by val’) equals the value in the prestate (val^) incremented
by 1 (we do not care about overflow here). Class Client uses Counter. At
first sight, both modules seem to be correct, that is, the methods increment
and useCounter seem to satisfy their specifications. However, this is not
generally true in a modular setting as becomes clear when we add a further
module:

module BADCOUNTER imports CLIENT;
public class BadCounter extends Counter {

public void increment() { val--; }
public void showIt(BadCounter bc) { Client.useCounter(bc); }

}

8 1. Introduction

Class BadCounter extends Counter and overrides the increment-method in
a way that does not satisfy the specification given in Counter. Obviously,
method useCounter does not satisfy its specification if a BadCounter-object
is passed as parameter as in method showIt: In this case, the invocation
of increment is dynamically bound to the implementation given in class
BadCounter that decrements the value of c.val instead of incrementing it.
That is, extending a program by new modules can affect the behavior of
reused methods and, thus, the correctness of reused modules.
Approach. To avoid the unsoundness described above, we require that sub-
type methods behave according to the specifications of corresponding su-
pertype methods. In order to achieve that, our programming logic al-
lows one to prove a property of a dynamically-bound method such as
Counter.increment only if this property holds as well for all methods over-
riding the method, especially for methods declared in future program exten-
sions such as BadCounter.increment. These requirements for program ex-
tensions are made explicit in our programming logic. Our definition of modu-
lar correctness describes precisely the properties a module may assume about
the context it is reused in. According to this definition, modules COUNTER and
CLIENT are modularly correct, but module BADCOUNTER does not meet the re-
quirements imposed by method Counter.increment. That is, the context in
which the other modules are reused is not well-formed.
Nonmodular Solution. In nonmodular settings, all method bodies that might
be executed upon the invocation of a dynamically-bound method are available
for verification. Therefore, the problem described in Example 1.3.1 does not
occur, and a definition of correctness need not take program extensions into
account.

1.3.2 The Frame Problem

Frame properties specify all instance variables and abstractions that may not
be modified by a method execution. They are usually expressed by modifies-
clauses that list the instance variables and abstractions of objects that may
be modified by a method execution. All instance variables and abstractions
that are not listed in the modifies-clause must remain unchanged, even if they
are declared in program extensions and thus not visible in the method.

Example 1.3.2.

module BLIST;
public class BoundedList {

int next;
Element[] elems;

public void append(Element e)
modifies next, elems[next];
{ if (next < elems.length) { elems[next] = e; next++; } }

... }

1.3 The Problem 9

Class BoundedList implements bounded lists based on arrays. The modifies-
clause of append grants the right to modify the next-field, the array elems at
position next, and nothing else. However, append cannot be proved to satisfy
its modifies-clause since program extensions can introduce new abstractions
that might also be affected by an execution of append:

module BSET imports BLIST;
public class BoundedSet {

BoundedList list;
abstract set value = { list.elems[i] | 0 <= i < list.next };

public BoundedSet(BoundedList l)
requires l.next=0; // take an empty list
{ list = l; }

public void insert(Element e)
{ list.append(e); }

...
}

Class BoundedSet uses BoundedList to implement sets. The abstract value
of a BoundedSet-object is formalized by a so-called abstract field value (often
called specification variable). The abstract value of a BoundedSet-object is
the set of all objects stored in the list. The abstract field value is represented
in terms of several concrete fields such as list.next. Obviously, an invocation
of method append such as in insert can modify value by updating these
concrete fields, although its modifies-clause does not grant the right to modify
value.

This example demonstrates that it is not possible to prove that a method
leaves all instance variables and abstractions not listed in its modifies-clause
unchanged if program extensions can introduce arbitrary abstractions since
these abstractions are not available during verification of the method.

Approach. We say that an abstract field such as value depends on a concrete
field if the modification of the concrete field can affect the value of the abstract
field. Our approach to the modular verification of frame properties requires
one to specify the dependencies of abstract fields explicitly as suggested in
[Lei95b]. Appropriate modularity requirements guarantee that all abstract
fields that might be affected by a method execution are visible in the method
and can therefore be reasoned about. According to these rules, value is not
an admissible abstraction. To support implementation patterns like the one
above, we refine the semantics of modifies-clauses to allow the modification
of abstractions in certain cases.

Nonmodular Solution. In nonmodular programs, all concrete and abstract
fields are known. Thus, it is possible to reason about them in order to verify
frame properties. In the example above, value could be listed in append’s
modifies-clause if it was visible in BoundedList.

10 1. Introduction

1.3.3 Modular Verification of Type Invariants

Modular verification of type invariants leads to a problem that is similar to
the one explained in the previous subsection. A public method of a program
must preserve the invariants of all allocated objects even if these invariants
are declared in program extensions. We illustrate this problem by adding an
invariant to class BoundedSet:

public class BoundedSet {
invariant list != null /\ FORALL i,j. 0 <= i < j < list.next:

list.elems[i] != list.elems[j];
...

}

This invariant expresses that the list used to implement the set must not
contain any element more than once. It depends on fields of BoundedList.
Therefore, methods of BoundedList such as append can violate the invari-
ant by modifying the fields it depends on (here, append allows one to add
arbitrary elements to a list, which might violate the above invariant). Such
violations can lead to unsoundness as illustrated in the following example:

module VIOLATOR imports BSET;
public class Violator {

public static void violate() {
BoundedList l = new BoundedList(); // l is empty
BoundedSet s = new BoundedSet(l); // invariant of s holds
l.append(null); // invariant of s holds
l.append(null); // invariant of s violated

}
}

Based on the assumption that the constructors establish the invariant of s
and that append preserves this invariant, one can show that the invariant of
s holds upon termination of method violate, which is obviously not sound.

The example shows that modular verification of invariants is not feasible
if program extensions can introduce arbitrary invariants that depend on fields
of imported classes: Imported methods can violate the invariants via these
fields and thus lead to unsoundness.

Approach. We adapt the techniques for frame properties to the modular ver-
ification of invariants. That is, dependencies of invariants have to be declared
explicitly and are restricted by the same modularity requirements. Theses
requirements support two solutions to the above problem:

1. In general, invariants must not depend on fields declared in imported
modules. Therefore, imported methods cannot violate invariants in-
troduced in program extensions. In our example, the invariant of
BoundedSet does not meet this requirement.

1.3 The Problem 11

2. Since implementations like BoundedSet are common in practice, we pro-
vide an alternative solution: A refined semantics of invariants allows
classes to introduce invariants that depend on fields of imported types, if
(1) the objects of these types are not aliased and (2) the imported meth-
ods are only used in a way that preserves the invariant. This property
has to be proved based on the specifications of the imported methods.
With this solution, BoundedSet’s invariant is admissible. However, the
constructor of BoundedSet has to clone the list parameter in order to
avoid the alias that allows method violate to break the invariant.

Nonmodular Solution. All invariants are known during nonmodular specifica-
tion and verification. Thus, the problem described above can be circumvented
by providing a suitable precondition for method append that states that the
element to be added is not already contained in the list in case that the list
is referenced by a BoundedSet-object:

public void append(Element e)
requires (EXISTS X: type(X)=BoundedSet /\ X.list=this) =>

(FORALL i.0 <= i < next: elems[i] != e);
...

This precondition constrains invocations of append in a way that guarantees
that the method preserves BoundedSet’s invariant.

1.3.4 The Extended State Problem

The next example shows that specification of frame properties in a modular
setting brings up the so-called extended state problem [Lei98, MPH00b] as
illustrated by Example 1.3.3:

Example 1.3.3.
module M;

public class Super {
int state;
public void set(int v)

modifies state;
{ state = v; }

}

module N imports M;
public class Sub extends Super {

int oldState;
public void set(int v)

{ oldState = state;
super.set(v); }

public void undo()
{ state = oldState; }

}

Objects of class Super have an internal state that can be modified by invoca-
tions of set. Super’s subclass Sub provides an undo-operation to restore the
value of state to the value it had before the last invocation of set. Thus, it
stores the most recent value of state in a field oldState and overrides the
set-method. The modifies-clause of Super’s set-method grants the right to
modify the state-field of this and nothing else. This example illustrates two
interesting aspects:

12 1. Introduction

1. The specification of set is strong enough to prove the following property:
All instance variables except s.state are left unchanged by execution of
the invocation s.set(n); where s is a variable of type Super that does
not hold the null-value. This property holds for programs that do not
contain subclasses of Super, but it is not true for the composition of M
and N: The invocation s.set(n); might modify the oldState-field of s
in case that s holds a Sub-object.
To avoid this unsoundness, we have to require that subtype methods be-
have according to the specifications of corresponding supertype methods.
That is, the overriding set-method has to satisfy the modifies-clause of
the overridden method as if it was textually repeated in the overriding
method2. This requirement is not met in the above example: The overrid-
ing set-method modifies the oldState-field without having the explicit
right to do so.

2. If we require Sub’s set-method to behave according to the modifies-clause
of Super’s set-method, it must not modify the oldState-field and can
thus not accomplish the desired behavior. That is, the specification in
the superclass is too strong in this case.

To sum up, inheritance and specialization can lead to additional fields in
subclasses (extended state). Since these fields are in general not known in
superclasses, they cannot occur in the modifies-clauses of superclass meth-
ods. Hence, without further techniques, subclass methods are not allowed to
modify the extended state because they have to fulfill the specifications of
corresponding superclass methods. To support inheritance, these specifica-
tions must be loose enough to allow subclasses to refine implementations and
especially to modify the extended state.

Approach. The state-of-the-art solution to the extended state problem is to
use abstract fields with explicit dependencies as explained in Subsection 1.3.2.
The extended state problem is then solved by the following rule: The right to
modify an abstract instance variable includes the right to modify all instance
variables it depends on. By this semantics, subtypes can gain the right to
modify the extended state by introducing additional dependencies.

Nonmodular Solution. The extended state problem can easily be solved for
nonmodular programs. Since all fields and methods are known in nonmodular
programs, it is possible to include fields of the extended state in the modifies-
clauses of the superclasses. In our example, we could add this.oldState
to the modifies-clause of Super.set, possibly together with a formula that
expresses that this extension does only apply if this is a Sub-object.
2 This requirement ensures behavioral subtyping [LW94], which allows us to handle

dynamically-bound method invocations.

1.3 The Problem 13

1.3.5 Alias Control

In this subsection, we illustrate that uncontrolled aliasing of objects can lead
to unwanted modifications of abstract fields. That is, alias control is necessary
to enable modular verification of frame properties. Although our example
focuses on frame properties, the same problem occurs for type invariants.
Moreover, we show that classical interface specifications based on pre- and
postconditions, modifies-clauses, and invariants are not sufficiently expressive
to specify certain alias properties.
1.3.5.1 Co-Dependencies. We say that a modifies-clause covers a concrete
or abstract instance variable if it mentions the instance variable or an instance
variable that is declared to depend on it. According to the usual semantics of
modifies-clauses, all instance variables that are not covered by the modifies-
clause of a method m have to stay unchanged when m is executed. In the
following, we explain a problem that occurs when modifies-clauses are verified
in a modular setting.

When abstractions depend on instance variables declared in reused mod-
ules, so-called co-dependencies [MPH00b, LN00] can lead to unwanted mod-
ification of abstractions and, thus, to unsoundness. We illustrate this by the
following example3:

Example 1.3.4.

module M;
public class C {

int f;
C(int p) { f = p; }

}

module CM1 imports M;
public class Client1 {

C r1;
abstract bool A1 = (r1.f > 0);
Client1(C p) { r1 = p; }
void m() modifies A1

{ r1.f = 1; }
}

module CM2 imports M;
public class Client2 {

C r2;
abstract bool A2 = (r2.f < 0);
Client2(C p) { r2 = p; }

}

module N imports CM1,CM2;
public class BothClients {

void useBoth() {
C vc = new C(-1);
Client1 cl1 = new Client1(vc); // cl1.A1 = false
Client2 cl2 = new Client2(vc); // cl2.A2 = true
cl1.m(); // cl1.A1 = true, cl2.A2 = false

}
}

3 For simplicity, we omit access protection here. However, using access modes for
fields and methods does not change the general situation.

14 1. Introduction

Two classes Client1 and Client2 declared in different modules contain
abstract fields A1 and A2. During execution of method useBoth of class
BothClients, cl1 and cl2 hold instances of Client1 and Client2, resp.
cl1.A1 yields whether the instance variable f of the C-object referenced by
cl1.r1 is greater than zero. Analogously, cl2.A2 yields true if the instance
variable f of the C-object referenced by cl2.r2 is less than zero. That is,
instances of A1 and A2 depend on instances of a field f declared in an im-
ported class C. In method useBoth, cl1 and cl2 refer to the same C-object
vc. Thus, cl1.A1 and cl2.A2 depend on the same instance of f, that is, are
co-dependent.

In this situation, the method m of Client1 with the permission to modify
A1 might also modify A2 via the shared instance of f4. This side-effect cannot
be detected during the verification of m since A2 is not known in module CM1.
However, such an undetected side-effect makes modular verification unsound:
After the constructor invocations in method useBoth, cl1.A1 yields false and
cl2.A2 yields true. From the modifies-clause of Client1’s m-method, we can
conclude that cl2.A2 still yields true after execution of cl1.m() since cl2.A2
is not covered by m’s modifies-clause and is therefore supposed to be left
unchanged. However, this is not the case in our example because cl2.r2.f
is set to 1 such that cl2.A2 yields false.

This unsoundness becomes even more clear if we look at the definitions of
cl1.A1 and cl2.A2: Since both abstract fields refer to the f-field of the same
C-object in our example, they can never yield true in the same state (the value
held by f cannot be both less and greater than zero). That is, we have proved
a contradiction, or in other words, we have proved that false holds in the
poststate of m! The reason for this unsoundness is that Client1’s m-method
does not satisfy its modifies-clause due to the undetected modification of A2.

It is not feasible to avoid co-dependencies by generally preventing in-
stances of A2 from depending on an instance of f since this would obstruct
reuse in an unbearable way (Client2 would not be able to use C in any
reasonable way). Therefore, such co-dependencies have to be prohibited by
restricting aliasing: If cl1 and cl2 cannot share a common C-object, the
harmful co-dependency described above cannot occur. More generally, ob-
jects of imported types must not be shared among objects of types declared
in different modules [MPH99a, LN00].

1.3.5.2 Dynamic Aliasing. As illustrated in the previous paragraph, mod-
ular verification of frame properties requires restriction of aliasing. It is not
sufficient to prevent object structures from sharing objects via heap-allocated
instance variables (so called static aliases [HLW+92]). Sharing via variables
on the stack (dynamic aliases) leads to serious problems for modular veri-
fication as well. Consider the following alternative implementation of class
Client1:
4 Recall that the right to modify an abstraction includes the right to modify the

instance variables it depends on, in this case r1.f (see Subsection 1.3.4).

1.3 The Problem 15

module CM1 imports M;
public class Client1 {

void m(C par) modifies par.f
{ par.f = 1; }

}

Although objects of Client1 do not contain references to C-objects (no static
aliasing), method m can modify an instance of A2 if this instance depends on
the instance variable f of m’s actual parameter. Like in the first version of
Client1, such modifications are not covered by m’s modifies-clause.

1.3.5.3 Alias Control by Specification and Verification. The above
examples show that modular verification of frame properties requires one
to control both static and dynamic aliasing. However, in a modular setting,
it is not possible to control aliasing by classical interface specifications and
verification.

Static aliasing properties can, in general, be expressed by type invariants
such as the following invariant for class Client2:

invariant FORALL X,f: X.f=this.r2 => X=this /\ f=r2

This invariant expresses that the object referenced by this.r2 is not refer-
enced by any other instance variable X.f. However, such invariants can not
be verified modularly. For instance the constructor of class Client1 might
violate the invariant, which cannot be detected during verification of Client1
since the invariant is not visible in that class (see the problem described in
Paragraph 1.3.3).

Neither classical specification and verification techniques nor restrictions
of interfaces can control dynamic aliases: Although Client2 does not contain
a method that returns a reference to the C-object stored in r2, this does not
guarantee that the object isn’t aliased: Subclasses of Client2 might introduce
such methods5:

module CM3 imports CM2;
public class SubClient2 extends Client2 {

C getReference()
{ return r2; }

void setReference(C p)
{ r2 = p; }

}

Pre-post-specifications and invariants are not sufficiently expressive to
prevent subtypes such as SubClient2 from adding methods such as
getReference that introduce aliases by taking or passing out references to
objects that are supposed not to be aliased. In particular, it is not sufficient
to require that subclasses are behavioral subtypes.
5 In this particular case, r2 could be made private to prevent subclasses from

accessing the field. However, in general it is necessary to make representations
accessible for subclasses to facilitate efficient implementations.

16 1. Introduction

1.3.5.4 Approach and Nonmodular Solution.

Approach. To control static and dynamic aliasing, we complement interface
specifications by a sophisticated type system. Besides naming a type declara-
tion, the types of this type system provide alias information which is used to
control sharing. In the example above, Client2 could use a special type to
express that the C-objects referenced by Client2-objects are not supposed to
be shared. That would prevent subclasses such as SubClient2 from declar-
ing methods that might introduce static or dynamic aliases. The type system
allows one check alias properties statically.

Nonmodular Solution. In nonmodular programs, co-dependencies do not
cause serious problems for verification. Whenever a field such as f in Ex-
ample 1.3.4 is updated, all abstractions that depend on this field are visible.
Thus, their declarations can be used to reason about the effects of the field
update. Therefore, alias control is not crucial for verification in nonmodular
settings. However, it is still an interesting feature to structure programs and
to simplify verification.

Both static and dynamic aliasing can be controlled in nonmodular settings
by specification and verification techniques. Invariants like the one presented
in Paragraph 1.3.5.3 can be used to describe static aliasing; such invariants
can be verified in nonmodular programs. Dynamic aliasing can be controlled
by imposing appropriate restrictions on the parameters and result values
of methods, which can be expressed by pre- and postconditions (possibly
complemented by access modes for fields).

This concludes our discussion of the fundamental problems of modular
specification and verification of OO-programs. In the next section, we present
a systematic analysis of modular specification and verification. Based on this
discussion, we re-visit the above problems on a more technical level and
describe our approach to their solution in more detail in Section 1.5.

1.4 Modularity Aspects of Programs, Specifications, and
Proofs

To develop a precise understanding of modularity of specifications and proofs,
we give an overview of modular program development. Thereby, we explain
four major objectives of the decomposition of programs into modules: Explicit
structure, separate development, information hiding, and reuse. We analyze
the status quo of modularity of universal specifications, interface specifica-
tions, and program proofs w.r.t. these objectives. This analysis improves our
understanding of the problems illustrated in the previous section and ex-
plains which aspects of modularity are already supported in a satisfying way
by state-of-the-art techniques.

1.4 Modularity Aspects of Programs, Specifications, and Proofs 17

1.4.1 Modularity of Programs

Modular program development has been an important research area for al-
most three decades [Ban95, BLO94, Bra92, Bud91, Cla93, Fai85, GP82,
Par72, SMC74, Sny86, Sny87, Szy92]. In summary, this work identifies four
reasons for the decomposition of programs into modules that are explained
in the following.

1.4.1.1 Explicit Structure. Modules are used to decompose large software
systems. Programs usually consist of a large number of program elements
(such as classes, procedures, variables, etc.) The structure of such programs
can be made explicit by grouping those elements that interact with each
other closely into one module. Each module provides one or more interfaces
that document how the elements of that module can be used by clients. Such
interfaces make dependencies among modules explicit: A client module has
to explicitly import a module to use its elements.

According to software engineering practice, the dependencies between
modules (coupling) should be kept as small as possible to reduce complexity.
Implicit dependencies, for instance introduced by undocumented information
sharing, are error-prone [SMC74, GP82].

In good designs and implementations, modules are tailored such that the
elements of each module are very closely associated with each other (high
cohesion). Usually, they cooperate to implement a common abstraction, for
instance an abstract data type [Fai85, Bud91]. The fact that elements of one
module are closely related and therefore usually have access to the same data
has impact on the design of encapsulation techniques (see Paragraph 2.1.2.2).

Many state-of-the-art programming languages provide module concepts
that allow one to structure programs. Compare for instance Ada’s packages
[Ame83], modules in Modula-2 [WGSD89], structures in SML [Pau91], or
modules in Miranda [Hol91]. In languages like C [KR88], modularization is
applied by convention: Modules are associated with files, and interfaces are
expressed by means of header files. In object-oriented languages, classes are
used as units of modularization (see [Szy92] for the differences between mod-
ules and classes). Furthermore, some OO-languages provide additional mod-
ule systems to group cooperating classes (see e.g., packages in Java [GJS96]
and Ada 95 [Bar97]). Most languages provide only a flat structure of modules.
However, some languages support hierarchical modularization (e.g., modules
in Modula-2 and inner classes in Java [Ros97]). We will discuss Java’s package
concept and the interfaces of classes and packages in more detail in Subsec-
tion 2.1.2.

1.4.1.2 Separate Development. Besides the reduction of complexity, one
of the most prominent motivations for modularization is separate develop-
ment of modules. Since modules only interact with each other via explicit
interfaces, modules can be implemented, compiled, and tested independently
[BLO94, Kas90, Wir96].

18 1. Introduction

Separate development is crucial for cost-effective software production:
(1) It enables large numbers of programmers to work in parallel. (2) It reduces
the time spent for compilation and program analysis since only new or mod-
ified modules have to be re-compiled or checked. (3) Separate development
is a prerequisite for reuse.

The support for separate compilation varies. Languages like Ada, Modula-
2, Modula-3, or Java guarantee syntactic and type correctness across module
boundaries (presumed that modules are re-compiled when the interface of an
imported module is changed). C compilers perform type checking local to a
compilation unit, and types are not checked during linking.

1.4.1.3 Information Hiding. Information hiding is a technique for min-
imizing interdependencies among separately-written modules by defining
strict external interfaces [Bud91, Par72, Sny86]. As long as clients of a module
M only rely on M’s interfaces, M can be re-implemented without affecting its
clients as long as its interfaces stay unchanged. In other words, the support
for information hiding can be characterized by the kinds of changes that can
safely be made to the implementation of a module.

Many OO-languages combine information hiding with encapsulation.
Encapsulation is a technique to prevent (parts of) the internal states of
data structures from being accessed without using their interfaces (see
e.g. [Szy98]). Restricting access to data allows modules to control data con-
sistency (e.g., invariants) and prevents confidential information (e.g., pass-
words) from leaking. Encapsulation requires control of reference passing to
prevent data manipulation via aliases. It plays an important role for modular
verification and will be discussed in Section 2.2.

Most existing programming languages support information hiding. Im-
plementors of modules describe the module interfaces by mentioning the ele-
ments that may be used by client modules in designated parts of the module
declarations (such as packages in Ada [Ame83], export-clauses in Modula-2
[WGSD89, WE87], or signatures in SML [MTHM97, Pau91, Ull94]), or by
marking elements with so-called access modes (such as in Java [GJS96], C++
[Str91], or Oberon [RW92]). Compilers guarantee that clients can only access
the exported elements of other modules. Most OO-languages allow one to
specify several interfaces for one module/class. Typically, there are different
interfaces for users (client interface), implementors of subtypes (specialization
interface), and so-called friends. We discuss information hiding techniques for
OO-languages in Paragraph 2.1.2.2.

1.4.1.4 Reuse. Since the program elements of a module interact with each
other closely and usually implement a common abstraction, modules are nat-
ural units of reuse and deployment (see e.g., the discussion of component
software in [Szy98], where components are very similar to modules). Reusing
software comprises three steps (see e.g., [Kru92]): (1) Retrieval and selection
of suitable modules. This is done based on informal or formal module specifi-
cations [MZW97]. (2) Adaption of modules to the particular requirements of

1.4 Modularity Aspects of Programs, Specifications, and Proofs 19

the context in which they will be reused. (3) Composition of various reused
and newly built modules to composite programs. Besides explicit structure,
separate development, and information hiding, which are prerequisites for
reuse, module systems should thus support adaptability and composability of
modules to make them reusable.

Some functional programming languages treat modules as first-class val-
ues. Thus, adaption and composition of modules can be expressed in the pro-
gramming language in a very flexible way. In particular, adaption and compo-
sition can be done at runtime. In contrast, most OO-languages only provide
means to statically adapt and compose modules. The following paragraphs
give an overview of adaption and composition features of OO-languages.

Adaptability. In OO-languages, adaptability is achieved by6

– Genericity (parametric polymorphism): Languages such as Ada 95 [Bar97],
C++ [Str91], Eiffel [Mey92b], Modula-3 [Nel91, Har92], Pizza [OW97], and
Sather [SOM94] provide parametric modules/types that can be instanti-
ated according to the requirements of the reuser.

– Inheritance: Classical OO-languages allow one to specialize inherited code
by adding new variables/methods and by overriding inherited meth-
ods [Mey88, PH00]. More research-oriented OO-languages provide sev-
eral variations of the classical inheritance mechanism. Sather [Omo94]
separates code inheritance from subtyping. Name conflicts can be re-
solved by renaming inherited program elements. Instead of overriding, Beta
[MMPN93, KMMPN83] allows one to specify the parts of a pattern that
can be specialized by subpatterns. CLOS [Kee89] and Jigsaw [Bra92] pro-
vide so-called mixins (or abstract subclasses) to customize the behavior of a
variety of superclasses, usually by introducing code that is executed before
and after methods of superclasses [BC90]. [Pre97] generalizes inheritance
and overriding to the combination of so-called features (which are quite
similar to mixins) and the resolution of conflicts among them. [Ban95] and
[BL91] give an interesting analysis of adaption and composition of mod-
ules. They unbundle different aspects of inheritance by introducing a set
of operators for the adaption and composition of classes/modules (such as
overriding, hiding, or renaming of elements).

Composability. To describe the nature of module composition, we use the
taxonomy introduced for the composition of documents in OpenDoc [FM96]:
Composition is done either by combination or by synthesis of components.
With combination, the different components retain their own characteristics
when composed (e.g., the components of a car are still recognizable in the
resulting product). With synthesis, components are not recognizable after
their composition (such as the ingredients in a loaf of bread).

6 In this book, we do not consider adaption by modification of reused code. See
[RS93] for software verification in such a scenario.

20 1. Introduction

Combination of modules results in a set of modules that interact with each
other. That is, the code for each module occurs only once in the composite.
Consequently, several clients of one module share the same code, which results
in small binaries but can lead to an important problem with aliases: Let’s
assume that modules M1 and M2 both import a third module M. In the
combination of M1 and M2, there is only a single instance of M. Thus, M1

and M2 share the program elements of M. For instance, they refer to the same
global variables and types, which increases coupling. With synthesis, new
and reused implementation parts are merged to a homogeneous composite.
Usually, this means that reused code is duplicated. That avoids the problems
of aliasing, but does on the other hand not permit mutual recursion among
elements of different modules.

In programming languages, import, inclusion, inheritance, and instanti-
ation of generic modules are means of module composition. They relate to
combination and synthesis as follows:

– Import: Import of modules is the classical way of module combination. No
actions are performed besides that the exported elements of the imported
module are made available to the importing module.

– Inclusion: One way to compose modules by synthesis is inclusion, where
the included code is textually copied into the including module (such as
with #include in C [KR88] or \input in LATEX [Lam86]).

– Inheritance: In most OO-languages, inheritance is realized as a form of
combination (see e.g., [Szy98]): Inherited code is not copied to every sub-
class, but resides in the superclass and is shared by subclasses. This be-
comes, for instance, evident in the context of information hiding: Let e be
a program element that is declared in class E and inherited by class D. The
accessibility of e for a client C of D is determined by e’s access mode and
the relation of C to E (i.e., to the declaration class of e), and not by the
relation of C to the inheriting class D. Therefore, the structure of inherited
and new code is still observable after composition.
However, there exist languages in which inheritance is based on synthesis.
For instance in Sather, inherited code is textually copied to the inherit-
ing class, and can thereby be adapted (e.g., by renaming routines). Thus,
inherited code is duplicated and merged with the implementation of the
inheriting class. Its origin is not recognizable in the inheriting class.

– Instantiation: As with inheritance, instantiation of generic modules is often
done by combination: In languages such as Eiffel, Sather, or Pizza (with
homogeneous translation, see [OW97]), all instances of a generic class share
common code. That is, the generic module and its parameters are not
merged to a new piece of code.
Languages such as C++, Ada [Ame83], or Pizza (with heterogeneous trans-
lation) implement genericity as synthesis. Each instantiation of a template
or generic package leads to new code where the generic part and the actual
parameters are merged.

1.4 Modularity Aspects of Programs, Specifications, and Proofs 21

OO-languages provide additional flexibility for class composition by the con-
cept of substitutability [Bra92]: Objects of types that provide at least the
same interface as a type T can be used wherever objects of type T are
expected. Technically, subtyping or matching is used to determine whether
objects of one type can be used in places where objects of another are ex-
pected (see [Boo94] for subtyping, [BPF97] for matching). Both subtyping
and matching guarantee that substitution respects the syntactical constraints
(e.g., well-typedness) of client code. Behavioral subtyping [LW94] in addition
ensures that subtype objects behave according to the behavioral specifica-
tions of supertypes.

Substitutability allows one to express algorithms and data structures in
a general way for all objects that provide a certain interface. This is used
for variable and method declarations as well as for generic modules (con-
strained genericity [Mey86, DGLM95]). Thus, substitutability is one of the
key concepts to make code sufficiently general to be reusable.

In the following subsections, we discuss the relevance of explicit structure,
separate development, information hiding, and reuse for specifications and
program proofs.

1.4.2 Modularity of Universal Specifications

In this subsection, we analyze the state-of-the-art in modular development of
universal specifications w.r.t. the four objectives described in the last subsec-
tion. Due to our focus on two-tiered interface specifications as described in
Section 1.2, we consider languages for logic-based specifications here. How-
ever, the situation is similar for other specification techniques (e.g., model-
based specification languages such as Z or VDM [She95, Jon90]).
1.4.2.1 Explicit Structure. Many specification languages such as
CLEAR, OBJ, KIV, the PVS Language, and the Larch Shared Language LSL
allow specifications to be decomposed into theories [BG77, GH93, GWM+00,
OSR93, Rei95]. Elements of a theory (such as function definitions or ab-
stract data type definitions) can be used in other theories via import. As for
program modules, hierarchical structuring of theories has been studied (see
[WPP+83, GWM+00] and [Wir90, Section 5.4]).
1.4.2.2 Separate Development. Since languages for universal specifica-
tions are very similar to programming languages, the techniques developed
for separate compilation of programs carry over to universal specifications:
Theories can be written, syntax checked, and type checked separately. The-
orems can be proved locally in a theory (and imported theories). Checks
guarantee the validity of proofs across theory boundaries. For instance, PVS
prevents two lemmas from being mutually used in each other’s proof by estab-
lishing an order on lemmas based on the acyclic import relation on theories
[OSR93]. The KIV system provides correctness management based on devel-
opment graphs [RSSB98].

22 1. Introduction

1.4.2.3 Information Hiding. Most specification languages support infor-
mation hiding by hide or export features (e.g., CLEAR, PVS, and Isabelle
[Pau94]).

1.4.2.4 Reuse. Like programming languages with their standard libraries
(such as the Java API [GJS96]), specification languages often come with
prelude theories containing specifications for natural numbers, strings, sets,
lists, etc. For reusing these and other theories, specification languages provide
sophisticated reuse features.

Adaptability is supported by parametric theories [TWW82]. So-called
specification building operators combine ways to adapt and compose theories
(see [Wir90, Sections 6.2–6.6] for an overview). For instance, such operators
allow one to rename parts of theories and to extend theories. Both combi-
nation and synthesis can be found as composition techniques in specification
languages. As in programming languages, subtyping can be used to make
specifications more general (e.g., in PVS and OBJ2). There are specification
languages with object-oriented flavor such as VDM++ [DK92] that provide
inheritance.

To sum up, the modularization techniques for universal specifications de-
veloped so far are sufficient to support modular specification and verification
of OO-programs. In fact, in this book, we will only use a small subset of
the features described above, namely a simple formal language for multi-
sorted first-order logic and recursive data types (see App. A.1) that allows
one to declare sorts, functions, abstract data types, axioms, and lemmas. The-
ories are used to modularize specifications, that is, to group declarations and
definitions. Therefore, we will not work on modularity aspects of universal
specifications in this book.

1.4.3 Modularity of Interface Specifications

In contrast to programs and universal specifications, interface specifications
are in general not self-contained: They depend heavily on both program inter-
faces and abstract specifications. Thus, modularity of interface specification
relies on the modularization techniques for programs and universal specifica-
tions as described above.

1.4.3.1 Explicit Structure. The structure of interface specifications fol-
lows the module structure of the specified program. Interfaces of program
modules are annotated by pre- and postconditions, modifies-clauses, invari-
ants, history constraints7, etc. (see e.g., [GH93, Lea96, Mey92a, MPH97a,
PH97b]). Although some invariants act like global invariants (sometimes
called system invariants), they are usually specified as module/class invariant
of a designated module/class of the program [PH97b].
7 History constraints are used to specify a property of the history of values which

an instance variable may take [LW93, LW94].

1.4 Modularity Aspects of Programs, Specifications, and Proofs 23

Besides their connection to program modules, interface specifications are
based on theories of universal specifications. In some interface specification
languages this connection is stated explicitly, for instance by uses-clauses
in LCL [GH93] and Larch/C++ [Lea96], or by context-clauses in Larch/Ada
[GMP90]. Others use implicit naming conventions (e.g., Anja, the annotation
language of the Jive system [MMPH97]).
1.4.3.2 Separate Development. Interface specifications refer to elements
of both programs (such as variable names) and universal specifications (e.g.,
abstract data types). Thus, syntax and sort checking of interface specifica-
tions are based on information about the program modules and theories that
are referred to in the specification. Due to the modular structure of programs
and specifications, the support for separate syntax and type checking carries
over to interface specifications.

The functional behavior of methods as well as most class invariants and
history constraints of a module M can in general be specified in terms of the
modules used by M and the associated interface and universal specifications.
Thus, these specifications can be developed in a modular way. However, the
situation is different for the specification of frame properties: Although it is
possible to specify the concrete instance variables that might be modified
by a method in a modifies-clause [Lei98], techniques are required to describe
the effects of a method m on abstractions of object structures that are not
available for the specifier of m (due to information hiding or separate devel-
opment of program modules). We will present a solution to this problem in
Chapter 5.
1.4.3.3 Information Hiding. In programs and universal specifications, in-
formation hiding is used to provide clients with a restricted view of a mod-
ule/class or theory. Thus, hidden parts can be modified (e.g., re-implemented)
without affecting clients. This flexibility gets lost if hidden parts are revealed
by interface specifications. Consider for instance the following fragment of a
specification of a Java class:
public class Person {

private int age;
public void makeOneYearOlder()

requires true
ensures age’ = age^ + 1

...
}

If clients have access to the specification of the public method
makeOneYearOlder, they can use the fact that class Person contains a field
age (for instance in correctness proofs), although it is private. Therefore,
the implementation of Person can no longer be modified without affecting
clients.

Although such specifications obviously violate the principle of informa-
tion hiding, most existing interface specification languages neglect this prob-
lem or suggest developers to express behavior without referring to hidden

24 1. Introduction

fields by introducing abstractions, but do not enforce this discipline (see e.g.,
[Lea97, Mey92b, PH97b]). Using abstractions instead of referring to concrete
representations is appropriate in many situations (e.g., for the specification
of frame properties with modifies-clauses [Lei95b, MPH00b]). However, es-
pecially in OO-programs, it is reasonable to provide certain clients (e.g.,
implementors of subclasses) with information about concrete representations
as illustrated in the following example.

Example 1.4.1.

public class Fraction {
protected int num,denom;
...

}

A normal client of a class Fraction only needs to know that the fraction has
to be well-formed whenever it is passed to a method without further details
(say, all operations take and return well-formed fractions). But a developer of
a subclass who adds new operations needs to know the exact well-formedness
conditions (e.g., that the representation as numerator and denominator is
always reduced to lowest terms) in order to respect them.

The example demonstrates that interface specification languages for OO-
languages should provide support for different views on specifications ac-
cording to the access modes of the underlying programming language.

So far, JML [LBR99b, RL00] is the only interface specification language
that provides access/visibility modes for specifications. In Chapter 4, we will
discuss such visibility modes in detail and present a technique that allows us
to statically check whether specifications respect information hiding.

1.4.3.4 Reuse. Behavioral interface specifications are reused in connection
with program interfaces. Therefore, they have to be compatible with the
reuse techniques for programs summarized above. In the following, we discuss
the requirements that interface specifications should meet to support the
adaption and composition techniques of modern OO-languages.

Genericity. To support genericity, interface specifications should (1) be suf-
ficiently general to describe the behavior of all instances of a generic module,
and (2) be able to express semantic constraints on the parameters of generic
modules. For programming languages that support upper type bounds for
module parameters such as Eiffel [Mey92b] or Pizza [OW97], this can be
achieved by requiring that each actual type parameter is a behavioral subtype
of the formal type parameter. If genericity is constrained by other techniques
(such as the where-clauses in Theta [LCD+94]) or not constrained (such as in
C++ [ES90] and Modula-3 [Nel91]), or if modules can also be parameterized
with functions or values (like C++ templates), a specification primitive such
as the where-clauses in Larch/C++ [Lea97] should be provided to specify
suitable module parameters.

1.4 Modularity Aspects of Programs, Specifications, and Proofs 25

Inheritance. Interface specifications can be inherited along with code. In this
case, subclass implementations must fulfill the specifications of their super-
classes. In particular, inherited methods must behave according to their spec-
ifications in superclasses, no matter whether their implementations are inher-
ited or overridden. As shown in [DL96], inheritance of interface specifications
leads to behavioral subtyping. Behavioral subtyping is in turn a prerequisite
for modular verification of OO-programs (see Paragraph 3.3.4.2).

Specifications of interfaces that are reused and specialized via inheritance
and overriding must meet the following requirements:

– To allow subclasses to reuse inherited code effectively, abstract specification
of behavior is in general not sufficient: As illustrated by Example 1.4.1, de-
tailed specifications in terms of concrete data representations are required8.
The need for specifications on a concrete level has in turn effects on infor-
mation hiding in specifications (see above).

– Specifications must be loose enough to allow subclasses to refine imple-
mentations. This can easily be achieved for pre-post-pairs, invariants, and
history constraints. However, for the specification of frame properties, the
extended state problem (see Subsection 1.3.4) has to be solved. We tackle
this problem in Chapter 5.

Subtyping. The concept of subtyping has two important consequences for
interface specification languages:

(1) Abstraction: Supertypes represent common properties of their sub-
types. Therefore, the specification of a type T describes the common behav-
ior of all subtypes of T. Since each subtype can have a completely different
— or even incomplete or missing — implementation, the behavior has to be
specified in an implementation-independent way. Thus, interface specification
languages must provide support for data abstraction (see Chapter 4). This
requirement is met by most declarative state-of-the-art interface specifica-
tion languages [DLNS98, GH93, GMP90, LBR99a, Lea96, Lei95b, MPH97a,
PH97b].

(2) Behavioral Subtyping: Objects of subtypes can be used wherever ob-
jects of a supertype are expected. To enable modular verification, all subtypes
must be behavioral subtypes (see Paragraph 3.3.4.2). However, to be able to
prove that a subtype meets the specifications of its supertypes, these spec-
ifications must be accessible to the verifier, which is not always the case in
the presence of information hiding (see e.g., the discussion on the meaning
of private pre-post-pairs on the JML mailing list [JML]). Therefore, interface
specification languages have to take care that supertype specifications are
either accessible for subtypes or automatically satisfied by subtypes. We will
discuss this issue along with the presentation of our specification technique
in Chapters 4, 5, and 6.
8 Similar to subclasses that usually have direct access to concrete data represen-

tations of their superclasses, and that are thus not forced to manipulate the
internal state via method invocations.

26 1. Introduction

Import and Inclusion. Simple composition by import or inclusion causes
problems for those specification primitives that lead to proof obligations for
methods outside the module that contains the specification, such as class in-
variants and history constraints that have to be preserved by all nonprivate
methods of a program [PH97b, Lea97]. To illustrate this problem, consider
two modules M and N with M importing N. According to the invariant se-
mantics used in [PH97b] and this book, this means that (1) all nonprivate
methods in M have to preserve the invariants in N and (2) all nonprivate
methods in N have to preserve the invariants in M. If the invariants of N
are accessible in M, proof obligation (1) can be shown during verification of
M. However, since the implementation of N is not accessible to the devel-
oper of M (due to information hiding), it cannot be used to prove the second
obligation. Therefore, invariants have to be constrained such that they are
automatically preserved by methods that are not available for re-verification
(see [MPH97b] for such constraints). See Chapter 6 for the modular specifi-
cation and verification of invariants.

In the paragraphs above, we focused on the features that are needed to
make interface specifications suitable for reuse. So far, we have not discussed
whether implementations do still satisfy their specifications when they are
reused together. That is, if the corresponding correctness proofs can be reused
as well. We explain such modularity aspects of proofs in the next subsection.

1.4.4 Modularity of Correctness Proofs

Separate verification of program modules has been an important research
topic for a number of years (see e.g., [GMP90, Lei95b, MPH00b]). In this
subsection, we discuss separate verification and other modularity aspects of
correctness proofs.

1.4.4.1 Explicit Structure. Proofs in Hoare-style programming logics con-
tain references to implementations (the program parts of triples), interface
specifications (the pre- and postconditions), and to universal specifications,
which are the formal context for pre- and postconditions and program-
independent lemmas (introduced e.g., by the rule of consequence). Correct-
ness proofs can be structured according to the modularization of implemen-
tations: Proofs for a module M need only refer to program parts that belong
to M or one of the modules used by M [Hoa69, PHM99]. Therefore, each
proof can be associated with a program module. This program module deter-
mines the relevant interface specifications, which in turn make the references
to theories of universal specifications explicit (see above). Therefore, correct-
ness proofs have a clear structure following the program’s decomposition.

1.4.4.2 Separate Development. Separate development of correctness
proofs (separate verification) means that one can prove that a module M

1.5 Approach, Outline, and Contributions 27

satisfies its specification based on the implementation of M, and the inter-
face specifications, universal specifications, and proofs associated with M and
the modules used by M. This means especially that the proofs for M stay
valid when M is reused by any well-formed client (although the specifica-
tion of M may lead to proof obligations for clients of M to guarantee this
well-formedness). We have illustrated the problems for modular verification
in the context of dynamic method binding, side-effects on objects or object
structures, type invariants, and aliasing together with approaches to their
solution in Section 1.3.
1.4.4.3 Information Hiding. Proofs in our Hoare-style programming logic
directly refer to implementations. However, the correctness proofs of a mod-
ule’s implementation must not be accessible to its clients. Otherwise, hidden
implementations would be exposed. But a client can be provided with the
information that there is a proof for a certain property if all specifications
and program elements (e.g., methods) of that property are accessible to the
client.

In this book, we assume that the existence of certain program proofs can
be expressed by Hoare lemmas [Mey02]. Hoare lemmas are Hoare triples (or
sequents, see Subsection 3.1.2) that are used like lemmas in predicate logic.
A lemma allows the verifier to use a program property without referring to
its proof.
1.4.4.4 Reuse. Obviously, reuse of proofs requires proofs to stay valid when
reused. In other words, a verification technique has to guarantee that proofs
that are carried out in one context stay valid in any well-formed context they
are reused in. This property is called modular soundness. It has to be proved
for a verification technique, for instance by showing that the programming
logic supports modular verification [PHM99] or by arguing about the way
interface specifications are transformed into pre-post-specifications [Lei95b].
We discuss modular soundness in Subsection 3.3.4.

Due to the close connection of implementations and proofs, code reuse is
a prerequisite for reusable proofs. Therefore, a verification technique should
support the standard reuse techniques for implementations such as inheri-
tance, subtyping, etc. (see above).

This concludes our discussion of modularity of programs, specifications,
and proofs. In the next section, we summarize the open problems and our
approach to their solution.

1.5 Approach, Outline, and Contributions

This section serves as an orientation for the reader. It summarizes the techni-
cal problems that are tackled in this book and sketches our approach to their
solution. Moreover, it contains a summary of each chapter and enumerates
the main contributions of this book.

28 1. Introduction

1.5.1 Approach

In the previous sections, we have explained open problems for modular speci-
fication and verification of OO-programs and showed which aspects of modu-
larity are already supported in a satisfying way by state-of-the-art techniques.
To solve the remaining problems (especially the five fundamental problems
described in Section 1.3), we have to develop solutions to the following tech-
nical problems:

– Formal integration: The existing modularization techniques for programs,
universal specifications, interface specifications, and correctness proofs
have to be integrated into a common formal framework.

– Information hiding in interface specifications: We need techniques to de-
note and check access modes for specifications.

– Alias control: We must develop techniques to control both static and dy-
namic aliasing. These techniques have to be strong enough to enable ver-
ification of frame properties and invariants, and flexible enough to handle
most common implementation patterns.

– Verification of frame properties: We have to find suitable restrictions on
the dependencies of abstractions that enable us to verify frame properties
modularly. On the other hand, these restrictions have to be weak enough
to allow us to handle realistic programs.

– Verification of type invariants: Like abstractions, the dependencies of in-
variants have to be restricted such that invariants can be introduced with-
out re-verification of imported code.

In this subsection, we describe our approach to the solution of these problems.

Formal Integration. We build on the formal integration of specification and
verification of OO-programs presented in [PH97b]: Interface specifications
and proofs are based on a formal data and state model of the programming
language, which is part of the universal specification. Poetzsch-Heffter showed
how this model can be used, for instance, to make data abstraction explicit
or to express reachability and sharing properties. We enhance the data and
state model by formalizations of

– the module structure of programs, which is for example necessary to give
a formal definition of modular correctness;

– the universe type system (see below); the type information with the asso-
ciated alias properties is for instance necessary to prove well-formedness of
specifications;

– dependencies of abstractions and invariants; this formalization is used to
define the formal meaning of modifies-clauses and for verification of frame
properties and type invariants.

1.5 Approach, Outline, and Contributions 29

Information Hiding in Specifications. Most OO-languages provide several in-
terfaces for a module, for instance a client interface for normal users and a
specialization interface for implementors of subclasses. Each interface con-
sists of a syntactic description, a behavioral specification, and the underlying
universal specifications. To support information hiding, the behavioral and
universal specifications associated with an interface must not reveal informa-
tion about implementation parts that do not belong to this interface.

Universal Specifications. To be able to use program properties such as
type information in specifications and proofs, we formalize various aspects
of implementations in program-dependent theories of the universal specifica-
tion. These theories can be automatically generated by a verification system
and contain for instance the names, types, and access modes of all fields
of a program. Information hiding is achieved by decomposing the program-
dependent universal specifications according to the modules of a program and
their interfaces: We generate separate theories for each module/class and each
of its interfaces. Therefore, different clients of a module can be provided with
different theories.

Interface Specifications. Each syntactic interface of a module is associated
with a behavioral interface specification. Following Java, we use access modes
to determine the interface to which a part of a behavioral specification (e.g.,
a pre-post-pair) belongs. Thus, we can for instance provide a public method
with several specifications: An abstract one for the client interface and a
concrete one for the specialization interface.

Each behavioral interface specification is associated with the correspond-
ing program-dependent theory of the universal specification. By requiring
that all variables, functions, etc. mentioned in an interface specification must
be declared in the underlying theory, we can enforce information hiding: For
instance, a precondition of the client interface cannot refer to a field name
of the specialization interface since this name is not declared in the universal
specification generated for the client interface.

Alias Control. Since dynamic aliasing cannot be adequately restricted by
means of classical interface specification and verification techniques, we use
a type system to control aliasing. This type system enforces a hierarchical
partitioning of the object store and controls references between the partitions.

The classes and interfaces of a program define a set of types together
with a subtype relation. We call this set of types the standard type universe
of the program. The basic idea of the universe type system is to use multi-
ple “copies” of the standard universe (one could imagine copying the whole
program text and adding a suitable postfix to the class names). Such a copy
is called a universe. In each universe, there is a type for every class/interface
of a program. But, although structurally identical, the types in different uni-
verses are considered to be distinct. Each object X is created for a type of a
given universe U . That is, each object belongs to exactly one universe.

30 1. Introduction

Since different types of one class are disjoint, references of one type cannot
be assigned to variables of another, which allows us to control sharing. For
instance, in Example 1.3.4, Client1 and Client2 could use different types
of class C (i.e., different universes) to prevent aliasing of their C-objects and
thus co-dependencies.

In addition to the standard universe, we assume a universe for every object
(a so-called object universe) and a universe for every copy of a type (type
universe) of a program’s execution. This implies a hierarchical structuring of
universes. The standard universe is the root of the universe hierarchy. Each
type of the standard universe and each object that belongs to the standard
universe has its own universe. The types and objects in these child universes
are in turn associated with universes and so forth. We call the children,
grandchildren, etc. of a universe U descendants of U . If V is a descendant of
U , we call U an ancestor of V .

Besides type and object universes, the universe type system provides read-
only methods and readonly types. Readonly methods are statically checked to
be side-effect-free: They must not perform object creation, field updates,
or invocations of readwrite (i.e., ordinary) methods. References of readonly
types cannot be used to manipulate the referenced object structure: Neither
field updates nor invocation of readwrite methods is allowed on readonly ref-
erences. Therefore, readonly types can be used to grant restricted access to
encapsulated representations.

Verification of Frame Properties. We specify frame properties by modifies-
clauses. Information hiding and the extended state problem are handled by
abstract fields with explicit dependencies. A dependency is called static if de-
pendent and dependee belong to the same object in all execution states, and
dynamic otherwise [LN00]. By incorporating dependencies into our formal
framework, we achieve a uniform treatment of static and dynamic depen-
dencies. This unification simplifies the semantics of modifies-clauses and the
modularity requirements for dependencies. Besides that, our formal frame-
work facilitates a semantic treatment of dependencies which is more accu-
rate and more expressive than the rather syntactic treatment in existing
approaches.

Example 1.3.4 illustrates that in a näıve approach clients of a module M
must not introduce abstractions that depend on instance variables declared
in M since this could allow methods of M to modify abstractions that are not
covered by their modifies-clauses. To allow for such patterns, we exploit the
hierarchic structure of universes to weaken the meaning of modifies-clauses.
This refined semantics allows a client of module M to introduce an abstraction
X.f that depends on an instance variable Y.g declared in M if the universe
to which Y belongs is a descendant of the universe to which X belongs.
In connection with suitable restrictions on dependencies, this semantics is
still strong enough for modular verification. The restrictions are essentially
generalizations of the visibility requirement and the top-down requirement of

1.5 Approach, Outline, and Contributions 31

[LN00]. We exploit the alias control of the universe type system to generalize
these requirements for dynamic dependencies. Our constraints are sufficiently
weak to be applicable to most implementations. On the other hand, they make
modular verification possible; we proved modular soundness of our technique
(see Section 5.2).

Verification of Type Invariants. For the specification and verification of type
invariants, we apply the techniques developed for frame properties: We re-
gard type invariants as boolean abstractions that (1) must yield true in the
poststate of an execution of a nonprivate method if the object of the abstrac-
tion has not been alive in the corresponding prestate (i.e., the object was
created during this execution), and (2) must not occur in modifies-clauses
of nonprivate methods. These two requirements guarantee that a nonprivate
method that is invoked on an object in universe U establishes/preserves the
invariants of all objects in U and U ’s descendants (provided that the method
respects its modifies-clause). In Chapter 6, we show that this semantics is
strong enough for verification.

1.5.2 Outline

The rest of this book is structured into five main chapters, a conclusion, and
appendices.

Chapter 2 introduces Mojave, the programming language that is used in
this book. We describe Mojave’s universe type system which allows one to
express and statically check alias properties and the encapsulation of whole
object structures. The chapter concludes with a discussion of related work
on aliasing analysis and control.

A Hoare-style programming logic for Mojave is presented in Chapter 3.
With this programming logic, we prove interesting language properties of
Mojave such as type safety. The definition of modular correctness of OO-
programs and a discussion of modular soundness of module composition pre-
pare the presentation of our verification technique in the following chapters.
Finally, the chapter summarizes related work on programming logics.

In Chapters 4 to 6, we present our specification and verification technique.
Chapter 4 explains how information hiding can be preserved by interface
specifications. Furthermore, it introduces abstract fields to express data ab-
straction and pre-post-specifications to describe functional method behavior.
Chapter 4 concludes with an overview of related work.

Chapter 5 addresses modular specification and verification of frame prop-
erties. It contains the most important contributions of this book. In this
chapter, we explain the role of explicit dependencies of abstract fields and
the modularity rules that are necessary to make modular verification possi-
ble. Based on explicit dependencies and the hierarchic programming model
of the universe type system, we define a novel semantics of modifies-clauses.
Furthermore, we formalize and prove a modularity theorem that allows one

32 1. Introduction

to prove frame properties modularly. Besides other work on frame properties,
the related work section contains a detailed comparison of our work to the
approach taken by Leino and Nelson.

Chapter 6 shows that type invariants can be regarded as special abstract
fields, which allows us to apply the techniques developed for the specification
and verification of frame properties to type invariants. In particular, we can
adapt ideas from the semantics of modifies-clauses to define an invariant
semantics that is suitable for modular verification. The focus of the related
work section is on invariant semantics.

Chapter 7 provides a summary of this book, sketches how the presented
techniques can be implemented in our verification tool, and discusses several
directions for future research.

Finally, the appendices present the formal background of our techniques
and contain examples, auxiliary lemmas, and proofs from the main chapters.

1.5.3 Contributions

This book is mainly written for researchers in the area of specification and
verification as well as in the area of object-oriented programming. For this
audience, the main contribution of this book is solutions to four of the five
fundamental problems described in Section 1.3 (the extended state problem
has already been solved [Lei98]; we adapt these solutions).

To develop these solutions, we build as much as possible on well-known
languages and techniques, and enhance them to support modularity. On a
more technical level, we improve the state of the art in modular specification
and verification by the following contributions:

1. a systematic analysis of modularity aspects of programs, specifications,
and proofs;

2. a programming model and type system for flexible alias and dependency
control;

3. a precise formal definition of modular correctness of programs and mod-
ules;

4. a uniform treatment of static and dynamic dependencies;
5. a novel semantics of modifies-clauses and invariants based on the hierar-

chic programming model of the universe type system;
6. a modular sound verification technique, especially for frame properties

and invariants.

Besides these contributions for the main audience, there are several topics in
this book that are interesting for designers of programming and specification
languages, for developers of programming environments that support specifi-
cation and verification as well as for programmers. We summarize the results
for these groups in the conclusions.

1.6 Related Work 33

1.6 Related Work

In this section, we discuss general approaches to specification, verification,
and program analysis. Related work on the specific contributions of this book
is discussed along with the presentation of our techniques in Chapters 2 to 6.

1.6.1 Specification Techniques

Specification techniques for object-oriented software have been investigated
w.r.t. different development and abstraction levels ranging from requirement
and design specification languages to executable assertions extending OO-
programming languages.

1.6.1.1 Design Specifications. Design frameworks concentrate on design
specifications and their refinement [Bac88, LH92]. Like in our approach, they
usually apply declarative techniques to specify program properties. Design
specifications are related to the universal specifications of two-tiered inter-
face specifications which are also used to specify abstract models of software
systems. In fact, most design specification languages could be used to express
such specifications. However, design frameworks usually have a very abstract
view of program semantics. In particular, they often neglect sharing, although
it is essential in practice. Therefore, design specifications are in general not
suitable for program verification since a formal connection between imple-
mentations and abstract specifications is missing. To avoid this problem, our
universal specifications contain a formalization of the data and state model of
our programming language that can be used to specify properties of concrete
implementations.

There are numerous algebraic specifications languages such as CLEAR
[BG77], OBJ [GWM+00], OBJ2 [FGJM85], ASL [Wir82, ST88], and LSL
[GH93] and languages for higher-order logic that allow one to express alge-
braic specifications, for instance the PVS Language [OSR93] and the Isabelle
language [Pau94]. All of these languages can be used to specify abstract de-
signs of software systems. The reader is referred to [Wir90] for a discussion
of this class of specification languages.

Among design specification languages, Z and VDM [She95, Jon90], and
their object-oriented extensions Object-Z [CDD+89] and VDM++ [DK92]
are the most widely used. In contrast to our logic-based universal specifica-
tions, these languages are model-based.

FOOPS [RS92] is an OO-specification language with an executable subset
that is based on OBJ [GWM+00]. FOOPS uses abstract data types as unify-
ing concept for the functional and object-oriented paradigm. The semantics
is based on algebra and category theory. In contrast to our work, FOOPS
is tailored towards top-down software development by refinement [BG94].
FOOPS provides a module system with parameterization, information hid-
ing, and powerful composition techniques.

34 1. Introduction

1.6.1.2 Interface Specifications. Interface specification languages (ISLs)
are used to describe program behavior by annotations. Most languages pro-
vide invariants to express well-formedness criteria of object structures, pre-
post-pairs to specify method behavior, and modifies-clauses to denote frame
properties (see [LB99] for a discussion of additional specification primitives).
ISLs can be classified in operational and declarative languages. Operational
ISLs use boolean expressions of the underlying programming language in an-
notations. In contrast, annotations in declarative ISLs are based on a declar-
ative specification framework (see above).

Operational Interface Specification Languages. Since operational ISLs are
based on expressions of a programming language, they are easier to learn
and simpler to use than declarative ISLs. Furthermore, operational inter-
face specifications can in general be evaluated during program execution and
provide therefore excellent support for testing and debugging. However, for
the purpose of formal verification, operational interface specifications have
several severe drawbacks:

– Operational ISLs often lack a clean semantics. Since expressions of the
underlying programming language are used for annotations (in particular,
methods can be invoked in interface specifications), it is possible that an-
notations do not terminate or that they have side-effects on the execution
state. The meaning of such ill-formed specifications is unclear.

– They do not allow one to use functions and abstract data types that are
defined in programming language-independent specification frameworks.
Therefore, it is not possible to reason about abstractions of data structures
in a purely declarative style, which makes verification more complex.

– Operational ISLs are not sufficiently expressive for verification. They do
not provide free variables or quantification and their support for handling
(recursive) object structures is in general weak: Most operational ISLs do
not provide support for the specification of sharing or frame properties.

Meyer worked on software engineering aspects of interface specifications
[Mey92a]. He incorporated an operational annotation mechanism into Eif-
fel [Mey92b] that is also used in Sather [Omo94]. Both ISLs suffer from the
above shortcomings. [Mül95] presents an alternative ISL for Sather that stat-
ically checks that specifications are side-effect-free.

Among the numerous operational ISLs for Java (see e.g., JaWa [FM98]
or iContract [Kra98]), JISL [MMPH99] is interesting since it overcomes some
of the drawbacks of operational ISLs: It provides bounded quantification, an
abstraction methodology based on the idea of observability in abstract data
type theory (side-effect-free observer methods are used to inspect the internal
state of objects without modifying it), and support for specifications of frame
properties that can be checked at runtime. However, although these features
increase the expressiveness of operational ISLs, they are still not sufficient
for formal verification.

1.6 Related Work 35

The Java Modeling Language JML [LBR99a, LBR99b] tries to bridge the
gap between operational and declarative interface specification languages to
combine the advantages of both. To improve expressiveness, JML enriches the
expressions of Java by a set of operators that allow one to express/describe
quantification, normal and abrupt termination of methods, object creation,
and reachability of objects. As in our approach, frame properties are speci-
fied by modifies-clauses and abstract fields with explicit dependencies. JML
imitates the two-tiered approach of declarative interface specifications by pro-
viding so-called pure types. Pure types are Java types that serve as abstract
models for implementations and play therefore the role of abstract data types
in declarative specifications. Methods of pure types are supposed not to have
observable side-effects on program execution. The relation between concrete
implementations and their abstract models is explicitly specified. The defini-
tion of a formal semantics for JML is still in progress [BPJ00]. So far, it is
not clear how non-terminating specifications can be handled in Hoare-style
programming logics, and whether JML’s abstraction technique is appropriate
for formal verification.

Declarative Interface Specification Languages. The two-tiered interface spec-
ification technique was introduced by the Larch project. The Larch family of
languages consists of the Larch Shared Language LSL for universal specifi-
cations [GH93] and a set of ISLs tailored to specific programming languages,
for example, Larch/Ada [GMP90], LCL (for C [GH93]), Larch/C++ [Lea96],
LM3 (for Modula3 [GH93]), Larch/CLU [Win87], Larch/Smalltalk [CL94],
etc. Besides pre-post-pairs, modifies-clauses, and invariants, some Larch ISLs
provide additional specification primitives that make specifications more ex-
pressive and more convenient (see [LB99] for a discussion). For instance,
so-called history constraints [LW93, LW94] are used to specify a property
of the history of values which an instance variable may take. Many of these
primitives such as case analysis or redundant specifications can be mapped
to ordinary pre-post-specifications and are thus not considered in this book.
From a verification point of view, history constraints behave similarly to in-
variants. Therefore, we omit an explicit treatment of history constraints and
sketch how the specification and verification techniques for invariants can be
applied to history constraints (see Subsection 6.4.2).

For verification, most Larch ISLs have major drawbacks: (1) Some of them
lack a formal semantics in terms of proof obligations in a programming logic.
A formal semantics is indispensable for verification. (2) Most Larch ISLs do
not provide techniques for the modular specification of frame properties and
sharing. (3) The abstraction of data structures to abstract values is kept im-
plicit in the Larch ISLs except in Larch/Ada and Larch/C++. Thus, there is
no explicit formal connection between the operational world of implementa-
tions and the abstract domain. However, such a formal connection is crucial
for verification.

36 1. Introduction

Poetzsch-Heffter presented techniques to overcome some of the shortcom-
ings of the Larch ISLs [PH97b]: (1) The formal semantics of specifications is
defined by transforming them into triples of a Hoare logic. (2) A formal model
of the object store is used to describe sharing properties of object structures
in a flexible way. (3) Based on this formalization of the object store, explicit
abstraction functions can be defined. Instead of modifies-clauses, Poetzsch-
Heffter’s ISL specifies frame properties by relations on object stores. Such
relations are useful to define a formal semantics for modifies-clauses, but
are in general not appropriate for modular verification (see Section 5.5 for a
discussion).

The ISL used in this book resembles Poetzsch-Heffter’s ISL. Instead of
abstraction functions, we use abstract fields to formally connect object struc-
tures to abstract specifications. Furthermore, we provide a technique for the
specification of frame properties that makes modular verification possible.
The semantics of type invariants used in this book is weaker than in [PH97b].
We discuss these specific differences along with the presentation of our ISL.

OCL [OMG, WK99] can be used to express constraints over object mod-
els. The semantics of OCL has not been formally defined so far [OCL],
which makes OCL specifications inappropriate for formal verification. Anna
[GMP90] contains both operational and declarative specification primitives.
It has a rather complex semantics and is therefore not well-suited for verifi-
cation.

1.6.2 Verification and Analysis Techniques

Since the end of the 1960s, an enormous effort has been taken to study soft-
ware verification [Flo67, Apt81, CFR93]. In this subsection, we sketch the
most important approaches. The reader is referred to [Cou90] for a compre-
hensive overview of verification techniques and representative work.

Since Hoare’s seminal paper, programming logics are used for verification
[Hoa69, Apt81, Cou90]. We use Hoare logic for verification since (1) it allows
one to prove partial correctness of sequential programs w.r.t. their specifica-
tions; (2) it supports both systematic top-down program development from
formal specifications and a-posteriori specification and verification of exist-
ing implementations (and hybrid development forms); (3) it is fairly simple
to apply. Our verification technique is based on a Hoare-style programming
logic for OO-languages [PHM99]. A discussion of programming logics is given
in Section 3.4.

Based on a denotational semantics, [JBH+98] developed a technique that
allows one to verify various properties of implementations written in a Java
subset. Hoare logic provides an additional level of abstraction that simplifies
the handling of subtyping and abstract methods, and makes proofs more
intuitive. Consequently, Jacobs and his group are now using Hoare logic as
well [HJ00].

1.6 Related Work 37

The Extended Static Checking project [DLNS98] aims at the detection
of certain frequent programming errors rather than at full verification of an
implementation w.r.t. its specification. Instead of directly reasoning about
source code, the ESC tool transforms Java or Modula-3 programs into a
guarded command language and applies a predicate transformer semantics
[LSS99]. Thereby, possible errors are detected and reported. The objective of
ESC is to provide techniques and tools for fully automated program checking.
Since human interaction during checking is not supported, ESC is limited by
the capabilities of theorem provers.

2. Mojave and the Universe Type System

In this chapter, we introduce the programming language Mojave, a rich sub-
set of sequential Java, enhanced by a type system for alias control. Mojave
supports modular program development with a simple module concept. Since
encapsulation of data representations is crucial for verification, it is discussed
in detail. In particular, we describe and formalize the universe type system
that supports encapsulation of whole object structures. The chapter con-
cludes with a discussion of related work.

Beginning with the abstract syntax of Mojave, large parts of this book
use formal notations based on multisorted first-order logic with recursive
data types. The precise definitions and notations as well as naming and type
setting conventions are explained in App. A. Frequently used notations are
included in the index.

2.1 Mojave: The Language

In this section, we introduce the abstract syntax and static semantics of Mo-
jave and explain its differences from Java. We illustrate several shortcomings
of Java’s package concept and information hiding techniques. To overcome
these problems, we introduce a simple module concept for Mojave and refine
Java’s access modes.

2.1.1 The Language Core

Mojave (pronounced Mohave like the desert in southeastern California)
stands for three of the keywords of this book: modularity, Java, and
verification. It is essentially a large subset of sequential Java, enhanced by
advanced encapsulation features. We chose a Java-like language since Java
is a modern OO-language that provides all important object-oriented lan-
guage features such as a class concept, strong typing, encapsulation, multiple
subtyping, dynamic binding, and single inheritance. These features are sup-
ported in a way that is typical for a large family of OO-languages containing
C++, Eiffel, Sather, Oberon, Modula-3, Simula, and Ada95. Therefore, the
techniques presented in this book can be adapted for other languages of that
family.

40 2. Mojave and the Universe Type System

2.1.1.1 Abstract Syntax and Static Semantics. Mojave is essentially
sequential Java and contains all typical OO-features. To keep the language
manageable, we omit abrupt completion, exception handling, user-defined
constructors, several statements, complex expressions, most of Java’s prim-
itive types, inner classes, arrays, and dynamic class loading. For a de-
tailed discussion of the language design, see the design rationale for Svenja
[MMPH97]. Svenja is the Java subset used in the Jive system and is very
similar to Mojave.

In the following, we present and formalize the abstract syntax of Mojave.
We assume that the reader is familiar with Java [GJS96]. Unless otherwise
stated, all context conditions, type rules, etc. of Java apply to Mojave as well.
The abstract syntax is formalized by the recursive data types presented in
Figure 2.1. The concrete syntax of Mojave is almost identical to Java.

Modules. A Mojave program consists of a set of modules (see Subsection 2.1.2
for the differences between packages and modules and for a formalization of
Mojave’s module concept). Modules have an identifier of sort ModId that is
unique in each program. A module can import other modules. The import
relation is acyclic. Modules contain a list of type declarations, that is, class
and interface declarations. All type declarations are public, that is, a type
declaration in module M is accessible in all modules that import M.

Interfaces and Classes. We assume that class and interface identifiers (of
sorts ClassId and InterfaceId) are unique in each program. This can easily
be achieved by prefixing each class and interface name with the identifier of
the module it is declared in1. Sort TypeId subsumes ClassId and InterfaceId.

As in Java, interfaces can extend superinterfaces. An interface contains
a (possibly empty) list of abstract methods, which are either readwrite or
readonly methods (indicated by the keyword readonly). For convenience,
there is a predefined empty interface Interface.

The predefined class Object (see App. B for the definition) neither ex-
tends a class nor implements an interface. It is the root of the subtype hi-
erarchy (see Paragraph 3.1.1.2 for a formalization). Each other class extends
exactly one superclass and implements exactly one superinterface (Interface
is used as default). To declare that a class C implements interfaces I1, . . . , In,
an intermediate interface I has to be introduced that is implemented by C
and that extends I1, . . . , In. Mojave does not provide abstract classes since
we can demonstrate all interesting aspects either with interfaces or with con-
crete classes. An extension of our techniques to abstract classes is trivial.
Each class declaration contains a list of class member declarations.

Class Members. Mojave provides methods and instance fields. Field decla-
rations consist of an access mode, the range type of the field, and the field
name of sort SimpleCFieldId. Field names are unique in each program. Final
and static fields are not provided.
1 We omit the module name in our examples when it is clear from the context.

2.1 Mojave: The Language 41

data type
Module = modu (ModId , list of ModId, list of TypeDecl)
TypeDecl = class (ClassId ,ClassId , InterfaceId , list of ClassMember)

| interface (InterfaceId , list of InterfaceId, list of AbsMethDecl)
ClassMember = field (AccessMode,Type,SimpleCFieldId)

| method (AccessMode,Signature,MethBody)
| smethod (AccessMode,Signature,MethBody)
| romethod (AccessMode,Signature,MethBody)
| sromethod (AccessMode,Signature,MethBody)

AbsMethDecl = amethod (Signature)
| aromethod (Signature)

Signature = sig (Type,MethodId , list of FormPar)
MethBody = mbody (list of VarDecl,Stmt)
FormPar = formpar (Type,VarId)
AccessMode = private

| default
| privprot
| protected
| public

TypeId = ctid (cid : ClassId)
| itid (iid : InterfaceId)

Type = booleanT
| intT
| nullT
| grndT (tid : TypeId)
| orepT (tid : TypeId)
| trepT (tid : TypeId ,TypeId)
| roT (tid : TypeId)

VarDecl = locvar (Type,VarId)
Stmt = emptyS

| newS (VarId ,Type)
| seqS (Stmt ,Stmt)
| ifS (Expr ,Stmt ,Stmt)
| whileS (Expr ,Stmt)
| freadS (VarId ,VarId ,SimpleCFieldId)
| fwriteS (VarId ,SimpleCFieldId ,Expr)
| castS (VarId ,Type,Expr)
| invocS (VarId ,VarId ,VirtualMethodId , list of Expr)
| sinvocS (VarId ,Type, ImplId , list of Expr)
| callS (VarId ,VarId , ImplId , list of Expr)

Expr = varE (VarId)
| nullE
| intE (Int)
| boolE (Bool)

end data type

Fig. 2.1. Abstract Syntax of Mojave

42 2. Mojave and the Universe Type System

Each method in Mojave is either an instance method or a static method,
and either a readwrite (i.e., ordinary) method or a readonly (i.e., side-effect-
free) method. Method declarations consist of an access mode, the result type,
a method identifier, a list of formal parameters, and a method body consisting
of a list of local variable declarations and a statement. Default access is not
allowed for instance methods (see Paragraph 2.1.2.2). In contrast to Java,
each Mojave method returns a (dummy) value. Method identifiers are of
sort MethodId, identifiers of formal parameters and local variables are of sort
VarId. In Mojave, static methods are not inherited by subclasses.

To keep things simple, Mojave does not support static overloading. Since
overloading can be resolved statically, it is not interesting for specification
and verification. For overriding, we adopt the context conditions of Java (no
co- and contravariance of the result and argument types). However, support-
ing co- and contravariance would only require a minor modification of the
semantics of interface specifications.

Mojave does not provide user-defined constructors. Object creation is
handled by the new-statement and static methods.

There are several context conditions for readonly methods: Since readonly
methods are supposed to be side-effect-free, they must not contain field-write-
and new-statements. Readonly methods must not invoke readwrite methods.
To guarantee the absence of side-effects in the context of dynamic method
binding, readonly methods can only be overridden by other readonly methods.
In both the signature and the body of a readonly method, only primitive types
and readonly types (see below) may be used to guarantee type safety.

Object creation neither affects the states of allocated objects nor their
abstractions and invariants. Therefore, allowing readonly methods to create
objects would not cause problems for our verification technique. However,
excluding new-statements results in several technical simplifications.

Types. Mojave has a sophisticated type system that provides statically-
checkable alias control. This universe type system and the respective context
conditions are explained in detail in Section 2.2. Here, it suffices to know that
it supports the primitive types boolean and int as well as four kinds of ref-
erence types (ground types, orep types, trep types, and readonly types). These
reference types specify a type id and provide alias information. The null type
is the type of the null-reference. It must not occur in program texts.

Statements. Mojave provides statements for reading and writing field access
and method invocation as well as new-, if-, while-, skip-, and assign-/cast-
statements, and sequential statement composition. That is, Mojave supports
only a small subset of Java’s statements to reduce the number of rules in the
programming logic. In particular, all secondary statements (e.g., for- and do-
statements), statements for abrupt completion (such as break-, continue-, and
return-statements), and statements for exception handling (try- and throw-
statements) are omitted.

2.1 Mojave: The Language 43

Object creation, field access, cast, and method invocation is done by state-
ments (and not by expressions as in Java), since Mojave provides only prim-
itive expressions to make the programming logic simpler (see below). For the
same reason, each if-statement must have an else-branch. The new-statement
creates a fresh object of the specified type and initializes the instance fields
with default values. That is, it behaves like the invocation of the prede-
fined default constructor in Java. The type in a new-statement must be a
ground, orep, or trep type. Objects of readonly types are not allowed. The
assign-statement is combined with the cast-statement (the static type of the
right-hand-side expression can be used as a default type for casting; we do
not require to write down this default cast in the concrete syntax).

Since Mojave does not support abrupt completion, a return-statement
is dispensable. Instead, Mojave has a predefined local variable result for
every concrete method. The type of result is the result type of the enclosing
method. Upon termination, a method returns the value of result (similar to
functions in Pascal).

Method Invocations. For verification of OO-programs, it is reasonable to
discern between method implementations and virtual methods. A method im-
plementation is the implementation of a concrete method. Virtual methods
are used to describe the common properties of all method implementations
that might be invoked upon invocation of a dynamically-bound method (see
Section 3.1). We assume two infinite sorts ImplId and VirtualMethodId for
method implementations and virtual methods, resp. Every concrete method
m declared in a class T introduces a constant of the form T@m of sort ImplId.
Virtual methods are denoted by constants of the form T:m of sort Virtual-
MethodId. Each dynamically-bound (i.e., neither private nor static) concrete
or abstract method m declared in type declaration T that does not override or
implement a supertype method introduces virtual methods S:m for each sub-
type S of T (including T). For instance, for the following type declarations,
we introduce T:m and S:m for the abstract method m in the interface T,
S@m for the implementation of m in S, S@n for the statically-bound method
n in S, and T:equals as well as S:equals for the dynamically-bound method
equals that is inherited from Object.

public interface T { public class S implements T {
public int m(); public int m() { ... }

} private int n() { ... }
}

Whether a method implementation T@m is readonly is indicated by its dec-
laration. The declaration type of a virtual method T:m is the least supertype
of T (including T) that contains a declaration for m. This declaration deter-
mines whether T:m is a readwrite or readonly method.

To prepare for verification, we assume that the abstract syntax of method
invocations is annotated with information from type analysis: Statically-
bound method invocations (i.e., static-invocation-statements for invocations

44 2. Mojave and the Universe Type System

of static methods and call-statements for calls of private methods and calls
via super) directly refer to the method implementation to be invoked. That
is, an invocation with concrete syntax v=w.m(...); refers to T@m in the
abstract syntax, where T is the compile-time type of w. Invocations of static
methods of the form v=T’.m(...); refer to T@m in the abstract syntax,
where T is the type id of type T′. In analogy to the target objects of invoca-
tions of instance methods, we call T′ the target type of the static invocation.
Calls of the form v=super.m(...); correspond to v = this.T@m(...), where
T is that superclass of the class enclosing the call-statement that contains
the declaration of the method to be invoked. Dynamically-bound method
invocations refer to virtual methods. That is, an invocation with concrete
syntax v=w.m(...); refers to T:m in the abstract syntax, where T is the
compile-time type of w.

Expressions. Mojave provides only primitive expressions: boolean and integer
literals, the null-expression, and local variable and formal parameter access.
Due to this restricted set of expressions, evaluation of expressions cannot
cause side-effects. this is treated as a predefined formal parameter in all
methods, which simplifies the syntax and the logic2. For simplicity, we also
assume an implicit parameter this in static methods that holds the null-
value. In formalizations, it is often convenient to denote the formal parameters
of a method by indexed names such as vi. Whenever we use this notation,
the variable with index 0 denotes this.

Unary and binary operations are performed by static methods of a pre-
defined class Operator (see App. B). This makes programs a bit more com-
plicated, but simplifies the programming logic since all operations can be
handled by the rules for static method invocations.

2.1.1.2 Open and Closed Programs. An ordinary program is a set of
modules that meets certain syntactic criteria. However, the situation is more
complex if we consider, for example, class libraries as (possibly incomplete)
programs: For formal verification, a set of modules that can be imported
by other modules must be treated fundamentally different from complete
programs since the correctness of reusable modules relies on properties of the
context in which they are reused (in particular on the behavior of overriding
methods), whereas the correctness of a complete program is independent of
any context. Furthermore, during verification of reusable modules, it is not
possible to prove properties of all types, fields, etc. of a program since the
program in which the modules might be reused is unknown at that point. To
cope with these differences, we distinguish between so-called open and closed
programs. Closed programs correspond to the usual notion of programs in
imperative languages. They can be executed, but cannot be reused as parts of
other programs. In contrast, open programs represent incomplete collections
of modules that can be imported and extended like for instance a class library.
2 However, assignments to this are still forbidden.

2.1 Mojave: The Language 45

More precisely, a closed Mojave program consists of a designated main
module named Main and all modules directly or indirectly imported by Main.
Main cannot be imported by other modules. Thus, closed programs cannot
be extended, which allows us (1) to define a notion of correctness that does
not rely on the context in which a set of modules is reused (see Section 3.3),
and (2) to prove properties of all types, fields, etc. of a program since closed
programs are completely given (see Paragraph 3.1.1.4). A syntactically cor-
rect closed program can be executed by invoking a method public static
int main() of one of the classes in Main3.

An open program represents all closed programs that contain a given set
of modules: Let S be a set of modules with the following properties: (1) S
does not contain a main module. That is, S is not a closed program. (2) If
S contains a module M, then all modules imported by M are also in S (i.e.,
S is closed under the import relation). An open program with core S is the
set of all closed programs that contain S. An open program can be extended
by adding modules to its core. By such extensions the open program itself
(i.e., the set of closed programs) gets smaller. Since open programs can be
extended, their correctness relies on the well-formedness of the extensions.
Open programs cannot directly be executed. However, the core of an open
program can be imported by a main module, which yields an executable
closed program. Importing the core of an open program into a main module
is called closing an open program. The act of closing an open program freezes
the set of modules and adds certain axioms to its specification.

In this book, we focus on open programs since they are more interesting
for modular verification. In particular, all examples presented in this book are
parts of cores of open programs. However, we explain the additional axioms
generated for closed programs in Paragraph 3.1.1.4 and define correctness of
closed programs in Section 3.3.

2.1.2 Modularity

In Section 1.4 we have identified four important aspects of modularity: ex-
plicit structure, separate development, information hiding, and reuse. Mojave
adopts the techniques for separate development and reuse (in particular, sub-
typing and inheritance) from Java. In this subsection, we focus on explicit
structure and information hiding. We motivate the need for a module system,
discuss why Java’s package concept is not appropriate for modular verifica-
tion, and present a simple module system for Mojave. Furthermore, we ex-
plain the difference between information hiding and encapsulation, and refine
Java’s access modes. Finally, we summarize which interfaces are provided by
Mojave’s modules, classes, and interface types.
3 We omit command line arguments for simplicity.

46 2. Mojave and the Universe Type System

2.1.2.1 The Module System of Mojave. Many OO-languages provide
classes and interfaces as only means of modularization. However, even in the
presence of nested classes, an additional module system is reasonable from a
software engineering point of view:

– Very often, several classes are used to implement complex functionality. If
this cooperation is asymmetric in a sense that some classes are auxiliary
classes for others (e.g., the node class of a doubly linked list does usually
not occur in the list’s interface), nested classes are sufficient [HC97]. How-
ever, in the symmetric case (see for instance the Component-Container-
LayoutManager cooperation in Java’s AWT [Gea97]), modules should be
used to group classes with high cohesion [BA96].

– Classes do not explicitly declare which other classes are used in their imple-
mentations (no explicit import [Szy92]). Thus, the structure of programs
stays implicit.

– In many implementation patterns, classes should have access to hidden
parts of the representation of other classes. For instance in C++, this can
be achieved by so-called friends [ES90]. In combination with a dedicated
access mode (such as default access in Java), modules are an appropriate
means to group classes that have access to their mutual representations
[BA96, Lak96, Szy92].

Besides these software engineering arguments, modular specification and ver-
ification relies on a module system for the following reasons:

– The explicit structure of programs is needed to determine visibility of dec-
larations. Visibility is in turn a prerequisite for verification. (For instance,
a developer cannot be required to prove the preservation of an invariant
that is not even visible.)

– For the sake of information hiding, we cannot make the implicit uses-
relation of classes explicit and determine visibility of declarations in the
absence of modules.

– Access modes and encapsulation play an important role for modular rea-
soning. Thus, we want to develop verification techniques that work in the
presence of friend mechanisms (see Subsection 5.4.3).

Modules vs. Packages. Both modules and packages are means to group type
declarations. According to the terminology used in [Szy98], a module is closed
in a sense that after development and deployment, it is not possible to add
further program elements to the module. It can only be reused as a whole.
In contrast, packages can be either open or closed. Open packages can be
extended by clients. In this taxonomy, Java provides open packages (provided
that the system environment allows one to add classes to a package, for
instance, by storing files in a certain directory) and Ada’s packages are closed
(i.e., are modules).

For modular verification, it is absolutely necessary that packages are
closed: (1) In particular the verification of frame properties and invariants

2.1 Mojave: The Language 47

requires one to prove properties of all fields/types that are visible to the ver-
ifier. However, an open package structure cannot be used to determine vis-
ibility: Although a package P is imported by package Q, a type declaration
of P might not be present for the verification of Q if it is added after Q has
been verified. Moreover, classes that are added to a package after verification
can modify the import relation, especially by introducing recursive imports,
and thus change the structure of the whole program. (2) In Java, default and
protected access are used to realize a friend mechanism for classes in one
package [GJS96, ES90]. However, Java allows clients to add new classes to an
open package that are thus regarded as “friends” and have access to parts of
the implementation that are supposed to be hidden ([Lak96] describes this
problem as: “I’m leaving a hole, but please keep out!”). For these reasons, we
replace Java’s package concept by a proper module system in Mojave.

Mojave’s Module System. To keep the results of this book as general as pos-
sible, we use a very simple module system for Mojave: Modules are named
groups of type declarations with explicit import. In particular, we neither
provide parametric modules nor modules as first-class values that can be ma-
nipulated by programs. Hierarchical structures by nested modules or inner
classes are not supported. According to [Wir88] nested modules in Mod-
ula were not considered helpful and therefore omitted in Oberon. Although
they are helpful for certain implementation patterns, we do not provide inner
classes since the semantics of inner classes, in particular of local inner classes,
is extremely complex [HC97, IP00, Ros97]. An extension of our techniques
to inner classes is considered future work.

The import relation on modules is acyclic. That is, mutually recursive
type declarations have to be placed in one module.

The scope of a program or specification element (such as an invariant or
a method specification) consists of the module that contains the element and
all imported modules.

2.1.2.2 Information Hiding and Encapsulation. In the literature about
OO-programming, the terms information hiding and encapsulation are not
used in a uniform way. Although the terms are often used synonymously, it
is practical to separate the notions of information hiding and encapsulation,
in particular since they should be supported by different language features.

Information hiding is a technique to minimize dependencies among
separately-written classes. By restricting access to an implementation to ex-
plicit interfaces, hidden parts of implementations can be modified without af-
fecting clients. That is, information hiding is a purely syntactical feature that
eases separate development and maintenance of classes [Bud91]. In contrast,
encapsulation is a technique to restrict access to the internal representation of
an object or a whole object structure [Szy98]. The purpose of encapsulation
is to guarantee data consistency, in particular, invariants. In general, encap-
sulation builds on information hiding techniques to enforce that clients can

48 2. Mojave and the Universe Type System

access a data structure only through designated interfaces. However, encap-
sulation requires additional techniques to control modification via references
(aliases). This problem is discussed in Section 2.2.

Like Java, several OO-languages provide access modes as a means to
achieve both information hiding and encapsulation. In the following para-
graphs, we discuss shortcomings of Java’s access modes and their solution in
Mojave.

Access Modes in Java. Java provides access modes for four kinds of users of
a class: (1) Clients in other packages that are not subclasses, (2) subclasses
in other packages, (3) clients in the same package (friends), and (4) the class
itself. Access modes allow one to specify the accessibility of a class member
according to these groups. Thus, Java’s access modes are well-suited to pro-
viding information hiding: They can be used to determine which clients of
a class might be affected by the modification of a certain program element
such as renaming a method. However, they do not provide proper support
for encapsulation. For instance, they do not allow one to protect the instance
variables of one object of type T from modifications by other T-objects. In
particular, access modes do not allow one to protect representations of ob-
ject structures from being modified when a reference to the representation
is (accidently) passed to clients of the structure (see [BV99] for an example
related to a security bug in Java).

As we have explained in [MPH98], there are two bugs in the cooperation
of Java’s access modes, overriding, and dynamic method binding. We briefly
describe these bugs and a third shortcoming in the following since they have
impact on the design of Mojave’s access modes and on the semantics of
method invocations:

1. Overriding default access methods: In Java, a class C can only declare
a method that overrides an inherited method m if m is accessible in C.
Otherwise, a new method is introduced that hides the inherited method
[GJS96, §8.4.6.1]. That is, private methods are never overridden, pro-
tected and public method are always overridden, but default access meth-
ods are only overridden if the subclass belongs to the same package as
the superclass.
In [MPH98], we have illustrated an error in Java’s algorithm for dynamic
method selection [GJS96, §15.11.4]. The compiler associates a so-called
compile-time declaration with each method invocation expression. This
declaration is used for type checking, etc. Thus, only those methods may
be selected at runtime that override the compile-time declaration. How-
ever, this is not the case in Java. Obviously, this is a flaw in the semantics
that can be solved by a simple modification of the method selection al-
gorithm: Only methods may be dynamically selected that override the
compile-time declaration.

2. Overriding protected methods: According to the Java Language Specifica-
tion, the access modifier of an overriding or hiding method must provide

2.1 Mojave: The Language 49

at least as much access as the overridden or hidden method [GJS96,
§8.4.6.3]. However, if a protected method declared in class C is overrid-
den by another protected method in a different package (which is legal
[GJS96, §8.4.6.3]), this rule is violated: Classes in C’s package that are not
subclasses of C have access to the overridden, but not to the overriding
method4.

3. Semantics of protected access: Protected access is supposed to make pro-
gram elements accessible in subclasses of the declaration class. However,
to achieve encapsulation, Java uses a more restrictive semantics, which
we consider rather complicated: Let C and D be classes that are declared
in different packages, where D is a subclass of C. D may only access a
protected class member of C if it is guaranteed that the member is ac-
cessed on a D-object [GJS96, §6.6.2]. This rule guarantees that a class
cannot access the protected representation of objects of supertypes or
siblings in the subtype hierarchy.

Access Modes in Mojave. Access modes in Mojave are slightly different from
Java to overcome the above shortcomings:

1. Overriding default access methods: The correct semantics of method invo-
cations could easily be formalized in our programming logic. Since such a
formalization does not reveal any interesting aspects for modular specifi-
cation and verification, we simply forbid default access instance methods
in Mojave, thereby circumventing the problem.

2. Overriding protected methods: The solution to this problem entails two
steps: (1) We require that protected methods have to be overridden
in other packages by public methods. However, this restriction is very
strong: Implementations can hardly be distributed over several mod-
ules without loosening access protection. Thus, we make a second mod-
ification to Java’s access modes: (2) We re-introduce the access mode
private protected that existed in early versions of Java [CH96]. Private
protected class members are accessible in subclasses only. A private pro-
tected method can be overridden by private protected, protected, or pub-
lic methods. Therefore, private protected can be used to spread imple-
mentations over different packages without giving up information hiding.

3. Semantics of protected access: The specification and verification tech-
niques presented in this book do not rely on the encapsulation provided
by the restricted semantics of protected access in Java. Therefore, we use
a weaker semantics: A class member of class C with protected or private
protected access is accessible in all subclasses of C (and all classes in the
module of C for protected access). This semantics is strong enough for
information hiding.

4 In [MPH98] we illustrated that this contradiction leads to protected methods
that can be invoked by classes that do not have access to the methods.

50 2. Mojave and the Universe Type System

To sum up the previous paragraphs, Mojave provides five different access
modes: private, default access, private protected, protected, and public, where
default access is not allowed for instance methods, and all type declarations
are public. These modes are used for information hiding. Encapsulation is
supported by access modes and the universe type system that allows one to
control reference passing (see Section 2.2).

2.1.2.3 Interfaces and Views. A Mojave class provides five interfaces5,
one interface for each access mode. Since all methods of an interface type are
public, interface types only have a public interface.

The public interface of a class or interface type consists of the
class/interface name, the names of the direct superclass6 and the direct su-
perinterface(s), the names and types of public fields, and the names and
signatures of public methods.

The protected interface of a class C consists of the names and types of the
protected fields as well as the names and signatures of the protected methods
declared in C (analogously for private, private protected, and default access).
Modules provide only a public interface. A module interface consists of the
module name, the names of imported modules, and the names of all types
declared in this module.

A client of a type declaration or module E is a class, interface, or module
that uses E. We discern between different groups of clients: normal users of E,
subtypes of E, friends of E, and combinations of these roles. A view describes
all information that is accessible to a group of clients. There is one view to
a class for each access mode, one view to interface types, and two views to
modules. These views contain the following information:

– The public view to a type declaration T consists of the public interfaces of
all type declarations in the scope of T. This reflects that each client that
has public access to T has also public access to the type declarations in
the scope of T.

– The protected view to a class C consists of the public view to C and the
protected interfaces of all superclasses of C.

– The private protected view to a class C consists of the protected view to
C and the private protected interfaces of all superclasses of C.

– The default access view to a class C consists of the protected view to C
and the default access interfaces of all classes in the module of C.

5 Despite the name clash, we use the term interface to refer to the description of
program elements that are exported by a class or module. We use interface type
for the entities introduced by interface-declarations wherever the meaning of
interface is ambiguous.

6 It is often argued that information about inheritance should not be part of the
public interface of a class since inheritance is regarded as an implementation
technique [Bra92, Sny86, Sny87]. However, information about subtyping is defi-
nitely necessary for clients. Since inheritance is coupled with subtyping in Java
and Mojave, we have to reveal information about inheritance, although this is
not completely compatible with information hiding.

2.2 Universes: A Type System for Flexible Alias Control 51

– The private view to a class C consists of the private protected view and the
default access view to C, the private interface of C, and the implementation
of C.

– The public view to a module M consists of the public views to the type
declarations declared in M and the public interface of M.

– The default access view to a module M consists of the default access views
to the type declarations declared in M.

The fact that the implementation of a class C belongs only to C’s private view
reflects the idea that only C itself has access to C’s implementation. Neither
classes in the same module nor subclasses may inspect C’s implementation.

The notion of views is used to handle information hiding in specification
and verification: The specification of an interface may only reveal implemen-
tation details that are contained in the corresponding view. The verifier of
a class has knowledge about the private view of this class and nothing else
(in particular, not about the implementation of other classes). We formalize
views in Subsection 3.1.1.

This concludes the presentation of Mojave’s language core. The reader is
referred to App. C for examples of Mojave programs. In the next section, we
explain Mojave’s type system.

2.2 Universes: A Type System for Flexible Alias Control

Modular verification of frame properties and type invariants requires alias
and dependency control [LN00]. In Subsection 1.3.5, we have illustrated that
classical interface specifications based on pre-post-specifications and type in-
variants are not sufficiently expressive to control both static and dynamic
aliasing. In particular, they cannot prevent subtypes from adding new meth-
ods that introduce aliases by taking or passing out references to objects that
are supposed not to be aliased (see class SubClient2 in Example 1.3.4).
Therefore, we complement interface specifications by a sophisticated type
system. Besides naming a type declaration, the types of this type system
provide alias information which is used to control sharing.

In this section, we present a programming model that can be used to
restrict aliasing. Its application to control dependencies of abstractions and
type invariants is explained in Chapter 5. A sophisticated type system al-
lows one to statically check whether a program respects this programming
model. We formalize the type system and illustrate its application by several
examples.

52 2. Mojave and the Universe Type System

2.2.1 The Ownership Model

The universe type system builds on recently developed techniques for alias
control (e.g., ownership types, see Section 2.3). The programming model un-
derlying these approaches is based on the ownership model. The basic idea
of the ownership model is that in general groups of one or more objects
work closely together to realize a common functionality (e.g., an abstract
data type). We call such groups dynamic components. Some objects (inter-
face objects) of a dynamic component are used to interact with other dynamic
components. The other objects are the internal representation of the dynamic
component. The goal is to control references to representation objects.

There are different techniques to define which objects are interface objects
and which are representation objects of a dynamic component. We explain
one of them in Subsection 2.2.3. Dynamic components and their representa-
tions are defined based on a binary relation on objects, the so-called owner-
ship relation. The idea underlying the ownership relation is that the interface
objects of a dynamic component are the owners of all objects that are di-
rectly used to represent the dynamic component. For instance, the header of
a doubly linked list is the owner of all node objects.

The ownership relation can be considered as a directed graph on the
allocated objects in a program state where an edge goes from X to Y if X
is the owner of Y . Figure 2.2 displays an object store with several objects
(depicted by boxes) and their ownership relation (arrows). We say that a
program realizes the ownership model if in all states there exists a partitioning
of all allocated objects such that

– all objects of one partition (depicted by ellipses in Fig. 2.2) have the same
(possibly empty) set of owners,

– the owners of the objects in a partition P are in one partition Q, and
– the ownership relation is acyclic.

Each partition P corresponds to exactly one dynamic component with the
owners of P as interface objects. The representation of the dynamic com-
ponent consists of the objects in P and all objects owned by objects in P
(including transitive ownership). For instance in Fig. 2.2, the dynamic com-
ponent corresponding to partition C (in the following called dynamic compo-
nent C) consists of objects 2–7 with objects 2 and 3 as interface objects. At
the roots of the ownership graph are the objects that have no owner. That is,
objects that do not belong to any representation (object 1). This definition
of the ownership relation implies the following facts:

– Interface objects of a dynamic component c do not belong to the represen-
tation of c.

– Representations of different dynamic components are either disjoint or one
is contained in the other (representation containment). For instance, the
representations of the dynamic components C and D (objects 4–7 and

2.2 Universes: A Type System for Flexible Alias Control 53

object 8) are disjoint. The representation of dynamic component E (ob-
jects 5–7) is contained in the representation of dynamic component C (ob-
jects 4–7).

– An object can be an interface object of several dynamic components at
the same time. For example, object 3 is interface object of the dynamic
components C and D.

1

2 3

4

5 6 7

8

A

B

C D

E

Fig. 2.2. Object Store with Ownership Relation

We say that an object Y is inside a dynamic component c if it belongs to the
representation of c; Y is outside c if it is not inside. For modular verification,
the distinction between inside and outside of dynamic components is used in
two ways. First, it defines a boundary for incoming references (alias control).
In particular, it provides a mechanism to specify which references to the
representation may be passed to the outside by subclasses. Second, it defines
the set of objects on which invariants and abstractions may depend (see
Paragraph 5.1.3.1).

In the next subsection, we present the universe programming model which
uses the ownership model to formulate restrictions on the permissible refer-
ence structures. This way, flexible alias control can be realized.

54 2. Mojave and the Universe Type System

2.2.2 The Universe Programming Model

Mojave supports two variants of the ownership model: Object universes can
be used to implement dynamic components that have exactly one interface
object. They provide very strong alias control which is useful for many imple-
mentation patterns. Object universes can also be generalized to type universes
which allow several objects of basically arbitrary classes to be interface ob-
jects of a dynamic component. Therefore, type universes provide alias control
that is weaker than that of object universes; however, it is still strong enough
to enable modular verification of frame properties and type invariants (see
Chapters 5 and 6). Both variants of the ownership model are presented be-
low. Furthermore, we describe how we can use typing mechanisms to delimit
the world inside a dynamic component from the world outside.

2.2.2.1 Object Universes. With conventional type systems, a program P
defines a set of types together with a subtype relation. We call this set of types
the standard universe of P. The basic idea of the universe type system is to
use multiple “copies” of the standard universe (one could imagine copying the
whole program text and adding a suitable postfix to the class and interface
names). Such a copy is called a universe. In each universe, there is a type for
each type declaration. Although structurally identical, the copies of a type
in different universes are distinct. Each object is created for a copy of a type
in a given universe. That is, each object belongs to exactly one universe.

As will be explained below, universes can be created dynamically during
program execution (e.g., there is a universe for every object in a program
execution). That is, the instances (copies) of a type are dynamic entities
and therefore called dynamic types (not to be confused with the dynamic or
runtime type of an object as opposed to the static type of a variable). In this
respect, they are similar to value-dependent types, but dynamic types depend
on a universe rather than a value (see Section 2.3). To clearly distinguish
between the static and dynamic entities of the type system, we use the terms
type declaration, type, and dynamic type to refer to classes/interfaces, the
static type identifiers used in programs, and the copies of a type declaration
in different universes, resp.

To realize dynamic components with exactly one interface object, we in-
troduce a universe for each object X in a program execution (in addition to
the standard universe and other universes, see Paragraph 2.2.2.2). We call
X the owner of its universe. Note that this implies a hierarchical structuring
of the universes. The standard universe is the root of the universe hierarchy.
Each object in the standard universe has its own universe. Objects in these
child universes are again owners of universes and so forth.

Universes can easily be used to implement the ownership model. Each
object X is regarded as the only interface object of a dynamic component C.
The objects directly used to represent C are put into the universe owned by
X. Consequently, the whole representation of C is contained in X’s universe
and its descendants. The type rules of the universe type system enforce that

2.2 Universes: A Type System for Flexible Alias Control 55

1. objects inside C can only be referenced (except for readonly references,
see below) by C’s interface objects or other objects of the representation.
Thus, objects outside C can modify C’s internal state only by accessing
methods and fields of C’s interface objects. We will exploit this rep-
resentation encapsulation for verification of frame properties and type
invariants (see Subsection 5.4.2).

2. objects inside C cannot have readwrite references to objects outside; we
will use this property to control dependencies of abstractions and type
invariants (see Paragraph 5.1.3.1).

The above restrictions control static aliases, that is, aliases via references
stored in instance variables. However, the restrictions apply as well for local
variables and formal parameters if they are considered as instance variables
of the this-object. Thus, we can control static and dynamic aliasing. We will
explain the universe invariant in more detail in Subsection 2.2.6.

Figure 2.3 illustrates how the node structure of a doubly linked list of
integer values can be encapsulated to protect it from modifications (objects
and references are depicted by boxes and arrows, resp.) The list header serves
as interface object for the dynamic component; the nodes are stored in the
header’s object universe (objects belonging to that universe are encircled;
boxes touching the ellipse stand for owner objects). Note that neither ref-
erences from objects outside the dynamic component to the inside (except
from the list header) nor references from inside to the outside are permitted.

List

first

last

elem

prev

next

Node

elem

prev

next

Node

elem

prev

next

Node

SomeClass

...

Fig. 2.3. Object Structure for a Doubly Linked Integer List

56 2. Mojave and the Universe Type System

2.2.2.2 Type Universes. Object universes provide a very strong form of
alias control. However, certain implementation patterns require dynamic com-
ponents with several interface objects: (1) For efficiency, sharing should not
be restricted more than necessary. For example if some doubly linked lists
are modified very rarely, it is reasonable to allow several list headers to share
a common node structure to save space. (2) In some scenarios, several ob-
jects must have read and write access to representations. For instance, list
headers and iterators need access to the list structure. Some of these scenar-
ios can be handled by object universes and readonly references (see Para-
graph 2.2.2.3). However, other patterns such as the property editor example
in Paragraph 2.2.4.2 require dynamic components with several interface ob-
jects.

To support such implementation patterns, we generalize object universes
to type universes. That is, besides object universes, we introduce universes
that are not exclusively associated with single objects but that can be owned
by various objects. To explain the notion of type universes, we describe in
the following a very general approach that allows programmers to declare
universes. For simplicity, we do not follow this general approach here. Instead,
Mojave only provides a restricted form of predefined type universes.

User-Defined Type Universes. In analogy to static fields that do not exclu-
sively belong to an object and that can be accessed by several objects depend-
ing on their access modes, we could allow programmers to declare universes
as static class members: If TU is the dynamic type for a type declaration T in
universe U then a universe declaration in T would introduce a child universe
V of U . The access mode of the declaration could be used to determine the
owner objects of this universe: An object X would be an owner of V if its
dynamic type S was in U (i.e., X belonged to the parent universe of V) and
the universe declaration was accessible in one of the supertypes of S. That
is, such universe declarations could be used to provide universes that can
be shared by all objects of one dynamic type (if the universe was declared
private or private protected), by objects of dynamic types declared in one
module (default or protected), or by objects of all dynamic types that had
the declaration of the universe in their scope (public). These variants provide
different strengths of alias control.

Type Universes in Mojave. In this book, we provide only a very restricted
form of type universes: (1) We focus on public type universes since they
are the weakest variant of type universes that is strong enough to enable
modular verification. Please refer to [MPH00b] and [MPH00c] for the context
conditions and invariants of private and default access type universes, resp.
(2) Instead of allowing programmers to declare universes, we use a fixed
set of predefined type universes to avoid syntactic overhead and to simplify
formalizations. We introduce one type universe for each dynamic type in

2.2 Universes: A Type System for Flexible Alias Control 57

a program execution7. One could imagine that each type declaration in a
Mojave program contains the declaration of one public type universe. This
implies that the type universes for two different dynamic types S and T are
disjoint, no matter whether S and T are subtypes or not. The extension to
freely declared universes is straightforward, but not interesting for this book.
The type universe U for dynamic type T is owned by all objects that belong
to U ’s parent universe and the classes of which have T’s declaration in their
scope.

2.2.2.3 References across Representation Boundaries. The universe
programming model as described in the previous paragraphs enables strong
alias control and thus representation encapsulation. However, it is too restric-
tive for many applications: (1) One needs the capability of having references
that point outside the representation of a dynamic component. For example,
the representation of a list should not be forced to include the element ob-
jects of the list. In most cases, the list only stores references to its elements.
The element objects are outside the list component. (2) Several common
programming patterns such as iterators or binary methods require that the
representation of a dynamic component can be accessed by several different
objects. In cases where the representation can be exposed to several owners,
type universes solve the problem. However, if both the strong alias control of
object universes and several interface objects are needed, or if the objects that
should have access to a representation do not belong to the same universe,
then type universes are not sufficient. This is, for instance, the case for binary
methods such as test for structural equality or for clone methods that copy
an object structure from one universe to another. To support such idioms,
we provide readonly references and readonly methods. Readonly references
are allowed to point into arbitrary universes. Readonly methods enable one
to observe aspects of the representation and are guaranteed not to make any
modifications.

Readonly References. Readonly references cannot be used to perform field
updates or invocations of readwrite methods. Readonly references allow ob-
jects to make part of their representation accessible without taking the risk
that the representation is being modified.

Figure 2.4 shows how readonly references can be used to expose parts
of a representation (here, the nodes of a doubly linked list) in a safe way
(dashed arrows depict readonly references). Furthermore, they allow objects
inside a dynamic component to reference objects outside (in this example the
elements stored in the list).

Readonly Methods. Readonly references cannot be used to modify objects. To
achieve that, methods that cause side-effects must not be invoked on read-
only references. This property can be statically checked by either forbidding
7 Note that this leads to an infinite proliferation of universes: Each universe con-

tains a set of dynamic types; each dynamic type is in turn associated with a type
universe and so forth.

58 2. Mojave and the Universe Type System

List

first

last

elem

prev

next

Node

elem

prev

next

Node

elem

prev

next

Node

Iter

list

pos

lastRet.

Fig. 2.4. Object Structure for a Doubly Linked Object List with Iterator

all method invocations on readonly references, or by introducing readonly
methods that can be statically checked to be side-effect-free. Obviously, the
former solution is not satisfactory since for example one would like to use a
method equals to compare two objects referenced readonly. For this reason,
Mojave provides readonly methods (see Subsection 2.1.1).

2.2.3 Programming with Universes

Mojave supports both object and type universes, which gives programmers
the choice to use object universes with strong alias control — in cases where
one owner object per representation is sufficient (e.g., many container im-
plementations) — or type universes with weaker alias control in cases where
the flexibility of type universes is required (such as the property editor in
Paragraph 2.2.4.2). In this subsection, we explain how the ownership rela-
tion, and thus the application of object and type universes, can be specified
by extended typing.

A closed Mojave program P defines the set of types that can be used in
P together with the subtype relation. The set of types of an open program
corresponds to the set of types of its core. However, both the set of types
and the subtype relation are underspecified for open programs (see Subsec-
tion 3.1.1 for a formalization). We describe the types that can be used in
programs in the following.

2.2 Universes: A Type System for Flexible Alias Control 59

Readwrite Reference Types. In each execution state, there is a current uni-
verse. During execution of instance methods, the current universe is the uni-
verse to which the this-object belongs. The current universe for the execution
of static methods is determined by the current universe in the state before the
invocation and the target type of the invocation. Program execution starts
in the standard universe. That is, the current universe of the initial program
state is the standard universe.

The universe type system provides three kinds of readwrite reference types
(see the syntax in Fig. 2.1). These types specify the dynamic type of a pro-
gram element such as a variable relative to the current universe. More pre-
cisely, they provide information whether the dynamic type is in the current
universe, the universe owned by this, or the universe associated with a dy-
namic type in the current universe. That is, the dynamic readwrite types that
can be specified in a program always refer to the current universe or one of
its child universes.

A ground type grndT (T) (denoted by a plain type identifier T) refers to
the dynamic type for T in the current universe. The types for child universes of
the current universe are marked by the keyword rep and therefore called rep
types: An object representation type (orep type for short) orepT (T) (denoted
by rep<this> T8) refers to the type for T in the object universe owned by
this. The type for T in the child universe of the current universe that is
associated with type id S is denoted by a type representation type (trep
type) trepT (T, S) (denoted by rep<S> T).

Ground, orep, and trep types are disjoint types for the type checker. For
instance, expressions of type rep<this> T cannot be assigned to variables
of type T since T and rep<this> T correspond to different dynamic types.
Since the type universes for different dynamic types are disjoint, rep<S> T
and rep<R> T are different types. References of a type rep<this> T always
point into the universe owned by this. To prevent them from leaking to other
objects than this, fields having orep types and methods that have orep types
as return or parameter types can only be accessed/invoked on this (we will
relax this restriction for readonly references, see below; the precise rules are
given in Subsection 2.2.5).

Readonly Types. We use the readonly type roT (T) (denoted by readonly
T) for readonly references to objects of class/interface T independent of the
universe. Readonly types have three important properties:

1. They are supertypes of the corresponding readwrite types. That is,
readonly T is a supertype of T, rep<this> T, and rep<S> T.

2. It is not possible to use an expression of a readonly type as target for a
field update or an invocation of a readwrite method. This is checked by
context conditions.

8 Note that this serves as a keyword here, not an expression.

60 2. Mojave and the Universe Type System

3. Reading fields or invoking readonly methods via readonly references
yields again readonly references. Thus, it is not possible to gain a read-
write reference through a readonly reference. Consequently, we can allow
fields of rep types to be accessed on readonly references without violating
representation encapsulation.

We support downcasts to convert readonly references into readwrite refer-
ences. As with conventional downcasts, such casts need runtime checks. If a
readonly reference points into universe U , these checks guarantee that only
the owners of U and objects belonging to U can successfully downcast the
readonly reference into a readwrite reference. Technically, that is achieved by
checking that the type mentioned in the cast-statement specifies a dynamic
type of the universe to which the object in the right-hand-side variable be-
longs. See Subsection 2.2.5 for a formalization of these rules, and the following
subsection for an example.

2.2.4 Examples

In this subsection, we present an example program which is used throughout
this book. The program consists of two modules: Module LIST contains an
implementation of a doubly linked lists of objects with iterators. The module
PROPERTY implements a Java-Bean-like [Ham97] component that uses a list as
internal representation. So-called property objects can be used to configure
the internal state of the dynamic component with a property editor. This ex-
ample contains applications of both object and type universes, methods that
manipulate object structures by destructive updates, and interesting invari-
ants. Thus, it illustrates the universe type system as well as our specification
and verification techniques, in particular the handling of frame properties and
invariants. In the text, we will only present small portions of the example to
highlight certain aspects. The full example can be found in App. C.

2.2.4.1 Container Classes. Containers are interesting examples for alias
control since (1) they usually work with internal representations (e.g., node
structures or arrays) which have to be encapsulated; (2) they have to grant
other objects restricted access to their representations, for instance to im-
plement iterators; (3) the element objects do not, in general, belong to the
representation, but are shared with other objects. As an example for a con-
tainer class, we study a doubly linked list implementation.

Doubly Linked Lists. The node structure of a doubly linked list consists of
a set of Node-objects. Since all nodes belong to the same universe (owned
by the list header), we use ground types for the prev- and next-fields. The
element objects stored in the list can belong to any universe. Thus, the only
legal way to reference them is through a readonly type.

2.2 Universes: A Type System for Flexible Alias Control 61

public class Node {
public Node prev, next;
public readonly Object elem;

}

The list header stores references to the first and last node of the node struc-
ture. To encapsulate the nodes, we put them into the header’s object uni-
verse. This encapsulation allows us to make the fields of Node public to allow
subclasses of List to directly manipulate their node structures.

public class List {
protected rep<this> Node first, last;
...

}

This prevents the header from giving away a readwrite reference to a node.
In particular, a subclass BadList of List cannot declare a method

public Node getNode() { result = this.first; } // type error

since the result type is not compatible with the type rep<this> Node of the
first-field. On the other hand, if getNode had return type rep<this> Node,
the method could only be invoked on this, which prevents the reference from
leaking (see Subsection 2.2.3 and 2.2.5).

public rep<this> Node getNode() { result = this.first; } // safe

Turning Readonly References into Readwrite References. The following code
fragment illustrates how the owner of an object X and objects that belong to
the same universe as X can cast a readonly reference to X into a readwrite
reference:

(1) public int m(List l, Object rw) {
(2) readonly Object ro;
(3) rep<this> Object rr;
(4) int dummy;
(5) dummy = l.appFront(rw);
(6) ro = l.getFirst(); // returns object in rw
(7) rw = (Object) ro; // legal
(8) rr = (rep<this> Object) ro; // runtime error
(9) }

We assume that the list l is well-formed and rw references an object X
upon invocation of m. Since the type of rw is a ground type, the this-object
and X belong to the same universe. X is then stored in a list and retrieved
again (lines 5 and 6), which yields a readonly reference to X (see property 3
of readonly types in Subsection 2.2.3). This reference is then downcast to
a readwrite reference (line 7), which is legal since the ground type Object
refers to the universe to which the this-object and X belong. However, the
cast in line 8 leads to a runtime error since X does not belong to the object
universe owned by this.

62 2. Mojave and the Universe Type System

References into Representations. To illustrate the flexibility gained by read-
only references, we explain how iterators and binary methods can be imple-
mented. Both patterns are not supported by existing type systems for alias
control such as ownership types or balloon types (see Section 2.3).

Positions and Iterators. For efficiency, an iterator has to store its current
position in the data structure over which it iterates. For doubly linked lists,
this means that an iterator has to hold a reference to a node object. As a
basis for iterators, we introduce a simple class ListPos which is used to store
positions in a list.

A ListPos-object references the list it is associated with (using a ground
type) and a node of that list. Since the node belongs to the object universe
owned solely be the list header, this reference has to be readonly9.

public class ListPos {
protected List list;
protected readonly Node pos;
...

}

List

first

last

elem

prev

next

Node

elem

prev

next

Node

elem

prev

next

Node

elem

prev

next

Node

elem

prev

next

Node

Iter

pos

list

lastRet.

ListPos

pos

list

Fig. 2.5. Object Structure for a Doubly Linked List with Iterator and Position
(dashed arrows depict readonly references)

9 Using a type universe for the node structure would allow list positions to be
owners of the node structure and thus to hold readwrite references to nodes.
However, to achieve stronger alias control and to illustrate the flexibility of object
universes, we use an object universe here. See the property editor example for a
similar pattern using type universes.

2.2 Universes: A Type System for Flexible Alias Control 63

ListPos can easily be extended to implement iterators (see App. C.1). Note
that although the iterator has only a readonly reference to the node structure,
it can remove elements from the list by invoking List’s remove-method.
(List’s remove-method casts the readonly Node-reference into a readwrite
reference.) The object structure of a doubly linked list with a ListPos-object
and an iterator is illustrated by Figure 2.5 (the list implementation uses
dummy nodes at both ends to simplify methods and invariants).

Binary Methods. Readonly references allow readonly methods to access
several representations simultaneously. This is particularly useful to imple-
ment side-effect-free binary methods such as test for structural equality. The
implementation of equalsList (see Fig. 2.6) demonstrates the concrete syn-
tax of Mojave and the usage of Operator.

public class List {
...
public boolean equalsList(readonly List l) readonly {

readonly Node n1,n2,l1,l2;
boolean b, b1, b2, e;
readonly Object o1,o2;

result = true;
n1 = this.first;
n2 = l.first;
n1 = n1.next; // skip dummy node
n2 = n2.next; // skip dummy node
l1 = this.last;
l2 = l.last;
b = true;
b1 = true;

while(b) {
o1 = n1.elem;
o2 = n2.elem;
e = Operator.equalO(o1,o2);
if (e) { // elements are equal

n1 = n1.next;
n2 = n2.next;
b1 = Operator.equalO(n1,l1);
b2 = Operator.equalO(n2,l2);
b1 = Operator.not(b1);
b2 = Operator.not(b2);
b = Operator.condAnd(b1,b2);

} else { result = false; b = false; }
}
b = Operator.condOr(b1,b2);
if (b) result = false; else ;

}
}

Fig. 2.6. Implementation of equalsList

64 2. Mojave and the Universe Type System

2.2.4.2 Properties. A property10 is a part of the state of a dynamic com-
ponent that can be read and written (e.g., size and color are properties of a
window). Property editors allow one to inspect and modify properties of dy-
namic components, similar to builder tools for Java Beans [Ham97]. Property
editors read and manipulate properties via property objects that implement
the following interface11:

public interface Property {
public int setValue(readonly Object v);
public readonly Object getValue() readonly;

}

Property objects provide very flexible control over access to properties:
(1) They provide uniform access to all properties of a dynamic component;
(2) A dynamic component can control what clients can get what kinds of and
how many property objects; (3) Property objects can have state. Thus, prop-
erty objects can be implemented that permit only one modification or that
permit modifications only within a certain period of time. Such fine-grained
control is difficult to achieve by ordinary get- and set-methods in a dynamic
component’s interface.

Properties are an interesting example with which to study dynamic com-
ponents with several interface objects. Since property objects are used to
manipulate the internal state of a dynamic component, they need readwrite
access to the dynamic component’s representation12. Therefore, we use type
universes to realize dynamic components with property objects. To illustrate
this pattern, we implement a very simple dynamic component with main
class MyBean that uses a doubly linked list as internal representation (see
Figure 2.7). Property objects (of class ListProperty) allow one to read and
update certain elements of the list. MyBean, Property, and ListProperty
are implemented in module PROPERTY which can be found in App. C.2. The
implementation of class MyBean uses the type universe for MyBean for the rep-
resentation. Thus, ListProperty-objects can hold readwrite references to the
list of a MyBean-object and associated ListPos-objects. In particular, they
can invoke the setValue-method of ListPos which is a readwrite method.
Figure 2.8 illustrates the object and universe structure of a MyBean-object
with one ListProperty-object.
The implementation of ListProperty reveals that type universes restrict
reuse: In the absence of universes, ListProperty would only use the type
declarations ListPos and Property and could therefore be implemented in-
dependently of MyBean and reused in different contexts. Even in the absence
10 The example is taken from [HC97, pp. 216].
11 In realistic applications, properties should also provide a name, a description,

etc. We omit this information for brevity.
12 It is not possible to manipulate the representation via methods of another in-

terface object X (see the pattern used for the remove-method in class Iter) if
property objects are implemented in different modules. That would require the
set-methods of X to be public and thus allow one to circumvent access control.

2.2 Universes: A Type System for Flexible Alias Control 65

public class MyBean {
rep<MyBean> List beanRep;
...

}

public class ListProperty implements Property {
protected rep<MyBean> ListPos lp;
...

public int setValue(readonly Object v) {
rep<MyBean> ListPos p; p = this.lp;
result = p.setValue(v);

}
}

Fig. 2.7. Implementation of Property Pattern

List

Node

ListPos

Node Node Node Node

MyBean

beanRep
ListProp.

lp

Fig. 2.8. Object Structure for a MyBean-Object

of universes, the same problem would occur if ListProperty-objects would
contain a reference to the associated MyBean-object. In that scenario, the
problem could be solved by using subtyping or genericity. We can apply the
same solutions for universes: (1) We can use the type universe of a common
superclass of all dynamic components that provide properties (if such a su-
perclass exists); obviously, this weakens alias control since one universe is
used for the representations of several dynamic components (analogously to
losing type information when genericity is simulated by subtyping [Mey86]).
(2) We could extend the type universes to support genericity. We consider
such an extension further work (see Chapter 7).

66 2. Mojave and the Universe Type System

2.2.5 Formalization of the Universe Type System

The universe type system can be used to statically check whether a program
is compliant to the universe programming model described above. In this
subsection, we formalize the universe type system and the relevant context
conditions. A formal proof of type safety is contained in Subsection 3.2.1.

Types. The universe type system provides the primitive types boolean and
int, four kinds of reference types (ground types, orep types, trep types, read-
only types), and a type for the null-value (see Figure 2.1).

The subtype relation ¹T on types follows the subtype relation in Java:
Reference type S is a subtype of reference type S′ if (1) both types are of
the same kind and (2) the class/interface of S extends or implements the
class/interface of S′. In addition, every readonly type is a supertype of the
ground and rep types for the same type declaration. A formalization of the
subtype relation can be found in Paragraph 3.1.1.3.

The Type Combinator. Types describe the dynamic type of a program ele-
ment (expression, field, method) relative to the current universe (see Subsec-
tion 2.2.3). Consequently, the type of a field access or of a method invocation
has to be determined by combining the type of the target variable and the
type of the field or method as illustrated by the following example.

v

f

this

S

T

Fig. 2.9. Example for Type Combinator

Consider the field access v.f, where v is declared to be of type rep<this> T
and class T contains a field f of type S. As illustrated in Figure 2.9, v holds a
reference to an object that belongs to the universe owned by this (since v has
an orep type), and the S-object referenced by f belongs to the same object
as the object that contains f (since f has a ground type). Consequently, v.f
holds a reference to an S-object that belongs to the universe owned by this.
That is, relative to the current universe, v.f has the type rep<this> S. Such
combinations of types are described by the type combinator

2.2 Universes: A Type System for Flexible Alias Control 67

∗ : Type × Type → Type

If T and S are the types of v and f, then the type of v.f is T ∗ S. This type
combinator is partially defined by the following table (first argument: rows,
second argument: columns):

grndT(T) trepT(T,T’) orepT(T) roT(T)

grndT(S) grndT(T) trepT(T,T’) orepT(T) roT(T)
trepT(S,S’) trepT(T,S’) undefined undefined roT(T)
orepT(S) orepT(T) undefined undefined roT(T)
roT(S) roT(T) roT(T) roT(T) roT(T)
booleanT all undefined
intT all undefined
nullT all undefined

booleanT intT nullT

grndT(S) booleanT intT nullT
trepT(S,S’) booleanT intT nullT
orepT(S) booleanT intT nullT
roT(S) booleanT intT nullT
booleanT all undefined
intT all undefined
nullT all undefined

The definition of the type combinator reveals four important aspects:

– The class/interface of the resulting type is the class/interface of the second
argument. This is as in Java where the type of v.f is the type of f.

– The combination of two rep types is not defined to ensure that it is not
possible to gain readwrite references to objects that belong to grandchildren
of the current universe13.

– If one of the arguments is a readonly type, the result is also a readonly
type. This guarantees that readonly references are transitive. That is, it is
not possible to gain a readwrite reference through a readonly reference.

– If the first argument is a primitive type, the result is undefined since such
situations cannot occur in Mojave (e.g., it is not allowed to invoke methods
on integer variables).

The definition of the type combinator affects the context conditions for read-
only methods. In analogy to Java, the combination of the types of the target
and the actual parameter of a method invocation has to be a subtype of
the type of the formal parameter (see below for the type rules). In cases
where the method is invoked on a readonly reference, this combination yields
a readonly type. Therefore, we require that all formal parameters of read-
only methods must have readonly or primitive types to meet the requirement
above. This rule is no restriction since readonly methods must not modify
their parameters anyway.
13 It would be type safe if the combination of two rep types yielded a readonly type.

However, we think that such a definition is rather unintuitive. If the readonly
type is desired, it can be achieved by an additional assignment.

68 2. Mojave and the Universe Type System

Type Rules. The type rules of Mojave follow the type rules of Java [GJS96,
ON98]. Whereas most of Mojave’s type rules are identical to Java (for in-
stance, a while-statement is well-typed if the condition is of type boolean
and if the body is well-typed), the rules for object creation, cast-statements,
field access, and method invocations must be adapted, mainly w.r.t. the fol-
lowing aspects:

– We have to refine the requirements of Java’s type rules for field accesses
and method invocations. Java’s requirements stay basically valid (e.g., the
type of an actual method parameter must be a subtype of the type of
the corresponding formal parameter). However, we have to apply the type
combinator to determine the types of the field access and the return resp.
the parameter types of method invocations.

– Field access and method invocation statements need additional require-
ments to guarantee that the object universes of different objects are kept
apart. Therefore, fields having orep types and methods that have orep types
as return or parameter types can only be accessed/invoked on this and
variables of readonly types (see Subsection 2.2.3). The special treatment
of the implicit parameter this is necessary for alias control on the object
level in a statically-checkable type system.

The universe-specific rules are displayed below. Whenever we refer to a pro-
gram element such as a variable or statement in a type rule, we assume that
the program context of this element is implicitly given and that we can refer
to declarations in this context14. We use [e] to denote the type of an ex-
pression or field e. Note that we do not need type rules for expressions since
Mojave provides only primitive expressions. Thus, the type of a literal, local
variable, or formal parameter is directly defined by the program. In methods
m declared in type T, [this]15 has grndT (T) if m is a readwrite method,
and roT (T) if m is readonly (recall that all formal parameters of readonly
methods are required to be readonly). We use ret(m) and par(m, i), 1 ≤ i to
refer to the result type and the type of the i-th explicit formal parameter of
method m. v ∼= w expresses that v and w are identical variables.

The judgment ` stmt expresses that statement stmt is well-typed in a
given program. That is, each rule expresses that the statement below the line
is well-typed in a closed program P or in the core M of an open program if the
(comma-separated) requirements above the line are met by P resp. M . Note
that all requirements can be checked modularly. That is, if the requirements
are met by the core of an open program P, they are also met by all closed
programs in P. If the type combinator occurs within a rule, the statement is
only correctly typed if the application of the combinator is defined.
14 Technically, this means that the rules are described for occurrences within a

program context [PH97a].
15 To distinguish expressions from the values they hold, we use typewriter font

for the program elements and roman font for the values. For instance, v denotes
a variable whereas v is the value held by v.

2.2 Universes: A Type System for Flexible Alias Control 69

T ¹T [v], grndT?(T)16 ∨ orepT?(T) ∨ trepT?(T)

` v=new T();

T ¹T [v], T ¹T [e],

` v=(T)e;

orepT?([S@f]) ⇒ (w ∼= this ∨ roT?([w])),
[w] ∗ [S@f] ¹T [v]

` v=w.S@f;

¬roT?([w]), orepT?([S@f]) ⇒ w ∼= this,
[e] ¹T [w] ∗ [S@f]

` w.S@f=e;

∀i ∈ {1, . . . , n} : orepT?(par(S:m, i)) ⇒ w ∼= this,
orepT?(ret(S:m)) ⇒ w ∼= this,
∀i ∈ {1, . . . , n} : [ei] ¹T [w] ∗ par(S:m, i),
[w] ∗ ret(S:m) ¹T [v]

` v=w.S:m(e1, . . . , en);

¬roT?(S′),
∀i ∈ {1, . . . , n} : ¬orepT?(par(S@m, i)),
¬orepT?(ret(S@m)),
∀i ∈ {1, . . . , n} : [ei] ¹T S′ ∗ par(S@m, i),
S′ ∗ ret(S@m) ¹T [v]

` v=S’.S@m(e1, . . . , en);

∀i ∈ {1, . . . , n} : orepT?(par(S@m, i)) ⇒ w ∼= this,
orepT?(ret(S@m)) ⇒ w ∼= this,
∀i ∈ {1, . . . , n} : [ei] ¹T [w] ∗ par(S@m, i),
[w] ∗ ret(S@m) ¹T [v]

` v=w.S@m(e1, . . . , en);

Four aspects of the universe type rules above need explanation:

– The rule for casts/assignments is like in Java. Note that it allows readonly
references to be cast to readwrite references (see Subsection 2.2.3). The
condition T ¹T [e] is not necessary for type safety but prevents runtime
errors.

– orep types indicate that a reference points to an object owned by this.
Therefore, fields of orep types can only be accessed on this and readonly
references. Methods with orep types as parameter or result types can only
be invoked on this (readonly methods that could be invoked on readonly
references have readonly or primitive types as parameter and result types).
For example, if variable v is of a ground type (i.e., v and this belong to the
same universe) and field f is of an orep type, v.f yields a reference to an
object that belongs to the object universe owned by v. That corresponds

16 Discriminator functions such as grndT? are automatically defined for each data
type (see App. A.1).

70 2. Mojave and the Universe Type System

only to the universe programming model if (a) the reference is readonly
or (b) v and this hold the same object. To enforce the latter condition
statically, we require that only the this-variable and variables of readonly
types can be used to access fields of orep types. Methods with orep types
as result types can only be invoked on the this-variable.

– orep types are not allowed in static methods since they don’t have a this-
object.

– Since readonly types do not specify a universe, it is neither possible to
create objects of readonly types nor to invoke static methods with readonly
target types. Otherwise, the universe the new object belongs to resp. the
current universe for the execution of the static method would be undefined.

– Neither writing field access nor invocation of readwrite methods is allowed
on readonly references.

We define and prove type safety of Mojave based on the above rules in Sub-
section 3.2.1.

2.2.6 Discussion

In this subsection, we present the informal universe invariant and discuss
the expressiveness, limitations, and possible applications of the universe pro-
gramming model. Furthermore, we explain the relation of type systems and
interface specifications.

The Universe Invariant. In the description of the universe programming
model, we focussed on references between objects, that is, static aliasing.
However, as pointed out in Subsection 1.4.4, dynamic aliases are as problem-
atic as static aliases since they can also be used to modify representations and
to break invariants. We can control dynamic aliasing by treating local vari-
ables and formal parameters like instance variables of the this-object. More
precisely: In instance methods, local variables and formal parameters behave
like instance variables of the this-object. That is, they can hold readwrite
references to objects belonging to the current universe, the type universes
that are children of the current universe, and the object universe owned by
this. Since orep types are not allowed in static methods, only the former two
cases are possible in static methods.

Controlling both static and dynamic aliases leads to the following invari-
ant that holds in all execution states: If there is a reference from object X to
object Y (where local variables are treated as described above) then at least
one of the following cases apply:

1. X and Y belong to the same universe;
2. Y belongs to a universe owned by X;
3. the reference is readonly.

2.2 Universes: A Type System for Flexible Alias Control 71

We do not formally prove this invariant. However, it is easy to see that the
invariant is a direct consequence of well-typedness: In a well-typed execution
state, each instance variable X.f holds a value of a subtype of f’s declared
type. If the type of f is a ground type, this value is either the null-value or
a reference to an object Y that belongs to the same universe as X (case 1
of the invariant); if the type is a rep type, Y belongs either to the object
universe owned by X or to a type universe owned by X (case 2); if the type
is a readonly type, Y can belong to an arbitrary universe (case 3). Therefore,
type safety of the universe type system guarantees that the invariant holds
in all interesting execution states (see Subsection 3.2.1 for our notion of type
safety). During verification, we can assume that execution states are well-
typed and can thus exploit the universe invariant (see Subsection 5.4.5 for
an example).

Expressiveness and Limitations. The universe programming model allows
one to realize dynamic components with encapsulated representations. By
strong alias control and readonly references, whole object structures can be
protected from unwanted modifications. Universes provide encapsulation that
is far beyond what can be directly achieved by Java’s access modes for fields,
methods, and type declarations. In particular, object universes provide en-
capsulation on the object level, which cannot be directly expressed by access
modes in Java.

On the other hand, the universe programming model is flexible enough
to express many common implementation patterns including binary methods
(such as equals), iterators, several objects sharing one representation, mutual
recursive types, etc.17

We have developed type universes to enable modular verification of frame
properties and invariants, and object universes to show the power of our ap-
proach and to simplify verification. Although universes provide a lot of flex-
ibility, they are still too restrictive for certain programming patterns: (1) As
presented here, universes do not support global data that can be read and
written by objects that belong to different universes. For instance a global
output stream that can be used by all objects of the program cannot be im-
plemented (if the print method of the stream is not readonly). Such patterns
could be supported by an additional global universe that can be accessed by
all objects. To simplify the formalization of the universe type system and the
restrictions on dependencies, we do not follow this approach here. (2) The
universe programming model does not allow objects to migrate from one uni-
verse to another. Such patterns are for instance used in initialization meth-
ods (e.g., the initialization method of a lexer could take an input stream as
parameter [DLN98]) or in the C++ Standard Template Library, where differ-

17 Strictly speaking, the universe programming model does not restrict programs at
all: Each Java program can be modeled with universes by only using the standard
universe and readwrite references. However, the modularity requirements for
abstractions and invariants presented in Paragraph 5.1.3.2 forbid such programs.

72 2. Mojave and the Universe Type System

ent components exchange whole implementations (see e.g., member function
swap of class vector [MS96]). Possible work-arounds are cloning of object
structures (thereby losing object identities) or readonly references (thereby
losing the ability to modify objects). A promising approach to overcome these
shortcomings is the combination of universes with unique variables. A unique
variables guarantees that the referenced object is not aliased at all and can
therefore easily be moved to another universe (personal communication with
John Boyland)

Applications. The benefits of the universe programming model for modular
specification and verification are discussed in detail in Chapters 5 and 6. Be-
sides this application, the representation encapsulation provided by universes
is helpful in various other areas:

– Optimization: The universe programming model provides additional in-
formation about the object store which can be used to improve memory
allocation strategies (see e.g., sandwich types [GTZ98]) and garbage col-
lectors.

– Concurrent programming: The centralized access to representations can
be used to simplify synchronization in multithreaded programs: Access to
the representation of a dynamic component could be synchronized on its
interface objects instead of locking each single representation object.

– Distributed programming: The universe structure gives information about
which objects should be copied/moved to a different process upon remote
method invocations. For instance, it is reasonable to copy or move the
whole component when an interface object has to be transferred. Readonly
references are good candidates for references that should be turned into
remote references instead of copying the referenced object.

– Operational interface specifications: One of the most prominent problems
of operational interface specification languages is that execution of specifi-
cations should not lead to observable side-effects on program execution (see
Paragraph 1.6.1.2). On the other hand, in languages like JML [LBR99a] it
is not possible to completely forbid side-effects in specifications (i.e., object
creation and location update) since object structures (so-called models) are
used to represent abstractions. These models have to be created and ini-
tialized. Different universes could be used for model objects and objects of
the normal program execution, where model objects can only have read-
only references to non-model objects. This way, interface specification can
be checked statically not to cause observable side-effects.

Implementation of the Universe Type System. To implement the universe
type system, the type checker of a Java compiler has to be modified to check
the above context conditions. Furthermore, the runtime environment must
store for each object the universe it belongs to. This information is needed
for dynamic checks when readonly references are cast to readwrite references.
However, in theory, if only verified programs were executed on the virtual

2.2 Universes: A Type System for Flexible Alias Control 73

machine, these dynamic checks could be omitted since the correctness of all
casts would have been proved during verification. An implementation of the
universe type system is considered future work.

Type Systems vs. Interface Specifications. A variety of program properties
can be both (1) formalized as interface specification and proved by means of
formal verification and (2) expressed by programming language techniques
such as type systems and checked statically. For instance in Mojave, alias
control is realized by the universe type system, whereas other frameworks use
invariants to describe static aliasing. Other type systems are for example used
to assure that certain variables can never hold the null-value [JLMPH99], a
property that has to be included in an interface specification in our approach.

Although type systems and interface specifications seem to be quite dif-
ferent at first glance, there are a number of similarities. In fact, type anno-
tations of ordinary OO-programs can be regarded as a special form of inter-
face specification. For instance, the parameter and result types of a method
could be specified as pre- and post-conditions, and the types of fields could
be expressed by type invariants; the co- and contravariance rules for over-
riding methods correspond to the rule that preconditions can be weakened
and postconditions can be strengthened in overriding methods. Analogously,
the universe type annotations can be regarded as specification which leads
to proof obligations that essentially require one to prove that the universe
invariant holds in every execution state.

When a specification and verification technique is developed, it is an im-
portant task to decide what program properties should be specified as inter-
face specifications and verified, and what properties should be expressed and
checked by means of a type system. For decidable properties, the applica-
tion of type systems simplifies verification since they enable static checking.
However, in contrast to verification, type systems often have to statically
approximate the dynamic conditions to make static checking possible. For
instance the universe type system requires that fields of an orep type can
only be accessed on the this-parameter (and readonly references) although
it would be suffcient to require that the target object is the this-object,
which would be more precise, but cannot be checked statically. Thus, specifi-
cation and verification provide in general more flexibility and accuracy than
type systems. Furthermore, using interface specifications to express program
properties allows one to clearly separate the specification technique from the
semantics of the programming language.

Finding the right balance between specification and verification tech-
niques on the one hand and type systems on the other hand is a non-trivial
task. For Mojave, we decided to use the type system for alias control since es-
pecially dynamic aliasing cannot adequately be expressed by state-of-the-art
interface specification techniques (see Subsection 1.3.5). To achieve a maxi-
mum of expressiveness and accuracy, and to focus on the essential semantics
of Mojave, we require all other program properties to be expressed by means

74 2. Mojave and the Universe Type System

of interface specifications. To adapt the specification and verification tech-
niques presented in this book to other programming languages, one can either
transfer the universe type system to these languages or develop appropriate
specification and verification techniques to guarantee the universe invariant
without using the type system.

2.3 Related Work

In this section, we compare the universe type system to other approaches to
alias analysis and control. Related work on the design of module systems is
described in Subsection 1.4.1.

Aliasing has been studied to support optimization and reasoning. An
overview of work on aliasing in OO-systems can be found in [NVLA99]. In
the following, we discuss work on alias analysis, alias control, and readonly
references that is relevant for this book.

Alias Analysis. Alias analysis is used to determine whether at a particular
program point, two references refer to the same object. Interesting alias anal-
yses can be obtained for instance by Steengaard’s points-to analysis [Ste96] or
Wilhelm’s, Sagiv’s, and Reps’ shape analysis [WSR00]. Alias analysis can be
used for compiler optimizations and reasoning, but not to control and restrict
aliasing statically. To get reliable alias information in open programs, we have
to apply techniques for alias control to make sure that program extensions
cannot introduce new sources of aliasing.

Alias Control. Universes have been designed to meet the following objectives:
They should (1) have simple semantics, (2) be easy to apply, (3) be statically-
checkable (4) guarantee an invariant that is strong enough for modular rea-
soning, and (5) be flexible enough for many useful programming patterns. In
this paragraph, we compare the universe type system to other approaches to
alias control w.r.t. these objectives.

Type Systems. Ownership types [CPN98] provide a very flexible means
for alias control. They realize the ownership model with strong alias control
by a parametric type system. Like object universes, ownership types support
only one owner per representation. So-called context parameters are used to
provide references from inside a representation to the outside. Context pa-
rameters are similar to parametric polymorphism. Instead of parameterizing
over types, they parameterize over owners. Context parameters allow objects
of one context to hold readwrite references to enclosing contexts (which cor-
responds to readwrite references from an object belonging to universe U to an
object belonging to an ancestor of U). Universes do not allow such references
to guarantee that a method execution can only modify objects belonging to
the current universe and its descendants. This property is crucial for our
verification technique (see Subsection 5.4.2). Ownership types are statically-
checkable. However, context parameters make ownership types rather difficult

2.3 Related Work 75

to apply [Bok99]. Readonly types can replace context parameters in many
situations and lead to programs that are easier to read and reason about.
Furthermore, they allow multiple objects to access one representation which
is necessary to implement iterators or binary methods. Such patterns as well
as several interface objects per representation are not supported by owner-
ship types. In contrast to readonly references, context parameters support
role separation. As presented in [CPN98], ownership types do not support
subtyping and inheritance.

[NVP98] proposes alias modes to control aliasing. Similar to ownership
types, each object is equipped with a context. Alias modes specify constraints
on references. For example, the mode rep enforces representation contain-
ment (like our orep types). The mode arg provides references that can be
freely passed around, but must not be used to manipulate the referenced
object. Thus, they are similar to readonly references. The so-called roles for
arg references are similar to context parameters. Like ownership types, alias
modes have been presented for a language without subtyping and inheritance.

Balloon types [Alm97] aim at full representation encapsulation, that is, all
objects reachable from an object are contained in its balloon (as if every field
was declared as an orep type). This is too restrictive for many programs (e.g.,
singly linked lists). Balloon types require a rather complex checking algorithm
based on abstract interpretation and cannot be checked modularly.

Like balloon types, Islands [Hog91] also provide only full encapsulation
and suffer therefore from the same lack of expressiveness. Islands are based
on a destructive read operation (see below). They permit dynamic aliases but
restrict them to be readonly. Islands have not been formally validated.

Confined types [BV99] guarantee that objects of a confined type cannot
be referenced in or accessed by code declared outside the confining package.
Confined types have been designed for the development of secure systems.
They do not support representation encapsulation on the object level, which
makes some aspects of verification difficult. In [MPH00b, MPH99b, MPH00c],
we show that access restrictions for trep types can be used to provide rep-
resentation encapsulation on the type and package level. Such restrictions
make trep types similar to confined types. However, we dropped these access
restrictions in this book to use only the amount of alias control that is essen-
tial for verification. Therefore, the type universes here are more general than
in [MPH00b] but provide less encapsulation.

We developed the universe type system systematically from the require-
ments of modular verification and formalized it similarly to ownership types
[CPN98]. Since the universe type system provides one type universe for each
object, it is closely related to value-dependent types [XP99]: Ground and rep
types can be seen as types that depend on a value, namely an owner object
(or a set of owner objects in case of type universes). Readonly types corre-
spond to existentially quantified dependent types (there exists an owner for

76 2. Mojave and the Universe Type System

the referenced object). For future work, we plan to formalize the universe
type system as a restriction of a type system with value-dependent types.

Uniqueness. Other approaches to alias control guarantee uniqueness of
variables. The reference held by a unique variable is the only reference to
the referenced object [Hog91, Min96, Wad90]. Unique variables are usually
realized by a destructive read operation, which we consider rather unintu-
itive since it assigns a new value to the variable that is read. Uniqueness can
also be achieved via reference counts and dynamic checks. Virginity [LS99] is
similar to reference counts that can only be incremented. The application of
the Extended Static Checker [DLNS98] avoids runtime checks to guarantee
uniqueness. [DLN98] explains a discipline of alias control based on virgin-
ity. Instead of explicit declaration, the permissable aliases are determined
purely based on the declaration of dependencies (see the absence of leaking
requirement in Paragraph 5.5.1.3). In their pure form, unique variables are
rather inflexible. In contrast to universes, alias control can only be achieved
by completely forbidding sharing of objects referenced by a unique variable.
However, combinations of uniqueness and other techniques such as universes
are a promising approach for more flexible alias control.

Readonly Types and Methods. [KT99] realizes readonly types in Java by im-
plicitly generating an interface for every type declaration. This interface con-
tains only the signatures of readonly methods. To achieve transitive protec-
tion, readonly types are used as result types for these methods. This is a
common technique, often proposed as a design pattern for write-protecting
objects [Dav99, KT99]. Like in our approach, readonly types are supertypes
of the user-defined types. Readonly types as described in [KT99] have three
major drawbacks: (1) Since they are not directly supported by the type
checker or runtime checks, inspection, reflection, or casts can be used to
break the write-protection. (2) Java interfaces provide only public methods.
Thus, they cannot be used to provide readonly access to the protected in-
terface. (3) Readonly methods do not modify the state of this, but are not
guaranteed to be side-effect-free. Thus, they are not readonly is our sense.
This is also true for const member functions in C++: They only forbid the
direct manipulation of the state of the implicit parameter. However, explicit
parameters and global variables can be modified and thus, via aliasing, also
the object referenced by this [Str91].

3. The Semantics of Mojave

This chapter presents a Hoare-style programming logic for Mojave. Based
on this axiomatic semantics, we prove interesting language properties such
as type safety. Moreover, we present a definition of modular correctness and
discuss modular soundness. The chapter concludes with a discussion of related
work.

3.1 Programming Logic

A programming logic provides the formal foundation for verification of pro-
gram and language properties (such as type safety). It formalizes parts of the
static and the dynamic semantics of a programming language. In this section,
we present a programming logic for Mojave.

To be able to handle object structures with sharing and destructive up-
dates, we formalize Mojave’s data and state model. In particular, we specify
object stores that enable us to express abstraction, which is a prerequisite
for the specification and verification of abstract methods and interface types.

Our programming logic refines Hoare logics for procedural languages. To
handle dynamic binding, the programming logic allows one to prove prop-
erties of virtual methods that capture the common properties of the corre-
sponding methods in subtypes. The distinction between the virtual behavior
of a method and the behavior of the associated implementations allows one
to transfer verification techniques from procedural to OO-programming.

3.1.1 Formal Data and State Model

The formal data and state model describes the types, values, objects, and
object states of a programming language. It is used

– as a formal foundation for the axiomatic semantics of the programming
language, in particular for the field-access- and new-statements;

– to make properties of programs such as type information available for spec-
ifications and proofs;

– to specify abstraction functions of objects or object structures;
– to handle side-effects on the object store and sharing of object structures.

78 3. The Semantics of Mojave

The formal data and state model of Mojave is based on the model presented
in [PH97b] which has been extended for Java-like languages in [PHM98]. It
consists of a program-independent part that formalizes, for example, types
and values, and a program-dependent part that contains information about
the types, fields, etc. declared in a program.

In the following, we extend the data and state model of [PHM98] to sup-
port the universe type system. Furthermore, we decompose the specifications
generated for a program to support modularity, especially information hid-
ing. Thereby, we focus on those properties of Mojave’s data and state model
that are essential for the rest of this book. For a detailed discussion of formal
data and state models, in particular of their use to specify sharing properties
and relations on object stores, see [PH97b].

3.1.1.1 Modular Structure. To be able to use properties of programs
such as type and field names or subtyping information in specifications, they
have to be made available in universal specifications. Therefore, we generate
program-dependent theories that contain formal descriptions of the interfaces
of a program. However, due to information hiding, clients of a class or mod-
ule must not be provided with all interfaces of that class or module. Thus,
we generate different theories for different views to a class, interface type, or
module. These theories are used to syntax check interface specifications and
as part of the formal framework in which a class is verified (see Chapter 4).

Theories for Single Classes and Interface Types. A class has five different
views. Conceptually, we provide one theory in the universal specification for
each of these views (there is only one theory for interface types). These the-
ories contain formalizations of the different interfaces of a class (see Para-
graph 2.1.2.3) and of private information. For instance, the theory for the
public view (the so-called public theory) contains the class name, subtype
information, and the names and types of public fields, etc. (see below for
details). The private theory contains information about private program ele-
ments such as the names and types of private fields.

Some views to a class include other views (for instance, every client that
has protected view can also access the public interface). In the program-
dependent theories, this is reflected by the import relation: If a view V in-
cludes view W , the theory for V imports the theory for W (see Figure 3.1,
where theories are drawn as boxes and arrows depict the import relation).

Theories for Modules. Having public or default access view to one type dec-
laration of a module includes public resp. default access view to all other
type declarations of that module. To avoid cyclic imports of theories (which
are forbidden in many languages for universal specifications), we replace the
public and default access theories for all type declarations of one module by
a single public and a single default access theory for the whole module.

Since access to the protected or the private protected interface of a class
includes access to the protected resp. private protected interfaces of all su-

3.1 Programming Logic 79

public
theory

private
theory

protected
theory

private protected
theory

default access
theory

Fig. 3.1. Conceptual Theory Structure for One Class

perclasses, there is an import relation between the corresponding theories.
The import relation is acyclic because the subtype relation is a partial order.

When a module N imports module M, the public interfaces of the class
and interface types in M become accessible in N. Consequently, the public
theory for M is imported by the public theory of N. Since the import of
modules is acyclic, import of theories stays acyclic, too.

Figure 3.2 illustrates the theory structure for the following two modules.
Each theory corresponds to one view to a module or class. Note that import
of modules does not affect the theory structure of the imported modules.
That is, the theories stay stable when a module is reused.

module M;
public Interface Mi { ... }
public class M1 implements Mi { ... }
public class Mn extends M1 { ... }

module N imports M;
public class N1 extends M1 { ... }
public class Nn { ... }
public interface Ni extends Mi { ... }

Properties of Closed and Open Programs. The universal specification of a
closed program contains the program-dependent theories described above, the
program-independent parts of the data and state model, the prelude theory,
and user-defined theories. This specification allows one to prove properties of
closed programs. To be suitable for modular verification, universal specifica-
tions for open programs must guarantee that properties proved for the core
of an open program P stay valid in all extensions of P. This is achieved as
follows:

– Due to the theory structure described in the last paragraph, adding new
modules to the core of an open program results in additional theories for

80 3. The Semantics of Mojave

B imports A since B is subtype of AA B

B imports AA B

public theory
module M

default theory
module M

private
theory classMn

protected
theory classMn

priv.prot.
theory classMn

protected
theory classM1

priv.prot.
theory classM1

private
theory classM1

public theory
module N

default theory
module N

private
theory classNn

protected
theory classNn

priv.prot.
theory classNn

protected
theory classN1

priv.prot.
theory classN1

private
theory classN1

import of theories because of module import

Fig. 3.2. Theory Structure for Two Modules

the universal specification of the extended core, but leaves existing theories
unchanged. Therefore, extending an open program leads to a refinement of
the universal specification. Consequently, all properties proved for the core
of an open program P hold in all closed programs in P. We say a property
holds in an open program P if it holds in all closed programs in P. Such
properties can be used for the verification of P. Unless otherwise stated,
all lemmas presented in this book hold in all closed and, thus, in all open
programs.

– To avoid contradictory specifications, we regard each module as part of
an open program. The generated theories specify the interface information
for that module and leave the types, fields, etc. not occurring in the scope
of the module un(der)specified. In particular, inclusive axioms that allow
one to reason about all types of a program (see Axiom import6 in Para-
graph 3.1.1.4) are only generated for main modules of closed programs.

3.1.1.2 Type Ids and Subtyping on Type Ids. As explained in Subsec-
tion 2.2.2, the universe type system distinguishes between type declarations,
types, and dynamic types. We introduce one sort for each of these entities
in the data and state model (see below for types and dynamic types). To
formalize the type declarations of an open program, we assume infinite sorts
ClassId and InterfaceId of type identifiers for classes and interfaces, resp. For
each class or interface declared in a module, a constant of sort ClassId resp.
InterfaceId is added to the public theory for that module. The fact that dif-
ferent constants denote different type ids is formalized by inequality axioms:
For each pair of TypeId constants S, T in the scope of a module M, M’s public
theory contains an axiom of the form S 6= T.

3.1 Programming Logic 81

Subtype Relation on Type Ids. In Mojave, there are three kinds of subtype
relations: (1) The subtype relation on type declarations (resp. their type ids)
as defined by the Mojave program; (2) The subtype relation on types that is
used to statically type check a program; (3) The subtype relation on dynamic
types that is used for runtime type information (e.g., for cast-statements).
The latter two relations are based on the former one, which is described in
the following. Subtyping on type ids in Mojave follows the rules of Java. It
is formalized as a relation ¹M on TypeIds (M stands for Mojave):

¹M : TypeId × TypeId → Bool

If a module declares a class or interface S to be a subtype of T (by an
extends- or implements-clause), an axiom of the form S ¹M T is added to
the public theory for that module. For the TypeIds declared in the core of
an open program P, ¹M is the smallest reflexive, transitive closure of these
axioms. That is, if S and T are declared in the scope of a module N, and S
is not a subtype of T, an axiom of the form S 6¹M T is added to N’s public
theory. Thus, the subtype relation on TypeIds is completely specified for all
TypeIds declared in a given core of an open program, and unspecified for
all other TypeIds. Since Mojave does not allow one to introduce a subtype
relation between two imported classes or interfaces (in contrast to Sather
[SOM94]), program extensions lead to a refinement of the axiomatization of
the subtype relation. The following properties of ¹M are guaranteed by the
context conditions of Mojave:

subM1 : ¹M is a partial order

subM2 : ctid(C) ¹M ctid(D) ∧ ctid(C) ¹M ctid(E) ⇒
ctid(D) ¹M ctid(E) ∨ ctid(E) ¹M ctid(D)

¹M is antisymmetric since there are no cycles in the subtype hierarchy.
Thus, ¹M is a partial order (subM1). subM2 formalizes single subtyp-
ing on classes. A more complete axiomatization of Java’s subtype relation
can be found in [Dip98].

We say S is a subtype of T if S ¹M T holds. S is a proper subtype of T if
S is a subtype of T and different from T.

3.1.1.3 Types and Subtyping on Types. Types have been formalized in
Figure 2.1 and explained in Subsection 2.2.5. The subtype relation ¹T on
types

¹T : Type × Type → Bool

is the smallest reflexive, transitive relation satisfying the following axioms.
Note that this axiomatization is program-independent.

nullT ¹T grndT (T) S ¹M T ⇔ grndT (S) ¹T grndT (T)
nullT ¹T orepT (T) S ¹M T ⇔ orepT (S) ¹T orepT (T)
nullT ¹T trepT (T, R) S ¹M T ⇔ trepT (S, R) ¹T trepT (T, R)

grndT (T) ¹T roT (T) S ¹M T ⇔ roT (S) ¹T roT (T)
orepT (T) ¹T roT (T)

trepT (T, R) ¹T roT (T)

82 3. The Semantics of Mojave

Since subtyping on types resembles subtyping on type ids, ¹T is also a partial
order:

Lemma 3.1.1. ¹T is a partial order.

See Appendix D.1 for the proof.

3.1.1.4 Modules. For each module, we add a constant of the infinite sort
ModId and the corresponding inequality axioms (see above) to the public
theory of that module. The function module yields the module that contains
the type declaration for a given TypeId:

module : TypeId → ModId

Since modules cannot be extended, we can provide a rather strong axioma-
tization of module. For each module M, we add an axiom of the form

module(T) = M ⇔ T ∈ {T1, . . . , Tn}
to M’s public theory, where T1, . . . , Tn are the type identifiers of the classes
and interfaces declared in M.

The Import Relation. The import relation is formalized by a function
imports. imports(M,N) yields whether module M imports module N.

imports : ModId ×ModId → Bool

For each module M directly importing modules N1, . . . , Nn, we add an axiom
of the form

imports(M, N) ⇔ M = N ∨ imports(N1, N) ∨ . . . ∨ imports(Nn, N)

The following properties are guaranteed by context conditions:
import1 : imports is a partial order

import2 : S ¹M T ⇒ imports(module(S),module(T))

import3 : T@m contains an invocation of S:n or S@n ⇒
imports(module(T),module(S))

import4 : T@m contains a local variable (or a formal parameter) of type
grndT(S), orepT(S), trepT(S,R), or roT(S) ⇒
imports(module(T),module(S))

import5 : T@m contains a local variable (or a formal parameter) of type
trepT (S, R) ⇒ imports(module(T),module(R))

The import relation is reflexive and transitive. Since it is acyclic, imports is
a partial order (import1). Whenever a type name is used in a module M (as
supertype, target of a method invocation, in a declaration of a local variable
or method signature, etc.), M has to import the module that contains the
corresponding type declaration (import2–import5). For closed programs
with main module M, we add the following inclusive axiom to M’s public
theory. Together with the axioms generated for module and imports, this
axiom allows one to reason about all types of a closed program.

import6 : imports(M,module(T))

3.1 Programming Logic 83

Accessibility. We formalize accessibility as defined in Subsection 2.1.2 by a
function accessible. accessible(M, T, S) yields whether a class member with
access mode M declared in type declaration T is accessible in S:

accessible : AccessMode × TypeId × TypeId → Bool
accessible(public, T, S) ⇔def imports(module(S),module(T))
accessible(protected , T, S) ⇔def accessible(default , T, S)∨

accessible(privprot , T, S)
accessible(privprot , T, S) ⇔def S ¹M T
accessible(default , T, S) ⇔def module(T) = module(S)
accessible(private, T, S) ⇔def T = S

Lemma 3.1.2. A class member declared in T can only be accessible in S if
T is in the scope of S.

accessible(M, T, S) ⇒ imports(module(S),module(T))

The proof runs by case distinction on M and is straightforward.

3.1.1.5 Methods. For every method implementation, we add a constant
of sort ImplId to the appropriate theory. static yields whether an imple-
mentation is a static method. It is defined by an axiom for each method
implementation in a program.

static : ImplId → Bool

3.1.1.6 Universes. The universe type system provides the standard uni-
verse, one universe for every object, and one universe for every dynamic type
in a program execution. A type universe is characterized by a type id and
the parent universe. An object universe is defined by the object id, class id,
and universe of its owner object :

data type
Universe = stdU

| typeU (TypeId ,Universe)
| objU (ObjId ,ClassId ,Universe)

end data type

The universes of a program execution form a hierarchy with the standard
universe at the top. This hierarchy is formalized by the following functions.
U / V yields whether U is a descendant of V . E is the reflexive closure of /.

E : Universe ×Universe ×Nat → Bool
U E0 V ⇔def U = V
U EN+1 V ⇔def ∃W, T, O, C :

(U = typeU (T, W) ∨ U = objU (O, C, W)) ∧W EN V

E : Universe × Universe → Bool
U E V ⇔def ∃N : U EN V

/ : Universe ×Universe → Bool
U / V ⇔def ∃N : N > 0 ∧ U EN V

84 3. The Semantics of Mojave

Lemma 3.1.3. E is a partial order.

The proof is contained in Appendix D.1.

To be able to refer to the current universe in specifications and proofs, we
introduce a global variable U that holds the current universe in every execu-
tion state. During execution of an instance method, U is identical to the uni-
verse to which the this-object belongs. In static methods, U is determined by
the universe of the method incarnation that precedes the invocation, and the
target of the invocation (see the static-invocation-rule in Subsection 3.1.2).
Program execution begins in the standard universe.

3.1.1.7 Values. Values in Mojave are integers, booleans, the null-value, or
references to objects. An object is characterized by its class, the universe
it belongs to, and an identifier of the infinite sort ObjId. The class and the
universe together determine the dynamic type of the object (see below). The
identifier is used to distinguish different objects of the same dynamic type.

data type
Value = bool(aB : Bool)

| int(aI : Int)
| null
| ref (cidV : ClassId , oid : ObjId , univV : Universe)

end data type

3.1.1.8 Dynamic Types and Subtyping on Dynamic Types. As ex-
plained in Subsection 2.2.2, a universe contains one dynamic type for every
type declaration in a program. Consequently, we formalize dynamic readwrite
reference types as tuples of type identifiers and universes. Besides dynamic
readwrite reference types, we have dynamic types for readonly references and
the primitive dynamic types:

data type
DynType = booleanDT

| intDT
| nullDT
| refDT (tidD : TypeId , univ : Universe)
| roDT (tidD : TypeId)

end data type

The dynamic types of variables on the stack, the dynamic types of instance
variables, and the dynamic parameter and result types of method incarnations
depend on (1) the corresponding types (of the variables, fields, methods),
(2) the this-object (for local variables and formal parameters) resp. the
target object (for instance variables and method incarnations), and (3) the
current universe. The appropriate mapping of types, values, and the current
universe to dynamic types is defined by dyn:

3.1 Programming Logic 85

dyn : Type ×Value × Universe → DynType
dyn(grndT (T), X, U) =def refDT (T, U)
dyn(trepT (T1, T2), X, U) =def refDT (T1, typeU (T2, U))
dyn(orepT (T), X, U) =def refDT (T, objU (oid(X), cidV (X), U))
dyn(roT (T), X, U) =def roDT (T)
dyn(booleanT , X, U) =def booleanDT
dyn(intT , X, U) =def intDT
dyn(nullT , X, U) =def nullDT

We call dyn(T, X, U) the dynamization of T w.r.t. X and U . The function
typeof yields the dynamic type of a Value:

typeof : Value → DynType
typeof (bool(B)) =def booleanDT
typeof (int(I)) =def intDT
typeof (null) =def nullDT
typeof (ref (C,OID , U)) =def refDT (ctid(C), U)

init yields a designated default value for every dynamic type that is used to
initialize instance variables and local variables:

init : DynType → Value
init(booleanDT) =def bool(false)
init(intDT) =def int(0)
init(nullDT) =def null
init(refDT (T, U))=def null
init(roDT (T)) =def null

Lemma 3.1.4 relates univ to univV . It is a direct consequence of the defini-
tions of univV , univ , and typeof .

Lemma 3.1.4. The universe to which an object X belongs contains the dy-
namic type of X:

ref ?(X) ⇒ univV (X) = univ(typeof (X))

The Subtype Relation on Dynamic Types. The subtype relation on dynamic
types

¹ : DynType ×DynType → Bool

follows the subtype relation on TypeIds. It is the smallest reflexive, transitive
relation satisfying the following axioms:

nullDT ¹ refDT (T, U) S ¹M T ⇔ refDT (S, U) ¹ refDT (T, U)
refDT (T, U) ¹ roDT (T) S ¹M T ⇔ roDT (S) ¹ roDT (T)

The irreflexive subtype relation is defined as follows:

≺ : DynType ×DynType → Bool
S ≺ T ⇔def S ¹ T ∧ S 6= T

The following lemmas formalize properties of ¹. Lemma 3.1.6 follows directly
from the definition of ¹. The proofs of Lemmas 3.1.5 and 3.1.7 can be found
in Appendix D.1.

Lemma 3.1.5. ¹ is a partial order.

86 3. The Semantics of Mojave

Lemma 3.1.6. If two dynamic readwrite types are subtypes, then they are
in the same universe:

refDT?(S) ∧ refDT?(T) ∧ S ¹ T ⇒ univ(S) = univ(T)

Lemma 3.1.7. If type S is a subtype of T , then the corresponding dynamic
types w.r.t. value X and universe U are subtypes as well (in case that S or
T is an orep type, X has to be an object reference to guarantee that dyn is
welldefined):

((orepT?(S) ∨ orepT?(T)) ⇒ ref ?(X)) ∧ S ¹T T ⇒ dyn(S, X, U) ¹ dyn(T, X, U)

3.1.1.9 Fields and Locations. As explained in Subsection 1.5.1, we use
abstract fields to specify the abstract values of objects and object structures.
For simplicity, we explain the formalization of abstract fields together with
concrete fields (i.e., ordinary fields of the programming language). A detailed
description of abstract fields can be found in Subsection 4.2.1.

Field Identifiers. We assume two infinite sorts SimpleCFieldId and
SimpleAFieldId of simple field identifiers for concrete and abstract fields.
Simple field identifiers have the form T@f for a field f declared in class or
interface1 T. For every field declared in a class or interface, a constant of sort
SimpleCFieldId or SimpleAFieldId is added to the corresponding theory of
the class (in case of protected, private protected, or private fields) or module
(in case of public or default access fields).

To distinguish fields with the same simple field identifier in different
classes, we use two infinite sorts CFieldId and AFieldId of the form C:T@f
where T@f is a simple field identifier and C is a class that is a subtype of T
(or T itself). C:T@f denotes the field f of class C that is declared in type dec-
laration T. For each declared or inherited field T@f of class C, we introduce
a constant of sort CFieldId or AFieldId in the appropriate theory of C or C’s
module. To preserve information hiding, such a constant is only generated if
T@f is accessible in C. We use the sort FieldId as variant sort for CFieldId
and AFieldId:

data type
FieldId = cfield(cfid : CFieldId)

| afield(afid : AFieldId)
end data type

The mapping of simple field ids to full field ids and vice versa is done by the
following functions:

mkCFieldId : SimpleCFieldId × ClassId → CFieldId
mkAFieldId : SimpleAFieldId × ClassId → AFieldId
scfid : CFieldId → SimpleCFieldId
safid : AFieldId → SimpleAFieldId

These functions are defined by enumeration. That is, for every field identifier
C:T@f, axioms of the form
1 Abstract fields can be declared in interface types (see Subsection 4.2.1).

3.1 Programming Logic 87

mkCFieldId(T@f, C) = C:T@f resp. mkAFieldId(T@f, C) = C:T@f and
scfid(C:T@f) = T@f resp. safid(C:T@f) = T@f

are added to the theory that contains the constant declaration for C:T@f.
We have to axiomatize the fact that two different constants for field ids or

simple field ids denote different fields. However, due to information hiding, we
can in general not generate appropriate inequality axioms as we do for module
ids or type names: Assume that T@f and S@g are two private fields declared
in different classes. Thus, there is no theory that could contain an axiom
T@f 6= S@g without breaking information hiding. Therefore, we generate
inequality axioms only for those pairs of field ids or simple field ids for which
there is at least one class that has access to both fields. That guarantees that
there is always a suitable theory for the axiom. The inequality axioms for all
other pairs are useless anyway since there is no client that has access to both
fields. In addition, we can use the following axioms to show that two field ids
are unequal, in particular for those fields for which we don’t have constants
of sort CFieldId or AFieldId (see above)2:

field1 : mkCFieldId(fC , D) = mkCFieldId(gC , C) ⇔ fC = gC ∧D = C
field2 : mkAFieldId(fA, D) = mkAFieldId(gA, C) ⇔ fA = gA ∧D = C

Access modes. The access mode of a field is returned by the following func-
tion:

accessMode : FieldId → AccessMode

accessMode(C:T@f) is defined by an appropriate axiom in the theory that
contains the declaration of C:T@f.

Fields and Types. The relation between fields and types is defined by the
following functions: dtype yields the id of the type declaration a field is de-
clared in (the so-called declaration type). otype yields the id of the class a
field belongs to (object type). rtype is the range type of a concrete field.

dtype : FieldId → TypeId
otype : FieldId → ClassId
rtype : CFieldId → Type

For each field identifier C:T@f we generate axioms of the forms

dtype(cfield(C:T@f)) = T or dtype(afield(C:T@f)) = T
otype(cfield(C:T@f)) = C or otype(afield(C:T@f)) = C
rtype(C:T@f) = [T@f] or no axiom

where [T@f] denotes the type of T@f as declared in the program. The axioms
are added to the theory that contains the constant declaration for C:T@f.
Note that the object type is always a subtype of the declaration type:

field3 : ctid(otype(F)) ¹M dtype(F)

2 Please refer to App. A.2, p. 225 for the naming conventions used in the following
axioms.

88 3. The Semantics of Mojave

Field identifiers are very similar to tuples of a simple field identifier and a
ClassId, with scfid/safid and otype as selectors. This behavior is expressed by
the following axioms:

field4 : scfid(mkCFieldId(f, C)) = f
field5 : safid(mkAFieldId(f, C)) = f
field6 : otype(cfield(mkCFieldId(f, C))) = C
field7 : otype(afield(mkAFieldId(f, C))) = C
field8 : FC = mkCFieldId(scfid(FC), otype(cfield(FC)))
field9 : FA = mkAFieldId(safid(FA), otype(afield(FA)))

To reason about all (concrete and abstract) fields of a type declaration, we
have to axiomatize the fact that classes and interfaces are closed in the sense
that clients cannot add field declarations. However, due to information hid-
ing, the axiomatization is not as simple as for modules. For each class T, we
generate five axioms as follows (analogously for interfaces): Let f1, . . . , fm−1

be the private, fm, . . . , fn−1 the default access, fn, . . . , fp−1 the private pro-
tected, fp, . . . , fq−1 the protected, and fq, . . . , fr the simple field ids of the
public fields declared in T. Then we add axioms of the following forms to
the theories corresponding to the access modes of the mentioned field names
(e.g., axiom (4) belongs to T’s protected theory since only protected and
public fields are mentioned). We use f̂i to denote cfield(fi) resp. afield(fi) in
the axioms.

(1) dtype(F) = T ⇒ F = f̂1 ∨ . . . ∨ F = f̂r
(2) dtype(F) = T ⇒ accessMode(F) = private ∨ accessMode(F) = privprot∨

F = f̂m ∨ . . . ∨ F = f̂n−1 ∨ F = f̂p ∨ . . . ∨ F = f̂r
(3) dtype(F) = T ⇒ accessMode(F) = private ∨ accessMode(F) = default∨

F = f̂n ∨ . . . ∨ F = f̂r
(4) dtype(F) = T ⇒ accessMode(F) = private ∨ accessMode(F) = privprot∨

accessMode(F) = default ∨ F = f̂p ∨ . . . ∨ F = f̂r
(5) dtype(F) = T ⇒ accessMode(F) 6= public ∨ F = f̂q ∨ . . . ∨ F = f̂r

Locations. Object states are modeled via so-called locations. For each field
of its class, an object has a location. Locations can be considered as anony-
mous variables, that is, variables that can only be referenced through the
object they belong to. Similar to the formalization of fields, there are sorts
for concrete and abstract locations, and the corresponding variant sort:

data type
CLocation = cloc(CFieldId ,ObjId ,Universe)
ALocation = aloc(AFieldId ,ObjId ,Universe)
Location = mklc(CLocation)

| mkla(ALocation)
end data type

A location is determined by the field identifier (which implicitly contains
the class of the object), the object identifier, and the universe the object of
the location belongs to. lrtype yields the dynamic range type of a concrete
location, that is, the dynamization of the range type of the corresponding
field w.r.t. the location’s object. The identifier of this field can be obtained

3.1 Programming Logic 89

by fid. In programs and specifications, a location is usually specified by its
object and its simple field identifier. The resulting location is returned by
locC and locA, resp. For convenience we often write X.T@f or simply X.f for
locC (X, T@f), mklc(locC (X, T@f)), locA(X, T@f), and mkla(locA(X, T@f))
where the meaning is clear from the context. obj yields the object a location
belongs to. We say that a location belongs to a universe U if the location
belongs to an object that belongs to U .

lrtype : CLocation → DynType
lrtype(cloc(FC ,OID , U)) =def dyn(rtype(FC),

ref (otype(cfield(FC)),OID , U), U)

fid : Location → FieldId
fid(mklc(cloc(FC ,OID , U))) =def cfield(FC)
fid(mkla(aloc(FA,OID , U))) =def afield(FA)

locC : Value × SimpleCFieldId → CLocation
locC (ref (C,OID , U), f) =def cloc(mkCFieldId(f, C),OID , U)

locA : Value × SimpleAFieldId → ALocation
locA(ref (C,OID , U), f) =def aloc(mkAFieldId(f, C),OID , U)

obj : Location → Value
obj (mklc(cloc(FC ,OID , U))) =def ref (otype(cfield(FC)),OID , U)
obj (mkla(aloc(FA,OID , U))) =def ref (otype(afield(FA)),OID , U)

For convenience, we define accessibility of locations:

accessibleL : Location × TypeId → Bool
accessibleL(L, T) ⇔def accessible(accessMode(fid(L)), dtype(fid(L)), T)

We say that a location is present in a type declaration T if the declaration
type of its field is in the scope of T’s module:

presentL : Location × TypeId → Bool
presentL(L, T) ⇔def imports(module(T),module(dtype(fid(L))))

Lemma 3.1.8. If a location L is present in type declaration S and S is in
the scope of T’s module, then L is also present in T.

presentL(L, S) ∧ imports(module(T),module(S)) ⇒ presentL(L, T)

Lemma 3.1.9. If a location is accessible in a type T then it is also present
in T.

accessibleL(L, T) ⇒ presentL(L, T)

Both proofs can be found in Appendix D.1.

3.1.1.10 Object Stores. An object store describes the states of all objects
in a program at a certain point of execution. In particular, it describes how
objects are linked via references and which objects are alive (i.e., allocated).
A formalization of object stores is important as semantic foundation of pro-
gram specifications and is central for the verification of OO-programs. The

90 3. The Semantics of Mojave

formalization presented in the following is based on [PH97b]. For a detailed
explanation, the reader is referred to that thesis.

Object stores are modeled by an abstract data type with main sort Store
and the following operations: OS 〈LC := X〉 denotes updating the object
store OS at concrete location LC with value X. OS (LC) denotes reading
concrete location LC in store OS ; OS (LC) is called the value held by LC in
OS. new(OS , C, U) returns a reference to a new object (in store OS) of the
dynamic type for class C in universe U . OS 〈C, U〉 denotes the store after
allocating the object new(OS , C, U). alive(X,OS) yields true if and only if
object X is allocated in OS :

〈 := 〉 : Store × CLocation ×Value → Store
() : Store × CLocation → Value

new : Store × ClassId × Universe → Value
〈 , 〉 : Store × ClassId × Universe → Store

alive : Value × Store → Bool

In the following, we present and explain the axiomatization of these functions.
Location update and object allocation construct new stores from given ones;
location read and liveness test are used for the observation of stores. Axioms
store1–store5 specify the properties of stores observable by location reads,
axioms store6–store9 describe liveness properties, axioms store10–store12
specify the properties of the new-operation, and store13 is an extensionality
axiom.

Axiom store1 states that updating one location does not affect the values
held by other locations. Axiom store2 states that reading a location updated
by a value X yields X, if the object of the location and X are both alive.
We restrict this property to living objects in order to guarantee that loca-
tions never hold non-living objects and that locations of non-living objects
are initialized as described by axiom store3. Axiom store4 states that up-
dates by non-living objects do not modify the store. The assumptions and
requirements about the liveness of objects in axioms store2, store3, store4
simplify the definition of equivalence properties on stores (see [PH97b]). Ax-
iom store5 states that allocation does not affect the values held by locations.

store1 : LC 6= KC⇒OS〈LC := X〉(KC) = OS(KC)
store2 : alive(obj (mklc(LC)),OS) ∧ alive(X,OS)⇒OS〈LC := X〉(LC) = X
store3 : ¬alive(obj (mklc(LC)),OS)⇒OS(LC) = init(lrtype(LC))
store4 : ¬alive(X,OS)⇒OS〈LC := X〉 = OS
store5 : OS〈C, U〉(LC) = OS(LC)

Once an object has been allocated, it stays alive until the executed program
terminates. In particular, there is no garbage collection in Mojave. Thus,
Axiom store6 states that location updates do not influence liveness of ob-
jects. Axiom store7 specifies that an object is alive after allocation if and
only if it was alive before allocation or it is the newly allocated object. Ax-
iom store8 ensures that objects held by locations are alive. Together with
store2, store3, and store4, this simplifies proofs. Finally, values that are
not references to objects, are considered to be alive.

3.1 Programming Logic 91

store6 : alive(X,OS〈LC := Y 〉) ⇔ alive(X,OS)
store7 : alive(X,OS〈C, U〉) ⇔ alive(X,OS) ∨ X = new(OS , C, U)
store8 : alive(OS(LC),OS)
store9 : ¬ref ?(X)⇒alive(X,OS)

The following three axioms specify properties of the new-operation. A newly
created object is not alive in the store from which it was created (store10)
and it has the correct type (store11). The creation of an object of the dy-
namic type for class C and universe U yields the same result in two stores if
and only if liveness for all objects of that dynamic type is equivalent in these
stores (store12).

store10 : ¬alive(new(OS , C, U),OS)
store11 : typeof (new(OS , C, U)) = refDT (ctid(C), U)
store12 : new(OS1, C, U) = new(OS2, C, U) ⇔�

∀X : typeof (X) = refDT (ctid(C), U) ⇒
(alive(X,OS1) ⇔ alive(X,OS2))

�
Finally, we guarantee that two stores are equal if we cannot distinguish them
by the observer functions.

store13 : (∀X : alive(X,OS1) ⇔ alive(X,OS2)) ∧
(∀LC : OS1(LC) = OS2(LC)) ⇒ OS1 = OS2

A model for a very similar axiomatization of object stores can be found in
[PH97b]. Since the formalization of Mojave’s objects stores is very close to
the one presented in [PH97b], almost all of the properties shown for that
formalization carry over to Mojave and are not repeated here.

3.1.1.11 Properties of Object Stores. To illustrate how the formal data
and state model can be used to express properties of object stores, we formal-
ize reachability of objects. Object X reaches object Y in store OS if there is a
chain of references from X to Y in OS [PH97b]. For specifications it is often
useful to have a restricted form of reachability that requires all references of
such a chain to be stored in locations with a given field id (see Paragraph
4.2.1.3 for an example). This form of reachability can be formalized as follows:

ρ : Nat ×Value ×Value × Store × SimpleCFieldId → Bool
ρ0(X, Y,OS , f) ⇔def X = Y
ρN+1(X, Y,OS , f) ⇔def ∃Z : OS(locC (X, f)) = Z ∧ ρN (Z, Y,OS , f)

ρ : Value × Value × Store × SimpleCFieldId → Bool
ρ(X, Y,OS , f) ⇔def ∃N : ρN (X, Y,OS , f)

Poetzsch-Heffter discusses reachability intensely [PH97b]. For this book, we
only need two properties:

Lemma 3.1.10. Reachability is not affected by object creation (part (i) be-
low). If the f -locations of all objects reachable via f from object X hold the
same value in two stores, then reachability from X via f is equivalent in these
stores (part (ii) below).

92 3. The Semantics of Mojave

(i) ρ(X, Y,OS , f) ⇔ ρ(X, Y,OS〈C, U〉, f)

(ii)
�
ρ(X, obj (mklc(LC)),OS , f) ∧ scfid(cfid(fid(mklc(LC)))) = f ⇒

OS(LC) = OS ′(LC)
�
⇒ (ρ(X, Y,OS , f) ⇔ ρ(X, Y,OS ′, f))

The proofs run by induction on the length of the reference chain. They are
straightforward and therefore omitted here.

3.1.1.12 Program-Specific Aspects of Signatures and States. To
specify properties of a program, we have to refer to variables, fields, and types
in formulas. This is enabled by introducing constant symbols for all these en-
tities as described above. Σgeneral denotes a signature that includes the sig-
nature of the data and state model as introduced above without the program-
dependent constants. We assume that the constant symbols of Σgeneral and
the identifiers occurring in a Mojave program are distinct. For an open pro-
gram P, Σ(P) (or simply Σ if P is clear from the context) is the signature
that is obtained from Σgeneral by adding the constant symbols for module,
class, interface, simple field and field identifiers declared in P’s core (analo-
gously for closed programs).

To refer to the current object store the constant symbol $ of sort Store is
used, and Γ denotes Σ ∪ {$}. The current object store $ can be considered
as a global variable (like the current universe U). In programs, $ can only
be accessed and modified through the read and write operations of fields,
and the new-operation. Specifications may directly refer to $. Furthermore,
we introduce three signatures for each method m occurring in the core of P:
(1) The extension of Γ by constant symbols of sort Value for each parameter
(in particular, this) and a constant symbol U of sort Universe for the current
universe is denoted by Γpre(m). (2) The extension of Γ by constant symbols
of sort Value for each parameter and local variable, and the constant symbol
U of sort Universe is denoted by Γbody(m). (3) The extension of Γ by the
constant symbol result of sort Value is denoted by Γpost.

Informally, an execution point is a position before or after a statement
or method. A state is characterized by the current execution point and by
the interpretation of the constant symbols representing variables. In partic-
ular, a prestate is a state before the execution of a method and provides
interpretations for the parameters, the object store $, and the current uni-
verse U ; a poststate is a state after the execution of a method and provides
interpretations for the local variable result, for $, and for U .

3.1.2 Axiomatic Semantics

In this subsection, we present an axiomatic semantics for Mojave. The axioms
and rules of this semantics are the language-dependent part of a program-
ming logic for Mojave. The language-independent axioms and rules can be
found in Subsection 3.1.3. The semantics presented here emerged from the
programming logics presented in [PH97b, PHM98, PHM99].

3.1 Programming Logic 93

3.1.2.1 Triples and Sequents. A program component is a method signa-
ture occurrence3 or a statement occurrence within a given program. We as-
sume that the program context of a statement or method is always implicitly
given and that we can refer to method declarations in this context4.

For each method implementation, we can obtain the statement constitut-
ing its body by the function body. The method implementation associated
with a virtual method is returned by impl. Note that the implementation can
be inherited from a superclass. For abstract methods, impl is undefined.

A Hoare triple or simply triple has the form { P } COMP { Q } where
COMP is a program component and P and Q are first-order formulas, called
pre- and postconditions, resp. If the component in a triple A is a method, we
call A a method annotation; otherwise A is called a statement annotation.
Pre- and postconditions of statement annotations are formulas over Γbody(m)

where m is the enclosing method; pre- and postconditions in annotations of
method m are Γpre(m)-formulas and Γpost-formulas, resp.

A triple { P } COMP { Q } specifies the following refined partial correct-
ness property: If P holds in a state before executing COMP, then execution
of COMP either

1. terminates and Q holds in the state after execution or
2. aborts because of errors or actions that are beyond the semantics of the

programming language (e.g., memory allocation problems, stack overflow,
external interrupts from the execution environment), or

3. runs forever.

In particular, execution of COMP does not abort because of dereferencing of
null-references or illegal casts. Thus, this refined partial correctness logic can
be used to prove that a program does not produce such runtime errors (see
[PH97b] for a discussion of this semantics).

A sequent has the form A |. A where A is a set of method annotations
and A is a triple. Triples in A are called assumptions of the sequent and A
is called the consequent of the sequent. A sequent expresses the fact that we
can prove a triple based on some assumptions about methods. Sequents are
necessary to handle recursive procedures and subtyping in open programs
(see Subsection 3.3.2).

3.1.2.2 Axioms and Rules. The semantics of statements and methods
is specified by a set of axioms and rules. A rule consists of a number of an-
tecedents and a sequent as succedent. The antecedents are first-order formulas
or sequents. Rules may contain metavariables for formulas and assumptions.
A rule allows one to prove the succedent from the antecedents. Axioms are
like rules that do not have antecedents.
3 We omit the formal parameters in case they are not needed.
4 Technically, this means that the semantics is described for method and statement

occurrences within a program context [PH97a].

94 3. The Semantics of Mojave

3.1.2.3 Statement Semantics. In this paragraph, we present the axioms
and rules for Mojave’s statements. To keep the rules readable, we use the con-
crete statement syntax instead of terms of the abstract syntax and abbreviate
dyn(T, this,U) by τ(T).

The cast-axiom is very similar to Hoare’s classical assignment-axiom
[Hoa69]. However, to prevent runtime errors, a stronger precondition assures
that the type conversion is legal:
cast-axiom:

|. { typeof (e)¹ τ(T) ∧P[e/v] } v = (T) e; { P }
The new-axiom works like an assignment axiom: The new object is substi-
tuted for the left-hand-side variable and the modified object store for the
initial store.
new-axiom:

|. { P[new($, cid(tid(T)), univ(τ(T)))/v , $〈cid(tid(T)), univ(τ(T))〉/$] }
v = new T();

{ P }
Reading a field substitutes the value held by the addressed instance variable
for the left-hand-side variable. Writing field access replaces the initial object
store by the updated store:
field-read-axiom:

|. { w 6= null ∧P[$(locC (w, S@f))/v] } v = w.S@f; { P }
field-write-axiom:

|. { w 6= null ∧P[$〈locC (w, S@f) := e〉/$] } w.S@f = e; { P }
The axioms and rules for the empty, while-, if-, and sequential-statement are
canonical except that we have to map the boolean expressions to values of
sort Bool by using the selector function aB of data type Value:
skip-axiom:

|. { P } ; { P }
while-rule:

A |. { aB(e) ∧ P } STMT { P }
A |. { P } while (e) { STMT } { ¬aB(e) ∧ P }

if-rule:

A |. { aB(e) ∧ P } STMT1 { Q }
A |. { ¬aB(e) ∧ P } STMT2 { Q }
A |. { P } if (e) { STMT1 } else { STMT2 } { Q }

seq-rule:

A |. { P } STMT1 { Q }
A |. { Q } STMT2 { R }
A |. { P } STMT1 STMT2 { R }

3.1 Programming Logic 95

The invocation-rule uses properties of virtual methods to verify invocations
of dynamically-bound methods and is very intuitive: Formal parameters are
substituted by the actual parameter expressions and the result variable is
substituted by the left-hand-side variable. The universe to which the target
object belongs becomes the current universe for the invoked method. The fact
that local variables different from the left-hand-side variable are not modified
by an invocation is expressed by the invocation-var-rule that allows one to
substitute logical variables Z in pre- and postconditions by local variables x
(x different from v). In this context, the current universe U behaves like a
program variable since control flow returns to the universe of the invocation
site after termination. Thus, U can also be substituted for logical variables5.
invocation-rule:

A |. { P } T:m(p1, . . . , pn) { Q }
A |. { w 6= null ∧P[w/this, e1/p1, . . . , en/pn, univV (w)/U] }

v = w.T:m(e1, . . . , en);

{ Q[v/result] }
invocation-var-rule:

A |. { P } v = w.T:m(e1, . . . , en); { Q }
A |. { P[x/Z] } v = w.T:m(e1, . . . , en); { Q[x/Z] }
Static methods are bound statically. Therefore, method implementations are
used instead of virtual methods to verify invocations. The new current uni-
verse is the universe of the dynamic type on which the static method is in-
voked. It is determined by the target type of the invocation and the current
universe. Note that null is passed to the this-parameter of static methods.
static-invocation-rule:

A |. { P } T@m(p1, . . . , pn) { Q }
A |. { P[null/this, e1/p1, . . . , en/pn, univ(τ(T′))/U] }

v = T’.T@m(e1, . . . , en);

{ Q[v/result] }
static-invocation-var-rule:

A |. { P } v = T’.T@m(e1, . . . , en); { Q }
A |. { P[x/Z] } v = T’.T@m(e1, . . . , en); { Q[x/Z] }
Like static methods, calls of private methods and calls via super are statically
bound:
call-rule:

A |. { P } T@m(p1, . . . , pn) { Q }
A |. { w 6= null ∧P[w/this, e1/p1, . . . , en/pn, univV (w)/U] }

v = w.T@m(e1, . . . , en);

{ Q[v/result] }
5 For simplicity, we use indices 1, . . . , n for the explicit parameters of a method

T@m or T:m. It would be more precise to use 1, . . . , nT:m.

96 3. The Semantics of Mojave

call-var-rule:

A |. { P } v = w.T@m(e1, . . . , en); { Q }
A |. { P[x/Z] } v = w.T@m(e1, . . . , en); { Q[x/Z] }
3.1.2.4 Method Semantics. The behavior of the predefined methods is
given by their specifications (see App. B) and their translation into Hoare
triples (see Subsection 4.2.2). This paragraph presents the semantics of user-
defined method implementations and virtual methods.

Essentially, an annotation of a method implementation holds if it holds for
its body. In order to handle recursion, the method annotation may be assumed
for the proof of the body. Informally, this is sound, because in any terminating
execution, the last incarnation does not contain a recursive invocation of
the method. In Mojave, all local variables are initialized with default values
(vn+1, . . . , vk are the local variables of the method):
implementation-rule:

A , {P} T@m(p1, . . . , pn) {Q} |.
{P ∧ (static(T@m) ⇔ this = null) ∧Vk

i=n+1(vi = init(τ([vi])))}
body(T@m)

{Q}
A |. {P} T@m(p1, . . . , pn) {Q}

Virtual methods have been introduced to model dynamically-bound methods.
That is, a method annotation for T:m reflects the common properties of all
implementations that might be executed on invocation of T:m. If T is a class,
there are two obligations to prove an annotation A of a virtual method T:m:
(1) Show that the corresponding implementation satisfies A if invoked for
objects of type T. (2) Show that A holds for objects of proper subtypes of T.
The second obligation and annotations of abstract methods can be proved by
the subtype-rule: If S is a subtype of T, an invocation of T:m on an S-object
is equivalent to an invocation of S:m. Thus, all properties of S:m carry over
to T:m6:
subtype-rule:

S¹MT

A |. { typeof (this)¹ refDT (S,U) ∧P } S:m(p1, . . . , pn) { Q }
A |. { typeof (this)¹ refDT (S,U) ∧P } T:m(p1, . . . , pn) { Q }

If T denotes an interface, it is sufficient to prove that an annotation for T:m
holds in all cases where T:m is invoked on subtype objects. If T denotes a
class, we have to show in addition that the desired annotation holds for the
implementation of m in T if T:m is invoked on a T-object:
class-rule:

A |. { typeof (this) = refDT (T,U) ∧ P }impl(T:m){ Q }
A |. { typeof (this)≺ refDT (T,U) ∧ P } T:m(p1, . . . , pn) { Q }
A |. { typeof (this)¹ refDT (T,U) ∧ P } T:m(p1, . . . , pn) { Q }

6 For simplicity, we assume here that formal parameters have the same names in
sub- and supertype methods. Otherwise, a substitution would be necessary.

3.2 Language Properties 97

3.1.3 Programming Logic

Besides the axiomatic semantics, the programming logic for Mojave contains
language-independent axioms and rules to handle assumptions and to estab-
lish a connection between the predicate logic of pre- and postconditions and
triples of the programming logic. The logic for Mojave is based on the pro-
gramming logic presented in [PH97b]. For brevity, we refer to that thesis for
a detailed discussion of the logic.
Language-Independent Rules. The language-independent axioms and rules
of the programming logic are summarized in Figure 3.3. The assumpt-axiom
states that the trivial sequence is true. Assumptions can be introduced at any
point of a derivation (assumpt-intro-rule) and eliminated if they can be de-
rived from other assumptions (assumpt-elim-rule). The false-axiom together
with the weak-rule allows one to prove any postcondition if the precondition
is false. The inv-rule expresses that logical variables and the program vari-
ables this and U cannot be modified by executing a statement or method.
This is not true for other program variables, especially for $. The remaining
rules are used to apply conjunction, disjunction, implication, substitution,
and binding of free variables to pre- and postconditions.
Soundness and Completeness. In [PHM99], we have proved soundness for a
very similar programming logic w.r.t. an operational semantics. The main
difference between Mojave and the language in [PHM99] is the universe type
system. However, almost all modifications for the universe type system con-
cern the data and state model rather than the axioms and rules. Since the
operational semantics builds on this model as well, we are confident that the
soundness proof of [PHM99] carries over to the Mojave logic.

As presented here, the logic for Mojave is obviously not complete. For
instance, it does not allow one to prove properties about method invocations
or field accesses on the null-reference. To solve this problem, one can either
change the meaning of triples (see Paragraph 3.1.2.1) such that all excep-
tions are treated in the same way as memory errors (i.e., a triple holds if
the program component aborts), or one can extend Mojave and its logic by
exception handling. However, although our logic is incomplete, it can be used
to verify interesting programs as illustrated by the nontrivial case study pre-
sented in [LMMPH00]. Extending the Java subset by exceptions and proving
completeness for the refined logic is considered future work.

3.2 Language Properties

In this section, we specify and prove properties that hold for all Mojave pro-
grams: We show that Mojave is a type safe language, prove that execution
of statements and methods leaves living objects alive, and show that read-
only methods are side-effect-free. The proofs illustrate an interesting proof
technique that is frequently used in this book.

98 3. The Semantics of Mojave

assumpt-axiom:

A |. A

false-axiom:

|. { false } COMP { false }

assumpt-intro-rule:

A |. A

A0 , A |. A

assumpt-elim-rule:

A |. A0

A0 , A |. A

A |. A

conjunct-rule:

A |. { P1 } COMP { Q1 }
A |. { P2 } COMP { Q2 }
A |. { P1 ∧P2 } COMP { Q1 ∧Q2 }

disjunct-rule:

A |. { P1 } COMP { Q1 }
A |. { P2 } COMP { Q2 }
A |. { P1 ∨P2 } COMP { Q1 ∨Q2 }

strength-rule:

P′⇒P

A |. { P } COMP { Q }
A |. { P′ } COMP { Q }

weak-rule:

A |. { P } COMP { Q }
Q⇒Q′

A |. { P } COMP { Q′ }

inv-rule:

A |. { P } COMP { Q }
A |. { P ∧ R } COMP { Q ∧ R }

where R is a Σ ∪ {this,U}-formula in
case that COMP is a statement and a
Σ-formula otherwise.

subst-rule:

A |. { P } COMP { Q }
A |. { P[t/Z] } COMP { Q[t/Z] }

where Z is an arbitrary logical variable
and t a Σ-term.

all-rule:

A |. { P[Y/Z] } COMP { Q }
A |. { P[Y/Z] } COMP { ∀Z : Q }

where Z, Y are arbitrary, but distinct
logical variables.

ex-rule:

A |. { P } COMP { Q[Y/Z] }
A |. { ∃Z : P } COMP { Q[Y/Z] }

where Z, Y are arbitrary, but distinct
logical variables.

Fig. 3.3. Language-Independent Axioms and Rules

3.2 Language Properties 99

A programming language guarantees a big variety of properties that hold
for all implementations. For instance, Mojave guarantees type safety, that a
readonly method does not cause side-effects, that a method can only update
locations that are reachable from one of the parameter objects, etc. To use
such properties for reasoning, one can either directly incorporate them as
rules in the programming logic, or one can prove appropriate lemmas within
the programming logic. The former approach makes the application of such
properties very easy. However, it makes the programming logic and its sound-
ness proof more complex. Furthermore, the selection of language properties
that are incorporated into the logic is rather arbitrary and depends on the in-
tended applications of the programming logic. For instance the local update
property (see Definition 5.4.1) is a very specific property that only makes
sense in combination with our specification technique for dependencies of
abstract fields.

Therefore, we follow the latter approach: Language properties are for-
malized by language property operators for triples that add conjuncts to the
pre- and postconditions of the triples. These conjuncts describe the language
properties. We assume that there is a fixed finite set of language property
operators for our programming language and a partial ordering on these oper-
ators. The set of operators can for instance be defined by the implementation
of a verification tool.

Definition 3.2.1 (Language Properties). An operator l for triples and
sets of triples is an admissible language property if the following properties
hold:

– If A is a triple of the form { P } COMP { Q } then l(A) has the form
{ P ∧P′ } COMP { Q ∧Q′ }. l is extended pointwise to sets of triples.

– If there is a proof for a sequent A |. A then there is a proof for
l(A), l1(A), . . . , ln(A) |. l(A), where the li are language property operators
that are less than l in the ordering of operators.

3.2.1 Type Safety

In this subsection, we formalize and prove type safety of Mojave. This is
interesting for the following reasons:

– Due to the universe type system, type safety of Java [ON98] does not
automatically carry over to Mojave.

– The type safety proof provides insight to and motivates the exact context
conditions for the universe type system.

– The type safety invariant will be used intensely for the verification of frame
properties and invariants.

– The type safety proof illustrates a proof technique that is frequently used
in this book.

100 3. The Semantics of Mojave

Usually, a language is called type safe if each syntactically and type correct
program component that is executed in a well-typed state leads to a well-
typed state upon termination [NO98, ON98]. However, to be able to use our
partial correctness logic to prove type safety, we have to use a weaker no-
tion of type safety here. We require type safety only for program components
that do not terminate abnormally, since we cannot prove anything other-
wise. We call a language type safe if every program component COMP for
which there is a proof of the triple { R } COMP { true }7 either runs for-
ever or terminates in a well-typed state if execution starts in a well-typed
state satisfying R (see [PH97b]). To prove type safety, we have to show
{ R∧TApre } COMP { TApost } for such program components where TApre

and TApost express well-typedness of pre- and poststates, resp. In the follow-
ing, we formalize this notion of type safety.

Definition 3.2.2 (Well-Typed States). A parameter or variable v is
called well-typed in a state if typeof (v) ¹ τ([v]) where [v] is the type declared
for v. A state is called well-typed if all variables and parameters are well-
typed and the object store is well-typed. An object store is called well-typed if
all concrete locations are well-typed in the following sense:

wt : Store → Bool
wt(OS) ⇔def ∀LC : typeof (OS(LC)) ¹ lrtype(LC)

Definition 3.2.3 (Type Annotations). Well-typedness of pre- and post-
states of program components is expressed by type annotations. Adding type
annotations to a triple A means to add type information about the parame-
ters and variables to the pre- and postcondition of A and to require that the
store is well-typed. The resulting triple is denoted by typed(A); it depends on
the kind of A:

– Let m be a virtual method T:m or a method implementation T@m. For
method annotations, typed({ P } m { Q }) yields

{ P ∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(m)) }

m
{ Q ∧ typeof (result) ¹ R ∧ wt($) }
where v0, . . . ,vk are the formal parameters of m8; recall from Para-
graph 2.1.1.1 that we refer to this as v0. R is a fresh logical variable
that neither occurs in any specification nor in any proof.

– For statement annotations, typed({ P } STMT { Q }) yields

{ P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }

STMT
{ Q ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
7 We have to require the existence of such a proof since our programming logic is

incomplete and we can thus not assume that the property can be shown for all
program components that do not terminate abnormally.

8 That is, [vi] = par(m, i) for 1 ≤ i ≤ k.

3.2 Language Properties 101

where T@m is the method implementation enclosing STMT, v0, . . . ,vk are
the formal parameters, and vk+1, . . . ,vn are the local variables of T@m.

The typed-operator is extended pointwise to sets of triples.

Lemma 3.2.1 (Type Safety). If there is a proof for A |. A then there is
a proof for typed(A) |. typed(A)

According to Definition 3.2.1, type safety is a language property (typed is a
minimal element in the ordering of operators for language properties). The
proof of type safety is based on the following auxiliary lemmas about the
type combinator ∗. The proofs for these lemmas can be found in App. D.1.

The type combinator ∗ is used to determine the type of a field access,
or the parameter or result types of a method invocation. In most cases,
the dynamization of a type combination S ∗ T w.r.t. a universe U yields
the same result as the dynamization of T w.r.t. the universe of the dy-
namization of S w.r.t. U . For instance for a field access v.f, τ([v] ∗ [f]) =
dyn([f], this, univ(τ([v]))) holds if [f] is not a readonly type (¬roT?([f])). We
formalize this property by the following lemma:

Lemma 3.2.2. The dynamization of a type combination S ∗ T w.r.t. object
X and universe U yields the same dynamic type as the dynamization of T
w.r.t. an object Y and the universe of the dynamization of S w.r.t. X and U ,
provided that S ∗ T is defined, that S is not a readonly type, and that X = Y
if T is an orep type. That is, if S ∗T is defined, the following property holds:

¬roT?(S) ∧ (orepT?(T) ⇒ X = Y) ⇒
dyn(T, Y, univ(dyn(S, X, U))) = dyn(S ∗ T, X, U)

Lemma 3.2.2 requires that S is not a readonly type. Otherwise, we have to
use the following lemma:

Lemma 3.2.3. If S is a readonly type, the dynamization of a type T is a
subtype of the dynamization of the combination S ∗ T :

roT?(S) ⇒ dyn(T, Y, V) ¹ dyn(S ∗ T, X, U)

We can now prove type safety of Mojave. Most cases of the proof are presented
as proof outlines. See App. A.2 for a brief explanation of this notation.

To understand the proof, it is helpful to have the type rules of the universe
type system (see Subsection 2.2.5, p. 68) and the intuition behind these rules
in mind. We mention the properties used in a proof step (in particular, those
that are guaranteed by the type system) in comments.

Proof of Lemma 3.2.1:
The proof of this lemma runs by rule induction, that is, induction on the
depth of the proof for A |. A. For each axiom or rule application in that
proof, we show that the type annotations can be added.

102 3. The Semantics of Mojave

Induction Basis. For the induction base, we have to show that the type an-
notations can be added for all proof trees of depth 1. Proof trees of depth
1 are either applications of axioms or specifications of predefined method
implementations (however, properties of Object:equals are not axioms since
they do not hold in all programs). That is, the induction base runs by case
distinction over all possible axiom applications and predefined methods.

assumpt-axiom: typed(A) |. typed(A) is an instance of the assumpt-axiom.

false-axiom: Let TApre and TApost denote the type annotation for the pre-
and poststate of COMP:

{ false ∧ TApre }
⇒
{ false }
COMP [[false-axiom]]

{ false }
⇒
{ false ∧ TApost }

new-axiom:
{ P[new($, cid(tidD(τ(T))), univ(τ(T)))/v, $〈cid(tidD(τ(T))), univ(τ(T))〉/$]∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }
⇒ [[T ¹T [v], Lemma 3.1.7]]

{ P[new($, cid(tidD(τ(T))), univ(τ(T)))/v, $〈cid(tidD(τ(T))), univ(τ(T))〉/$]∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ τ(T) ¹ τ([v]) ∧ wt($) ∧ (orepT?(T) ⇒ this 6= null) }

⇒ [[store11, store5, grndT?(T) ∨ orepT?(T) ∨ trepT?(T)]]

{ P[new($, cid(tidD(τ(T))), univ(τ(T)))/v, $〈cid(tidD(τ(T))), univ(τ(T))〉/$]∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($〈cid(tidD(τ(T))), univ(τ(T))〉)∧

typeof (new($, cid(tidD(τ(T))), univ(τ(T)))) ¹ τ(T) ∧ τ(T) ¹ τ([v]) }
⇒ [[v � this]]

{ (P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($))[new($, cid(tidD(τ(T))), univ(τ(T)))/

v, $〈cid(tidD(τ(T))), univ(τ(T))〉/$] }
v = new T(); [[new-axiom]]

{ P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

cast-axiom:
{ typeof (e) ¹ τ(T) ∧P[e/v] ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null) }
⇒ [[T ¹T [v], Lemma 3.1.7]]

{ typeof (e) ¹ τ(T) ∧P[e/v] ∧Vn
i=0 typeof (vi) ¹ τ([vi])∧

typeof (e) ¹ τ([v]) ∧ wt($) }
⇒ [[v � this]]

{ typeof (e) ¹ τ(T) ∧ (P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($))[e/v] }

v = (T) e; [[cast-axiom]]

{ P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

3.2 Language Properties 103

skip-axiom:
{ P ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }
⇒
{ P ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
; [[skip-axiom]]

{ P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

field-read-axiom:
{ w 6= null ∧P[$(locC (w, S@f))/v] ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null) }
⇒ [[lrtype(locC (w, S@f)) = dyn([S@f], w, univV (w))]]

{ w 6= null ∧P[$(locC (w, S@f))/v] ∧Vn
i=0 typeof (vi) ¹ τ([vi])∧

typeof ($(locC (w, S@f))) ¹ dyn([S@f], w, univV (w))∧
wt($) ∧ (orepT?([w]) ⇒ this 6= null) }

⇒

264264 Case 1: roT?([w]): Lemma 3.2.3
Case 2: ¬roT?([w]) ∧ (orepT?([S@f]) ⇒ w ∼= this ∼= v0 ∨ roT?([w]))

⇒ dyn([S@f], w, univV (w)) = τ([w] ∗ [S@f])
(Lemmas 3.2.2, 3.1.6, 3.1.4)

375375
{ w 6= null ∧P[$(locC (w, S@f))/v] ∧Vn

i=0 typeof (vi) ¹ τ([vi])∧
typeof ($(locC (w, S@f))) ¹ τ([w] ∗ [S@f]) ∧ wt($) }
⇒ [[[w] ∗ [S@f] ¹T [v], Lemma 3.1.7]]

{ w 6= null ∧P[$(locC (w, S@f))/v] ∧Vn
i=0 typeof (vi) ¹ τ([vi])∧

typeof ($(locC (w, S@f))) ¹ τ([v]) ∧ wt($) }
⇒ [[v � this]]

{ w 6= null ∧ (P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($))[$(locC (w, S@f))/v] }

v = w.S@f; [[field-read-axiom]]

{ P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

field-write-axiom:
{ w 6= null ∧P[$〈locC (w, S@f) := e〉/$] ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null) }
⇒ [[typeof (e) ¹ τ([e]), [e] ¹T [w] ∗ [S@f], Lemma 3.1.7]]

{ w 6= null ∧P[$〈locC (w, S@f) := e〉/$] ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧

(orepT?([w]) ⇒ this 6= null) ∧ typeof (e) ¹ τ([w] ∗ [S@f]) }
⇒ [[¬roT?([w]), orepT?([S@f]) ⇒ w ∼= this, Lemmas 3.2.2, 3.1.6, 3.1.4]]

{ w 6= null ∧P[$〈locC (w, S@f) := e〉/$] ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧

typeof ($〈locC (w, S@f) := e〉(locC (w, S@f))) ¹ dyn([S@f], w, univV (w)) }
⇒ [[lrtype(locC (w, S@f)) = dyn([S@f], w, univV (w))]]

{ w 6= null ∧P[$〈locC (w, S@f) := e〉/$] ∧Vn
i=0 typeof (vi) ¹ τ([vi])∧

wt($〈locC (w, S@f) := e〉) }
⇒
{ w 6= null ∧ (P ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($))[$〈locC (w, S@f) := e〉/$] }
w.S@f = e; [[field-write-axiom]]

{ P ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

104 3. The Semantics of Mojave

predefined method implementations: All predefined methods are readonly and
have a specification of their result. So the type safety proof is analogous for
all methods. Here, we show the proof for Object@equals:

{ p = O ∧ this = T ∧ tidD(typeof (this)) = ctid(Object) ∧ $ = OS ∧P∧
typeof (this) ¹ τ(roT (ctid(Object))) ∧ typeof (p) ¹ τ(roT (ctid(Object)))∧
wt($) ∧R = τ(booleanT) }
⇒ [[Definition of τ and dyn]]

{ p = O ∧ this = T ∧ tidD(typeof (this)) = ctid(Object) ∧ $ = OS ∧P∧
R = booleanDT ∧ wt(OS) }

↓ [[inv-rule]]

{ p = O ∧ this = T ∧ tidD(typeof (this)) = ctid(Object) ∧ $ = OS ∧P }
Object@equals [[Semantics of pre-post-specifications for a suitable P]]

{ result = bool(O = T) ∧ $ = OS }
↑ [[inv-rule]]

{ result = bool(O = T) ∧ $ = OS ∧R = booleanDT ∧ wt(OS) }
⇒ [[Definition of typeof]]

{ result = bool(O = T) ∧ $ = OS ∧ typeof (result) ¹ R ∧ wt($) }

Induction Step. For the induction step, we can assume that type annotations
are added to all proof trees up to depth N . We show now, that the annotations
can be added to proof trees of depth N +1 by case distinction on the possible
rule applications that lead to proof trees of depth N + 1. That is, we can
assume the induction hypothesis for the antecedents of the rule applications
and have to prove it for the succedents. The induction step is trivial for many
rules. We present only the interesting cases here.

assumpt-intro-rule:

typed(A) |. typed(A)
[[assumpt-intro-rule]]

typed(A0) , typed(A) |. typed(A)

invocation-rule: In the following cases, each sequent has typed(A) as as-
sumptions. Note that (1) p0, . . . , pl are the formal parameters of S:n (i.e.,
pi = par(S:n, i), 1 ≤ i); (2) v0, . . . , vn are the local variables and formal pa-
rameters of T@m (the enclosing method implementation); (3) [v] is a logical
constant and therefore a Σ-formula (in contrast to v which is a program vari-
able). Recall that U behaves like a program variable that can be substituted
for a logical variable by the invocation-var-rule.

3.2 Language Properties 105

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U]∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }

⇒ [[if variables are well-typed then primitive expressions are, too]]

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧Vl
i=0 typeof (ei) ¹ τ([ei])∧

wt($) ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ (orepT?([w]) ⇒ this 6= null) }

⇒ [[[ei] ¹T [w] ∗ [pi], Lemma 3.1.7]]

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U]∧Vl
i=0 typeof (ei) ¹ τ([w] ∗ [pi]) ∧ wt($)∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ (orepT?([w]) ⇒ this 6= null) }

⇒

264264 Case 1: roT?([w]) ⇒ roT?([pi]) ∨ booleanT?([pi]) ∨ intT?([pi])
(Context condition for readonly methods, Paragraph 2.1.1.1)

Case 2: ¬roT?([w]), (orepT?([pi]) ⇒ w ∼= this),
Lemmas 3.2.2, 3.1.6, 3.1.4

375375
{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧Vn

i=0 typeof (vi) ¹ τ([vi])∧Vl
i=0 typeof (ei) ¹ dyn([pi], w, univV (w)) ∧ wt($) ∧ (orepT?([w]) ⇒ this 6= null) }

⇒
2424 Case 1: roT?([w]), Lemma 3.2.3

Case 2: ¬roT?([w]), orepT?(ret(S:n)) ⇒ w ∼= this,
Lemmas 3.2.2, 3.1.6, 3.1.4

3535
{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U]∧Vl

i=0 typeof (ei) ¹ dyn([pi], w, univV (w)) ∧ wt($)∧Vn
i=0 typeof (vi) ¹ dyn([vi], this,U)∧

dyn(ret(S:n), w, univV (w)) ¹ dyn([w] ∗ ret(S:n), this,U) }
⇒
{ ∃R : w 6= null ∧ (P ∧Vl

i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧
R = τ(ret(S:n)))[w/this, e1/p1, . . . , el/pl, univV (w)/U]∧
R ¹ dyn([w] ∗ ret(S:n), this,U) ∧Vn

i=0,vi�v typeof (vi) ¹ dyn([vi], this,U) }
↓ [[ex-rule]]

{ w 6= null ∧ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧

R = τ(ret(S:n)))[w/this, e1/p1, . . . , el/pl, univV (w)/U]∧
R ¹ dyn([w] ∗ ret(S:n), this,U) ∧Vn

i=0,vi�v typeof (vi) ¹ dyn([vi], this,U) }
↓ [[var-rule]]

{ w 6= null ∧ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧

R = τ(ret(S:n)))[w/this, e1/p1, . . . , el/pl, univV (w)/U]∧
R ¹ dyn([w] ∗ ret(S:n), R0, U) ∧Vn

i=0,vi�v typeof (Ri) ¹ dyn([vi], R0, U) }
↓ [[inv-rule]]

{ w 6= null ∧ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧

R = τ(ret(S:n)))[w/this, e1/p1, . . . , el/pl, univV (w)/U] }
v = w.S:n(e1, . . . , el); [[applying the invocation-rule to the ind. hypothesis]]

{ (Q ∧ typeof (result) ¹ R ∧ wt($))[v/result] }
⇒
{ Q[v/result] ∧ typeof (v) ¹ R ∧ wt($) }

↑ [[inv-rule]]

106 3. The Semantics of Mojave

{ Q[v/result] ∧ typeof (v) ¹ R ∧ wt($)∧
R ¹ dyn([w] ∗ ret(S:n), R0, U) ∧Vn

i=0,vi�v typeof (Ri) ¹ dyn([vi], R0, U) }
↑ [[var-rule]]

{ Q[v/result] ∧ typeof (v) ¹ R ∧ wt($)∧
R ¹ dyn([w] ∗ ret(S:n), this,U) ∧Vn

i=0,vi�v typeof (vi) ¹ dyn([vi], this,U) }
⇒ [[[w] ∗ ret(S:n) ¹T [v], Lemma 3.1.7]]

{ Q[v/result] ∧ typeof (v) ¹ τ([v]) ∧ wt($) ∧Vn
i=0,vi�v typeof (vi) ¹ τ([vi]) }

⇒
{ Q[v/result] ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
↑ [[ex-rule]]

{ Q[v/result] ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

invocation-var-rule:
{ P[x/Z] ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
⇒
{ (P ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($))[x/Z] }
v = w.S:n(e1, . . . , el); [[applying the invocation-var-rule to the ind. hypothesis]]

{ (Q ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($))[x/Z] }

⇒
{ Q[x/Z] ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

static-invocation-rule:
{ P[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U] ∧Vn

i=0 typeof (vi) ¹ τ([vi])∧
wt($) ∧ (static(T@m) ⇔ this = null) }
⇒ [[if variables are well-typed then primitive expressions are, too]]

{ P[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U] ∧Vl
i=0 typeof (ei) ¹ τ([ei])∧

wt($) ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ (orepT?(S′) ⇒ this 6= null) }

⇒ [[[ei] ¹T S′ ∗ [pi], Lemma 3.1.7]]

{ P[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U] ∧Vl
i=0 typeof (ei) ¹ τ(S′ ∗ [pi])∧

wt($) ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ (orepT?(S′) ⇒ this 6= null) }

⇒ [[¬roT?(S′), ¬orepT?([pi]), Lemma 3.2.2]]

{ P[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U] ∧Vn
i=0 typeof (vi) ¹ τ([vi])∧

wt($) ∧Vl
i=0 typeof (ei) ¹ dyn([pi],null , univ(τ(S′)))∧

(orepT?(S′) ⇒ this 6= null) }
⇒ [[¬roT?(S′), ¬orepT?(ret(S@n)), Lemma 3.2.2]]

{ P[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U]∧Vl
i=0 typeof (ei) ¹ dyn([pi],null , univ(τ(S′))) ∧ wt($)∧Vn
i=0 typeof (vi) ¹ dyn([vi], this,U)∧

dyn(ret(S@n),null , univ(τ(S′))) ¹ dyn(S′ ∗ ret(S@n), this,U) }
⇒

3.2 Language Properties 107

{ ∃R : (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧

R = τ(ret(S@n)))[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U]∧
R ¹ dyn(S′ ∗ ret(S@n), this,U) ∧Vn

i=0,vi�v typeof (vi) ¹ dyn([vi], this,U) }
↓ [[ex-rule]]

{ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧

R = τ(ret(S@n)))[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U]∧
R ¹ dyn(S′ ∗ ret(S@n), this,U) ∧Vn

i=0,vi�v typeof (vi) ¹ dyn([vi], this,U) }
↓ [[var-rule]]

{ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧

R = τ(ret(S@n)))[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U]∧
R ¹ dyn(S′ ∗ ret(S@n), R0, U) ∧Vn

i=0,vi�v typeof (Ri) ¹ dyn([vi], R0, U) }
↓ [[inv-rule]]

{ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧

R = τ(ret(S@n)))[null/this, e1/p1, . . . , el/pl, univ(τ(S′))/U] }
v = S’.S@n(e1, . . . , el); [[applying the static-invocation-rule to the ind. hyp.]]

{ (Q ∧ typeof (result) ¹ R ∧ wt($))[v/result] }
⇒
{ Q[v/result] ∧ typeof (v) ¹ R ∧ wt($) }

↑ [[inv-rule]]
{ Q[v/result] ∧ typeof (v) ¹ R ∧ wt($)∧
R ¹ dyn(S′ ∗ ret(S@n), R0, U) ∧Vn

i=0,vi�v typeof (Ri) ¹ dyn([vi], R0, U) }
↑ [[var-rule]]

{ Q[v/result] ∧ typeof (v) ¹ R ∧ wt($)∧
R ¹ dyn(S′ ∗ ret(S@n), this,U) ∧Vn

i=0,vi�v typeof (vi) ¹ dyn([vi], this,U) }
⇒ [[S′ ∗ ret(S@n) ¹T [v], Lemma 3.1.7]]

{ Q[v/result] ∧ typeof (v) ¹ τ([v]) ∧ wt($) ∧Vn
i=0,vi�v typeof (vi) ¹ τ([vi]) }

⇒
{ Q[v/result] ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
↑ [[ex-rule]]

{ Q[v/result] ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

implementation-rule: Since assumptions are important in the case for the
implementation-rule, we do not display it as proof outline. Instead, we use
the usual notation for subsequent rule applications, which can easily be seen
by the missing arrows at the end of the horizontal lines. In the proof, we use
the equality [result] = ret(T@m).

108 3. The Semantics of Mojave

A, { P ∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

T@m { Q ∧ typeof (result) ¹ R ∧ wt($) } |.
{ P ∧ (staticM(T@m) ⇔ this = null) ∧Vn

i=k+1 vi = init(τ([vi]))∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (staticM(T@m) ⇔ this = null) }

body(T@m) { Q ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

[[inv-rule]]

A, { P ∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

T@m { Q ∧ typeof (result) ¹ R ∧ wt($) } |.
{ P ∧ (staticM(T@m) ⇔ this = null) ∧Vn

i=k+1 vi = init(τ([vi])) ∧ wt($)∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ (staticM(T@m) ⇔ this = null) ∧R = τ(ret(T@m)) }

body(T@m) { Q ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

[[strength-rule]]

A, { P ∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

T@m { Q ∧ typeof (result) ¹ R ∧ wt($) } |.
{ P ∧ (staticM(T@m) ⇔ this = null) ∧Vn

i=k+1 vi = init(τ([vi]))∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

body(T@m) { Q ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

[[weak-rule]]

A, { P ∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

T@m { Q ∧ typeof (result) ¹ R ∧ wt($) } |.
{ P ∧ (staticM(T@m) ⇔ this = null) ∧Vn

i=k+1 vi = init(τ([vi]))∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

body(T@m) { Q ∧ typeof (result) ¹ R ∧ wt($) }
[[implementation-rule]]

A |. { P ∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧R = τ(ret(T@m)) }

T@m { Q ∧ typeof (result) ¹ R ∧ wt($) }
2

3.2.2 Liveness Properties

Mojave guarantees that all objects held by local variables or formal param-
eters are alive. Since objects can be referenced in programs only through
program variables, and since locations can only hold living objects (see Ax-
iom store8), all objects reachable in a program state are alive. Furthermore,
Mojave does not allow objects to be deleted. That is, all operations on object
stores leave living objects alive. We formalize these properties as follows:

Definition 3.2.4 (Liveness Annotations). Like for type annotations (see
Def. 3.2.3), we use the operators lal and oal to add liveness annotations about
local variables and formal parameters resp. about all living objects to a triple.
The operator lal expresses that all objects held by local variables or formal
parameters are alive. Its definition depends on the kind of triple it is applied
to:

3.2 Language Properties 109

– Let m be a virtual method T:m or a method implementation T@m. For
method annotations, lal({ P } m { Q }) yields

{ P ∧Vk
i=0 alive(vi, $) } m { Q ∧ alive(result, $) }

where v0, . . . ,vk are the formal parameters of m.
– For statement annotations, lal({ P } STMT { Q }) yields
{ P ∧Vn

i=0 alive(vi, $) } STMT { Q ∧Vn
i=0 alive(vi, $) }

where v0, . . . ,vk are the formal parameters, and vk+1, . . . ,vn are the local
variables of the enclosing method.

The fact that living objects stay alive is expressed by the operator oal.
oal({ P } COMP { Q }) is defined as

{ P ∧ alive(X, $) } COMP { Q ∧ alive(X, $) } .

The lal- and oal-operators are extended pointwise to sets of triples.

Lemma 3.2.4 (Adding Liveness Annotations). If there is a proof for
A |. A then there are proofs for lal(A) |. lal(A) and oal(A) |. oal(A).

Like the type safety proof, the proof of this lemma runs by induction on the
depth of the proof for A |. A. It is straightforward and therefore omitted.
According to Definition 3.2.1, both liveness properties are language properties
(lal and oal are minimal elements in the ordering of operators for language
properties).

3.2.3 Properties of Readonly Methods

Readonly methods are syntactically checked to be side-effect-free. That is,
they do not modify the object store. To be able to exploit this property in
proofs, we formalize and prove it in the programming logic:

Definition 3.2.5 (Readonly Annotations). We use an opera-
tor ro to add the readonly-property to a triple. The definition of
ro({ P } COMP { Q }) depends on the method enclosing COMP:

– Annotations of readwrite methods and statements in readwrite methods:
{ P } COMP { Q }

– Annotations of readonly methods and statements in readonly methods:
{ P ∧ $ = OS } COMP { Q ∧ $ = OS }

OS is a fresh logical variable that neither occurs in any specification nor in
any proof.

Lemma 3.2.5. If there is a proof for A |. A then there is a proof for
ro(A) |. ro(A)

The proof can be found in App. D.1. Note that the readonly property is a
language property (ro is a minimal element in the ordering of operators for
language properties, see Definition 3.2.1).

110 3. The Semantics of Mojave

3.3 Correctness

To verify a program w.r.t. an interface specification, the specification is trans-
formed into a set of proof obligations that have to be shown in the program-
ming logic. The proof obligations stemming from an interface specification
are defined by the semantics of the interface specification language and will
be explained in Chapters 4 to 6. As discussed in Subsection 1.3.1, correct-
ness of open programs relies on certain assumptions about further program
extensions, whereas closed programs can be completely verified based on the
knowledge of the given program. Thus, we present different notions of cor-
rectness for open and closed programs in this section and explain how they
are related to each other. Furthermore, we discuss modular soundness and
show that our notion of correctness of open programs is compatible with
composition: The combination of correct open programs leads in turn to a
correct open program.

3.3.1 Correctness of Closed Programs

Correctness of a closed program w.r.t. its specification is defined as follows:

Definition 3.3.1 (Correctness of Closed Programs). A closed program
P is correct w.r.t. its specification if

1. P is syntactically correct (which includes type correctness);
2. the interface specification of P is well-formed (which includes syntac-

tical and sort correctness of the associated universal specification, see
Section 4.1);

3. there is a proof for each sequent |. A generated from the specification of
P9.

Instead of the third requirement, we could also require the sequents |. A to
hold. With an incomplete logic, the stronger, syntactic requirement is more
appropriate, in particular for reuse of verified programs (see Subsection 3.3.4).

3.3.2 Correctness of Open Programs: Modular Correctness

For open programs, we have to assume that all extensions to the program are
well-formed. This means (1) that all inherited or overridden virtual methods
meet the specifications of the corresponding supertype methods (behavioral
subtyping) and (2) that methods of program extensions have certain proper-
ties such as well-typedness that are guaranteed by the programming language
(see Section 3.2). Properties of program extensions can be formalized as as-
sumptions in the programming logic.
9 We assume that interface specifications lead to sequents with empty assumption

sets as proof obligations, which corresponds to the usual semantics of interface
specifications.

3.3 Correctness 111

Definition 3.3.2 (Modular Correctness). An open program P with core
M or a closed program P with set of modules M is modularly correct w.r.t.
its specification if

1. M is syntactically correct;
2. the interface specification of M is well-formed;
3. for each sequent |. A generated from the specification of M, there is a

proof of A,B |. A, where
– A contains the assumptions that subtype methods in program extensions

meet the specifications of the corresponding supertype methods. That is,
A contains a triple of the form

{ module(tidD(typeof (this))) 6∈ M ∧P } T:m { Q }
for each proof obligation |. { P } T:m { Q } generated for M.

– B contains the assumptions that program extensions have all properties
guaranteed by the programming language. That is, B contains triples
of the form l(B) for each triple B in A and each language property
operator l10.

Note that each module M0 together with imported modules M1, . . . , Mn de-
fines a closed program in case that M0 is a main module or an open program
with core

⋃n
i=0 Mi otherwise. Therefore, we say that a module is modularly

correct, if the open or closed program defined by that module is modularly
correct. The definitions of correctness and modular correctness imply that
each modularly correct closed program is correct according to Def. 3.3.1:

Lemma 3.3.1. Every modular correct closed program is correct.

Proof of Lemma 3.3.1:
Let P be a modularly correct closed program P with set of modules M. From
Def. 3.3.2, we know that for each proof obligation |. A that is generated
from the specification of M, there is a proof of A,B |. A. To prove that P is
correct according to Def. 3.3.1, we have to eliminate the assumption sets A
and B of these sequents.

For closed programs, the axiom import6 and the axiomatization of mod-
ule allow us to derive ∀T : module(T) ∈ M. We can use this property to
eliminate the assumptions: For each assumption of the form

{ module(tidD(typeof (this))) 6∈ M ∧P } T:m { Q }
(i.e., for each assumption in A ∪ B), we derive:

10 B contains n × m triples where n is the number of language properties (see
Section 3.2) and m is the number of proof obligations for virtual methods in
M. Due to the clear structure of B, a verification tool can provide the verifier
with a structured view to this large number of assumptions and thus keep the
complexity manageable.

112 3. The Semantics of Mojave

|. { false } T:m { false }
module(tidD(typeof (this))) 6∈ M ∧P⇒false [[property above]]

[[strength-rule]]
|. { module(tidD(typeof (this))) 6∈ M ∧P } T:m { false }

[[weak-rule]]
|. { module(tidD(typeof (this))) 6∈ M ∧P } T:m { Q }

Now we can apply the assumpt-elim-rule to discard the assumptions and
show that P is a correct closed program. 2

3.3.3 Modular Soundness

A programming logic is usually applied to reason about one given program.
However, to verify an open program P, we have to prove properties that
hold in all closed programs contained in P. In our programming logic, each
proof for the core of an open program P is also a proof for the core of each
extension P ′ of P since

1. each valid application of an axiom or rule in a proof for the core of P is
also a valid axiom/rule application for the core of P ′. This is due to the
handling of dynamic method binding [PHM99].

2. the program-dependent universal specification for the core of P ′ is a
refinement of the generated specification for the core of P (see Para-
graph 3.1.1.1). That is, all proofs in predicate logic based on the universal
specification for the core of P stay valid in the specification for the core
of P ′.

Therefore, if a property can be proved for the core of an open program P, it
holds for the cores of all extensions of P and in all closed programs contained
in P. Hence, such proofs can be reused when an open program is extended
or closed11. We say that a sequent holds in an open program P if it holds in
all closed programs in P.

The property that proofs stay valid when an open program is extended is
often called modular soundness in the literature [Lei95b, LN00]. The above
considerations show that our programming logic and the way universal speci-
fications are generated guarantee modular soundness of our verification tech-
nique.

3.3.4 Composition of Modular Correct Open Programs

The composition of open programs P1, . . . ,Pn with cores M1, . . . , Mn is the
open program with core

⋃n
i=1 Mi. In Mojave, open programs can be composed

by import of modules. That is, a module M that imports modules M1, . . . , Mn

composes the open programs defined by M1, . . . , Mn and adds further type
11 Proofs that require well-formedness of interface specifications can only be reused

in programs with well-formed interface specifications. See Section 4.1.

3.3 Correctness 113

declarations. In this subsection, we present a proof strategy that allows one to
compose reused proofs of individual open programs and yields the correctness
proofs for the composite program.

3.3.4.1 Composition of Proofs. A complete logic allows one to prove
every property in the logic that holds. However, even in a complete logic, it
is not guaranteed that correctness can be proved modularly, that is, based on
reused proofs. One would need a notion of modular completeness of a logic
which means that every property that holds in a composite program can
be proved without re-verification of the constituents. To our knowledge, this
issue has not been discussed in the literature so far.

Our programming logic is not modular complete: It is not possible to
modularly prove all properties that can be proved for an open program in
a nonmodular way. The reason for that is the rather complex handling of
recursion. Assumptions about recursive methods can only be discarded by the
implementation-rule. In OO-programs it is possible that two virtual methods
are mutually recursive even if they are defined in different open programs as
illustrated by Example 3.3.1: Let P1 and P2 be the open programs defined
by M1 and M2, resp., and P the composition of P1 and P2. In P, the virtual
methods C1:m and C2:m mutually depend on each other’s behavior: For the
verification of C1:m, we need properties of I:m which in turn depend on the
subtype methods C1:m and C2:m. Thus, there is mutual recursion across the
boundaries of the open programs P1 and P2

12. Consequently, the proofs for
P require a quite complex handling of assumptions about C1@m and C2@m
and cannot simply be composed from the (reused) proofs of C1:m and C2:m
in P1 and P2.

Example 3.3.1.
module M;
public interface I extends Interface {

public int m();
}

module M1 imports M;
public class C1 implements I {

public int m() {
I v;
...
result = v.m();

}

module M2 imports M;
public class C2 implements I {

public int m() {
I v;
...
result = v.m();

}

To solve this problem, we could modify the handling of recursion in our pro-
gramming logic. However, the implementation-rule is the classical approach
to recursion. It is one of the crucial parts of the logic since it contains the
inductive argument to handle recursion. Thus, its soundness proof is not triv-
ial. There is no obvious alternative way to handle recursion. Replacing the
12 Note that this kind of mutual recursion cannot occur in languages with statically-

bound procedures only.

114 3. The Semantics of Mojave

classical implementation-rule would raise many questions about soundness,
completeness, and application of the new logic. A detailed discussion of mod-
ular completeness is beyond the scope of this book since we want to focus
on specification and verification techniques rather than on logical founda-
tions. Thus, we decided to keep the classical rule and follow an alternative
approach to proof composition: We use a proof strategy that allows us to
combine proofs for method bodies instead of virtual methods. This way, we
can use the implementation-rule to eliminate the assumptions for recursive
methods.

3.3.4.2 Proof Strategy for Program Composition. In this paragraph,
we show how modular correctness of a composite program can be derived from
the reused correctness proofs of its constituents. We describe the requirements
an interface specification language has to meet to support proof composition
and present a proof strategy for proof composition.

Requirements. Compositionality of correct programs relies on four properties
of the interface specification language that are assumed in this paragraph:

1. A legal composition of well-formed specifications leads to a well-formed
specification.

2. The set of proof obligations for the composition of open programs Pz

(z = 1, . . . , s) is the union of the sets of proof obligations for the single
open programs Pz. In particular, specifications of modules do not lead
to proof obligations for imported modules.

3. All proof obligations about virtual methods contain the typing of this
and the fact that this does not hold the null-value in the precondition.
That is, they have the form

{ tidD(typeof (this)) ¹M T ∧ this 6= null ∧P } T:m { Q }
4. Interface specifications are inherited. That is, if

|. { tidD(typeof (this)) ¹M T ∧ this 6= null ∧P } T:m { Q }
is a proof obligation for P’s core then

|. { tidD(typeof (this)) ¹M S ∧ this 6= null ∧P } S:m { Q }
is also a proof obligation for all S in the core of P that are subtypes of
T13.

We will show that the interface specification language used in this book meets
these requirements in Chapters 4 to 6.
13 Inheritance of interface specifications leads automatically to behavioral subtyp-

ing [DL96]. For this strategy, it would also be sufficient to require a weaker notion
of behavioral subtyping [Dha97].

3.3 Correctness 115

Correctness Proofs of Reused Programs. Let Pz (z = 1, . . . , s) be modularly
correct open programs and P0 the syntactically correct14 composition of the
Pz. For t = 0, . . . , s, let

– l1, . . . , ln be the language property operators defined for our programming
language, where li is less than or equal to li+1 in the ordering of language
property operators (see Definition 3.2.1); l0 denotes the identity operator
(i.e., l0(A) = A);

– A1,t, . . . ,Ap,t be the consequents of the proof obligations for the concrete
(i.e., implemented) virtual methods in the core of Pt of the form
{ tidD(typeof (this)) ¹M T ∧ this 6= null ∧P } T:m { Q }

– Ap+1,t, . . . ,Aq,t be the consequents of the proof obligations for the abstract
virtual methods in the core of Pt;

– Aq+1,t, . . . ,Ar,t be the consequents of the proof obligations for the other
program components in the core of Pt, especially for implementations of
statically-bound methods;

– I1,t, . . . , Ip,t be like the triples A1,t, . . . ,Ap,t with the virtual methods T:m
replaced by their implementations S@m15:
{ tidD(typeof (this)) ¹M S ∧ this 6= null ∧P } S@m { Q }

– B1,t, . . . ,Bp,t be the corresponding triples for the bodies of these imple-
mentations:

{ tidD(typeof (this)) ¹M S ∧ this 6= null ∧P ∧Vi(vi = init(τ([vi]))) }
body(S@m)

{ Q }

– Th
i,t, h = 0, . . . , n be lh(Ti,t). That is, the superscript indicates which lan-

guage property has been applied to the triple.

Modular correctness of composite programs is proved as follows: Instead of
requiring the verifier to directly show the proof obligations |. Aj,z for the
cores of each Pz, we require him to show

1. that the properties specified for concrete virtual methods hold for the
bodies of their implementations, and

2. the proof obligations with program parts that are not virtual methods.

For both kinds of proof obligations, the verifier can assume that all virtual
methods of Pz’s core have all specified and language properties (see below
for a formalization). Note that the verifier is not required to prove proper-
ties of abstract methods. The above proof obligations do not put additional
burden on the verifier. The triples for the method bodies have to be proved
anyway to show modular correctness of the Pz. The verifier can prove these
14 That means in particular that there are no name clashes between the module

names of the Pz.
15 Several virtual methods can have common implementations. Thus, some of the

Ii,t can be identical.

116 3. The Semantics of Mojave

obligations modularly since all specified properties and language properties
for virtual methods are given as assumptions. Therefore, the assumptions
already contain well-formedness of program extensions.

A verification tool can then carry out a proof strategy to derive modular
correctness of P0 from the above proof obligations (see below). To preserve
information hiding, the verifier would actually be forced to use a smaller as-
sumption set, namely only those triples that are generated from accessible
parts of the interface specification (see Subsection 4.2.2). However, since a
verification tool can apply the assumpt-intro-rule to add the missing assump-
tions before the strategy is carried out, we present the proof strategy for the
full assumption set.

Correctness of the Composite Program. The composition of several modularly
correct open programs leads to a modularly correct open program:

Lemma 3.3.2. If the interface specification language meets the above re-
quirements, and the following sequents can be proved for the cores of each
open program Pz, z = 1, . . . , s

(1)

n[
h=0

q[
i=1

Ah
i,z |. Bj,z for j = 1, . . . , p

and

(2)

n[
h=0

q[
i=1

Ah
i,z |. Aj,z for j = q + 1, . . . , r

then the syntactically correct composition of the Pz, z = 1, . . . , s is modularly
correct.

Proof of Lemma 3.3.2:
We can assume that the composition of the Pz, z = 1, . . . , s (called P0 in the
following) is syntactically correct. According to requirement 1 for interface
specifications, the composition of the well-formed specifications of the Pz

leads to a well-formed specification for P0. Thus, it remains to show that
the proof obligations for P0 can be proved (see Definition 3.3.2). According
to requirement 2 for interface specifications, the proof obligations for P0 are
the union of the proof obligations for the Pz, z = 1, . . . , s. In the following
we describe a strategy that generates proofs for these obligations and thus
shows that Lemma 3.3.2 holds.

The intuition behind this strategy is as follows: According to Lemma 3.3.2,
method bodies are verified based on the assumption that all virtual meth-
ods of the individual programs Pz meet their specifications and have the
admissible language properties. To prove that the composition is correct, we
have (1) to replace these assumptions by the assumptions about program
extensions described in Definition 3.3.2 and (2) to show correctness of virtual
methods and method implementations based on the proofs for the method

3.3 Correctness 117

bodies. The central idea of the strategy is that a property holds for a virtual
method T:m if the corresponding property holds (a) for all implementations
in P0 that might be executed when T:m is invoked, and (b) for all virtual
methods of subtypes of T that might be added to P0 later on. Besides this
idea and the application of language property operators, the strategy consists
mainly of manipulations of assumption sets.

Step 1: Reuse of Existing Proofs. We know that we can reuse the proofs
for (1) and (2) (see above and Subsection 3.3.3) for the verification of P0.
By requirement 2 for interface specification languages and the assumpt-intro-
rule, we get from (1) and (2):

(3)

n[
h=0

q[
i=1

Ah
i,0 |. Bj,0 for j = 1, . . . , p

and

(4)

n[
h=0

q[
i=1

Ah
i,0 |. Aj,0 for j = q + 1, . . . , r

In the following, we will only talk about triples for P0. Thus, we drop the
second subscript of the triples.

Step 2: Application of the Language Property Operators. In this step, we add
the language properties to the triples for method bodies. To do that, we apply
every language property operator lk to each triple of (3) which yields:

k[
m=0

n[
h=0

q[
i=1

lm(Ah
i) |. Bk

j for j = 1, . . . , p; k = 0, . . . , n

Since the language property operators only add conjuncts to pre- and post-
conditions, we can derive:

la(A) |. la(A) [[assumpt-axiom]]
lb(A) |. lb(A) [[assumpt-axiom]]

[[assumpt-intro-rule, conjunct-rule]]

la(A), lb(A) |. lb(la(A))

We use this property, the assumpt-elim-rule, and the assumpt-intro-rule to
derive

(5)

n[
h=0

q[
i=1

Ah
i |. Bk

j for j = 1, . . . , p; k = 0, . . . , n

Step 3: Replacing Virtual Methods by their Implementations. Now, we replace
the Ah

i in the assumptions of (5) by the corresponding triples for method
implementations and triples about further program extensions. For each triple
A ≡ { P } COMP { Q }, Â is defined as

{ module(tidD(typeof (this))) 6∈ M ∧P } COMP { Q } ,

where M denotes the core of P0. First, we introduce assumptions and get

118 3. The Semantics of Mojave

(6)

n[
h=0

q[
i=1

Ah
i ∪

n[
h=0

q[
i=1

Â
h

i ∪
n[

h=0

p[
i=1

Ih
i |. Bk

j for j = 1, . . . , p; k = 0, . . . , n

Now we eliminate the Ah
i by the following strategy: Let A1, . . . ,Aq·(n+1) be

the triples in
⋃n

h=0

⋃q
i=1 Ah

i in the following order: All triples for supertype
methods have lower indices than the triples for the corresponding subtype
methods. In the strategy, we abbreviate tidD(typeof (this)) by φ.

for g = 1 to q · (n + 1) do
Let Ag ≡ { φ ¹M T ∧ this 6= null ∧P } T:m { Q }.
if M contains proper subtypes of T then

For each of T’s direct subtypes in M, we know from requirement 4 for in-
terface specifications that there is a corresponding triple for the subtype
method in Ag+1, . . . ,Aq·(n+1). For each of these triples, we instantiate the
assumpt-axiom and the subtype-rule which yields

{ φ ≺M S ∧ this 6= null ∧P } S:m { Q } |.
{ φ ≺M S ∧ this 6= null ∧P } T:m { Q }

Now, we use the assumpt-intro-rule, the disjunct-rule, and the strength-rule
to derive
q·(n+1)[
f=g+1

Af |. { φ ≺M T ∧ this 6= null ∧module(φ) ∈ M ∧P } T:m { Q }

else
The sequent derived in the if-branch follows from the false-axiom, the
strength-rule, the weak-rule, and the assumpt-intro-rule.

end if
We use the assumpt-axiom and the disjunct-rule to derive

{Âg} ∪
q·(n+1)[
f=g+1

Af |. { φ ≺M T ∧ this 6= null ∧P } T:m { Q }

if T:m is an abstract method then
We know that T is an interface and thus φ 6= T. Using the strength-rule and
the assumpt-intro-rule yields

{I, Âg} ∪
q·(n+1)[
f=g+1

Af |. { φ ¹M T ∧ this 6= null ∧P } T:m { Q }

else
We use the corresponding triple I for the implementation of T:m and apply
the assumpt-axiom for I, the assumpt-intro-rule, and the strength-rule to
derive

{I, Âg} ∪
Sq·(n+1)

f=g+1 Af |. { φ = T ∧ this 6= null ∧P }impl(T:m){ Q }
{I, Âg} ∪

Sq·(n+1)
f=g+1 Af |. { φ ≺M T ∧ this 6= null ∧P } T:m { Q }

[[class-rule]]

{I, Âg} ∪
Sq·(n+1)

f=g+1 Af |. { φ ¹M T ∧ this 6= null ∧P } T:m { Q }
end if
Eliminate the assumption Ag in all triples of (6)

end for

By applying this strategy, we get

3.3 Correctness 119

(7)

n[
h=0

q[
i=1

Â
h

i ∪
n[

h=0

p[
i=1

Ih
i |. Bk

j for j = 1, . . . , p; k = 0, . . . , n

Step 4: Elimination of Implementations from Assumptions. In this step, we
use the triples for method bodies to discard the method implementations
from the assumptions in (7). Let Ii and Bi, i = 1, . . . , p · (n + 1) denote the
Ik
j and Bk

j , j = 1, . . . , p; k = 0, . . . , n in any order. Thus, we can write (7) as

(8)

n[
h=0

q[
i=1

Â
h

i ∪
p·(n+1)[

i=1

Ii |. Bj for j = 1, . . . , p · (n + 1)

We eliminate the Ii in (8) by the following strategy:
for g = 1 to p · (n + 1) do

apply implementation-rule to sequent with consequent Bg

for f = g + 1 to p · (n + 1) do
eliminate assumption Ig in the sequent with consequent Bf

end for
end for

After running this loop, we get
n[

h=0

q[
i=1

Â
h

i ∪
p·(n+1)[
i=j+1

Ii |. Ij for j = 1, . . . , p · (n + 1)

Now we eliminate the remaining assumptions Ii by the following loop:
for g = p · (n + 1) to 2 do

for f = g − 1 to 1 do
eliminate assumption Ig in the sequent with consequent If

end for
end for

This yields
n[

h=0

q[
i=1

Â
h

i |. Ij for j = 1, . . . , p · (n + 1)

or equivalently

(9)

n[
h=0

q[
i=1

Â
h

i |. Ik
j for j = 1, . . . , p; k = 0, . . . , n

Step 5: Proving Virtual Methods. In step 3, we have already shown how
properties of virtual methods can be proved based on the properties of their
implementations. We run an almost identical strategy to prove the sequents

(10)

n[
h=0

q[
i=1

Â
h

i |. Ak
j for j = 1, . . . , q; k = 0, . . . , n

The sequent with consequent Ak
j is derived as follows. Let T:m be the pro-

gram component of Ak
j . First, we show that the property holds for all direct

subtypes of T. If there are proper subtypes of T in the core of P0, this can be
done by applying the subtype-rule to the corresponding sequents of subtype

120 3. The Semantics of Mojave

methods (see requirement 4 for interface specifications) and by building the

disjunction of the resulting triples and the assumption Â
k

j (assumpt-axiom).
Otherwise, the false-axiom, the strength-rule, the weak-rule, and then the
assumpt-intro-rule are applied. Then, Ak

j can be derived by the strength-rule,
if T is an interface or by the class-rule and the sequent for T:m’s implemen-
tation in (9) if T is a class.

Step 6: Elimination of Remaining Assumptions. Finally, we replace the as-
sumptions in (4) by assumptions about program extensions by using the
triples in (10).

In summary, we have proved
n[

h=0

q[
i=1

Â
h

i |. Aj for j = 1, . . . , r

That is, we have derived all proof obligations for P0 based on assumptions
about extensions of P0 (the Â

h

i are exactly the admitted assumptions in
Definition 3.3.2). Consequently, P0 is modularly correct. 2

3.4 Related Work

In this section, we give an overview of programming logics for OO-languages.
In [Lei97], a wlp-calculus for an OO-language similar to our Java subset

is presented. In contrast to our work, method specifications are part of the
programs. The approach in [Lei97] can be considered as restricting our ap-
proach to a certain program development strategy (see [PHM98]). Thereby,
it becomes simpler and more appropriate for automatic checking, but gives
up flexibility that seems important to us for interactive program development
and verification. In addition to that, we consider it as an advantage to clearly
separate the axioms for the object store from the programming logic, as it is
done in our approach.

A different logic for OO-programs that is related to type systems is pre-
sented and proved sound in [AL97]. It is developed for an OO-language in
the style of the lambda calculus whereas we aim at directly supporting the
verification of an existing language. In particular, our language provides in-
heritance and dynamic method binding in the form they occur in widely-used
OO-languages.

A programming logic for a concurrent OO-language without methods and
subtyping is presented in [AdB94]. Based on this work, [Boe99] presents a wp-
calculus, also for a language without subtyping and dynamic method binding.
Since this calculus does not have an explicit object store, data abstraction
cannot be expressed. Therefore, an extension towards realistic OO-languages
with subtyping and inheritance seems difficult.

3.4 Related Work 121

Von Oheimb presents a programming logic for a programming language
with recursive methods, but without subtyping or dynamic method binding
in [Ohe99]. The logic is formally proved sound and complete w.r.t. an opera-
tional semantics using Isabelle. In [Ohe00], this logic is extended to support
subtyping and dynamic binding. Instead of using virtual methods, the rule
for method invocations requires one to show a property for the bodies of
all methods that might be executed by the invocation. This has two impor-
tant disadvantages compared to our logic: (1) Since the implementations of
all methods that might be invoked have to be present for verification of the
invocation statement, open programs cannot be handled. (2) The rule for
method invocations is fairly complex and not easy to apply.

The programming logic presented in [HJ99, HJ00] supports subtyping,
dynamic binding, and abrupt termination. Dynamically-bound methods are
handled by requiring behavioral subtyping which makes virtual methods dis-
pensable. To deal with abrupt termination, there are several rules for most
statements that capture the different cases of termination. Soundness and
completeness have not been proved for this logic, and are not obvious due to
the large number of rules.

The programming logic in this book has been inspired by the partial
correctness logic described in [Apt81]. The extension to object-orientation
profited from other papers about verification of imperative languages with
complex data structures, especially [Suz80], [HW73], and [Bij89]. The logic
presented here extends the foundations developed in [PHM98] by covering
encapsulation and subclassing. A very simliar logic was presented and proved
sound w.r.t. an operational semantics in [PHM99].

Dynamic logics [KT90] allow programs to occur in formulas. Therefore,
dynamic logic is more expressive than Hoare logic (e.g., it can express equiv-
alence of programs), but also more difficult to apply.

The assuption-commitment (or rely-guarantee) paradigm [XS98,
XdRH97] provides a compositional specification and verification technique
for concurrent and real time programs. It has been studied as an extension
to Hoare logic. Besides pre- and postconditions, an assumption-commitment
specification for a program component COMP consists of an assumption that
describes the state transitions other program components (that can be exe-
cuted concurrently) are allowed to perform in a global environment, in par-
ticular, the modifications of shared variables. A commitment specifies the
state transitions of COMP, provided that all other components meet the as-
sumptions of COMP. Assumption-commitment logics do not contribute to
the modular verification of sequential programs. Since control flow is passed
from one program component to another by method invocations, assump-
tions about state transitions caused by other components can be formulated
as pre-post-specifications of invoked methods. Analogously, the commitment
of a program component corresponds to its pre-post-specification in the se-
quential case.

122 3. The Semantics of Mojave

Behavioral subtyping [Ame87, Ame89, Dha97, LD00, LW93, LW94] is
essential for understanding and verifying OO-programs. It facilitates mod-
ular verification in the presence of subtyping and dynamic method bind-
ing [Lea88, LW90] by relating subtype specifications to supertype specifica-
tions. Therefore, it is a key concept of most verification techniques for OO-
languages. However, behavioral subtyping alone does not provide solutions
for three major problems addressed in this book: (1) Modular verification
of frame properties, (2) alias control, and (3) modular verification of type
invariants. We discuss the impact of behavioral subtyping on our interface
specification technique in Chapters 4 to 6.

4. Modular Specification and Verification of
Functional Behavior

In the following three chapters, we present our modular specification and ver-
ification technique for Mojave programs, beginning with the so-called func-
tional behavior of methods. Under functional behavior, we subsume the delib-
erate effects of a method: the computation of a result value and modifications
to the object store. That is, “functional” does not mean “side-effect-free”. We
describe our specification technique for functional behavior based on abstract
fields and pre-post-pairs, illustrate modular verification of functional behav-
ior, and discuss related work.

4.1 Foundations of Interface Specifications

In this section, we explain some general aspects of all specification primitives
of the Mojave interface specification language. We explain how the different
interfaces of a class or interface type can be annotated with specifications and
show how information hiding is preserved in interface specifications. Further-
more, we introduce well-formedness of interface specifications and explain
how their formal meaning is defined.

Specifying the Interfaces of a Class or Interface Type. In our specification lan-
guage, there are two groups of specification primitives: primitives for method
specifications (such as pre-post-pairs or modifies-clauses) and primitives for
the specification of data representations (such as type invariants and abstract
fields). That is, we specify the interfaces of class and interface types, but do
not provide specification primitives for modules. Since abstract fields and
invariants are not limited to expressing properties of one object, they can
be used to specify properties of object structures declared in a module or
scope and make thereby special module specifications dispensable for most
applications1.

A class provides five different interfaces (see Paragraph 2.1.2.3). Our spec-
ification language allows one to specify each of these interfaces. Elements of
the private interface can only be accessed from within the enclosing class.
Although the verifier of that class has access to the implementation and is
1 However, in Subsection 6.4.1, we discuss module invariants that can be used to

specify sharing properties of several object structures.

124 4. Modular Specification and Verification of Functional Behavior

therefore not required to refer to an interface specification, specifications of
the private interface are necessary (1) for the specification of dependencies,
(2) to describe the effects of methods on locations with private fields, and
(3) to define abstraction functions. To specify the different interfaces of a
class, each specification primitive is equipped with one of Mojave’s access
modes that determines to which interface the specification element belongs.
Since interface types have only a public interface, specifications of interface
types have to be public.

Information Hiding. The specification of an interface must not reveal imple-
mentation details that should be hidden from clients of that interface (for
instance, a public precondition must not refer to a private field). Techni-
cally, this is checked as follows: Every interface is associated with a theory
of the universal specification (see Paragraph 3.1.1.1). We require that every
constant symbol used in the specification of an interface is present (i.e., de-
clared or imported) in the corresponding theory. This can be enforced by
type checking all formulas of an interface specification in this theory. Thus,
the theory structure explained in Paragraph 3.1.1.1 guarantees that no hid-
den information is exposed. For instance, the occurrence of a private field
T@f in a public precondition in module M would be detected since T@f is
not declared in M’s public theory and would thus lead to an error such as
undeclared symbol during type checking M’s public theory.

More formally, each theory for a class or module determines signatures
corresponding to Σ, Γ , etc. (see Paragraph 3.1.1.12). Formulas in interface
specifications must fit to the signatures introduced by the corresponding uni-
versal specification.

Well-Formed Interface Specifications. As with programs, there are a number
of context conditions for interface specifications that will be explained along
with the specification primitives. In particular, all formulas occurring in the
specification of an interface must be sort correct w.r.t. the associated theory
of that interface.

In addition to these statically-checkable rules, interface specifications have
to meet several semantic conditions, in particular requirements that enable
modular verification. These so-called well-formedness conditions are formal-
ized as proof obligations for interface specifications. That is, these are proof
obligations about the specification itself, not about the specified program.
We call an interface specification of a closed program well-formed if (1) the
interface specification and the associated universal specification are syntacti-
cally and sort correct, and (2) all well-formedness conditions for the interface
specification are met. The interface specification of an open program P is
called well-formed, if the interface specifications of all closed programs in P
are well-formed.

In the following, we assume that each open or closed program P to which
the programming logic is applied has a well-formed interface specification.
That is, we assume that the specification of each closed program in an open

4.2 Specification of Functional Behavior 125

program P meets the well-formedness criteria, not only the specification of
P’s core. This is sound because every open program is closed before execution.
For the closed program, the well-formedness criteria are required to hold.
Since they will hold for every closed program in an open program P, we
can assume well-formedness already during verification of P’s core. Using
properties that hold for an open program P with well-formed specification
only (such as Lemma 5.2.1) during verification of P’s core is similar to raising
a mortgage that has to be amortized by program extensions. Technically, a
verification tool can assure well-formedness of the specification of a closed
program (i.e., that the mortgage is completely amortized) or of the core of an
open program (i.e., that the respective portion of the mortgage is amortized)
before proofs in the programming logic can be reused or newly constructed.

Meaning of Interface Specifications. The formal meaning of an interface spec-
ification is defined by translating the specification into a set of proof obli-
gations in the programming logic. In the following section, we define the
meaning of pre-post-specifications. Modifies-clauses and invariants are trans-
formed into pre-post-pairs (see Chapter 5 and 6). So the semantics of pre-
post-specifications applies as well to the transformed modifies-clauses and
invariants.

4.2 Specification of Functional Behavior

Pre-post-specifications are the standard technique for the specification of
functional behavior [Jon91b]. They are very intuitive, have an obvious con-
nection to software engineering [Mey92a], and are well integrated with Hoare-
style verification techniques [PH97b]. In the context of object structures and
subtyping, data abstraction is another key concept for the description of func-
tional properties [GH93, Hoa72, Lea88, LG86]: Abstraction functions map
object structures to values of an abstract domain. Modifications of object
structures can be described in terms of their abstract values which makes
implementation-independent specifications possible. In this section, we intro-
duce abstract fields to provide data abstraction and present the syntax and
semantics of pre-post-specifications.

4.2.1 Abstract Fields

Data abstraction is used to map object structures to abstract values and can
therefore be found in all two-tiered interface specification languages. How-
ever, different abstraction techniques have been developed for different ap-
plications:

– Implicit vs. explicit abstraction: For formal verification, it is indispensable
to have a formal connection between the operational world and declarative

126 4. Modular Specification and Verification of Functional Behavior

specifications [PH97b]. If this connection is formally defined, for instance
by conventions or by declarations in the interface specification, we call the
mapping from object structures to values explicit abstraction, and implicit
abstraction otherwise.

– Abstraction functions vs. abstract fields: Abstraction functions/relations
can be specified as part of the universal specifications. For instance, our
formal data and state model allows one to define abstraction functions
with signature Value×Store → Sort , where Sort is an appropriate sort of
the abstract domain [PH97b]. Alternatively, abstraction can be expressed
by so-called abstract fields (often called specification variables). Abstract
fields are part of the interface of a class, but have no correspondence in the
state space of an object. The range type of an abstract field is a sort of
the universal specification (and not a type of the program). The value of
an abstract location (i.e., the instance of an abstract field) is determined
by the values of a set of concrete locations, the abstract location depends
on. Thus, abstract fields express a mapping from concrete object states to
abstract values.
Abstract fields can be regarded as syntactically restricted abstraction func-
tions. Abstract fields map one object or object structure to a value of
the abstract domain whereas abstraction functions can have an arbitrary
number of arguments and can thus, for instance, express that two object
structures are disjoint, that is, have no objects in common (see [PH97b] for
examples of abstraction functions that take several arguments). However,
although almost identical in their formalizations, abstract fields have an
important advantage over abstraction functions: Since they are declared as
member of a class or interface type (in contrast to abstraction functions
that can usually be defined in any theory of a universal specification), it
is possible to generate axioms that allow one to reason about all abstract
fields of a class, interface, module, or scope (see Paragraph 3.1.1.9). As
pointed out by Leino [Lei95b], this kind of reasoning is crucial for the spec-
ification and verification of frame properties (see Subsection 5.4.1), where
one has to prove that all abstract locations not covered by the modifies-
clause of a method m stay unchanged when m is executed.

– Abstraction functions vs. abstraction relations: As explained in [SWO95],
there are applications where object states should be related to several ab-
stract values. We simulate such abstraction relations by set-valued abstrac-
tion functions.

To sum up, our interface specification language provides explicit abstraction
functions, encoded by abstract fields.

4.2.1.1 Declaration of Abstract Fields. An abstract field f with range
sort Sort is introduced by a declaration of the following form

public abstract Sort f;

4.2 Specification of Functional Behavior 127

where Sort is a sort of the universal specification. Since abstract fields are
in particular necessary to specify the behavior of abstract methods of in-
terface types (there is no implementation specifications could refer to), the
declaration of an abstract field can occur in class and interface bodies.

Our verification technique for frame properties requires abstract fields
to be public (see Section 5.4.3). Although it might be convenient to hide
abstract fields from some kinds of clients (e.g., it is reasonable to provide
certain abstractions for the protected interface only), public abstract fields
do not violate information hiding: The declaration of an abstract field only
reveals the name of an abstract field, but not its representation in terms of
concrete fields. Thus, if an implementation is changed, one can provide a
different representation for the abstract field.

The formalization of abstract fields has already been presented in Para-
graph 3.1.1.9. Since there is no “supersort” of all possible range sorts of
abstract fields, we cannot define the location read function () for abstract
locations (see Paragraph 3.1.1.10). Therefore, for each abstract field declared
as above, we introduce a function signature repf : Value × Store → Sort to
denote the abstraction function that corresponds to abstract field f. The
abstract location to be read is determined by the field name f and the
value passed to repf ; that is, repf(X,OS) for abstract fields f corresponds
to OS (X.f) for concrete fields f. Consequently, we abbreviate repf(X,OS) by
OS (X.f), where the meaning is clear from the context, .

To have a convenient notation for comparing the value of a location in
two stores, we introduce so-called L-equivalence. In particular, L-equivalence
allows us to quantify over the values held by abstract locations.

≡ : Store × Location× Store → Bool

For concrete locations, this function is defined as follows:

OS ≡mklc(LC) OS ′ ⇔def OS(LC) = OS ′(LC)

For abstract locations, each field declaration of the form above adds an axiom
to the universal specification:

OS ≡X.f OS ′ ⇔def repf(X,OS) = repf(X,OS ′)

Lemma 4.2.1. ≡L is an equivalence relation.

Proof of Lemma 4.2.1:
For closed programs P, we prove the lemma as follows: The lemma is trivial if
L is a concrete location. If L is an abstract location with simple field id f, we
know that there is a declaration of f in P (axiom import6, axiomatization of
module, axiomatization of fields). For this declaration, an axiom for ≡X.f

is generated as described above. Since this axiom is based on equality, ≡X.f

is an equivalence relation.
Since ≡L is an equivalence relation in each closed program, it is also

an equivalence relation in each open program. 2

128 4. Modular Specification and Verification of Functional Behavior

4.2.1.2 Representations of Abstract Fields. Abstract locations are not
part of an object’s state. The value of an abstract location is determined by
the values held by a set of concrete locations, called the representation of the
abstract location. The mapping of values of concrete locations to the value
of an abstract location is specified by a so-called defines-clause or briefly
def-clause2. Def-clauses have the form

mode def f by t;

where mode is one of Mojave’s access modes, f is the name of an abstract field,
and t is a Γ ∪{this}-term of f’s range sort that does not contain free variables.
Roughly speaking, t specifies the value of this.f in $ (see Paragraph 4.2.1.3
for several examples of abstract fields and their def-clauses). For def-clauses,
the following context conditions apply:

1. Def-clauses are declared in bodies of class or interface declarations. The
def-clauses for an abstract field T@f have to be declared in T or subtypes
of T.

2. Each subtype S of T (including T) may contain at most one def-clause for
T@f; this clause can be either declared in S or inherited from a supertype.
This implies that
– inherited def-clauses cannot by overridden in subtypes. Since subtypes

inherit implementations of supertypes, it is natural that they represent
an abstraction in the same way.

– two subtypes of T that are not subtypes of each other can contain
different def-clauses for T@f. Thus, an abstract field can have different
representations in different type declarations that are not subtypes.

– multiple subtyping of interfaces must not lead to multiple inheritance
of def-clauses. That is, when an interface I extends several interfaces
I1, . . . , In, at most one Ii may contain a def-clause for each abstract
field inherited by I.

3. Each class C must contain a def-clause for each of its abstract fields,
which can be either declared in C or inherited. This restriction guarantees
that there is a representation for each abstract location, which simplifies
well-formedness proofs for interface specifications.

4. To guarantee information hiding, a def-clause may only exhibit imple-
mentation details that are accessible in every client that has access to
the def-clause (see Section 4.1).

A def-clause of the above form declared in type declaration S specifies the
representation of instances of field f in allocated S-objects. More precisely,
such a def-clause adds an axiom for the specification of repf of the form

X 6= null ∧ tidD(typeof (X)) ¹M S ∧ alive(X,OS) ⇒
repf(X,OS) = t[X/this,OS/$]

2 Def-clauses are called represents-clause or rep declaration in [Lei95b, LBR99a].
We changed the name and the keyword to avoid ambiguities with rep types.

4.2 Specification of Functional Behavior 129

to the universal specification. The theory of this axiom is determined by S
and the access mode of the def-clause.
4.2.1.3 Example. To demonstrate the declaration of abstract fields and
def-clauses, we revisit the list example introduced in Subsection 2.2.4 (see also
App. C.1). Abstract fields are used to represent the abstract values of data
structures and to express well-formedness conditions of data representations.
We illustrate these applications in the following paragraphs.
Lists. We use lists of references (sort list of Value) to represent the abstract
value of lists. Consequently, we declare an abstract field

public abstract list of Value val;

in class List. Since well-formedness of list representations is expressed by an
invariant (see Subsection 6.2.2), we do not need an abstract field to specify
validity of lists.

The mapping of node structures to lists of values is performed by a func-
tion col (in the following, [], [], and + denote the empty list, the list with
one element, and list concatenation):

col : Value × Store → list of Value
X 6= null ∧ ρ(X,null ,OS , next) ⇒

col(X,OS) =def [OS(X.elem)] + col(OS(X.next),OS)
X = null ∨ ¬ρ(X,null ,OS , next) ⇒ col(X,OS) =def []

To be able to show certain well-formedness criteria (see Obligation 5.1), we
use a total definition for col that is well-defined even in states in which in-
variants don’t hold: In case that the list structure is acyclic (i.e., the chain of
next-references reaches the null-value; this property is implied by the invari-
ant for Node), the node structure is mapped to the list of stored references.
Otherwise, col yields the empty list.

col is defined in the public theory for the LIST module. We assume that
this theory also contains appropriate lemmas about col to simplify verifica-
tion, for instance:

Lemma 4.2.2. The abstract value of a node structure is not affected by ob-
ject creation.

col(X,OS) = col(X,OS〈T, U〉)
The proof of this lemma is based on Lemma 3.1.10 (i) and Axiom store5. It
is straightforward and therefore omitted here.

A function cut is used to remove the first and last element of a list (cut
yields the empty list if its argument has less than two elements). By col and
cut , we can express the representation of val in class List:

protected def val by cut(col($(this.first), $));

Recall from Subsection 2.2.4 that our list representation uses a dummy node
at each end of the node structure. Thus, the abstract value of the list is
obtained by removing the dummy elements from the list of references. The
def-clause has protected access since it refers to List’s first-field.

130 4. Modular Specification and Verification of Functional Behavior

List Positions. Objects of class ListPos store positions in doubly linked lists
as references to Node-objects. On the abstract level, the position of the ith
node of a list can be represented by the natural number i. Since nodes can
be removed from a list, a list position can become invalid. Therefore, we
introduce an additional abstract field for ListPos that indicates whether the
position is valid3:

public abstract Nat position;
public abstract Bool valid;

To be a valid list position, the node referenced by pos has to belong to
the node structure of the list referenced by list. That can be expressed
by the following formula: ρ($($(this.list).first), $(this.pos), $, next). However,
using this formula in the def-clause for valid requires the def-clause to have
private or default access since List’s first-field is not accessible in subclasses
of ListPos.

To avoid this obstruction for ListPos’ subclasses, we introduce a public
abstract field anchor. An anchor-location holds a reference to the first node
of the associated list. Therefore, it makes this reference available in public
interface specifications while the list- and first-fields are not exposed:

public abstract Value anchor;
def anchor by $($(this.list).first);

The pattern of introducing an abstract field that is represented by a single
concrete field is sometimes called “readonly by specification pattern” since it
allows one to loosen information hiding (the value of the abstract location can
be referred to in public specifications) without breaking encapsulation (the
concrete fields are still hidden and not accessible to all clients). The abstract
field in this pattern is called “spec public variable” in ESC/Java and JML.

Based on anchor, we can specify the def-clause for valid4. To be valid,
the referenced node must belong to the list’s node structure and be different
from the dummy nodes:

protected def valid by ρ($(this.anchor), $(this.pos), $, next)∧
$(this.anchor) 6= $(this.pos)∧
$($(this.pos).next) 6= null ;

Although the representation of anchor is not visible for subclasses of ListPos,
the above def-clause provides enough information to verify subclasses such
as Iter that modify the pos-field.

The abstraction of list positions to natural numbers is based on a function
index . index (X,Y,OS) yields the distance from node X to node Y in a node

3 Validity cannot be expressed by an invariant since it is violated by List’s remove-
method.

4 anchor is an example of an abstract field that could be declared private pro-
tected or protected. However, we only provide public abstract fields (see Para-
graph 4.2.1.1).

4.2 Specification of Functional Behavior 131

structure. It is defined in the public theory for LIST. {X | P (X)} is the set
of all X for which P (X) holds. min yields the minimum of a set of natural
numbers.

index : Value ×Value × Store → Nat
ρ(X, Y,OS , next) ⇒ index (X, Y,OS) =def min({N | ρN (X, Y,OS , next)})
¬ρ(X, Y,OS , next) ⇒ index (X, Y,OS) =def 0

The abstract value of a valid list position is the distance from the first node.
It lies between 1 and the number of elements in the list (position 0 would be
the first dummy node):

protected def position by index ($(this.anchor), $(this.pos), $);

4.2.2 Pre-Post-Specifications

In this subsection, we present the syntax of pre-post-specifications and their
semantics in terms of proof obligations of the underlying programming logic.

4.2.2.1 Syntax. As suggested in [LB99, PH97b, Win83], we provide several
pre-post-pairs for each method. This allows one to structure specifications
and to separate for instance the specification of the result value, modifica-
tions of the object store, and sharing properties. Common properties of all
preconditions, especially properties that protect subsequent pre-post-pairs
from undefinedness [LW97], can be specified in a so-called requires-clause or
briefly req-clause. In particular, the req-clause of a method must be strong
enough to guarantee that execution of the method does not abort because of
null-pointer dereferencing, etc. Besides its use as notational abbreviation, the
req-clause is necessary to define the meaning of modifies-clauses and invari-
ants (see Section 5.3 and Subsection 6.2.3). A pre-post-specification consists
of a requires-clause and an arbitrary number of pre-post-pairs.

Notation. A pre-post-specification can occur in declarations of abstract or
concrete methods following the method signature. Furthermore, specifications
of inherited methods can be refined without overriding the inherited method
by repeating the method signature in the subclass and adding pre-post-pairs.
However, in case the subclass does not override the inherited method, it must
not specify an additional req-clause for this method5. Pre-post-specifications
have the form
5 If a subclass would provide a weaker req-clause without overriding the method

implementation, it is no longer guaranteed that the new req-clause is sufficiently
strong to guarantee that the inherited method implementation does not abort.
That is, the method implementation would have to be reverified which is not
possible in a modular setting. If a stronger req-clause is provided, behavioral
subtyping is violated.

132 4. Modular Specification and Verification of Functional Behavior

req R;

mode1 pre P1;
post Q1;

. . .
moden pre Pn;

post Qn;

where each modei is one of Mojave’s access modes, R and the Pi are Γpre -
formulas and the Qi are Γpost -formulas. That is, req-clauses and preconditions
may refer to formal parameters, the object store, and the current universe,
whereas the postcondition may only refer to the object store and result.
Logical variables can be used to refer in postconditions to values held by
formal parameters in the prestate (see below for an example).

Information Hiding. The access modes of pre-post-pairs have to guaran-
tee that the method is accessible wherever its specification is. Other-
wise, the method specification would reveal hidden information about the
method signature. Req-clauses play a vital role for the meaning of pre-post-
specifications, modifies-clauses, and invariants (see below). Therefore, the
req-clause is involved whenever a property of a method invocation is proved.
Consequently, a req-clause should not be hidden from clients. It has implicitly
the same access mode as the method it belongs to. Req-clauses and pre-post-
pairs must not refer to implementation parts that are less accessible than the
req-clause/pre-post-pair to preserve information hiding (see Section 4.1).

Example. Since pre-post-specifications are a well-known means to express
functional behavior, it is not necessary to discuss several examples here.
(Thus, the pre-post-specifications are omitted for most methods in our ex-
ample, see App. C.) [PH97b] contains a functional specification of two list
implementations in a similar specification language. Here, we give a short ex-
ample to show the syntax and highlight some specialties of our specification
technique.

The method setValue of class ListPos updates the list element at the
current list position. We specify this functional behavior as follows (see
App. C.1 for the implementation). update(S, N, V) yields the list S with
the Nth element replaced by V .

public int setValue(readonly Object v)

req $(this.valid);

public pre $(this.theList) = L ∧ $(L.val) = S ∧ v = V ∧ $(this.position) = N ;
post $(L.val) = update(S, N, V);

If the list position is valid in the prestate, the abstract value of the associated
list is updated at the designated position. theList is an abstract field that
yields the list header that corresponds to the list position. It is necessary to
refer to the list associated with a position in public specifications (theList
is another example for the “readonly by specification” pattern). The logical

4.2 Specification of Functional Behavior 133

variables L, N , and V are bound to values of the prestate such that they
can be referred to in the postcondition. They are necessary since program
variables such as this or v must not appear in postconditions. Note that the
functional behavior of setValue is achieved by a destructive update of the list
structure. There is no meaningful result value and thus no specification for
the result. The proof for the above specification is presented in Section 4.3.
4.2.2.2 Meaning of Pre-Post-Specifications. The semantics of interface
specifications is defined by translating them into proof obligations of the
underlying programming logic.
Informal Meaning. To fit our programming logic, our pre-post-specifications
express partial correctness. Although their meaning seems to be straightfor-
ward, there are some subtle questions we have to answer:

1. How can behavioral subtyping be enforced in the context of information
hiding? To prove a property for a virtual method, one has to show that
the corresponding property holds for all subtype methods, that is, that
subtypes are behavioral subtypes. For this task, specifications of the su-
pertype methods have to be accessible to implementors of subtypes.

2. Should pre-post-specifications be inherited? Pre-post-specifications can ei-
ther only lead to proof obligations for the specified method or also for
inherited or overriding methods in subtypes. To prove a property for a
supertype method, the corresponding property has to hold for all sub-
type methods (see subtype-rule). Thus, both alternatives are semantically
equivalent. However, inheriting specifications has some minor advantages:
(1) It directly leads to proof obligations for inherited virtual methods.
These triples simplify verification of invocations of inherited methods.
(2) Specification inheritance leads to behavioral subtyping [DL96] which
makes the treatment of open programs easier (see Subsection 3.3.4).

3. Which invariants can be assumed to hold in preconditions? The behav-
ior of method implementations, in general, relies on the validity of type
invariants. Therefore, it should be possible to assume that certain type
invariants hold in the prestate (see Chapter 6 for details on type invari-
ants).

For our specification language, we answer these questions as follows:

1. Private and default access specifications are used to document properties
of methods for internal use by the developer of a module only. That is,
private and default access specifications describe properties of a certain
method implementation rather than of a virtual method (neither users
nor implementors of subclasses have access to such specifications, see
discussion on the JML interest list [JML]). Thus, private and default ac-
cess specifications lead to proof obligations for method implementations
whereas specifications with other access modes lead to proof obligations
for virtual methods or implementations for dynamically or statically-
bound methods, resp.

134 4. Modular Specification and Verification of Functional Behavior

2. Pre-post-specifications of a dynamically-bound method T:m that do not
have private or default access are inherited by subtypes. That is, they
lead to proof obligations for all virtual subtype methods S:m where S is
a subtype of T.

3. According to the semantics of type invariants (see Paragraph 6.1.3.2),
we require that the invariants of all allocated objects that belong to U
or one of its descendants hold upon invocation of a nonprivate readwrite
method or a nonprivate static readonly method. If a private method or
a readonly instance method must rely on certain invariants, they have
to be repeated in the req-clause or a precondition, which is possible but
limits the application of the method6 (see specification of List’s isEmpty-
method in App. C.1).

Furthermore, we can assume that the store is well-typed and all actual pa-
rameters are alive and well-typed in the prestate.
Formal Meaning. We formalize the above considerations as follows: Assume
that (Pi,Qi) are the pre-post-pairs and R is the req-clause specified for a
method m of type declaration T in a closed program P or the core of an
program P. Such a specification leads to proof obligation(s) of the forms:

(1) { R′ } COMP { true } (2) { R′ ∧Pi } COMP { Qi }
where

– COMP is T@m in case, that the method is private or static (i.e., statically-
bound) or that the pre-post-pair has private or default access. In all other
cases, the proof obligation is generated for each virtual method S:m in P
resp. P’s core where S is a subtype of T.

– R′ abbreviates R∧TA for private methods and readonly instance methods,
and R∧TA∧ inv($,U) for all other methods. inv($,U) expresses that the
invariants of all living objects that belong to U or a descendant of U hold
(see Subsection 6.2.3 for a formal definition). TA denotes the type and
liveness annotations for the prestate of COMP (v0, . . . ,vk are the formal
parameters of COMP):

TA ⇔def wt($) ∧ (static(COMP) ⇔ this = null)∧Vk
i=0(typeof (vi) ¹ τ([vi]) ∧ alive(vi, $))

Proof obligations of the first form define the semantics of the req-clause:
In conjunction with type and liveness annotations (and possibly invariants),
it must be strong enough to guarantee that the method does not abort.
Obligations of the second form formalize the meaning of pre-post-pairs.

Note that on the level of triples, inheritance of interface specifications does
not mean that triples with identical formulas are generated for supertype and
subtype methods. The precise type annotations lead to stronger preconditions
for subtype methods since this is known to be an object of the subtype.
6 One can in general invoke such methods only on targets belonging to U or a

descendant of U .

4.3 Verification of Functional Behavior 135

4.3 Verification of Functional Behavior

Modular verification of a module M means to prove modular correctness of
the open program defined by M based on the modular correctness of the
modules directly imported by M. We prove modular correctness of an open
program P in two steps:

1. We verify method bodies based on the assumption that all methods in P
behave according to their specifications. These proofs can be reused for
imported methods.

2. We combine the proofs of step 1 and discard the assumptions to get the
correctness proof for P.

We discuss these steps in the following subsections and illustrate them by an
example.

4.3.1 Verification of Method Bodies

The verifier of a method body has private view to the implementation and
specification of the enclosing class. That is, she has access to the private
theory for that class and to all imported theories. However, the verifier has
only incomplete knowledge about the (open) program to be verified for two
reasons:

– Information hiding: The verifier of a class C does not have access to hidden
parts (in particular, the implementation) of type declarations used by C.

– Open programs: The verifier does not know about the context in which the
verified method might be reused (except that the context is well-formed).

However, modular verification of functional behavior is possible despite these
forms of incomplete knowledge:

– As defined above, functional behavior of a method m consists of the com-
putation of a result value and modifications of the object store. That is,
verification of functional behavior is mainly concerned with changes to the
object store, not with the absence of modifications like frame properties
and invariants (see Chapters 5 and 6). These changes are specified in terms
of concrete and abstract fields that are accessible in m (see e.g., the speci-
fication of setValue above).

– To achieve its functional behavior, an implementation of method m can
1. perform operations on local variables, formal parameters, and literals

(such as assignment). Such operations are not affected by incomplete
knowledge.

2. access the object store by field-read- and field-write-statements. m can
update concrete fields only if they are accessible in m. To reason about
the effects of field updates on accessible abstract locations, the relevant

136 4. Modular Specification and Verification of Functional Behavior

def-clauses have to be accessible in m, which has to be guaranteed by a
good specification (i.e., it is a matter of specification methodology, not
of the verification technique). The effects on abstract locations declared
outside the scope of m need not be taken into account during verifica-
tion of functional behavior7. Instead, the caller of m must reason about
these effects. Thus, field access does not lead to problems for modular
verification.

3. invoke methods. m can directly invoke methods only if they are declared
in the scope of m. Thus, the specifications of the invoked methods can
be used to reason about the invocations. That is, if we assume that
all invoked methods behave according to their specifications, we can
reason about method invocations modularly. It remains to the specifier
to provide method specifications that are sufficiently complete for the
verification of invocations.

Consequently, functional properties about method bodies can be proved mod-
ularly based on assumptions about the invoked methods. We illustrate such
a proof in Subsection 4.3.3.

4.3.2 Proofs for Virtual Methods

Due to dynamic binding, method invocations in module M can lead to
the execution of code that is declared outside the scope of M. To be able
to verify M modularly, we have to guarantee that subtype methods be-
have according to the specifications of the corresponding supertype meth-
ods such that we can use the supertype specification to reason about the
invocations. This problem of behavioral subtyping has been studied intensely
[Ame87, Ame89, Dha97, LD00, LW93, LW94]. We achieve behavioral sub-
typing by specification inheritance [DL96], which is exploited by the proof
strategy presented in Paragraph 3.3.4.2.

This strategy allows one to automatically combine the proofs of step 1
and discard the assumptions which yields the correctness proof for the open
program. Thus, the verifier does not have to struggle with the effects of
dynamic binding.

Meeting the Requirements. The specification primitives introduced so far
meet the requirements of the proof strategy:

1. All context conditions for pre-post-specifications and abstract fields can
be checked locally in a type declaration and the declarations of its su-
pertypes. Thus, a legal composition of well-formed specifications consist-
ing of abstract fields with def-clauses and pre-post-specifications yields a
well-formed specification.

7 This is exactly the point that makes modular verification of frame properties and
type invariants much harder than verification of functional behavior (see Sub-
section 5.1.1).

4.3 Verification of Functional Behavior 137

2. The specification of static and private methods only leads to proof obli-
gations for the corresponding implementations. Thus, the composition of
programs cannot lead to new proof obligations for these specifications.
The specification of a virtual method T:m leads to proof obligations for
T:m and the corresponding subtype methods. Assume two open programs
P1 and P2 with cores M1 and M2. Let M1 contain the declaration of T.
If M2 declares a subtype S of T, then T must also be contained in M2

(Axiom import2). Thus, the proof obligations for S:m in M1 ∪M2 have
already been generated for M2. If M2 does not declare subtypes of T, then
the specification of T:m does not lead to proof obligations for methods of
types declared in M2. In this case, the proof obligations stemming from
the specification of T:m in M1 ∪M2 are exactly the proof obligations in
M1.

3. Type annotations are part of every proof obligation for a pre-post-
specification.

4. Pre-post-specifications for virtual methods are inherited (see Para-
graph 4.2.2.2).

Application of the Proof Strategy. For the modular verification of a module
M, we require:

– the verifiers of the modules Mi imported by M to prove the properties
about method implementations and bodies of virtual methods declared in
Mi as required by Lemma 3.3.2;

– the verifier of M to provide proofs for the corresponding sequents about
the methods declared in M.

We can now use the assumpt-intro-rule to get all sequents required by
Lemma 3.3.2 and run this strategy to prove modular correctness of M.

For the rest of this book, we assume that all proofs are constructed as
described above. This means in particular, that neither the subtype- nor the
class-rule have to be used to prove the input for the proof strategy since
all specified properties about virtual methods are contained in the assump-
tion set. This restriction simplifies verification of frame properties and type
invariants (see Subsection 5.4.4).

4.3.3 Example

As explained above, a verifier only shows proof obligations for method imple-
mentations, and — for each proof obligation for a concrete virtual method
— the corresponding property for the body of its implementation. The re-
maining proof steps are automatically carried out according to Lemma 3.3.2
by a verification tool. We illustrate this methodology by verifying that List-
Pos:setValue meets the specification presented in Subsection 4.2.2. This spec-
ification leads to the following proof obligation:

138 4. Modular Specification and Verification of Functional Behavior

{ $(this.valid) ∧ $(this.theList) = L ∧ $(L.val) = S ∧ v = V ∧
$(this.position) = N ∧ wt($) ∧ typeof (this) ¹ τ(grndT (ctid(ListPos)))∧
typeof (v) ¹ τ(roT (ctid(Object))) ∧ alive(this, $) ∧ alive(v, $)∧
(static(ListPos@setValue) ⇔ this = null) ∧ inv($,U) }
ListPos:setValue(readonly Object v)

{ $(L.val) = update(S, N, V) }
From Lemma 3.3.2, we know that it is sufficient to show the corresponding
property for the body of ListPos@setValue, based on the assumption that
all virtual methods (in particular, List:setAtPos) meet their specifications.
Thus, we derive:

{ $(this.valid) ∧ $(this.theList) = L ∧ $(L.val) = S ∧ v = V ∧
$(this.position) = N ∧ wt($) ∧ typeof (this) ¹ τ(grndT (ctid(ListPos)))∧
typeof (v) ¹ τ(roT (ctid(Object))) ∧ alive(this, $) ∧ alive(v, $) ∧ inv($,U)∧
(static(ListPos@setValue) ⇔ this = null) ∧ l = init(τ(grndT (ctid(List))))∧
n = init(τ(roT (ctid(Node)))) }

⇒

264264 this 6= null ∧ typeof (this) ¹ τ(grndT (ctid(ListPos))) ∧ alive(this, $)∧
inv($,U)⇒$(this.list) 6= null ∧ $(this.pos) 6= null
(see App. C.1 and Chapter 6);
Axiom store8; unfolding representations of abstract fields

375375
{ this 6= null ∧ $(this.list) 6= null ∧ $(this.pos) 6= null∧
index ($($(this.list).first), $(this.pos), $) = N ∧N > 0∧
$($(this.pos).next) 6= null ∧ v = V ∧ $(this.list) = L ∧ $(L.val) = S ∧ wt($)∧
typeof ($(this.list)) ¹ τ(grndT (ctid(List))) ∧ inv($, univV ($(this.list)))∧
typeof ($(this.pos)) ¹ τ(roT (ctid(Node))) ∧ typeof (v) ¹ τ(roT (ctid(Object)))∧
alive($(this.list), $) ∧ alive($(this.pos), $) ∧ alive(v, $) }
l = this.list;

{ this 6= null ∧ l 6= null ∧ $(this.pos) 6= null ∧ index ($(l.first), $(this.pos), $) = N∧
N > 0 ∧ $($(this.pos).next) 6= null ∧ v = V ∧ l = L ∧ $(L.val) = S ∧ wt($)∧
inv($, univV (l)) ∧ typeof (l) ¹ τ(grndT (ctid(List)))∧
typeof ($(this.pos)) ¹ τ(roT (ctid(Node))) ∧ typeof (v) ¹ τ(roT (ctid(Object)))∧
alive(l, $) ∧ alive($(this.pos), $) ∧ alive(v, $) }
n = this.pos;

{ l 6= null ∧ n 6= null ∧ index ($(l.first), n, $) = N ∧N > 0 ∧ $(n.next) 6= null∧
v = V ∧ l = L ∧ $(L.val) = S ∧ wt($) ∧ typeof (l) ¹ τ(grndT (ctid(List)))∧
typeof (n) ¹ τ(roT (ctid(Node))) ∧ typeof (v) ¹ τ(roT (ctid(Object)))∧
alive(l, $) ∧ alive(n, $) ∧ alive(v, $) ∧ inv($, univV (l)) }
result = l.List:setAtPos(n,v); [[assumpt-axiom, invocation-rule]]

{ $(L.val) = update(S, N, V) }
By the assumpt-intro-rule, we get the property that is required for the appli-
cation of Lemma 3.3.2. In a similar way, we can prove properties about the
method implementations and the bodies of the implementations of the other
virtual methods in LIST. We can then apply Lemma 3.3.2 which yields the
correctness proofs of functional behavior for module LIST.

Compared to the size of the method, the above proof is very complex.
However, most of the complexity stems from the treatment of type and live-
ness properties. Due to Lemmas 3.2.1 and 3.2.4, these properties can be auto-
matically carried around in proofs by a verification tool, and can therefore be

4.4 Related Work 139

hidden from the user. For instance, the Jive system keeps type and liveness
properties implicit during proofs in the programming logic, but adds them
whenever a program-independent lemma is generated (e.g., by applications
of the strength- and weak-rules). For this book, we decided to keep typing
and liveness properties explicit for two reasons: (1) Type properties are of-
ten needed in proofs since they also contain universe information. Therefore,
explicit type information makes proofs easier to follow. (2) A formalization
of the behavior of the Jive system results in a rather complex programming
logic in which correctness of some rules is based on the type safety proof,
which is in turn formalized in the programming logic. Although such a logic
can be formalized, we want to avoid this complexity.

4.4 Related Work

The specification and verification technique presented in this chapter is
mainly adapted from [Lei95b] and [PH97b]. In this section, we discuss this
and other related work on modular specification and verification of functional
method behavior.

4.4.1 Specification of Functional Behavior

In the following, we give an overview of relevant work on data abstraction
and pre-post-specifications.

Data Abstraction. The idea of using data abstraction to reason about com-
plex data structures goes back to Hoare [Hoa72]. The abstract fields of our
specification language are mainly influenced by Poetzsch-Heffter’s and Leino’s
work. Poetzsch-Heffter explains how explicit abstraction functions can be
formally founded by a data and state model of the programming language
[PH97b]. In particular, he illustrates how abstraction functions can be used to
describe object sharing in an abstract way. In contrast to our work, Poetzsch-
Heffter’s abstraction functions are defined as part of the universal specifica-
tion, not of the interface specification. There is no support for information
hiding or reasoning about all abstractions of a class, module, etc. in [PH97b].

Besides the missing support for information hiding, Leino’s abstract fields
and rep declarations are very similar to ours [Lei95b, LN00].

Larch/C++ [Lea97] also uses abstract fields and represents-clauses. The
represents-clauses allow one to specify the representations of abstract fields by
arbitrary axioms which is very convenient (in particular, for the specification
of abstraction relations). These axioms are not part of the universal specifi-
cation. Instead, they are conjoined to the pre- and postconditions of public
member functions, which requires the verifier to carry around the conjuncts
in proofs.

140 4. Modular Specification and Verification of Functional Behavior

As already explained in Paragraph 1.6.1.2, abstract fields in JML (so-
called model fields) map object structures to objects of so-called pure Java
types, not to values of a declarative universal specification [LBR99a]. Pure
types allow programmers to use Java to provide abstractions for their imple-
mentations. Thus, they are a promising approach to bring formal methods
to practice. However, to use pure types for reasoning in our programming
logic, they have to be translated into universal specifications of our formal
system. Although it is usually feasible to use our data type definitions to im-
itate the data structures specified by pure types, the translation of methods
of pure types is in general not trivial. For this book, we decided to simplify
verification by putting the burden on the specifier to provide abstractions for-
malized in our logic system. Combining the verification techniques presented
in this book with specification languages in the style of JML is an interesting
direction for future work.

Data abstraction is kept implicit in most Larch interface specification lan-
guages. Thus, there is no explicit formal connection between object structures
and values of the universal specification. However, such a formal connection
is crucial for verification.

Pre-Post-Specifications. The idea of annotating programs by pre- and post-
conditions was first mentioned by Floyd [Flo67] and Hoare [Hoa69]. Pre-
post-specifications are widely used to specify contracts between the caller
and the implementor of a method [Jon91b, Mey92a, Mor94]. We discussed
the operational and declarative techniques for interface specifications in Para-
graph 1.6.1.2.

The syntax and formal meaning of pre-post-specifications used in this
book was adapted from [PH97b] and enhanced by access modes for spec-
ifications. [LB99] presents several variations of pre-post-specifications such
as informal, liberal, and redundant specifications as well as specification by
examples. These variations are interesting to make specifications more ex-
pressive and easier to understand. We do not provide them in this book since
we do not need the additional expressiveness here and since we want to avoid
the additional complexity. Many of these variations are implemented in JML
and Larch/C++. Like our specification language, JML provides access modes
for pre-post-specifications.

Ruby and Leavens present an extension of pre-post-specifications that
allows developers to implement subclasses without looking at inherited code
[RL00]. So-called callable-clauses are used to determine which methods have
to be overridden to specialize the behavior of an inherited method. Although
such specifications improve adaptability and reusability, we do not support
them since there is no adequate verification technique so far.

Standard pre-post-specifications can express relations between the pre-
and poststate of a method, but fail to specify actions that do not affect the
result value or the object store. Therefore, they are not capable of specifying
event-driven systems or callbacks (the task of an event dispatcher is to invoke

4.4 Related Work 141

certain methods, no matter what actions are performed by these methods).
An extension of pre-post-specifications by so-called model programs to handle
such behavior is presented in [LD00]. To keep things simple, we do not treat
event communication in this book.

Inheritance of interface specifications is discussed in [DL96]. According to
this work, relating supertype to subtype abstractions is the most prominent
problem for assigning a semantics to inherited specifications. This is due
to implicit abstraction. In specification languages with explicit abstraction,
the meaning of inherited interface specifications is clear since abstractions
for supertypes are also defined for subtypes (abstract fields and def-clauses
are inherited). To cover the extended state of subtypes, additional abstract
fields have to be introduced, and the behavior of subtype methods has to
be specified in terms of the new abstract fields (in addition to the inherited
specifications). The relation between the new and the inherited abstract fields
can be specified by the def-clauses for the new fields or by coercion functions
or coercion relations in the universal specification [Ame91, LW93].

4.4.2 Verification of Functional Behavior

Modular reasoning about functional properties of OO-programs has been
studied intensely. Existing work focuses on handling subtyping and dynamic
binding [Lea88, LW90, UR93] and lead to/exploits the concept of behavioral
subtyping [Ame87, Ame89, Dha97, LD00, LW93, LW94]. Behavioral sub-
typing is a relation between specified type declarations. It guarantees that
subtype objects behave according to the supertype specification when used
in place of a supertype object.

In this book, we enforce behavioral subtyping by inheritance of interface
specifications (see [DL96] for a discussion). Behavioral subtyping allows us
to apply a proof strategy (Lemma 3.3.2) to construct proofs for virtual
methods from proofs for method bodies. (Technically, behavioral subtyping
is needed to apply the subtype- and class-rule in the strategy.) As described
and illustrated in Section 4.3, this strategy releases the verifier from struggling
with subtyping and dynamic method binding.

Poetzsch-Heffter [PH97b] discusses modular verification based on a mod-
ule system with linear import (i.e., each module directly imports at most one
module). Such a restricted module system simplifies verification significantly.
In particular, the mutual dependencies between imported methods described
in Paragraph 3.3.4.1 cannot occur, which make a complex proof strategy for
program composition dispensable. However, linear import is too restrictive
for practical applications. For instance, it does not allow one to reuse modules
from different sources.

5. Modular Specification and Verification of
Frame Properties

In the last chapter, we explained how the functional behavior of methods
can be specified and verified. Specification of functional method behavior
describes the result value and modifications of the object store, but not the
absence of modifications. However, precise information about what is left
unchanged by a method execution is crucial for verification. We illustrate
that by a small example. Consider the following method that takes a list and
a mutable string (we call it StringBuffer as in Java), modifies the string,
and appends it to the list. We assume that List and StringBuffer are
implemented in different modules that do not import each other.

int m(List l, StringBuffer sb)
req l 6= null ∧ sb 6= null ;
pre $(l.val) = L ∧ $(sb.theString) = S;
post $(l.val) = [uppercase(S)] + L;
{
result = sb.toUpperCase();
result = l.appFront(sb);

}
Without going into details, one can see that for the verification of the method
implementation, it is necessary to know that method toUpperCase does not
modify the abstract value of the list1. However, the absence of side-effects is
in general not specified in a method’s functional specification (in particular,
the absence of side-effects on structures declared outside the scope of the
method like in this case). In a modular setting, it is not a matter of course that
toUpperCase leaves the list unchanged although StringBuffer and List are
declared in different modules: There could be a subtype of StringBuffer that
overrides toUpperCase such that it modifies the list via a reference (alias)
from a location of the StringBuffer-object.

This example demonstrates that verification of functional properties relies
on information about what is left unchanged by method executions. Such
aspects of method behavior that concern the absence of side-effects are called
the frame properties of a method. The problem of specifying frame properties
is called the frame problem [BMR95]. Although the frame problem is crucial

1 After the invocation of toUpperCase the following property has to hold:
$(l.val) = L ∧ $(sb.theString) = uppercase(S).

144 5. Modular Specification and Verification of Frame Properties

for verification, it has not been solved in a satisfying way for modular settings
so far. In the next paragraph, we explain the particular difficulties for the
modular specification of frame properties.
Modularity Requirements. If the entire program is known, the specification of
frame properties is relatively simple since the developer has complete knowl-
edge about all types and fields. Thus, it is possible to directly specify all
locations that are modified by a method execution (this approach is for in-
stance taken in LCL [GH93] and in [Heh93]). Within a modular setting, the
frame problem is more complicated for the following reasons:

1. Information hiding: Hidden fields must not be contained in interface spec-
ifications. Thus, abstraction techniques have to be used to specify frame
properties.

2. Extended state: The specification of frame properties must be loose
enough to allow overriding methods to modify the extended state (see
Subsection 1.3.4 and [Lei98]). On the other hand, they have to be rigor-
ous enough to guarantee behavioral subtyping.

3. Open programs: It is never possible to know all types and fields of an
open program. Therefore, frame properties cannot be specified by listing
all modified locations.

In this chapter, we present a modularly sound solution to the frame problem
that meets the requirements above. It is organized as follows: Section 5.1
describes informally how the modifies-clause technique can be enhanced by
explicit dependencies to cope with the above modularity requirements. A for-
malization of dependencies and modifies-clauses is contained in Sections 5.2
and 5.3. Modular verification of frame properties is addressed in Section 5.4,
and related work is presented in Section 5.5.

5.1 Approach

As explained in Subsection 1.5.1, we use modifies-clauses and abstract fields
with explicit dependencies to specify frame properties. An abstract location
L depends on a concrete or abstract location K in a store OS if modification
of K in OS can affect the value of L. We require such dependencies to be
declared explicitly in the interface specification. If L depends on K, we call
L a dependent of K and K a dependee of L.

In this section, we explain informally our approach to specification and
verification of frame properties. We present an informal semantics of modifies-
clauses, introduce the depends-relation, and motivate the modularity rules
that make modular verification of frame properties possible and guarantee
modular soundness. The depends-relation, in general, is a function of the
object store (i.e., a location can have different dependees in different stores).
However, we neglect this fact throughout this informal description of our
technique for clarity.

5.1 Approach 145

5.1.1 Meaning of Modifies-Clauses

Modifies-clauses specify sets of concrete or abstract locations. A method is
allowed to modify the locations mentioned in its modifies-clause and their
dependees (see Subsection 1.3.4). That is, the license to modify an abstract
location L includes the license to modify L’s dependees. It is intuitive that
the license to modify the abstract value of an object structure includes the
license to modify the concrete representation. (How could the modification of
the abstract value be achieved otherwise?) However, the license to modify a
location K does certainly not include the license to modify all locations that
depend on K!

If a method is only allowed to modify locations mentioned in its modifies-
clause and their dependees, code cannot be reused effectively. Consider the
following example:

Example 5.1.1.

module ADDRESSBOOK imports LIST;

public class AddressBook {
protected List data;
public abstract AddressBookSort absValue;
protected def absValue by map($($(this.data).val), $)

public int insert(Address a) { result = data.appFront(a); }
}

The address book uses a list to store its entries. Consequently, the abstract
value of the address book is obtained from the abstract list value by an
appropriate mapping. As illustrated by method insert, List’s appFront
method is used to insert entries into the address book. Therefore, invoca-
tions of List:appFront potentially modify the abstract value of an address
book. However, in a modular setting, the modifies-clause of List:appFront
only contains the abstract location this.val (and possibly some locations of
objects associated with the list such as iterators), but no absValue-locations
since class AddressBook is declared outside the scope of List. Thus, accord-
ing to the above semantics, List:appFront is allowed to modify this.val and its
dependees, but not the abstract value of the address book (we assume that
the abstract value of the list does not depend on the abstract value of the ad-
dress book). That is, the abstract value of the address book must not depend
on the abstract list value to enable modular verification of List:appFront.
Obviously, this is an unbearable restriction since lists, or imported classes in
general, could in fact not be used to implement other data structures.

To permit implementations as described above, we have to loosen up the
semantics of modifies-clauses. In the context of the universe programming
model, this can be achieved in three ways:

146 5. Modular Specification and Verification of Frame Properties

Approach 1. We can generally allow a method m to modify abstract loca-
tions with fields declared outside the scope of m. However, this results in an
extremely weak semantics that puts the burden completely on the verifier
of invocations of m. She has to show that certain abstract locations are not
modified by m for every invocation of m instead of proving this property once
for the method m. In particular for methods that are frequently re-used, this
approach is very inefficient.

Approach 2. We can use a scope-dependent semantics for modifies-clauses: A
method m is allowed to modify certain abstract locations with fields declared
outside m’s scope. The set of potentially modifiable locations is determined
by m’s modifies-clause and the dependencies declared in the scope in which
the modifies-clause is desugared. When an open program is extended, the ad-
ditional dependency-declarations lead to a smaller set of modifiable locations.
Thus, the semantics of the modifies-clause in the scope of an invocation is in
general stronger than the semantics proved for the method implementation.
Appropriate modularity requirements have to guarantee the soundness of this
technique.

This approach is taken in the ESC Project [LN00]. It seems to have certain
advantages for static checking. However scope-dependent semantics are dif-
ficult to handle by Hoare-style programming logics since the sequent proved
about a method implementation is different from the sequent used to verify
an invocation of the method. Furthermore, it is very difficult to find the ap-
propriate modularity requirements to guarantee soundness of the technique.
In fact, Leino and Nelson have not proved modular soundness for dynamic
dependencies so far.

Approach 3. We can use the hierarchic universe programming model to de-
fine the semantics of modifies-clauses: We say that a location is relevant for
a method execution if and only if it belongs to the current universe of this
execution or a descendant thereof. An execution of a method m may modify
relevant locations only if they are covered by m’s modifies-clause. Modifica-
tion of other locations is not restricted.

This semantics allows one to represent an object X in terms of objects
of imported types as long as these objects belong to descendants of the uni-
verse to which X belongs. In the example above, the list that represents an
AddressBook-object X has to be placed in an object or type universe owned
by X. Thereby, appFront is allowed to modify the abstract locations of the
AddressBook-object.

Let L be a location that is not modified by an execution of a method m.
The actual proof that L stays unchanged by the execution of m is done (1) by
the verifier of m if L is relevant for the execution of m, and (2) by the verifier
of the invocation otherwise2. That is, this approach puts part of the burden
2 As will be explained in Paragraph 5.1.3.2, this case only occurs when a readwrite

method is invoked in a child universe of the current universe.

5.1 Approach 147

on the verifier of invocations of m, which allows her in return to handle
the kind of implementations illustrated in Example 5.1.1. This semantics
is weak enough for modular verification of methods (see Section 5.4). On
the other hand, it is strong enough to reason about invocations: Modularity
rules guarantee that the caller of a method m can decide whether a location
might be changed by execution of m based on m’s modifies-clause and the
dependency-declarations in the scope of the caller (see below).

For the reasons described along with the three approaches, we follow variant 3
in this book.

Meeting the Requirements. The semantics of modifies-clauses described above
meets the modularity requirements for frame properties:

1. Information hiding: Instead of mentioning a location L which is sup-
posed to be hidden in modifies-clauses, one can use a public dependent
of L. Therefore, the permission to modify L is granted without violating
information hiding.

2. Extended state: Subclasses are allowed to introduce new dependencies for
inherited abstract fields. Thereby, inherited methods get the permission
to modify the extended state.

3. Open programs: By imposing appropriate restrictions on the permissible
dependencies, we can enforce that all locations that are relevant for an
execution of method implementation T@m have fields declared in the
scope of T (see Subsection 5.1.3). Therefore, it is possible to specify
these locations in T@m’s modifies-clause.

5.1.2 Explicit Dependencies

We require dependencies to be declared explicitly as part of the interface of
a type declaration. For verification, these declarations are used to generate
axioms specifying the depends-relation on locations. Since each program ex-
tension may declare further dependencies, the depends-relation in an open
program is underspecified. For modular verification, the (under-)specification
of the depends-relation must guarantee four properties:

1. Consistency with representation: Explicit dependencies reveal informa-
tion about the locations that represent the value of an abstract location
without giving away its actual representation. To be useful to decide
which modifications of the object store might change the value of an
abstract location and which definitely will not, the value of an abstract
location may only depend on locations it is declared to depend on. This
is achieved by a proof obligation for every def-clause (see Obligation 5.1,
p. 157).

148 5. Modular Specification and Verification of Frame Properties

2. Expressiveness: To prove that a location cannot be modified by a method,
it is crucial to know which locations do not depend on each other. Since
the depends-relation is underspecified, this information cannot directly
be concluded from the specification of the depends-relation. We have
to generate axioms expressing that certain locations do not depend on
each other. We present the axiomatization of the depends-relation and
its negation (in the following called notdepends-relation) in Section 5.2.

3. Modular soundness: As explained in Paragraph 3.1.1.1, we achieve mod-
ular soundness by using underspecification: The programming logic can
only verify properties of a program that hold in all program extensions
(provided that the specification of the core of the extended program is
well-formed). However, program extensions lead to additional axioms for
the depends-relation and its negation. To be reasonable, our technique
has to ensure that the new axioms are consistent with the existing spec-
ification. That is, there must be a model for the axiomatization of the
depends-relation for each program. We present such a model in App. D.4.

4. Separate verification: With open programs and arbitrary dependencies
it is neither possible to verify a method m w.r.t. its modifies-clause nor
can the notdepends-relation be specified. Therefore, dependencies have
to be restricted to make modular verification possible. We present the
appropriate modularity rules in the next subsection.

5.1.3 Modularity Rules

As pointed out in the last subsection, dependencies have to be restricted
such that (1) they facilitate the modular verification of frame properties and
(2) they enable a consistent axiomatization of the depends-relation. In this
subsection, we informally explain the modularity rules that guarantee these
properties. A formalization of the rules can be found in Subsection 5.2.4.

5.1.3.1 Locality Rule. The key idea for modular verification of frame prop-
erties is to exploit the hierarchic structure of the universe programming
model. Universes provide locality in a sense that methods can only inter-
act with objects belonging to the current universe (in instance methods, the
universe to which the this-object belongs) or its descendants (except for
objects referenced readonly, which are not relevant for the verification of
frame properties since they cannot be modified). Locality has two impor-
tant consequences: (1) Frame properties of a method can be verified without
regarding objects, locations, and dynamic types that do not belong to the
current universe or its descendants. (2) Callers of a method are only inter-
ested in modifications of locations belonging to the current universe or its
descendants. Locality is supported by

– the semantics of modifies-clauses: The semantics of modifies-clauses re-
quires only relevant locations to stay unchanged. We have motivated this
semantics in Subsection 5.1.1.

5.1 Approach 149

– the local update property of methods: Methods can only modify concrete
locations belonging to the current universe or its descendants. This is a
consequence of the universe invariant (see Subsection 2.2.6): A method
can only update locations or invoke readwrite methods of objects belonging
to the current universe or its child universes. A formal proof of the local
update property can be found in Subsection 5.4.2.
The necessity for this property follows from the semantics of the modifies-
clause: If a method m could get hold of a readwrite reference to an object
that does not belong to the current universe or its descendants, it could
use this reference for modifications. However according to the semantics of
modifies-clauses, it would not be necessary to specify such modifications in
m’s modifies-clause. Thus, the modification would not be documented for
callers of m.

To enable modular verification of frame properties, we require locality of
dependencies: A location that belongs to universe U may only depend on lo-
cations belonging to U or U ’s descendants. We call this property locality
requirement. It is enforced by the locality rule (see Obligation 5.2).

To see why the locality rule is necessary, we consider a small example that
is illustrated in Figure 5.1. Three locations LU , LV , LW belong to different
universes U , V , W , resp. V and W are different child universes of U . Ab-
stract location LU depends on LW (depicted by the dashed line). If abstract
location LV could depend on LU (i.e., disregard the locality rule), LV would
transitively depend on LW . Thus, a method m executed in universe W could
modify LV by updating LW . Since LV is not relevant for the execution of
m (the shaded area contains the relevant locations), this modification would
again not necessarily be specified in m’s modifies-clause and could therefore
stay undetected by callers of m. Thus, dependees of LV must not belong to
other universes than V and its descendants.

U

V W

LU

LV LW

Fig. 5.1. Non-local Dependency

5.1.3.2 Authenticity Rule. The frame properties of a method cannot be
verified modularly if program extensions are allowed to introduce arbitrary
dependencies: For each statement in the body of a method implementation
m that modifies the object store, the verifier of m must be able to determine
which relevant locations might be affected by this modification.

150 5. Modular Specification and Verification of Frame Properties

A method can modify locations either directly by field-write-statements
or indirectly by invoking readwrite methods. In the following paragraphs, we
discuss the restrictions of dependencies that are necessary to determine the
effects of these operations. Afterwards, we present a unifying formulation of
these restrictions.

Field Updates. According to the type rules of the universe type system, a
method m can directly update a concrete location Y.g belonging to a uni-
verse U if U is the current universe or U is a child universe of the current
universe. Due to the locality rule, an abstract location X.f that might be
affected by such a modification (i.e., that depends on Y.g) belongs to U , the
current universe, or ancestors of the current universe. However, because of
the semantics of modifies-clauses, abstract locations of the last kind are not
relevant for the execution of m. Thus, we have to consider two cases: (1) X.f
and Y.g belong to the same universe, namely U . (2) X.f belongs to the cur-
rent universe, which is the parent universe of U . These cases are illustrated
by Figures 5.2 and 5.3.

U

g

this

f

Current Universe

X Y

Fig. 5.2. Case 1 for Field Updates

U

this

Current Universe

f

g

Y

X

Fig. 5.3. Case 2 for Field Updates

5.1 Approach 151

Case 1: To determine the effects of an update of Y.g on X.f, f must be
accessible in every type declaration that might contain an update of g. These
type declarations are characterized by the fact that they have access to the
declaration of g. Therefore, we have to require that the declaration of f is
accessible in the declaration type of g, and thus in all type declarations that
can update g. Recall that abstract fields are public. By having access to both
f and g, the verifier of m can determine whether an update of Y.g effects the
value of X.f by referring to the axiomatization of the depends-relation (see
below).

Case 2: In this case, we could use the same requirement as for case 1. How-
ever, an alternative requirement is easier to integrate with the requirements
needed for method invocations (see below). For the alternative requirement,
we exploit the encapsulation provided by universes: If we neglect static meth-
ods for a moment, m can modify Y.g only if m is an instance method of an
owner object of U .

If U is a type universe associated with a dynamic type T, all owner objects
of U have in common that their classes have the declaration of T in their scope
(see Paragraph 2.2.2.2). Thus, we require that f is accessible in T and thus
in the classes of all owner objects of U and in the implementation of m.

If U is an object universe, the situation is somewhat complicated: m
could be declared in any superclass C of the class of U ’s owner. Therefore,
a first guess would be to require f to be accessible in Object and thus in
C. However, this requirement would only be met by abstract fields declared
in the predefined type declarations and is therefore inappropriate. Thus, we
weaken this requirement by exploiting two properties of Object:

– Instances of Object do not make use of their object universes (Object does
not contain field declarations). Therefore, the class of U ’s owner must be
of a proper subclass of Object.

– Object does not contain readwrite methods. Thus, m must be implemented
in a proper subclass of Object.

Due to these limitations of Object, it is sufficient that f is accessible in that
superclass of the class of U ’s owner that is a direct subclass of Object3. Al-
though this requirement is rather restrictive, object universes can be applied
in many implementations as we explain in Paragraph 5.2.7.4

We can use the same restrictions for static methods: If U is the type
universe associated with a dynamic type T, a static method m executed in
the current universe can access Y.g only if the declaration of T is present in
the declaration of m. If U is an object universe, Y.g cannot be accessed by
static methods executed in U ’s parent universe since these methods do not
have a this-object which is necessary to access an object universe.
3 These limitations essentially also hold for Java’s Object-class. It does not contain

field declarations. There are method in Java’s Object that are not side-effect-
free, but these methods do not modify the state of existing object structures and
can therefore be treated like our readonly methods here.

152 5. Modular Specification and Verification of Frame Properties

Method Invocations. Analogously to field updates, a readwrite method m
can invoke a readwrite method n on an object resp. dynamic type (for static
methods) belonging to the current universe or one of its child universes. The
first case is trivial since all modifications that are relevant for m are specified
in n’s modifies-clause. If n is invoked in a child universe U of the current
universe, we have to look at three groups of relevant locations that could
be affected by the execution of n: (1) abstract locations that belong to the
current universe; (2) abstract locations that belong to U or its descendants;
(3) abstract locations that belong to descendants of the current universe, but
not to U or its descendents. For an invocation v=w.n(); the three cases are
illustrated by Figures 5.4 to 5.6. The shaded areas depict the universes to
which the locations of the three cases belong.

this

U

w

g

V

Current Universe

f

X

Y

Fig. 5.4. Case 1 for Method Invocations

Case 1: This case is analogous to case 2 for field updates: m can invoke
n only if m is an instance method of an owner of U (again neglecting static
methods for a moment). That is, if a location X.f belonging to the current
universe depends on a concrete location Y.g that might be modified by execu-
tion of n (i.e., Y.g belongs to a universe V , which equals U or is a descendent
of U), f must be accessible in the implementations of all owners of U (see
above). Note that U is the child universe of the current universe that is
an ancestor of V (or V itself). We can apply the requirements described in
case 2 for field updates to guarantee accessibility of f in the implementations
of owners of U , and therefore in the implementation of m. Again, the same
restrictions are appropriate if m is a static method.

Case 2: This case is trivial since modification of locations of this group is
specified by n’s modifies-clause.

Case 3: Due to the local update property, the locality rule (see Para-
graph 5.1.3.1), and the tree structure of the universe hierarchy, locations of
the third group cannot be modified by execution of n.

5.1 Approach 153

this

U

w

Current Universe

f

Fig. 5.5. Case 2 for Method Invocations

this

U

w

Current Universe

f

Fig. 5.6. Case 3 for Method Invocations

Guards and Authenticity. In the previous paragraphs, we presented a number
of requirements for dependencies and motivated their necessity for modular
verification. In the following, we unify the different requirements by the au-
thenticity requirement4.

All requirements presented in the last paragraphs have in common that
— if a location X.f depends on Y.g — they require f to be accessible in a
certain type declaration T that is determined by Y.g and the universe UX

to which X belongs. Since T is used to guard modifications of Y.g and to
determine their effects on locations belonging to UX , we call T the guard of
Y.g w.r.t. UX .

The guard is defined as follows: Let Y.g belong to universe UY . If UY

equals UX , the guard of Y.g w.r.t. UX is the type id of the declaration type
of g. Otherwise, there is a universe V that is a child universe of UX and
an ancestor of UY (or UY itself). If V is the type universe associated with
dynamic type S then the guard of Y.g w.r.t. UX is the type id of S. If V
is an object universe then the guard of Y.g w.r.t. UX is the type id of that
4 The name stems from the authenticity rule for static dependencies in [Lei95b].

Our rule is a generalization of Leino’s rule. See Section 5.5 for a comparison.

154 5. Modular Specification and Verification of Frame Properties

superclass of the class of V ’s owner that is a direct subclass of Object. We
formalize guards in Subsection 5.2.4.

By the definition of guards, we can summarize the requirements presented
above by the following authenticity requirement: If location X.f depends on
location Y.g then the declaration of f must be accessible in the guard of Y.g
w.r.t. the universe to which X belongs. One can easily see that the authen-
ticity requirement unifies the requirements presented above. It is enforced by
the authenticity rule (see Obligation 5.3) and must be met in well-formed
specifications.

Roughly speaking, the locality and authenticity rules guarantee that a
method m can only modify relevant locations with fields declared in the
scope of m. This modularity theorem is the central property for the modular
verification of frame properties. We formalize and prove it in Subsection 5.4.4.

5.1.3.3 Visibility Rule. As explained in Subsection 5.1.2 (point 2), an ax-
iomatization of the notdepends-relation is necessary to prove that a location
cannot be modified by a method invocation or location update. Thus, we gen-
erate axioms for each module M that specify the conditions under which two
locations with fields declared in the scope of M do not depend on each other.
This axiomatization must be consistent with program extensions: Clients of
M must not introduce dependencies that contradict the axioms generated
for M. Therefore, the placement of dependency declarations has to be con-
strained.

In the following, we consider two locations X.f and Y.g, where f and g are
declared in the scope of module M. To be able to decide whether X.f depends
on Y.g based on the information available in M, we could require that the
declaration of a dependency of X.f on Y.g must be contained in every scope
that contains both the declarations of f and g. Thus, if no dependency of X.f
on Y.g is declared in the scope of M, we can generate an axiom that states
that X.f does not depend on Y.g. This rule works fine in most situations
since dependencies are usually declared together with either the field of the
dependent or the field of the dependee. However, it rules out one important
programming pattern that is illustrated by Example 5.1.2.

Example 5.1.2.

module M1; module M2;

public class C { public class D {
public abstract Value f; public int g;

} }

module N imports M1,M2;

public class CS extends C {
protected rep<CS> D d; // rep type because of authenticity
def f by $($(this.d).g);

}

5.2 Formalization of Explicit Dependencies 155

In the example, X.f depends on Y.g if X is a CS-object and Y = $(X.d).
This dependency can only be declared in module N. However, according to
the above rule, this is not allowed since there are scopes that contain the
declarations of f and g, but not module N (think of a module that imports
M1 and M2 and nothing else). Therefore, placing the dependency declaration
in module N would violate the above rule.

To support the implementation patterns illustrated by Example 5.1.2, we
use the following weaker visibility requirement: The declaration of a depen-
dency of X.f on Y.g must be contained in every scope that contains the dec-
larations of f and of the guard of Y.g w.r.t. the universe to which X belongs.
The visibility requirement is enforced by the visibility rule (see Obligation 5.4)
and must be met in well-formed specifications.

If X and Y belong to the same universe, the refined requirement is iden-
tical to the above version (recall that the guard of Y.g w.r.t. the universe to
which Y belongs is the declaration type of g). If Y belongs to a descendant
of the universe to which X belongs, the visibility requirement allows one to
declare dependencies of X.f on Y.g in the module that contains the declara-
tion of the guard of Y.g w.r.t. the universe to which X belongs. Therefore,
implementations like in Example 5.1.2 meet this requirement.

The visibility requirement guarantees the consistency of the axiomatiza-
tion of the depends-relation and its negation when programs are extended.
For each pair of fields f and g declared in the scope of module M, we can gen-
erate an axiom that states that X.f does not depend on Y.g if no according
dependency is declared in the scope of M and if certain requirements about
the guards of Y.g are met (see Subsection 5.2.4 for a formalization). The vis-
ibility requirement assures that extensions of M cannot declare dependencies
that contradict the axioms generated for M.

The above modularity rules facilitate modular specification and verifica-
tion of frame properties. We present a formalization of the rules and discuss
their impact on the class of programs that can be handled by our specification
and verification technique in the next section.

5.2 Formalization of Explicit Dependencies

In this section, we formalize the depends-relation that was introduced in
Subsection 5.1.2. We drop the simplification used there and make explicit
that the depends-relation has to depend on the store to be able to handle
abstractions of object structures.

156 5. Modular Specification and Verification of Frame Properties

5.2.1 Declaration of Dependencies

Dependencies are declared by depends-clauses of the form

mode depends f on {Y.g | P};

where mode is one of Mojave’s access modes, f is the name of an abstract
field, g is the name of an abstract or concrete field, Y is a logical variable of
sort Value, and P is a Γ ∪ {this}-formula with Y as only free variable. Both
f and g must be accessible in the type declaration that contains the depends-
clause. Informally, such a depends-clause states that abstract location this.f
depends in store $ on all locations Y.g for which P holds (see below for a
formalization).

To illustrate the declaration of dependencies, we show a depends-clause of
class List here. It declares abstract val-locations of List-objects to depend
on all elem-locations of the nodes in the list. See Subsection 5.2.6 for more
examples.

protected depends val on {Y.elem | ρ($(this.first), Y, $, next)};

Depends-clauses are declared in bodies of class or interface declarations.
There can be none, one, or several depends-clauses for each abstract field.
All depends-clauses for a field T@f must be declared in T or subtypes of T.
To guarantee information hiding, a depends-clause may only exhibit imple-
mentation details that are accessible to every client that has access to the
depends-clause (see Section 4.1). We discuss expressiveness and limitations
of our depends-clauses in Subsection 5.2.7

5.2.2 Axiomatization of the Depends-Relation

For each depends-clause in a program, we automatically introduce an iden-
tifier of sort DepId that is unique in the program and its extensions. Such
an identifier can for instance be a combination of the type id of the type
declaration that contains the depends-clause and a number.

A depends-clause of the above form declared in a type declaration with
type id T introduces a dependency of X.f on Y.g in OS if X and Y are non-
null, X is an instance of a subtype of T, X and Y are alive in OS, and the
condition P is met. Since these requirements are used in various axioms and
lemmas, we formalize them by a function dc:

dc : DepId ×Value ×Value × Store → Bool

For the definition of dc, each depends-clause d of the above form contributes
an axiom of the form

dc(d, X, Y,OS) ⇔ X 6= null ∧ Y 6= null ∧ tidD(typeof (X)) ¹M T∧
alive(X,OS) ∧ alive(Y,OS) ∧ P [X/this,OS/$]

5.2 Formalization of Explicit Dependencies 157

The theory for the identifiers and axioms is determined by the type decla-
ration and the access mode of the depends-clause. The depends-relation is
formalized by the function

−→ : Location × Store × Location → Bool

that is axiomatized as follows: For each depends-clause d ≡ mode depends
f on {Y.g | P}; we introduce an axiom of the form

dc(d, X, Y,OS) ⇒ X.f
OS−→ Y.g

The theories for these axioms are determined by the type declarations and
the access modes of the depends-clauses. The depends-relation is reflexive
and transitive. These properties and the fact that concrete locations depend
only on themselves are expressed by the following axioms:

dep1 : L
OS−→ L

dep2 : L
OS−→ K ∧K

OS−→ J ⇒ L
OS−→ J

dep3 : mklc(LC)
OS−→ K ⇒ mklc(LC) = K

For a closed program P, OS−→ is the smallest relation satisfying dep1, dep2,
and the axioms generated for the depends-clauses declared in P. For an open
program P, OS−→ is underspecified. It satisfies dep1–dep3 as well as the
axioms generated for the depends-clauses declared in P’s core and the axioms
generated for the notdepends-relation for P’s core (see Subsection 5.2.5).

5.2.3 Consistency with Representation

Based on −→ , we can formalize the proof obligation that guarantees that
the declaration of the dependencies of a location L is consistent with L’s
representation (see Subsection 5.1.2, point 1). A consistent declaration of
dependencies means that only modifications of explicitly declared dependees
may affect the value held by an abstract location. In other words, if the values
of all declared concrete dependees of a location L hold the same values in
two stores then L must also hold the same value in these stores:

Proof Obligation 5.1 (Consistency with Representation) Every def-
clause for an abstract field f in a class or interface with TypeId T leads to the
following proof obligation that has to be met in well-formed specifications:

X 6= null ∧ tidD(typeof (X)) ¹M T ∧ alive(X,OS) ∧ alive(X,OS ′) ∧ wt(OS)∧
wt(OS ′) ∧

�
∀KC : mkla(locA(X, f))

OS−→ mklc(KC)⇒OS(KC) = OS ′(KC)
�
⇒

OS ≡mkla(locA(X,f)) OS ′

158 5. Modular Specification and Verification of Frame Properties

As can be seen from this formalization, we require that an abstract location
L must hold the same value in two object stores if all declared concrete de-
pendees of L in one of these stores hold the same values in both stores. The
reason for this asymmetry is as follows: Obligation 5.1 is necessary to conclude
that certain modifications of the object store do not change the value held
by an abstract location, which is in particular necessary to prove frame prop-
erties (see Section 5.4). To be applicable for such proofs, the formalization
of dependencies must suit the semantics of modifies-clauses, which requires a
method m to leave all locations unchanged that belong to objects allocated
in the prestate and that are not dependees of locations in m’s modifies-clause
in the prestate (see Section 5.3).

This asymmetry between pre- and poststates in the semantics of modifies-
clauses has to be reflected by Obligation 5.1 as illustrated by the following
example: Let OS 1 and OS 2 be the pre- and poststates of the execution of
a method m, and let L be an abstract location that is not relevant for this
execution of m. Suppose m is specified to modify nothing. That is, all depen-
dees of L in OS 1 are left unchanged by m. If we allowed L to have additional
or different dependees in OS 2 (i.e., if for instance object creation could in-
troduce new dependencies), then m could change the value of L although it
does not modify any of L’s dependees. Therefore, the frame properties of m
would be too weak to allow callers of m to conclude whether L is modified
by m.

Consequently, we have to require that if all dependees of an abstract
location L in store OS1 hold the same values in stores OS1 and OS2 then
each dependee of L in OS 2 is also a dependee of L in OS1. This property
is enforced by the above asymmetric formalization of Obligation 5.1 that
applies to all pairs of stores, not only to the pre- and poststates of a method
execution. We discuss the impact of this formalization on the expressiveness
of our technique in Paragraph 5.2.7.1.

The following lemmas simplify the application of Obligation 5.1 in proofs.
Their proofs can be found in App. D.2.

Lemma 5.2.1. For all open or closed programs with well-formed interface
specifications, the following property holds:
alive(obj (L),OS) ∧ alive(obj (L),OS ′) ∧ wt(OS) ∧ wt(OS ′)∧�
∀KC : L

OS−→ mklc(KC) ∧ alive(obj (mklc(KC)),OS)⇒OS(KC) = OS ′(KC)
�
⇒

OS ≡L OS ′

Abstract fields specify the abstract value of an object or object structure.
Intuitively, the abstract value of an existing object structure must not be
changed by allocating new objects. Such ill-formed abstractions are prevented
by the above proof obligation:

Lemma 5.2.2. For all open or closed programs with well-formed interface
specifications, the following property holds:

alive(obj (L),OS) ∧ wt(OS) ⇒ OS ≡L OS〈S, U〉

5.2 Formalization of Explicit Dependencies 159

5.2.4 Formalization of the Modularity Rules

In this paragraph, we formalize the definition of guards and the modularity
rules described in Subsection 5.1.3.

5.2.4.1 Guards. The guard G of a location L w.r.t. a universe U is defined
as follows:

1. If L belongs to U , G is the type id of the declaration type of L’s field.
2. If L belongs to a descendant of U then G depends on that child universe

V of U that is an ancestor of or equal to the universe to which L belongs.
a) If V is the type universe associated with dynamic type T then G is

T’s type id.
b) If V is an object universe owned by an instance of class C then G is

the type id of that superclass of C that is a direct subclass of Object.
3. G is undefined otherwise.

The function guard yields the guard of a location w.r.t. a universe:

guard : Location × Universe → TypeId
univV (obj (L)) = U ⇒ guard(L, U) =def dtype(fid(L))
univV (obj (L)) E typeU (T, U) ⇒ guard(L, U) =def T
univV (obj (L)) E objU (OID , C, U) ⇒ ctid?(guard(L, U))∧

ctid(C) ¹M guard(L, U)∧
(∀T : ctid?(T) ∧ guard(L, U) ≺M T ⇒ T = ctid(Object))

5.2.4.2 Locality. The locality rule requires that a location belonging to
universe U may only depend on locations belonging to U or U ’s descendants.
This is enforced by the following proof obligation.

Proof Obligation 5.2 (Locality Rule) Every depends-clause d leads to
the following proof obligation that has to be met in well-formed specifications:

dc(d, X, Y,OS) ∧ wt(OS) ⇒ univV (Y) E univV (X)

Lemma 5.2.3. For all open or closed programs with well-formed interface
specifications, the following property holds:

L
OS−→ K ∧ wt(OS) ⇒ univV (obj (K)) E univV (obj (L))

The proof can be found in App. D.2.

5.2.4.3 Authenticity. If location X.f depends on location Y.g then the
authenticity rule requires that the declaration of f must be accessible in the
guard of Y.g w.r.t. the universe to which X belongs. This is achieved by the
following proof obligation.

160 5. Modular Specification and Verification of Frame Properties

Proof Obligation 5.3 (Authenticity Rule) Every depends-clause d ≡
mode depends f on {Y.g | P}; declared in a class or interface with TypeId
T leads to the following proof obligation that has to be met in well-formed
specifications:

dc(d, X, Y,OS) ∧ wt(OS) ⇒ accessibleL(X.f, guard(Y.g, univV (X)))

Lemma 5.2.4. For all open or closed programs with well-formed interface
specifications, the following property holds:

L
OS−→ K ∧ wt(OS) ⇒ accessibleL(L, guard(K, univV (obj (L))))

The proof can be found in App. D.2.

5.2.4.4 Visibility. The declaration of a dependency of X.f on Y.g must be
contained in every scope that contains the declarations of f and the guard
G of Y.g w.r.t. the universe to which X belongs. Therefore, the depends-
clause for a direct dependency of X.f on Y.g must be declared in the module
of the declaration type of f or of G. According to the authenticity rule,
the declaration type of f is in the scope of G. Thus, we can require that
the depends-clause is declared in the module of G. This is enforced by the
following proof obligation.

Proof Obligation 5.4 (Visibility Rule) Every depends-clause d ≡ mode
depends f on {Y.g | P}; declared in a class or interface with TypeId T leads
to the following proof obligation that has to be met in well-formed specifica-
tions:

dc(d, X, Y,OS) ∧ wt(OS) ⇒ module(guard(Y.g, univV (X))) = module(T)

5.2.5 Axiomatization of the Notdepends-Relation

If two fields f and g are declared in a scope S then we can conclude that X.f
cannot depend on Y.g if

1. the dependency cannot be derived from the depends-clauses declared in
S and

2. extensions of S cannot declare such a dependency, which is controlled by
the visibility rule.

In the following, we formalize these two requirements.

5.2.5.1 Absence of Declared Dependencies. Since the depends-relation
is transitive, its axiomatization is fairly simple: It is sufficient to introduce
axioms for reflexivity, transitivity, and all directly declared dependencies.
However, the situation is a lot more complicated for the notdepends-relations
since it requires a closed formula that specifies the conditions under which
two locations do not depend on each other. To illustrate the complexity of
this problem, we consider the following example:

5.2 Formalization of Explicit Dependencies 161

Example 5.2.1.

module M;
public class C {

C next;
abstract public AbsSort f;
depends f on {Y.f | Y = $(this.next)};

}

From this depends-clause, we can conclude that X.f depends on Y.f if Y
is reachable from X by following a chain of next-locations (besides some
conditions about liveness, typing, etc.)5 Since this depends-clause is the only
depends-clause in the scope of M, we also know that — according to the
declarations in the scope of M — X.f does not depend on Y.f if there is
no such reference chain from X to Y . The step from the above depends-
clause to an axiom using reachability is already a nontrivial abstraction. One
can imagine that the conditions for the absence of a dependency get quite
complex if they are automatically generated by a tool that cannot perform
such abstractions, and if several depends-clauses for each location, transitive
dependencies, and, in particular, more complex depends-clauses are involved.
To handle this complexity, we take the following approach which is explained
in detail below:

1. We build equivalence classes of locations where an equivalence class con-
tains exactly the locations with a given simple field id.

2. For a given set of modules S, we determine the condition under which a
location with field f depends on a location with field g, according to the
declarations in S. This condition is expressed in one closed formula.

3. The negation of this condition is a closed formula that describes under
which condition a location with field f does not depend on a location
with field g, according to the declarations in S.

Let S be the set of modules of a closed program P. The depends-relation
in a store OS during execution of P can be described by a directed graph
G(OS , S) with locations as nodes. G(OS , S) contains an edge from L to K
if L depends directly on K in OS (i.e., this dependency is declared in one
depends-clause or is due to reflexivity). To be able to describe these graphs
statically, we introduce a graph G′(S) that unifies the graphs G(OS , S) for
all stores OS. In G′(S), we identify all nodes for locations with the same
simple field id. That is, G′(S) has equivalence classes of locations as nodes,
characterized by the simple field ids declared in S. There is an edge from f
to g in G′(S) if S contains a depends-clause d where f and g are the fields of
the dependent and the dependee, resp. There can be several edges from f to
g in G′(S). To capture the dynamic aspects of the depends-relation, we mark
the edge from f to g with the identifier of the corresponding depends-clause.
5 In most cases, X.f would also depend on the next-locations of the reachable

objects. We omit these dependencies for simplicity.

162 5. Modular Specification and Verification of Frame Properties

These marks are used to determine under which conditions the depends-
clause declares X.f to depend on Y.g in a store OS (see definition of dc in
Subsection 5.2.2).

For a closed program P consisting of a set of modules S, we know that
X.f might depend on Y.g in any store if there is at least one path from f
to g in G′(S). In an open program with core S, we know that X.f might
depend on Y.g in any store according to the dependencies declared in S if
there is at least one path from f to g in G′(S). In both cases, the condition
under which X.f depends on Y.g is described by a predicate that is obtained
from the marks of the edges of all paths from f to g. Since these paths can
contain alternatives and cycles, this transformation is not straightforward. It
is performed in three steps6:

(a) We define a finite automaton for S [HU79, Per90]. The states, transitions,
and input symbols correspond to the nodes, edges, and marks of G′(S).

(b) We characterize all paths from the state for f to the state for g by a
regular expression.

(c) We transform this regular expression into a predicate that expresses the
conditions under which X.f depends on Y.g in some OS — according to
the dep-clauses in S.

We explain these steps and illustrate their application to Example 5.2.1 in
the following.

Finite Automaton. For each set of modules S (in particular, for each core
of an open program and each closed program), we define a finite automaton
A(S) as follows:

1. States: For each simple field id declared in S, A(S) has one state. The
states are numbered by cardinal numbers 1, . . . , H(S). That is, there
is a bijection σS from the simple field ids declared in S to the set
{1, . . . , H(S)}. For simplicity, we use the numbers to refer to the states
in the following.

2. Alphabet: The set of identifiers, DepId , for the depends-clauses declared
in S is the alphabet of A(S).

3. Transitions: The transitions of A(S) are a set TS ⊆ Nat ×DepId ×Nat .
For each depends-clause with id d declared in S, TS contains a transition
(σS(f), d, σS(g)), where f and g are the fields of the dependent and the
dependee, resp.

4. Initial and accepting states: As explained below, we use the automaton to
compute the regular expression that brings the automaton from one state
into another. However, we are not interested in the language accepted by
A(S). Therefore, the initial and accepting states are arbitrary states in
{1, . . . , H(S)}.

6 [BRS99] uses a similar technique to describe reference chains in linked data
structures.

5.2 Formalization of Explicit Dependencies 163

Since the automaton A(S) contains exactly one transition for each symbol of
its alphabet and no ε-transitions, A(S) is deterministic. The automaton for
Example 5.2.1 is illustrated by Figure 5.7. d is the identifier for the depends-
clause in this example.

d

1/f 2/next

Fig. 5.7. Automaton for Example 5.2.1

Regular Expressions. As explained in [HU79], the paths from state A to state
B in a deterministic automaton A(S) are characterized by the words that
bring A(S) from state A to state B. These words can be described by a
regular expression RA,B(S). It is defined as follows:

RA,B(S) =def R
H(S)
A,B (S)

R0
A,B(S) =def

�P
di:(A,di,B)∈TS

di if A 6= B

ε +
P

di:(A,di,B)∈TS
di if A = B

RN
A,B(S) =def RN−1

A,B (S) + RN−1
A,N (S)(RN−1

N,N (S))∗RN−1
N,B (S)

RN
A,B(S) describes the set of words (i.e., sequences of DepId) that bring A(S)

from state A to state B without going through states with numbers greater
than N . The sub- and superscripts of R range over natural numbers. Note
that the initial and accepting states of A(S) are irrelevant for the definition of
RA,B(S). Since the definitions above are constructive, the regular expressions
can be computed automatically by a verification tool. The paths in A(S) from
the state for field f to the state for field g are characterized by RσS(f),σS(g)(S).
From Regular Expressions to Predicates. We define a function rc that yields
for a regular expression RσS(f),σS(g)(S), objects X and Y , and store OS
whether X.f depends on Y.g in OS , according to the depends-clauses declared
in S. The definition of this function is rather intuitive. In its description, we
use the numbers of states and the corresponding field ids synonymously:

1. ∅: If there is no path from f to g then X.f does not depend on Y.g in
any state. That is, rc yields false.

2. ε: Since there are no ε-transitions in A(S), this regular expression indi-
cates that f and g are identical and that the dependency is not declared
in the program. Therefore, it is due to reflexivity, and rc yields whether
X and Y denote the same object.

164 5. Modular Specification and Verification of Frame Properties

3. d: A single symbol indicates that the dependency is declared in depends-
clause d. According to the axiomatization of −→, dc describes the
conditions under which this depends-clause leads to the dependency
X.f OS−→ Y.g. Thus, rc yields the same result as dc in this case.

4. R1R2: This product describes an indirect dependency. That is, rc yields
true if there is an intermediate location L such that X.f depends on L
and L depends on Y.g in OS. That is, rc is defined recursively in terms
of the predicates for R1 and R2.

5. R1 + R2: The union indicates that there are alternative paths from f to
g. Consequently, rc yields true for R1 + R2 if it yields true for R1 or R2.

6. R∗: The Kleene operator specifies cyclic paths. Thus, rc yields true if
there is a (possibly empty) sequence of locations L1, . . . , Ln such that X.f
depends on L1, Li depends on Li+1, and Ln depends in Y.g. Depending
on the length of the sequence, this case is analogous to case 2, 3, or 4.

We formalize this definition by the following function. regExpr is the sort of
regular expressions. Its definition as abstract data type is straightforward.
We use the common syntax for regular expressions to improve readability.

rc : regExpr ×Value ×Value × Store → Bool
rc(?, X, Y,OS) ⇔def false
rc(ε, X, Y,OS) ⇔def (X = Y)
rc(d, X, Y,OS) ⇔def dc(d, X, Y,OS)
rc(R1R2, X, Y,OS) ⇔def ∃Z : rc(R1, X, Z,OS) ∧ rc(R2, Z, Y,OS)
rc(R1 + R2, X, Y,OS) ⇔def rc(R1, X, Y,OS) ∨ rc(R2, X, Y,OS)
rc(R∗, X, Y,OS) ⇔def ∃N : ∃Z0, . . . , ZN : Z0 = X ∧ ZN = Y ∧

NV
i=1

rc(R, Zi−1, Zi,OS)

Note that rc is defined over the structure of regular expressions. Therefore,
we have to distinguish between a regular expression and the regular set it
describes. According to Lemma D.2.5, rc(R1, X, Y,OS) and rc(R2, X, Y,OS)
are equal if R1 and R2 describe the same regular set. This property allows
one to simplify the regular expressions coming from an automaton before
applying rc.

By the above definitions, we can formalize the exact conditions under
which a location X.f depends on location Y.g in store OS — according to
the declarations in a set of modules S — by the following expression. We
use such expressions for the axiomatization of the notdepends-relation in
Paragraph 5.2.5.3.

rc(Rσ(f),σ(g)(S), X, Y,OS)

In Example 5.2.1, we simplify the regular expression R1,1 to d∗ and get the

following three equivalent predicates for the dependency X.f OS−→ Y.f:

rc(R1,1(S), X, Y,OS) or rc(d∗, X, Y,OS) or

∃N : ∃Z0, . . . , ZN : Z0 = X ∧ ZN = Y ∧
NV

i=1

rc(d, Zi−1, Zi,OS)

5.2 Formalization of Explicit Dependencies 165

One can prove by induction on N that the last predicate implies that X
reaches Y in OS via a chain of next-locations, which corresponds to our
intuition for the depends-clause d.

As presented above, the technique seems fairly complicated. However,
a verification tool can automatically generate the automata, determine the
regular expressions, and simplify them by appropriate heuristics. Therefore,
the user is not faced with this complexity. It is worth noting that part of the
complexity is due to the flexibility of our depends-clauses. If the user could
only declare simple static and dynamic dependencies (see [LN00]) instead
of using arbitrary predicates in depends-clauses, we could replace rc by a
slightly simpler function that expresses reachability via paths described by
regular expressions over field names. We sketched this idea in [MPH00b].

5.2.5.2 Consistency with Program Extensions. For two locations L
and K with fields declared in a set of modules S, the technique described
in the previous paragraphs provides us with a predicate that specifies under
which conditions L does not depend on K in a store OS , according to the
declarations in S. For an open program P, we know that L does not depend
on K if this predicate is false and if extensions of P cannot introduce such a
dependency. In the following, we formalize the second requirement.

Due to the visibility rule (see Obligation 5.4), we know that a direct
dependency can only be declared in the module that contains the declaration
of the guard of the dependee w.r.t. the universe to which the dependent
belongs. That is, if f and g are declared in a set of modules S then extensions
of S can introduce a direct dependency X.f OS−→ Y.g only if the guard of
Y.g w.r.t. the universe to which X belongs is not in S. If we take transitive
dependencies into account, a dependency X.f OS−→ Y.g can be declared only
if one of the guards of Y.g w.r.t. the universes “between” the universes to
which X and Y belong is not declared in S. That is, we can formalize the
condition under which an extension of S cannot introduce such a dependency
as follows (wt(OS) is required since the visibility rule makes only statements
about well-typed stores):

wt(OS) ∧ (∀U : univV (Y) / U E univV (X) ⇒ module(guard(Y.g, U)) ∈ S)

This requirement is trivially true if X.f and Y.g belong to the same universe
or if X is the owner of the universe to which Y belongs.

5.2.5.3 Axioms for the Notdepends-Relation. We are now equipped
to specify the notdepends-relation. Let M be a module and S =
{N | imports(M, N)} be the scope of M. For each pair of simple field ids
f, g declared in S, we generate an axiom of the following form (we omit the
application of σ in the following):

wt(OS) ∧ (∀U : univV (Y) / U E univV (X) ⇒ module(guard(Y.g, U)) ∈ S)∧
¬rc(Rf,g(S), X, Y,OS) ⇒ ¬(X.f

OS−→ Y.g)

166 5. Modular Specification and Verification of Frame Properties

The axiom is placed in the theory where all identifiers of depends-clauses
occurring in Rf,g(S) are present. If no such theory exists, the axiom is not
generated. Omitting certain axioms weakens the specification, but does not
lead to serious problems in most realistic programs for three reasons:

– A verification tool can generate weaker axioms. For instance, if the axiom
for Rf,g(S) = de cannot be generated since there is no theory for which
the declarations of d and e are present, it is still possible to generate a
weaker axiom for the notdepends-relation in the theory that contains the
declaration of d (and analogously for e):

wt(OS) ∧ (∀U : univV (Y) / U E univV (X) ⇒ module(guard(Y.g, U)) ∈ S)∧
¬∃Z : rc(d, X, Z,OS) ⇒ ¬(X.f

OS−→ Y.g)

The regular expression de describes a transitive dependency. This transitive
dependency does not exist if one of the single dependencies described by d
and e is not there. We strengthen the assumption of the initial axiom by
requiring that the dependency described by d does not exist and by saying
nothing about e. More formally, we use the definition of rc for concatenated
regular expressions: rc(de, X, Y,OS) holds if and only if there exists an
object Z such that rc(d, X, Z,OS) and rc(e, Z, Y,OS) hold. That is, if
there is no Z such that rc(d, X, Z,OS) holds, then rc(de, X, Y,OS) does
not hold.
Such weakenings are helpful in many situations: Consider a string object
with abstract location L, and a list structure, where the abstraction of the
list depends on a private location K of the list. Due to information hiding,
there is in general no axiom that specifies that L does not depend on K.
However, this property can be derived from an axiom like the one above if
(according to the depends-clauses in a given scope) string abstractions do
not depend on the abstract value of a list, which is usually the case.

– In most applications, dependencies follow the reference structure of the
object store. In these cases, the more fields involved in the reference chain
from the dependent to the dependee the more likely it is that an axiom for
the notdepends-relation cannot be generated. Since the authenticity and
visibility rules force the programmer to structure his implementations in
different universes, the reference chains between objects that belong to one
universe contain usually a rather small number of different fields. Due to
the locality provided by universes (see Paragraph 5.1.3.1), verification of a
method is mainly concerned with objects belonging to the current universe
and its child universes. Thus, the axioms for the interesting locations are
usually available.

– To be able to make depends-clauses accessible for clients, the specifier can
apply the “readonly by specification” pattern (see Paragraph 4.2.1.3) to
loosen information hiding without giving up encapsulation.

5.2 Formalization of Explicit Dependencies 167

Modular Soundness and Consistency. This concludes the formalization of the
depends-relation. As already explained in Subsection 5.1.2, modular sound-
ness of our technique is guaranteed by using underspecification. However, we
have to show that the axiomatization of the depends-relation and its nega-
tion is consistent. That is, for each open or closed program, there must be
a model satisfying all axioms described above7. We present such a model in
App. D.4.

5.2.6 Example

To demonstrate how to declare dependencies and how to prove that they
meet the modularity requirements, we revisit the list example (see App. C.1
and Paragraph 4.2.1.3). The automaton for module LIST is illustrated in
Figure 5.8. The identifiers for the depends-clauses can be found as comments
in App. C.1.

Node@prevNode@next Node@elem

List@first

List@last
List@val

ListPos@pos ListPos@list

ListPos@theList

ListPos@valid

ListPos@position ListPos@anchor

a

bc
d

e

f

g

h

i

j

k

Iter@lastReturned

Fig. 5.8. Automaton for Module LIST

5.2.6.1 Lists. As presented in Paragraph 4.2.1.3, our list implementation
has only one abstract field val. According to its representation, X.val depends
on X.first as well as all elem- and next-locations of X’s node structure. These
dependencies are sufficient to prove consistency with representation (Obliga-
tion 5.1) for val. However, it is convenient to introduce additional dependen-
cies: A method that modifies the abstract value of a list (e.g., appFront) in
general re-arranges the node structure. This involves modification of next-
and prev-locations. To keep the modifies-clauses of such methods simple, we
7 More precisely, a model for all axioms of the formal data and state model is

required. However, since there is a model for the axiomatization of the object
store [PH97b], and since the axiomatization of the depends-relation is almost
independent of the rest of the data and state model, we consider only the axioms
presented in this section.

168 5. Modular Specification and Verification of Frame Properties

declare X.val to also depend on the prev-locations of X’s node structure.
That is, we declare the following dependencies in class List:

protected depends val on {Y.first | Y = this};
protected depends val on {Y.elem | ρ($(this.first), Y, $, next)};
protected depends val on {Y.next | ρ($(this.first), Y, $, next)};
protected depends val on {Y.prev | ρ($(this.first), Y, $, next)};

To show that the specification of List is well-formed, we prove Obligations 5.1
to 5.4 for val and the above depends-clauses in the following.
Consistency with Representation. To prove Obligation 5.1, we first show the
following property for col :

Lemma 5.2.5. If all elem- and next-location of a node structure hold the
same values in two stores then the list of references stored in the node struc-
ture is equal in these stores.�

ρ(X, Y,OS , next) ∧ Y 6= null ⇒ OS(Y.elem) = OS ′(Y.elem)∧
OS(Y.next) = OS ′(Y.next)

�
⇒ col(X,OS) = col(X,OS ′)

The proof of the lemma runs by case distinction: If X does not reach
null via next-locations, the lemma follows from the definition of col and
Lemma 3.1.10 (ii). If X reaches null via next-locations, the lemma is proved
by induction on the length of this reference chain and uses Lemma 3.1.10 (ii).
Based on this lemma, we prove Obligation 5.1:

X 6= null ∧ tidD(typeof (X)) ¹M ctid(List) ∧ alive(X,OS) ∧ alive(X,OS ′)∧
wt(OS) ∧ wt(OS ′) ∧ (∀KC : X.val

OS−→ mklc(KC)⇒OS(KC) = OS ′(KC))

⇒ [[Declared dependencies of X.val]]

X 6= null ∧ tidD(typeof (X)) ¹M ctid(List) ∧ alive(X,OS) ∧ alive(X,OS ′)∧
OS(X.first) = OS ′(X.first) ∧ (ρ(OS(X.first), Y,OS , next) ∧ Y 6= null⇒
OS(Y.elem) = OS ′(Y.elem) ∧OS(Y.next) = OS ′(Y.next))

⇒ [[Lemma 5.2.5]]

X 6= null ∧ tidD(typeof (X)) ¹M ctid(List) ∧ alive(X,OS) ∧ alive(X,OS ′)∧
col(OS(X.first),OS) = col(OS ′(X.first),OS ′)

⇒
X 6= null ∧ tidD(typeof (X)) ¹M ctid(List) ∧ alive(X,OS) ∧ alive(X,OS ′)∧
cut(col(OS(X.first),OS)) = cut(col(OS ′(X.first),OS ′))

⇒ [[Definition of repval]]

OS ≡X.val OS ′

Locality. To prove that a dependee belongs to the same universe to which the
dependent belongs or to a descendant thereof, we can exploit type information
as in the following lemma:

Lemma 5.2.6. If an object Y is reachable from object X via locations the
fields of which have ground types then X and Y belong to the same universe.

X 6= null ∧ Y 6= null ∧ wt(OS) ∧ grndT?([f]) ∧ ρ(X, Y,OS , f) ⇒
univV (X) = univV (Y)

5.2 Formalization of Explicit Dependencies 169

The proof of the lemma runs by induction on the length of the reference
chain.

By this lemma, the proof of Obligation 5.2 is trivial for the depends-
clauses for val. Note that we use static type information and well-typedness of
object stores to show this obligation. In particular, we exploit that readwrite
references point from an object belonging to universe U to an object belonging
to U or a child universe of U . An abstract location must not depend on
locations that are only reachable via readonly references and can therefore
belong to arbitrary universes. The locality requirement cannot be proved for
such dependencies.

Authenticity. In the above depends-clauses, the guard of each dependee of
X.val w.r.t. the universe to which X belongs is ctid(List) (this is obvious for
X.first and easy to show by Lemma 5.2.6 for the other dependees). Thus,
Obligation 5.3 is trivially met by the above depends-clauses.

Visibility. Since the guard of the dependees of X.val w.r.t. univV (X) (i.e.,
ctid(List)) is declared in module LIST, Obligation 5.4 is met.

5.2.6.2 List Positions. For the abstract fields of class ListPos, we declare
the following depends-clauses:

protected depends anchor on {Y.list | Y = this};
depends anchor on {Y.first | Y = $(this.list)};

public depends position on {Y.anchor | Y = this};
protected depends position on {Y.pos | Y = this};
public depends position on {Y.next | ρ($(this.anchor), Y, $, next)};
public depends valid on {Y.position | Y = this};

The depends-clauses for anchor show that a dynamic dependency such as
Y.anchor OS−→ $(Y.list).first requires at least the declaration of two dependen-
cies: the actual dependency of Y.anchor on $(Y.list).first and a dependency
on the pivot location Y.list. The latter declaration is necessary to prove Obli-
gation 5.1: Obviously, a modification of Y.list can change the value held by an
abstract location since it might redirect the reference path from Y to another
first-location.

The position- and valid-locations of a ListPos-object both depend on
the anchor- and the pos-location of this object as well as all next-locations of
all nodes in the object structure. Instead of declaring these dependencies sep-
arately for position and valid, we declare X.valid to depend on X.position
since methods that may affect validity are, in general, allowed to modify the
position. The proofs of Obligations 5.1 to 5.4 are very similar to the proofs
for List@val. We omit them for brevity.

5.2.7 Discussion

Explicit dependencies allow us to formulate modularity requirements. These
requirements are used to restrict the representations of abstract fields in a

170 5. Modular Specification and Verification of Frame Properties

way that makes modular verification of frame properties possible (see Sec-
tion 5.4). On the other hand, these restrictions limit the class of programs
to which our technique can be applied. We discuss the restrictions imposed
by Obligation 5.1, the syntax of depends-clauses, and the modularity rules
in the following. A detailed comparison to the treatment of dependencies in
Leino’s and Nelson’s work can be found in Subsection 5.5.1.

5.2.7.1 Consistency of Representations and Dependencies. In Sub-
section 5.2.3, we have explained that Obligation 5.1 requires that if all de-
pendees of an abstract location L in store OS hold the same values in stores
OS and OS ′ then each dependee of L in OS ′ is also a dependee of L in OS .
This requirement has the following implications:

1. The set of dependees of L must not be changed by modifying a location
that is not a dependee of L. This implies for dependees that are reachable
from the object of L that every location on the path from L’s object to
the dependee must in general also be a dependee of L. We illustrated this
for the anchor-field of class ListPos in Paragraph 5.2.6.2.

2. In OS ′, L must in general not depend on locations of objects that are
alive in OS ′, but not in OS . Such dependencies can for instance occur if
L is declared to depend on the first-locations of all List-objects. In this
case, allocation of a new List-object introduces a new dependee for L.
To avoid such situations, the objects of L’s dependees in any store must
be alive in every store in which L’s object is alive. This is guaranteed if
in any store each dependee is reachable from the object of the dependent
(see [PH97b, Lemma 3.2viii]).

The former aspect increases the number of depends-clauses, but does not
affect expressiveness of our technique. A more restricted syntax for depends-
clauses (like in [LN00]) would allow a verification tool to automatically add
certain dependencies and thus reduce the syntactic overhead for the specifier.

The latter aspect requires dependees to be reachable from the object of
the dependent. Whereas this requirement is usually met by abstract fields
that express data abstraction of object structures (such as List’s val-field,
see Subsection 5.2.6), it is too restrictive to express certain aliasing patterns,
in particular if these patterns involve all objects of a type (see Example 6.4.1).

Although requirement 2 restricts expressiveness of abstract fields, the lim-
itations are endurable in our framework for two reasons: (1) For modular
verification, the most interesting aliasing property is the absence of aliasing
(see Subsection 1.3.5). In many cases, this property can be expressed and
enforced by the universe type system. (2) In Subsection 6.4.1, we discuss an
approach to relieve invariants of the reachability restriction. So-called module
invariants allow one to express aliasing patterns beyond the capabilities of
the universe type system.

5.2.7.2 Depends-Clauses. By our semantic treatment of dependencies, we
can provide very general depends-clauses: Basically, an abstract location X.f

5.2 Formalization of Explicit Dependencies 171

can depend on arbitrary locations with a given field name. Although Obliga-
tion 5.1 requires dependees to be reachable from the object of the dependent
(see Paragraph 5.2.7.1), our depends-clauses provide more flexibility than
dependencies of other approaches [Lei95b, LN00]:

– Predicates such as ρ can be used to specify the dependees of a loca-
tion, which simplifies for instance the specification of recursive data struc-
tures (see for example the depends-clauses for List’s val-field in Subsec-
tion 5.2.6).

– Since our depends-clauses do not syntactically enforce that dependees are
reachable from the corresponding dependent, they provide a basis for a gen-
eralization of our techniques such as the module invariants sketched in Sub-
section 6.4.1. Such invariants are useful to express sharing properties, which
cannot be handled by the restricted depends-clauses of [Lei95b, LN00].

For the axiomatization of the notdepends-relation (see Subsection 5.2.5), we
have to require a fixed field name for each depends-clause. Thus, we can
for instance not specify that an abstract location X.f depends on all loca-
tions reachable from X. That would be nice to express disjointness of object
structures, but was not necessary in the examples we have looked at so far.

The generality of our depends-clauses provides flexibility, but requires, on
the other hand, to prove modularity requirements. The restrictive depends-
clauses used in [Lei95b, LN00] would allow a verification tool to check the
modularity requirements statically and therefore simplify verification. In this
book, we want to achieve a maximum of flexibility to show the expressiveness
of our technique. For practical applications, it will be important to find the
right balance between expressiveness and static checkability. However, such
a decision should be based on major case studies which are considered future
work.

5.2.7.3 Locality Rule. The locality rule is fairly natural: Usually, abstrac-
tions of dynamic components abstract from the states of their interface and
representation objects. As long as these objects are reachable from an in-
terface object via readwrite references, such abstractions meet the locality
requirement. Objects that are only reachable via readonly references can be
seen as arguments of a dynamic component (e.g., the elements in a container).
It seems widely accepted that abstractions of a dynamic component must not
depend on the states of its arguments (see e.g., the arg mode in [CPN98]).

Although the locality rule provides enough flexibility for most programs,
there are applications that cannot be handled due to this requirement. For in-
stance the validity of a hash table depends on the states of its elements, since
these states are used to compute the hash values8. However, the elements
are in general not part of the hash table’s representation and can therefore
belong to arbitrary universes. Consequently the validity property cannot be
handled in a modular way.
8 Thanks to John Boyland for a discussion of this example.

172 5. Modular Specification and Verification of Frame Properties

5.2.7.4 Authenticity Rule. Of all modularity rules, the authenticity rule
imposes the most restrictive requirement: If the field of a dependee of location
L is declared in a different module than the field of L, this dependee must
belong to a descendant of the universe to which L belongs. This has three
major implications that are explained in the following.

Must Use Universes. The authenticity rule forces programmers to use ob-
ject and type universes whenever a type declaration declares a dependency
where the field of the dependee is declared in an imported module. In such
situations, all restrictions of the universe type system (see Subsection 2.2.6)
apply.

Static Dependencies on Locations with Inherited Fields. Let L be a location
with a field declared in module M. L must not depend on a location K of the
same object, if K’s field is declared in a module imported by M. We illustrate
this restriction in Example 5.2.2.

Example 5.2.2. We assume that Component is a very simple AWT component
that stores the width of the screen area that is reserved for a component. It
is declared in module COMPONENT (see below). Circle (declared in module
CIRCLE) is a special component to display circles. A Circle-object stores its
radius. Such a circle-object is valid if the circle fits into the reserved area. We
express validity by an abstract field valid. X.valid depends on X.width. Since
width is declared outside the module CIRCLE, this dependency violates the
authenticity rule. If the dependency was allowed, methods that have access
to width (such as resize) could modify valid without being able to detect
this modification.

module COMPONENT;

public class Component {
protected int width;
public int resize(...) {

modifies {this.width};
{ ... }

}

module CIRCLE imports COMPONENT;

public class Circle extends Component {
int radius;
public abstract Bool valid;
def valid by 2 ∗ $(this.radius) ≤ $(this.width);
depends valid on {Y.radius | Y = X};
depends valid on {Y.width | Y = X}; // illegal

}

Non-authentic abstract locations like the valid-location in the example occur
when a subtype declares a static dependency on a location the field of which
is inherited. We have investigated four approaches that would allow us to use
non-authentic abstract locations:

5.2 Formalization of Explicit Dependencies 173

1. We could weaken the semantics of modifies-clauses such that methods are
allowed to modify non-authentic locations. If methods could only modify
non-authentic locations of the this-object as in the example above, this
approach would be feasible. However, Mojave’s access modes allow meth-
ods to modify non-authentic locations of other objects than this: If the
fields of the dependees have public, protected, or default access, methods
of various classes can modify non-authentic locations via their dependees.
But even if these fields have private or private protected access, a method
of class C can modify non-authentic locations of C-objects different from
this since access modes control access on the class- rather than on the
object-level.
Therefore, allowing methods to modify non-authentic locations leads to
a much weaker semantics of modifies-clauses that is not suitable to verify
method invocations. More fine-grained access modes that control access
on the object-level could help to remedy the shortcomings of this ap-
proach. However, the development of alternative access modes is a non-
trivial task that is beyond the scope of this book.

2. An alternative approach to providing non-authentic locations is to keep
the strong semantics of modifies-clauses and to guarantee that every
method that might modify a non-authentic location L automatically cov-
ers L by its modifies-clause. This could be achieved by introducing addi-
tional dependencies: For every dependency of L on K that does not meet
the authenticity requirement, we could introduce a dependency of K on
L. Therefore, methods that are allowed to modify K may also modify L.
In Example 5.2.2, this would mean to introduce a dependency of X.width
on X.valid, which allows resize to modify this.valid. This approach has
several severe shortcomings:
– It does not work properly for transitive dependencies. Assume that a

method modifies a dependee of K in a way that leaves the value of K
unchanged, but affects the value of L. This method does not have to
cover K by its modifies-clause. Therefore, it modifies the non-authentic
location L without permission. To avoid this problem, all dependees of
K must also depend on L.

– It leads to a large number of additional dependencies that weaken the
specification of frame properties and make verification more difficult.

– Concrete locations depend only on themselves. Therefore, to introduce
the cyclic dependencies described above, we have to introduce an ab-
stract location for each concrete location (i.e., apply the “readonly
by specification” pattern) and enforce that the abstract locations are
used in modifies-clauses. However, since we only provide public ab-
stract fields, this approach is not compatible with information hiding.

– Automatically adding locations to the set of modifiable locations might
be a solution for ordinary abstract fields, but nor for invariants. As
explained in Chapter 6 we regard invariants as abstract locations that

174 5. Modular Specification and Verification of Frame Properties

must not be modified by nonprivate methods. Therefore, non-authentic
invariants are not supported by this approach since they would be
allowed to be modified.

3. We could enforce subclasses that introduce non-authentic locations to
override all methods of their superclasses that might modify the non-
authentic locations (for instance, based on specifications such as the
callable-clauses in [RL00]). However, this approach does not work in the
presence of public, protected, or default access fields since in this case,
other methods than those of superclasses can modify the non-authentic
locations via their dependees. The same argument applies when transitive
dependencies are involved.

4. The fourth approach is a work-around for the problem. Multiple inheri-
tance can be simulated by single inheritance: Instead of inheriting from
class C, a class D can declare a field of type C and wrapper methods
of the C-methods that forward invocations to the C-object. By the same
pattern, one can replace single inheritance by a uses-relation and forward-
ing. Thereby, static dependencies on locations with inherited fields are
turned into dynamic dependencies which allows one to apply universes to
achieve authenticity. Although this pattern can help in some situations,
it is not a general solution to the problem since it forbids inheritance.

To sum up, all four approaches are not satisfactory. Therefore, the problem
of static dependencies on locations with inherited fields remains an open
problem. It also occurs in Leino’s and Nelson’s work. In the future, we plan
to investigate whether more fine-grained access modes allow us to find a
satisfying solution.

Guards of Object Universes. Object universes can lead to problems in the
context of inheritance and extended state: A class C that is not a direct
subclass of Object can in general not use object universes for its representa-
tion: C cannot introduce an abstract location X.f that depends on locations
belonging to the object universe owned by X. The guard of the dependees
w.r.t. the universe to which X belongs is a superclass D of C. If C and D are
not declared in the same module, f is not accessible in D, which violates au-
thenticity. Despite this limitation, object universes can be used in numerous
applications:

– In particular in class libraries, subclassing is often used only among classes
of the same modules (see e.g., the Java API, especially the AWT [Gea97]).
In these cases, object universes can be used for the extended state of sub-
classes without limitations.

– Subclasses can use type universes for their extended state whenever the
inherited state and the extended state do not need to share objects. This
work-around provides enough expressiveness for most implementation pat-
terns for the price of weaker alias control for the extended state. However,

5.2 Formalization of Explicit Dependencies 175

appropriate invariants and verification can compensate for the weaker alias
control (see Subsection 6.4.1).

That is, despite the restrictive definition of guards, object universes can be
used in many implementations, in particular in class libraries, which contain
the most frequently reused code.
5.2.7.5 Visibility Rule. Due to the authenticity rule, dependencies be-
tween locations belonging to the same universe are usually declared together
with the field of the dependee, which is supported by the visibility rule. When
the dependee belongs to a descendant of the universe to which the dependent
belongs, the visibility rule requires the depends-clause to be placed in the
same module as the guard of the dependee w.r.t. the universe to which the
dependent belongs. This requirement can in general be met if type universes
are used since they allow the programmer to choose between several universes
and thus several guards. However, like with the authenticity rule, the visi-
bility requirement is often too strong when object universes in combination
with inheritance are used as illustrated by the following example:

Example 5.2.3.
module SUPER;

public class Super extends Object {
public abstract AbsSort f;

}

module SUB imports SUPER,LIST;

public class Sub extends Super {
rep<this> List l;
depends f on {Y.val | Y = $(this.l)};

}

The depends-clause in class Sub does not meet the visibility requirement since
the relevant guard is Super which is declared in a different module. To avoid
this problem, we can use the methodologies we have suggested in the above
discussion of the authenticity rule: The problem does not occur if the list was
stored in the type universe for Sub or if Super and Sub were declared in the
same module.

The main application of abstract fields is the specification of abstract
values for dynamic components. In most cases, the dependencies of such
abstractions meet all requirements of our techniques and are not affected by
the limitations discussed above. In particular, the dependees are reachable
from the interface objects via readwrite references, and the representations of
the dynamic components are encapsulated by means of universes. Therefore,
our modularity requirements are weak enough to handle such abstractions
and, hence, support a wide range of Mojave programs. The main restriction
— static dependencies on locations with inherited fields — remains as open
problem for future research.

176 5. Modular Specification and Verification of Frame Properties

5.3 Formalization of Modifies-Clauses

In this section, we explain the syntax of modifies-clauses and formalize the
meaning presented in Subsection 5.1.1.

Syntax. Since modifies-clauses specify the absence of modifications, it is diffi-
cult to define a reasonable meaning if one method specification contains sev-
eral modifies-clauses, especially if some of the modifies-clauses are inherited
from supertypes. To avoid this complexity, we provide only one modifies-
clause for each method. It can occur wherever a req-clause is allowed (see
Subsection 4.2.2). Modifies-clauses have the form

modifies M ;

where M is a Γpre-term of sort set of Location. Like with req-clauses, the
access mode of a modifies-clause is identical to the access mode of the method.
We use modifies ∅; as default when a modifies-clause is omitted.

Formal Meaning. According to the informal semantics presented in Subsec-
tion 5.1.1, a method with modifies-clause M is allowed to modify locations
that are mentioned in the modifies-clause and their dependees. We call this
set of modifiable locations the downward closure of M (“down to more con-
crete locations”, see [Lei95b]). It is defined by a function δ:

δ : set of Location× Store → set of Location

δ(M,OS) =def {L | ∃K ∈ M : K
OS−→ L}

Since the depends-relation is a function of stores, the downward-closure is
store-dependent.

Based on this function, we define the semantics of a modifies-clause by
translating it into a pre-post-pair (such a translation is often called desug-
aring). The formal meaning in terms of Hoare triples is then defined by the
semantics of the pre-post-pair. A modifies-clause of the above form is desug-
ared into the following pre-post-pair, where mode is the access mode of the
corresponding method:

mode pre $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧D = δ(M, $);
post L ∈ D ∨ $≡L OS ;

This semantics reveals four interesting aspects of modifies-clauses:

– Since the semantics is defined in terms of pre- and postconditions, it does
not constrain temporary modifications. That is, a method can modify a lo-
cation and re-establish the initial value without specifying the modification
in the modifies-clause (see Paragraph 5.5.1.5 for a discussion of temporary
modifications).

– A method can modify locations of newly created objects without declaring
these modifications. We regard initialization of new objects as functional
property that has to be specified by pre-post-pairs.

5.3 Formalization of Modifies-Clauses 177

– Since modifies-clauses are desugared into pre-post-pairs, the semantics for
pre-post-specifications (see Paragraph 4.2.2.2) applies to modifies-clauses
as well. In particular, we can assume the requires-clause, type and liveness
annotations, and invariants to hold in the prestate.
Furthermore, inheritance of pre-post-pairs leads to inheritance of modifies-
clauses, and thus to behavioral subtyping. The proof obligations for inher-
ited modifies-clauses can in general easily be proved by showing that the
modifies-clause of the subtype method is a subset of the modifies-clause of
the supertype method. The semantics of modifies-clauses is weak enough
to allow subtypes to gain the right to modify the extended state by intro-
ducing additional dependencies. This way, locations of the extended state
can be added to the downward-closure of inherited modifies-clauses.

– The semantics of modifies-clauses supports the locality concept described in
Paragraph 5.1.3.1: Locations that do not belong to the current universe or
its descendants may be modified without declaration. Note that modifies-
clauses do not constrain the modification of formal parameters and local
variables.

Example. In the following, we present the modifies-clauses of two methods of
the list example. Method List:setAtPos modifies the abstract value of the list.
Since n belongs to the node structure of the list (this is guaranteed by the
req-clause) and this.val depends on all elem-locations of the node structure,
the method is allowed to modify n.elem.

protected int setAtPos(readonly Node n, readonly Object v)
req n 6= null ∧ index ($(this.first), n, $) = N ∧N > 0;
modifies {this.val};

The flexibility of our modifies-clauses is illustrated by method List:appFront.
Since the method adds a new node at the front of the list, the abstract values
of all valid list positions for that list are changed. Furthermore, adding a new
element to the list affects the abstract value of the list. These two properties
are expressed by the following modifies-clause.

public int appFront(readonly Object v)
modifies {this.val} ∪ {Y.position | tidD(typeof (Y)) ¹M ctid(ListPos)∧

$(Y.theList) = this ∧ $(Y.valid)};
Note that this modifies-clause requires one to refer to the list of a list position
in public specifications. This is achieved by the the abstract field theList. Be-
sides list positions, the abstract values of ListProperty-objects are affected
by the execution of appFront. However, the affected ListProperty-objects
belong to the parent universe of the current universe (see Fig. 2.8) and must
therefore not be declared in the modifies-clause. We verify the frame proper-
ties of List:setAtPos and another method in Subsection 5.4.5.

178 5. Modular Specification and Verification of Frame Properties

5.4 Verification of Frame Properties

The most important contribution of this section is a modularity theorem that
enables modular verification of frame properties. In particular, this theorem
shows that the modularity requirements presented in Subsection 5.2.4 are
sufficiently strong for this task.

Similar to functional behavior, frame properties can be verified by (1) ver-
ifying method bodies under the assumption that all virtual methods be-
have according to their specifications, and (2) applying the proof strategy of
Lemma 3.3.2 to show the proof obligations for virtual methods and to discard
the assumptions. As presented above, our specification technique for frame
properties meets the requirements for the application of the proof strategy:

1. All context conditions for depends-clauses and modifies-clauses can be
checked locally in a type declaration and the declarations of its super-
types. The modularity requirements (Proof Obligations 5.1 to 5.4) are
concerned with single def- or depends-clauses and can be proved locally
in the scope of these clauses. The proofs carry over to extended pro-
grams. Thus, the composition of well-formed specifications consisting of
depends- and modifies-clauses yields a well-formed specification.

2.–4. The semantics of modifies-clauses is defined by desugaring them into pre-
post-pairs. Since pre-post-specifications meet the requirements 2 to 4,
they are also met by the proof obligations generated for modifies-clauses.

The proof strategy allows us to focus on the verification of method bodies. In
the following, we explain why frame properties of method bodies can be ver-
ified modularly, present important lemmas about the possible modifications
caused by field updates and method executions, and illustrate the verification
of frame properties by an example.

5.4.1 Verification of Method Bodies

Frame properties are concerned with modifications of the object store. The
body of a method can modify the store by object creation, field updates,
and method invocations. In the following, we explain why the effects of each
of these operations can be handled in a modular way. Thereby, we use two
accessibility properties that are guaranteed by the locality and authenticity
rules (see Subsection 5.1.3). Both properties require that the specification of
the program to be verified is well-formed.

Accessibility Property 1: If a method T@m modifies a location K that be-
longs to a descendant of the current universe (either by field update or
by method invocation) then the fields of all locations belonging to the
current universe that depend on K are accessible in T.

5.4 Verification of Frame Properties 179

Accessibility Property 2: The fields of all relevant locations (i.e., locations
belonging to the current universe or its descendants) that might be af-
fected by a field update in method T@m are accessible in T.

Based on these properties, the following proof methodology can be used to
verify frame properties of method bodies.

Object Creation. Object creation does not affect the value held by concrete
or abstract locations (Lemma 5.2.2). Therefore, new-statements are trivial
for the verification of frame properties.

Field Update. Since a field update in method T@m cannot affect relevant
locations with fields that are not accessible in T (Accessibility Property 2),
one can use a case distinction over all fields accessible in T to reason about
the effects of a field update9. Based on the corresponding def-clauses and
the axioms for the depends-relation and its negation, one can prove for each
accessible field that the corresponding relevant locations are either covered
by T@m’s modifies-clause or not affected by the field update. We illustrate
such a proof in Subsection 5.4.5.

Method Invocation. Let T@m invoke a method n. Due to our proof strategy,
we can assume that n behaves according to its specification. If T@m and n
are executed in the same universe, it is sufficient to show that the modifies-
clause of n is a subset of the downward-closure of T@m’s modifies-clause. If n
is executed in a child universe U of the current universe of T@m’s execution,
we have to consider three cases: (1) If a relevant abstract location L belongs
to U or a descendant thereof, it can only be modified by n if it is covered
by n’s modifies-clause. Again, it suffices to prove that n’s modifies-clause is
a subset of the downward-closure of T@m’s modifies-clause. (2) If L belongs
to a descendant of T@m’s current universe, but not to U or a descendant
thereof, the locality rule and the local update property guarantee that L is
left unchanged by execution of n. (3) If L belongs to T@m’s current universe,
Accessibility Property 1 guarantees that the field of L is accessible in T. As
with field updates, we can use a case distinction over all accessible abstract
fields and Lemma 5.2.1 to reason about the method invocation.

The methodology sketched above is based on the accessibility properties
and the local update property. We formalize and prove these properties in
the following subsections. Based on these properties, we prove the modularity
theorem for frame properties: A method T@m can only modify relevant ab-
stract locations the fields of which are accessible in T@m. An example that
illustrates the methodology for the verification of frame properties and the
application of the modularity theorem can be found in Subsection 5.4.5.
9 Such a case distinction is only possible if the formal framework allows one to

reason about all fields declared in a scope. In our framework, this is enabled
(1) by encoding abstraction functions by abstract fields, (2) by using closed
modules instead of open packages, and (3) by the axioms generated for modules
and type declarations (see Subsection 3.1.1).

180 5. Modular Specification and Verification of Frame Properties

5.4.2 Local Update Property

Due to the universe invariant, a method m can update concrete locations only
if they belong to the current universe or its descendants. We formalize this
local update property as language property (see Definition 3.2.1). Analogously
to the type annotations of Definition 3.2.3, we use an operator lu to add local
update annotations to a triple:

Definition 5.4.1 (Local Update Annotations). The definition of lu(A)
depends on the kind of A:

– Let m be a virtual method T:m or a method implementation T@m. For
method annotations of the form { P } m { Q }, lu(A) is defined as follows:

{ P ∧ $ = OS ∧ U = U ∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

m
{ Q ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }
where v0, . . . ,vk are the formal parameters of m. OS, U , and KC are fresh
logical variables that neither occur in any specification nor in any proof.

– For statement annotations of the form { P } STMT { Q }, lu(A) is de-
fined as follows:

{ P ∧ $ = OS ∧ U = U ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧

(static(T@m) ⇔ this = null) }
STMT
{ Q ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }
where T@m is the method implementation enclosing STMT, v0, . . . ,vk are
the formal parameters, and vk+1, . . . ,vn are the local variables of T@m.
Again, OS, U , and KC are fresh logical variables.

Lemma 5.4.1 (Local Update Property). If the specification of an open
or closed program P is well-formed and if there is a proof for A |. A in P
then there is a proof for lu(A), ro(A), typed(A) |. lu(A).

According to Definition 3.2.1, the local update property is a language prop-
erty. lu is greater than ro and typed in the ordering of operators for language
properties. The proof of Lemma 5.4.1 can be found in App. D.2.

Similarly to the local update property, the universe type system guaran-
tees that a method can create only objects that belong to the current universe
or its descendants. Since this local creation property is not used in the sequel
of this book, we omit a formalization here.

5.4 Verification of Frame Properties 181

5.4.3 Accessibility Properties

In the following, we formalize and prove the accessibility properties described
in Subsection 5.4.1. Both properties hold for programs with well-formed spec-
ifications only.

Accessibility Property 1. The first accessibility property guarantees that if
a method T@m modifies a location K that belongs to a descendant of the
current universe (either by field update or by method invocation) then all
locations belonging to the current universe that depend on K are accessible in
T. For the proof, we can assume the following properties that are guaranteed
by the context conditions of Mojave and the well-formedness conditions for
specifications:

1. T@m is an implementation of a readwrite method. Therefore, T denotes
a class that is different from Object.

2. Since Mojave is type safe, we can assume well-typedness of the object
store.

3. Since K belongs to a descendant of the current universe, there exists a
child universe V of the current universe such that K belongs to V or
a descendant thereof. The locality rule guarantees that T@m can only
modify K by updating a location belonging to V or invoking a method
in V . If V is the type universe associated with dynamic type S, we know
that the type declaration of S is present in T. If V is the type universe
owned by this, the class of this must be a subclass of T.

These considerations are formalized by the following lemma:

Lemma 5.4.2 (Accessibility Property 1). For all open or closed pro-
grams with well-formed interface specifications, the following property holds:

ctid?(T) ∧ T 6= ctid(Object) ∧ L
OS−→ K ∧ wt(OS)∧�

univV (obj (K)) E typeU (S, U) ∧ imports(module(T),module(S))∨
univV (obj (K)) E objU (OID , C, U) ∧ ctid(C) ¹M T

�
∧

univV (obj (L)) = U ⇒ accessibleL(L, T)

Proof of Lemma 5.4.2:

Case 1: mklc?(L)

L
OS−→ K ∧ univV (obj (L)) = U∧

(univV (obj (K)) E typeU (S, U) ∨ univV (obj (K)) E objU (OID , C, U))∧
⇒ [[Axiom dep3, definition of E]]

K = L ∧ univV (obj (L)) 6= univV (obj (K))

⇒ [[Contradiction]]

accessibleL(L, T)

182 5. Modular Specification and Verification of Frame Properties

Case 2: mkla?(L)

accessMode(fid(L)) = public ∧ ctid?(T) ∧ T 6= ctid(Object) ∧ L
OS−→ K ∧ wt(OS)∧

(univV (obj (K)) E typeU (S, U) ∧ imports(module(T),module(S))∨
univV (obj (K)) E objU (OID , C, U) ∧ ctid(C) ¹M T) ∧ univV (obj (L)) = U

⇒ [[Lemma 5.2.4]]

accessMode(fid(L)) = public ∧ ctid?(T) ∧ T 6= ctid(Object)∧
(univV (obj (K)) E typeU (S, U) ∧ imports(module(T),module(S))∨
univV (obj (K)) E objU (OID , C, U) ∧ ctid(C) ¹M T)∧
univV (obj (L)) = U ∧ accessibleL(L, guard(K, univV (obj (L))))

⇒
ctid?(T) ∧ T 6= ctid(Object) ∧ accessMode(fid(L)) = public∧
(univV (obj (K)) E typeU (S, U) ∧ imports(module(T),module(S))∨
univV (obj (K)) E objU (OID , C, U) ∧ ctid(C) ¹M T)∧
accessibleL(L, guard(K, U))

⇒ [[Definition of guard]]

ctid?(T) ∧ T 6= ctid(Object) ∧ accessMode(fid(L)) = public∧
accessibleL(L, guard(K, U)) ∧ (guard(K, U) = S∧
imports(module(T),module(S)) ∨ ctid?(guard(K, U)) ∧ ctid(C) ¹M guard(K, U)∧
(∀T ′ : ctid?(T ′) ∧ guard(K, U) ≺M T ′⇒T ′ = ctid(Object)) ∧ ctid(C) ¹M T)

⇒ [[Single inheritance (Axiom subM2)]]

T 6= ctid(Object) ∧ accessMode(fid(L)) = public ∧ accessibleL(L, guard(K, U))∧
(guard(K, U) = S ∧ imports(module(T),module(S)) ∨ (T ¹M guard(K, U)∨
guard(K, U) ≺M T) ∧ (∀T ′ : ctid?(T ′) ∧ guard(K, U) ≺M T ′⇒T ′ = ctid(Object)))

⇒ [[Definitions of accessible, accessibleL; Axiom import2]]

accessibleL(L, T)

2

The proof of Lemma 5.4.2 gives insight to the necessity of two important
restrictions of our specification framework:

– The key idea of the proof is that if L is accessible in guard(K,U), and
guard(K, U) is present in T then L is accessible in T. This consequence
requires that abstract locations are public. As soon as other access modes
are used, this “transitive accessibility” does not hold in general10.

– T is an arbitrary superclass of the class of the this-object different from
Object. To guarantee that the guard of K w.r.t. U is present in T, we
have to use the restrictive definition of guards for object universes (see
Subsection 5.2.4).

10 Transitive accessibility can also be achieved by omitting friend mechanisms. That
is, if type universes and concrete fields can only have private or private protected
access, and abstract fields have private protected or public access then the tran-
sitivity of the subtype relation guarantees transitive accessibility. However, we
consider protected and default access as important means for efficient implemen-
tations. Therefore, we did not follow this approach.

5.4 Verification of Frame Properties 183

Accessibility Property 2. The second accessibility property states that the
fields of all relevant locations that might be affected by a field update in
method T@m are accessible in T. Again, Mojave’s context conditions provide
us with several properties:

1. As with the first accessibility property, we know that T@m is an im-
plementation of a readwrite method and T must denote a class that is
different from Object.

2. T@m can only update locations with fields accessible in T.
3. Again, we can assume welltypedness of the object store.
4. The updated location belongs to the current universe or one of its child

universes. In the latter case, we get the same assumptions as in point 3
of Accessibility Property 1.

We can formalize Accessibility Property 2 as follows:

Lemma 5.4.3 (Accessibility Property 2). For all open or closed pro-
grams with well-formed interface specifications, the following property holds:

ctid?(T) ∧ T 6= ctid(Object) ∧ L
OS−→ K ∧ accessibleL(K, T)∧

univV (obj (L)) E U ∧ wt(OS) ∧ (univV (obj (K)) = U∨
univV (obj (K)) = typeU (S, U) ∧ imports(module(T),module(S))∨
univV (obj (K)) = objU (OID , C, U) ∧ ctid(C) ¹M T) ⇒ accessibleL(L, T)

The proof of this lemma is based on the locality and authenticity require-
ments. It can be found in App. D.2.

5.4.4 Modularity Theorem for Frame Properties

The simple methodology for the verification of frame properties described in
Subsection 5.4.1 requires to apply the local update property resp. the accessi-
bility properties for each field update statement and each method invocation.
These properties are used to prove that a method implementation T@m can-
not modify relevant locations with fields that are not declared in the scope
of T. To get rid of the recurring proof steps, we can formalize this property
as theorem and prove it once for all programs.

Definition 5.4.2 (Unchanged-Annotations). We use an operator uc to
add unchanged-annotations to a triple A. The definition of uc(A) depends
on the kind of A:

– Let m be a virtual method T:m or a method implementation T@m. For
method annotation of the form { P } m { Q }, uc(A) is defined as follows:

{ P ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vk
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }

m
{ Q ∧OS ≡L $ }

184 5. Modular Specification and Verification of Frame Properties

– For statement annotation of the form { P } STMT { Q }, uc(A) is defined
as follows, where T@m is the method implementation enclosing STMT:

{ P ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }

STMT

{ Q ∧OS ≡L $ }
L is a fresh logical variable that neither occurs in any specification nor in any
proof.

Unchanged-annotations have one unlovely shortcoming: They do not carry
over from subtype methods to corresponding supertype methods since the
scope of the supertype is a subset of the scope of the subtype. Therefore, a
location that is not present in the supertype can be present in the subtype.
As a consequence of this shortcoming, we cannot prove that uc is a language
property operator. However, the following property holds (see App. D.2 for
the proof):

Theorem 5.4.1 (Modularity Theorem for Frame Properties). If the
specification of an open or closed program P is well-formed and if there is a
proof for A |. A in P that does not contain applications of the subtype-rule
then there is a proof for uc(A), lu(A), ro(A), oal(A), typed(A) |. uc(A)

Although unchanged-annotations do not describe a language property, uc can
be used like a language property operator if it is applied to proofs that do not
contain applications of the subtype-rule. Recall that we assume that programs
are proved using the proof strategy of Lemma 3.3.2. The strategy is based on
proofs of method bodies and method implementations. As we have explained
in Subsection 4.3.2, we can assume that these proofs are constructed without
using the subtype-rule. A verification tool can check or enforce this restriction
and therefore use uc like a language property operator when it executes the
proof strategy. In particular, we can treat uc as language property operator
in the definition of modular correctness (Definition 3.3.2). Consequently, the
shortcoming of unchanged-annotations is not critical in practice as we will
illustrate in the following subsection.

5.4.5 Example

To illustrate the methodology presented in Subsection 5.4.1 and the ap-
plication of the modularity theorem, we prove the frame properties of
List:setAtPos and ListPos:setValue.

According to Lemma 3.3.2, modular correctness requires to verify the
bodies of the implementations of virtual methods based on appropriate as-
sumptions. We do that for List:setAtPos and ListPos:setValue in the follow-
ing.

5.4 Verification of Frame Properties 185

5.4.5.1 Body of List@setAtPos. We verify the frame properties of
List@setAtPos to illustrate how one can reason about the effects of field
updates in a modular way. The relevant parts of the method specification are
as follows:

protected int setAtPos(readonly Node n, readonly Object v)
req n 6= null ∧ index ($(this.first), n, $) = N ∧N > 0;
modifies {this.val};

In the following, we use R to abbreviate the conjunction of List@setAtPos’s
requires-clause, the type and liveness annotations for List@setAtPos’s body,
and the invariants that can be assumed in the prestate of List@setAtPos.
That is, we have to prove the following sequent:

|. { R ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧D = δ({this.val}, $) }
body(List@setAtPos)

{ L ∈ D ∨ $≡L OS }
First, we prove that the frame properties hold for all locations that are present
in List:

|. { R ∧ presentL(L, ctid(List)) ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧D = δ({this.val}, $) }
body(List@setAtPos)

{ L ∈ D ∨ $≡L OS }
(5.1)

We prove this sequent as follows:

{ R ∧ presentL(L, ctid(List)) ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U∧
D = δ({this.val}, $) }
⇒ [[Definition of R]]

{ n 6= null ∧ typeof (n) ¹ τ(orepT (ctid(Node))) ∧ wt($) ∧ presentL(L, ctid(List))∧
$ = OS ∧ ρ($(this.first), n, $, next) ∧ alive(obj (L), $) ∧ univV (obj (L)) E U∧
D = δ({this.val}, $) }
nn = (rep<this> Node) n;

{ nn 6= null ∧ typeof (nn) ¹ τ(orepT (ctid(Node))) ∧ wt($)∧
presentL(L, ctid(List)) ∧ $ = OS ∧ ρ($(this.first), nn, $, next) ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧D = δ({this.val}, $) }
⇒ [[*]]

{ nn 6= null ∧ (L ∈ D ∨ $〈nn.elem := v〉≡L OS) }
nn.elem = v;

{ L ∈ D ∨ $≡L OS }
The implication marked with ∗ can be proved by a case distinction over the
field of L. In this example, all fields that are present in List are also accessible
in List, which simplifies verification. If this would not be the case, we could
use Lemma 5.4.3 to derive the desired property for locations with fields that
are present but not accessible in List.

186 5. Modular Specification and Verification of Frame Properties

Case 1: elem. If the field of L is elem, L only depends on nn.elem if
L = nn.elem, since elem is a concrete field (Axiom dep3). From the
depends-clauses for val and ρ($(this.first), nn, $, next), we can conclude

this.val $−→ L and therefore L ∈ D in this case. If L does not depend on
nn.elem, Axiom store1 and Lemma 5.2.1 imply $〈nn.elem := v〉≡L OS .

Case 2: val. The regular expression for a dependency L
$−→ nn.elem in the

automaton for module LIST (see Fig. 5.8) is b. Furthermore, the lo-
cality rule guarantees that L can only depend on nn.elem if L belongs
to the current universe or the object universe owned by this. In both
cases, the guard of nn.elem w.r.t. the universe to which L belongs is de-
clared in module LIST. Thus, we can conclude from the axioms for the
notdepends-relation and the definition of rc that L

$−→ nn.elem only
holds if dc(b, obj (L), nn, $) holds. Since this is the only owner of the
node structure that contains nn, ρ($(obj (L).first),nn, $,next) only holds
if obj (L) = this, which implies L ∈ D. If L does not depend on nn.elem,
we can again apply Lemma 5.2.1.

Case 3: other fields. For all other fields that are present in List, the regular
expression describing a dependency L

$−→ nn.elem is ∅ (see Fig. 5.8).
Like in case 2, the guard of nn.elem w.r.t. the universe to which L belongs
is declared in module LIST. Therefore, the axioms for the notdepends-
relation imply ¬(L $−→ nn.elem) and thus $〈nn.elem := v〉≡L OS (Ax-
iom store1 and Lemma 5.2.1).

From the above proof, one can easily see that there is also a proof for

|. { R } body(List@setAtPos) { true }

By applying Theorem 5.4.1 to this sequent and using the strength-rule, we
get:

|. { R ∧ ¬presentL(L, ctid(List)) ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧D = δ({this.val}, $) }
body(List@setAtPos)

{ OS ≡L $ }
Applying the disjunct-rule to sequent 5.1 and the above sequent yields the
desired property for the body of List@setAtPos.

5.4.5.2 Body of ListPos@setValue. ListPos:setValue is specified as fol-
lows:

public int setValue(readonly Object v)
req $(this.valid);
modifies {$(this.theList).val};

By the verification of ListPos@setValue’s body, we show how method invoca-
tions can be handled. Below, A abbreviates the frame properties of method
List:setAtPos:

5.4 Verification of Frame Properties 187

{ R′ ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧D = δ({this.val}, $) }
List:setAtPos

{ L ∈ D ∨ $≡L OS }
That is, we have to prove the following sequent. Again, we use R to abbrevi-
ate the conjunction of the requires-clause of ListPos@setValue, the type and
liveness annotations, and the relevant invariants.

A |. { R ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U∧
D = δ({$(this.theList).val}, $) }

body(ListPos@setValue)

{ L ∈ D ∨ $≡L OS }

We prove this sequent as follows:

{ R ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U∧
D = δ({$(this.theList).val}, $) }
⇒ [[representation of this.theList]]

{ this 6= null ∧ $(this.list) 6= null ∧R′[$(this.list)/this, univV ($(this.list))/U]∧
$ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E univV ($(this.list))∧
D = δ({$(this.list).val}, $) }
l = this.list;

{ this 6= null ∧ l 6= null ∧R′[l/this, univV (l)/U] ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E univV (l) ∧D = δ({l.val}, $) }
n = this.pos;

{ l 6= null ∧R′[l/this, univV (l)/U] ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E univV (l) ∧D = δ({l.val}, $) }
⇒
{ l 6= null ∧ (R′ ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U∧
D = δ({this.val}, $))[l/this, n/n, v/v, univV (l)/U] }
result = l.List:setAtPos(n,v); [[assumpt-axiom, invocation-rule]]

{ L ∈ D ∨ $≡L OS }

This concludes our discussion of modular specification and verification of
frame properties. Based on explicit dependencies and the universe program-
ming model, we have presented a semantics of modifies-clauses that is suitable
for modular verification. Appropriate restrictions on dependencies allow us
to provide a modularly sound axiomatization of the depends-relation and to
prove the modularity theorem, which enables modular verification of frame
properties. In the next chapter, we show how these techniques can be adapted
for the modular verification of type invariants. Work that is related to our
technique is discussed in the next section.

188 5. Modular Specification and Verification of Frame Properties

5.5 Related Work

The approach to the frame problem taken in this book is closely related to
the treatment of frame properties in the ESC project. Therefore, we discuss
the relation of our technique to the work by Leino and Nelson in detail in
the next subsection. The second subsection summarizes other work related
to the frame problem.

5.5.1 Leino’s and Nelson’s Work on Dependencies

The work by Leino and Nelson provides a basis for our work by introducing
explicit dependencies and downward-closures for modifies-clauses. In the fol-
lowing, we compare their work to our approach in detail. This discussion is
mainly based on [LN97], but also on [DLN98, Jos97, Lei95a, Lei95b, LN00,
LS97b].

5.5.1.1 Static and Dynamic Dependencies. The idea of making depen-
dencies explicit in interface specifications was first mentioned in [Lei95b].
Compared to our approach, the depends-clauses of Leino and Nelson are
very restrictive: They only provide static dependencies of the form depends
this.f on this.g; and dynamic dependencies of the form depends this.f
on this.p.g;. These restricted forms of depends-clauses allow one to check
many aspects of dependencies statically (in particular, the modularity re-
quirements for static dependencies), but require recursive data structures
to be handled by recursive depends-clauses (i.e., depends-clauses where the
fields of the dependent and the dependee are identical). Our approach allows
one to declare a depends-clause that hides this recursion in predicates such
as reachability, which simplifies specifications and proofs (see for instance the
depends-clauses for List’s val-field in Subsection 5.2.6).

In Leino’s and Nelson’s framework, static and dynamic dependencies are
handled completely different: They are declared and formalized differently,
play different roles in the desugaring of modifies-clauses, and have to meet
different modularity requirements. We managed to unify static and dynamic
dependencies in our approach. This unification simplifies the treatment of
dependencies significantly. In particular, the universe type system and the
notion of guards allow us to formulate general modularity requirements that
apply to all dependencies.

5.5.1.2 Closures and the Meaning of Modifies-Clauses. Leino and
Nelson handle information hiding and the extended state problem by the
same rule as we do: A method may modify locations that are mentioned
in its modifies-clause and their dependees. Therefore, Leino and Nelson use
closures similar to our downward closure to desugar modifies-clauses.

For static dependencies, this closure is called static closure in [LN00] and
downward closure in [Lei95b]. In contrast to our work, this closure is not
based on an underspecified depends-relation. Instead, Leino and Nelson use

5.5 Related Work 189

a scope-dependent closure. The static closure of a set of variables M in a
scope S consists of all variables in M and their dependees as far as the
dependencies are static and declared in S. So-called residues are used to rep-
resent dependees that are not visible in S. Scope-dependent closures lead
to a scope-dependent semantics of modifies-clauses. As explained in Subsec-
tion 5.1.1, such a semantics is difficult to handle by Hoare-style programming
logics. Furthermore, modular soundness of the scope-dependent semantics has
to be proved explicitly, whereas it follows from underspecification in our ap-
proach. Leino and Nelson have proved modular soundness of their approach
for static dependencies. The advantage of scope-dependent closures is that
they make an axiomatization of the notdepends-relation dispensable. This
axiomatization is the most complex part of our technique.

To handle the problem that occurs when imported code is reused (see
Example 5.1.1), Leino and Nelson use a different closure for dynamic de-
pendencies called dynamic closure. The dynamic closure is the union of the
downward closure and a portion of the upward closure. Like the static closure,
it is scope-dependent and leads therefore to the same problems. In contrast
to static dependencies, Leino and Nelson have not proved modular soundness
of their technique for dynamic dependencies so far. The locality principle of
universes allows us to restrict the semantics of modifies-clauses to relevant
locations. Therefore, we can avoid upward closures.

5.5.1.3 Modularity Requirements. Leino and Nelson use different mod-
ularity rules for static and dynamic dependencies. Whereas the rules for static
dependencies are well justified, the rules for dynamic dependencies seem to be
rather ad-hoc for two reasons: (1) Whereas we use a restricted programming
model (the universe programming model) to systematically derive the neces-
sary modularity rules, Leino and Nelson restrict the programming model by
modularity rules, which makes them more complex. (2) A soundness proof
that would provide insight to the necessary rules for dynamic dependencies
is still missing in Leino’s and Nelson’s work.

We used Leino’s and Nelson’s rules for static dependencies as a basis and
generalized them to dynamic dependencies based on the universe program-
ming model. In the following, we compare the modularity requirements of
the two approaches in detail.

Visibility Requirement. Leino’s and Nelson’s visibility requirement and our
visibility requirement are very similar. In both approaches, this requirement
is used to determine that a location does not depend on another. That is, it
is necessary for the soundness of the scope-dependent downward closures in
Leino’s and Nelson’s approach, whereas it guarantees a consistent axiomati-
zation of the depends-relation and its negation in our approach.

For static dependencies, both visibility rules are equivalent. By using uni-
verses and guards, we could generalize the visibility rule to dynamic depen-
dencies.

190 5. Modular Specification and Verification of Frame Properties

Top-Down Requirement. The top-down requirement (which is called authen-
ticity requirement in [Lei95b]) corresponds to our authenticity requirement.
Both requirements guarantee that program extensions cannot introduce ab-
stractions that might be modified by an imported method without being
covered by its modifies-clause. Again, the top-down requirement and our au-
thenticity rule are equivalent for static dependencies. Enforcing that abstract
locations with fields declared in clients of a module M can only depend on
locations with fields declared in M if the dependee belongs to a descendant of
the universe to which the dependent belongs, and restricting the semantics
of modifies-clauses to relevant locations allows us to generalize the top-down
requirement to dynamic dependencies.

Pivot Declaration Requirement. The pivot of a dynamic dependency is the
field of the location that holds the reference to the object of the dependee
(the p in the depends-clause in Paragraph 5.5.1.1). The pivot declaration
requirement requires that the depends-clause for a dynamic dependency is
visible wherever the pivot field is. This requirement is not necessary in our
approach for the following reason: Assume that an abstract location X.f
depends on $(X.p).g; then it also depends on X.p since an update of X.p
might modify X.f. Therefore, our approach requires to declare a dependency
of X.f on X.p11. The visibility rule for this depends-clause imposes the same
effective requirement as the pivot declaration requirement, which makes the
extra requirement dispensable.

Absence of Leaking. The absence of leaking requirement is motivated by the
following problem: Assume that a class T uses class S as data representation
(i.e., T contains a concrete field of range type S), where S and T are declared
in different modules. Let L be an abstract location of a T-object that depends
on a location of the referenced S-object X. According to Leino and Nelson,
leaking means that a method m declared outside the scope of T can get hold
of a reference to X. By using this reference, m can modify L unexpectedly.
To prevent such patterns, Leino and Nelson require programs to be designed
such that leaking does not occur. This is enforced by using virginity [DLN98,
LS99], which is described in Section 2.3.

In our approach, the problem of leaking is addressed by the authenticity
rule and the encapsulation provided by universes. In the scenarios described
above, the authenticity rule enforces that X belongs to a descendant of the
universe U to which the T-object belongs. Due to our semantics of modifies-
clauses, L is not relevant for methods executed in a descendant of U . For all
methods that are executed in other universes and that can get a readwrite
reference to X, the authenticity rule guarantees that they have access to L.

Although we also prevent the kind of leaking described above, our ap-
proach provides more flexibility than the approach based on virginity taken
by Detlefs, Leino, and Nelson [DLN98]: (1) Detlefs, Leino, and Nelson do not

11 Technically, this depends-clause is necessary to prove Obligation 5.1.

5.5 Related Work 191

allow methods to return references held by pivot locations, which they call a
somewhat drastic restriction. Universes are less restrictive, allowing references
to be passed freely around as long as the universe invariant is not violated.
In particular, readonly references can be passed to any object. (2) [DLN98]
requires the set of values held by pivot locations and the set of values held
by non-pivot locations to be disjoint at any execution point (the restriction
is called apartheid). There is no correspondence to this restriction in our ap-
proach. Apartheid is violated in several interesting implementations such as
our list example: Node’s next-fields are pivot fields for List’s abstract val-
field, but prev-fields are not. However, in doubly linked lists, the values held
by next-locations are not disjoint from the values held by prev-locations.

Disjoint Ranges Requirement. The disjoint ranges requirement states that
pivot locations with fields declared in different modules hold different refer-
ences in every pre- or poststate of a method. This requirement is necessary
to rule out harmful co-dependencies as described in Example 1.3.4. In our
approach, such co-dependencies are prevented by the authenticity rule and
the visibility rule. For instance in Example 1.3.4, Client1 and Client2 have
to use different universes for their representations, which guarantees that the
representations are disjoint.

It is interesting that both approaches require that certain aliases to not
occur: Leino and Nelson require absence of leaking and disjoint ranges. It is
exactly the same scenario (dependencies on locations with fields declared in
imported modules) that motivate these requirements, and in which our au-
thenticity rule forces programmers to use universes. However, the approaches
are quite different. Leino and Nelson enforce absence of leaking by virginity
and disjoint ranging by conjoining appropriate formulas to pre- and postcon-
ditions of all methods. In contrast, we use a type system to control aliases,
which allows us to simplify the modularity requirements.

Swinging Pivots Requirement. According to the swinging pivots requirement,
a method may modify a pivot location only if the new value is null or a newly
created object. This requirement essentially guarantees that a method does
not introduce new dynamic dependencies between locations of objects that
exist in the prestate. The swinging pivots requirement is useful to verify
method bodies that contain several method invocations. If the first method
modifies the depends-relation, it is difficult to relate the modifies-clauses of
all subsequent invocations to the modifies-clause of the enclosing method
since the downward closures refer to different depends-relations. As admitted
by Leino and Nelson, the swinging pivots requirement is extremely strong.
Therefore, we do not have a corresponding requirement in our technique. In-
stead, we leave it to the programmer/specifier to provide sufficiently complete
method specifications that allow one to verify several subsequent method
invocations. A programmer can follow the swinging pivots requirement as
programming discipline and thereby achieve the same results.

192 5. Modular Specification and Verification of Frame Properties

To sum up, most requirements in Leino’s and Nelson’s work have a direct
correspondence in our work, and the other way round. Given the similarity
of our programming languages and of our techniques, it is natural that both
approaches end up with similar modularity requirements. However, the uni-
verse type system and our semantics of modifies-clauses allow us to formulate
the modularity requirements in a more uniform way.

5.5.1.4 Summary. The specification technique for frame properties in
Leino’s and Nelson’s work is tailored towards extended static checking
whereas we aim at formal verification. This difference motivates most of the
design decisions taken in the two approaches. Therefore, each of the two
approaches has advantages for its particular application area. Our semanti-
cal treatment of dependencies gives insight to the modular specification and
verification of frame properties from which the extended static checking com-
munity can benefit as well. In particular, we developed a modularly sound
solution to the frame problem based on the universe type system and appro-
priate modularity rules. Both the type system and the modularity rules can
also be applied in the context of extended static checking.

5.5.1.5 Benevolent Side-Effects. In [Lei95a], Leino points out an inter-
esting aspect of the semantics of modifies-clauses and temporary modifi-
cations of locations. In general, our semantics of modifies-clauses allows a
method to modify a location and re-establish the initial value without spec-
ifying the modification in the modifies-clause. However, such methods are
usually difficult to verify.

Consider a method m that temporarily modifies an abstract location L
and that is specified to modify nothing. To verify m, it does not suffice to
show that the value held by L is re-established before m terminates. It is
also necessary to prove this property for L’s dependees. Otherwise, so-called
benevolent side-effects (that is, side-effects that do not affect the value held
by the abstract location L) could exist in which case m would not satisfy its
modifies-clause.

One can easily prove that the values held by the dependees are re-
established if m modifies L by field-write-statements only since, in this case,
it is clear which modifications have to be turned back. However, if the value
held by L is modified by a method invocation and re-established by another
invocation, the invoked methods must guarantee that they also re-establish
the values held by L’s dependees, and their specifications must make this
property explicit. However, for the sake of information hiding and abstrac-
tion, method specifications do usually not express the effects of a method
execution on all dependees of an abstract location, which makes verification
of methods that perform temporary modifications of abstract locations very
difficult in practice.

5.5 Related Work 193

5.5.2 Other Work on the Frame Problem

The frame problem has first been described in the context of artificial intelli-
gence [MH69]. [BMR95] gives a survey of work on the frame problem in design
specifications but does not discuss important issues of OO-implementations
(e.g., extended state, modular verification). [BMR95] proposes to organize
the permission to modify variables around variables instead around methods.
However, the semantics of such specifications in terms of proof obligations is
unclear and its capability to support modular verification is not addressed.

Modifies-Clauses. Modifies-clauses have first been used in the Larch project,
for instance in LCL [GH93]. Aside from Larch/C++ [Lea97], the Larch ISLs
do not provide abstract fields with explicit dependencies. Therefore, they do
not support modular verification of frame properties. The modular specifi-
cation technique for frame properties developed in [Lei95b] (see above) has
been adopted by Larch/C++: Modifies-clauses contain a set of variables the
abstract values of which may be changed by the method. A special construct
allows one to express that the abstract values of all objects reachable from
a given object may be modified. Such modifies-clauses are easy to handle,
but are not sufficiently expressive for several implementation patterns. For
instance, the modifies-clause of List’s appFront-method (see Section 5.3)
could not be expressed in Larch/C++. Besides modifies-clauses, Larch/C++
provides so-called trashes-clauses that are used to specify the destruction of
objects [CGR96]. Since Mojave does not provide object deallocation, trashes-
clauses are not necessary here. Our techniques can be extended to trashes-
clauses if methods can only deallocate objects belonging to the current uni-
verse and its descendants, which would allow the semantics of modifies-clauses
to be adapted to trashes-clauses. The effects of a deallocation on abstract
locations can be determined by allowing abstract fields to depend on the
liveness of objects and by applying our modularity requirements to these
dependencies.

Like Larch/C++, JML [LBR99a] applies the specification technique for
frame properties developed by Leino and Nelson (abstract fields and modifies-
clauses are called model fields and modifiable-clauses in JML). Our semantics
of modifies-clauses is very similar to the meaning of modifiable-clauses in
JML, but differs in two aspects: (1) The semantics of modifiable-clauses is
not restricted to relevant locations. (2) Modifiable-clauses are interpreted as
giving rights to assign to variables, and do not permit temporary modifica-
tions of variables not covered by the clause. This stronger semantics allows
one to partly check modifiable-clauses statically and simplifies the treatment
of concurrent programs because it guarantees that locations not covered by a
modifiable-clause are unchanged when a thread is interrupted while execut-
ing a method. That is, there is more information available about the state in
which a different threads becomes active. We use a weaker semantics since
JML’s interpretation is difficult to express in Hoare-style programming log-
ics. In particular, it leads to preconditions for field-write-statements that refer

194 5. Modular Specification and Verification of Frame Properties

to depends-clauses and the modifies-clause of the enclosing method, which
means that the programming logic is no longer independent of interface spec-
ifications.

Both Larch/C++ and JML do not enforce modularity requirements such
as authenticity for abstract fields. Therefore, they do not directly support
modular verification of frame properties. However, the techniques for mod-
ular verification of frame properties presented in this book (especially the
restriction to relevant dependencies and the modularity requirements) can
also be applied to languages such as JML that use the stronger interpreta-
tion of modifies-clauses described above.

In this book, the extended state problem is solved by allowing subtypes
to introduce additional dependencies for inherited abstract locations. The
same technique is used in Larch/C++ [Lea97], JML [LBR99b], the Extended
Static Checking project [DLNS98, LN00], and in [MPH00b]. An alternative
approach to the extended state problem is presented in [Lei98]. Instead of
abstract fields, so-called data groups are used to represent sets of concrete
locations. Like abstract locations, data groups can be mentioned in modifies-
clauses and provide support for information hiding and modification of ex-
tended state. They are a natural way to reflect a programmer’s intention.
In contrast to abstract locations, data groups do not have a value. This al-
lows one to drop the authenticity requirement. But on the other hand, data
groups cannot be used to specify functional behavior in terms of abstract val-
ues which is crucial for verification of OO-programs. Moreover, data groups
can be simulated by abstract fields and dependencies.

Relations on Object Stores. [PH97b] uses relations on object stores to specify
frame properties. For instance, one can express that two stores are equivalent
w.r.t. all locations that are reachable from a given object X, but may differ
in other locations. Relations on object stores are a very expressive way to
specify frame properties, but such specifications tend to become complex
and are not very intuitive. The semantics of modifies-clauses is defined by
a parameterized relation on object stores. That is, modifies-clauses can be
regarded as syntactic sugar for more low-level specifications based on relations
on object stores.

6. Modular Specification and Verification of
Type Invariants

Type invariants (invariants for short) describe well-formedness criteria of ob-
jects and object structures. Based on a discussion of an invariant semantics
for nonmodular programs, we explain the problems of modular verification
of invariants and our approach to their solution. By regarding invariants as
boolean abstractions, we apply our techniques for alias and dependency con-
trol to invariants. Thereby, we define a meaning for type invariants that is
appropriate for modular verification. We show how invariants can be verified
modularly, discuss the expressiveness of our invariants, and present related
work.

6.1 Motivation and Approach

Although invariants are a fundamental concept of software development
[Hoa72, Dij76, Mey88], the meaning of type invariants in object-oriented pro-
grams is still discussed controversially (see Section 6.5). In this section, we
explain an invariant semantics that is appropriate for verification in a non-
modular setting. We analyze and illustrate the shortcomings of this semantics
for modular verification and explain our approach to their remedy.

6.1.1 Invariant Semantics for Nonmodular Programs

In this subsection, we summarize the work on the meaning of invariants in
nonmodular programs, mainly [PH97b] (other invariant semantics are dis-
cussed in Section 6.5). To define the meaning of an invariant, we have to
answer two questions:

1. For which objects does the invariant have to hold?
2. In which execution states does the invariant have to hold?

The invariant of a type declaration T describes properties that should hold
for all living objects of T and its subtypes. To answer the second question,
we have to consider the following points:

196 6. Modular Specification and Verification of Type Invariants

1. Invariants cannot be required to hold in all execution states. In intermedi-
ate states during method executions, invariants often have to be violated
temporarily, for instance, to rearrange object structures. Therefore, in-
variants can only be required to hold in pre- and poststates of method
executions. The states in which invariants have to hold are often called
visible states [Lea97].

2. In general, the implementation of a method m relies on certain invariants
to work correctly. These invariants are required to hold in the prestate
of executions of m. Although often suggested in the literature, it is not
sufficient if only the invariant of the this-object or the invariants of all
instances of the enclosing class hold: During execution of m, field accesses
and method invocations on other objects require that the invariants of
all objects reachable from m’s parameters hold in the prestate of m. To
simplify the semantics of invariants, [PH97b] requires the invariants of
all living objects to hold in prestates.

3. The above requirement forces verifiers to show that the invariants of
all living objects hold upon invocations of, at least, all public methods.
To be able to show this property for consecutive method invocations,
methods must guarantee that the invariants of all living objects hold in
the poststate of method executions. In particular, methods must establish
the invariants of newly created objects.

4. According to the previous two points, the pre- and poststates of all
method executions are visible states. However, helper methods that are
used to perform auxiliary operations should neither assume invariants to
hold in the prestate nor be required to preserve invariants (we use the
term preserve for both, preserving the invariant of existing objects and
establishing the invariants for newly created objects). Most specification
frameworks regard either private methods or all nonpublic methods as
helper methods. If only private methods are used as helper methods,
clients of these methods have access to their implementations which al-
lows verifiers to prove the properties they are interested in. If all nonpub-
lic methods are regarded as helper methods, the specifications of these
methods must state which invariants might by violated by the methods
to allow client code to be verified modularly. In this book, we regard
only private methods as helper methods. The presented technique works
as well for the other choice.

To sum up the previous paragraphs, the semantics for invariants in nonmod-
ular programs requires the invariants of all living objects to hold in the pre-
and poststates of all nonprivate methods.

6.1 Motivation and Approach 197

6.1.2 Problems for Modular Verification of Invariants

According to the above semantics, each nonprivate method of a program
must preserve the invariant of each allocated object. This semantics entails
two problems for (modular) verification that are discussed in the following.

6.1.2.1 Invariants and Program Extensions. Without far-reaching re-
strictions, the above invariant semantics cannot be extended to modular pro-
grams: Consider a set of modules M that is extended by a set of modules N.
According to the above invariant semantics, essentially1 the following four
kinds of proof obligations have to be shown for the extended program (we
neglect private methods here):

1. Each method in M must preserve each invariant in M.
2. Each method in M must preserve each invariant in N.
3. Each method in N must preserve each invariant in N.
4. Each method in N must preserve each invariant in M.

Whereas obligations of kinds 1 and 3 can be proved as in a nonmodular set-
ting, the other obligations are problematic. Obligations of kind 2 are proof
obligations about imported code. Since this code is not available for verifica-
tion in a modular setting, we would have to restrict the invariants that can
be declared in N such that they are automatically preserved by methods in
M. Although the code is available to show obligations of kind 4, such obliga-
tions cannot be proved for those invariants in M that are hidden from client
modules. As explained in Section 4.1, hidden specification parts are often
necessary to preserve information hiding.

6.1.2.2 Invariants of Object Structures. The second problem occurs
when invariants describe properties of object structures (in particular, dy-
namic components) rather than single objects. It also occurs in nonmodular
settings, but is aggravated by modular development. We illustrate the prob-
lem by the following example, which is similar to the example discussed in
Subsection 1.3.3:

Example 6.1.1. Objects of class MyBean use a list to store their internal data
(see App. C.2). To simplify algorithms, this list should not contain any ele-
ment more than once. This property is specified as invariant of class MyBean
(notMTO yields true if a list contains no element more than once).

invariant notMTO($($(this.beanRep).val));

However, since List’s appFront-method allows one to add arbitrary objects
to the list, it does not preserve MyBean’s invariant in general. Therefore, the
proof obligations for this invariant cannot be shown for all methods of the
1 Actually, only the conjunction of all invariants must be preserved. However, in

most practical applications, that is equivalent to verifying the invariants of M
and N separately.

198 6. Modular Specification and Verification of Type Invariants

program. That is, the specified invariant does not hold in all possible visible
states.

With the above invariant semantics, MyBean’s invariant can only be guar-
anteed by using a different list class. In general, that requires one to im-
plement a new list class, L2, the methods of which preserve the invariant.
Note that L2 cannot be implemented as a subclass of List since it has to
change the behavior of appFront (i.e., it is not a behavioral subtype). Thus,
inheritance cannot be exploited, and L2 has to be developed from scratch.
Obviously, this work-around obstructs reuse in an unbearable way.

Situations as illustrated in Example 6.1.1 occur whenever a dynamic com-
ponent wants to establish an invariant for its representation that is stronger
than the invariants that are guaranteed by the classes that are (re-)used to
implement the representation. Whereas this problem can be circumvented in
a nonmodular setting by using very complex invariants and requires-clauses
(for instance, in case the this-object is referenced by a MyBean-object, the
specification of appFront could require that the element to be added is not
already contained in the list), it leads to unbearable restrictions for modu-
lar development. To solve this problem, we need an invariant semantics that
does not require methods of the representation of a dynamic component to
preserve the invariants of the interface objects.

In the next subsection, we describe our approach to solving the two problems
above.

6.1.3 Approach

Verification of invariants is closely related to verification of frame properties:
Like abstract fields, invariants map the states of objects or object structures
to values, in this case boolean values. Verifying invariants means to show
that methods do not change these boolean values from true to false, just
like verification of frame properties means to show that the value held by
certain locations is not modified by a method. A closer look at the problems
of invariant verification described above reveals further similarities between
the verification of invariants and the verification of frame properties:

– To guarantee that methods of imported type declarations preserve the
invariants declared in importing modules (proof obligations of kind 2 in
Paragraph 6.1.2.1), invariants have to be restricted such that the invariants
declared in importing modules are automatically preserved by the imported
methods. This is analogous to the restrictions of abstract fields that are
necessary to guarantee that reused methods obey their modifies-clauses in
any scope they may be reused.

– To allow a dynamic component D to establish an invariant for its represen-
tation that is not preserved by all methods of the classes used to implement

6.1 Motivation and Approach 199

D, methods executed on D’s representation should not be required to pre-
serve the invariants of D’s interface objects. Analogously, methods of D’s
representation must be allowed to modify abstract locations of D’s inter-
face objects without covering these locations by their modifies-clauses. This
is necessary to be able to use imported classes to implement the represen-
tation (see Subsection 5.1.1).

Due to the close relation between abstract fields and invariants as well as
between verification of frame properties and verification of invariants, we sug-
gest to regard invariants as special abstract fields and to apply the technique
developed for the verification of frame properties to invariant verification. We
explain this approach in the following.

6.1.3.1 Invariants with Explicit Dependencies. Regarding invariants
as special abstract fields with representations and explicit dependencies al-
lows us to restrict the dependencies of invariants such that methods auto-
matically preserve invariants declared outside their scope. Recall that the
modularity rules for abstract fields presented in Subsection 5.1.3 guarantee
that methods do not modify abstract locations declared outside their scope.
The same rules enable us to apply the modularity theorem for frame proper-
ties (Theorem 5.4.1) to automatically discard proof obligations of kind 2.

Furthermore, explicit dependencies (in particular, the axiomatization of
the notdepends-relation) can be used to show that methods preserve the
invariants of imported type declarations (obligations of kind 4) even if the
actual representations of the invariants are hidden from the clients. Therefore,
treating invariants as abstract fields with explicit dependencies solves the
problem described in Paragraph 6.1.2.1.

Despite the far-reaching correspondence between invariants and abstract
fields, they differ in one important aspect: Invariants have a semantics that
leads to proof obligations for methods whereas ordinary abstract fields don’t.
We describe this semantics in the next paragraph.

6.1.3.2 The Meaning of Type Invariants. As explained in Subsec-
tion 6.1.1, invariants are used for two purposes in the context of formal
specification and verification:

1. Invariants can be assumed in the prestate of method executions. Thus,
they serve as abbreviation to avoid the recurring specification of require-
ments.

2. To be able to verify consecutive method invocations, invariants must be
preserved by all nonprivate methods of a program.

In the following, we discuss three possible invariant semantics w.r.t. these
purposes and the problems described in Subsection 6.1.2.

200 6. Modular Specification and Verification of Type Invariants

Semantics 1. The invariant semantics for nonmodular programs (see Subsec-
tion 6.1.1), which is essentially used in [PH97b, Lea97, HK00], would serve
both of the above purposes, but entails the two problems described in Sub-
section 6.1.2. In particular, to solve the problem of program extensions (see
Paragraph 6.1.2.1), dependencies of invariants would have to be restricted
such that any nonprivate method m would preserve all invariants declared
outside m’s scope. To accomplish that, we would need much stronger restric-
tions than the ones used for the verification of frame properties since the
semantics of modifies-clauses covers relevant locations only, whereas this in-
variant semantics would cover the invariants of all living objects. As discussed
for the semantics of modifies-clauses in Subsection 5.1.1, the restrictions nec-
essary to cover all objects would prevent effective reuse and would therefore
not be appropriate for modular development.

Semantics 2. An alternative approach would realize invariants by ordinary
abstract fields that in particular would not lead to proof obligations. Pur-
pose 1 would be able to be served by appropriate conventions; for instance,
all abstract locations with fields named valid could be required to hold true in
method prestates. Whether a method preserves an invariant would be spec-
ified by frame axioms: Violated invariants would be abstract locations that
are modified by the method and must therefore be covered by its modifies-
clause. Thus, consecutive method invocations would be able to be verified by
using frame properties (purpose 2).

This treatment of invariants would rest upon the semantics of modifies-
clauses. In our framework, that would mean that methods must declare
whether invariants of objects in the current universe or its descendants (rel-
evant invariants) are violated, but must not specify violation of other invari-
ants. That would (1) allow us to apply the restrictions for dependencies used
for the verification of frame properties to solve the problem of program ex-
tensions (see Paragraph 6.1.2.1), and (2) solve the problem of invariants for
object structures (see Paragraph 6.1.2.2) since invariants of interface objects
of a dynamic component D are not relevant for methods executed on D’s
representation.

The disadvantage of this approach would be that it is not obvious in
which execution states an invariant holds. One would have to refer to the
single modifies-clauses (and possibly the declared dependencies) to deduce
the states in which an invariant holds. Invariants alone would not be very
meaningful.

A Hybrid Approach. To remedy the deficiencies of the above semantics, we
combine the notion of visible states from semantics 1 with the notion of rele-
vant invariants from semantics 2: The visible states are defined as in seman-
tics 1 (i.e., the pre- and poststates of nonprivate methods2). In each visible

2 more precisely, of nonprivate methods except of readonly instance methods (see
below)

6.2 Specification of Type Invariants 201

state, the relevant invariants have to hold. That is, each nonprivate method
must preserve the relevant invariants. Relevant invariants that are violated
by private methods have to be covered by the modifies-clauses of these meth-
ods. This hybrid semantics solves the problems described in Subsection 6.1.2
in the same way as semantics 2.

Since only relevant invariants have to hold in visible states, the caller
of a method can only guarantee that those invariants hold upon a method
invocation that are relevant for the caller. According to the universe pro-
gramming model, readwrite methods and static readonly methods can only
be invoked in the current universe or its descendants. Therefore, each invari-
ant that is relevant for the execution of such a method is also relevant for
its caller. However, the situation is different for readonly instance methods:
Since readonly references can refer to arbitrary universes, we cannot assume
that all relevant invariants hold in the prestate of readonly instance methods
since callers are in general not able to guarantee this condition upon invo-
cation. Thus, the pre- and poststates of readonly instance methods are not
visible states. Consequently, this invariant semantics serves purpose 1 in a
limited way only. Invariants that are necessary to guarantee the correctness
of readonly instance methods have to be repeated in requires-clauses or pre-
conditions3. Since all nonprivate methods are required to preserve relevant
invariants (which is trivially met by readonly methods), verification of con-
secutive method invocations (purpose 2) can be handled by this semantics.

6.2 Specification of Type Invariants

In this section, we formalize the ideas described above. We explain how invari-
ants as well as their representations and dependencies are declared, present
the axiomatization of invariants, and describe their formal meaning. Further-
more, we illustrate the specification of invariants by an example.

6.2.1 Declaration of Type Invariants

Although invariants are treated as abstract fields, they have to be declared
differently such that the appropriate proof obligations can be generated. An
invariant inv is introduced by a declaration of the following form:

public invariant inv;

Besides the fact that we axiomatize that inv is an invariant (see below), such
a declaration is synonymous to the following declaration of an abstract field:

public abstract Bool inv;

That means that for invariants,
3 This limitation is due to the notion of relevant invariants and therefore also

occurs in semantics 2.

202 6. Modular Specification and Verification of Type Invariants

– the same context conditions apply as for ordinary abstract fields (see Sub-
section 4.2.1). In particular, there can be several invariants for each type
declaration, which is for instance necessary if some well-formedness criteria
(that is, the representations of some invariants) should be exposed whereas
others should be hidden from clients.

– the corresponding constants of sorts SimpleAFieldId and AFieldId are in-
troduced.

– the signature of the representation function repinv and the corresponding
axiom for L-equivalence are generated (see Paragraph 4.2.1.1).

– representations and dependencies can be declared by def-clauses and
depends-clauses exactly as for ordinary abstract fields. In particular, these
clauses have to meet the same well-formedness conditions (Obligations 5.1–
5.4).

To be able to discern between invariants and ordinary abstract fields, we
introduce the following function:

invSF : SimpleAFieldId → Bool

For each invariant resp. ordinary abstract field T@f declared in a program,
we add an axiom of the form invSF (T@f) resp. ¬invSF (T@f) to the theory
that contains the declaration of the constant T@f. To simplify notations, we
introduce a function invL that yields whether a location is an instance of an
invariant:

invL : Location → Bool
L = aloc(locA(X, F)) ⇒ (invL(L) ⇔def invSF (F))
L = cloc(locC (X, F)) ⇒ ¬invL(L)

To be able to quantify over all invariants of a program, we introduce a function
signature:

invrep : Location × Store → Bool

For each invariant T@f declared in a program, we add the following axiom
to the theory that contains the declaration of the constant T@f:

L = aloc(locA(X, T@f)) ⇒ (invrep(L,OS) ⇔ repT@f(X,OS))

Relevant invariants of living objects must not be violated by nonprivate
methods. That is, their value must not be changed during execution of such
methods. To simplify the application of the verification technique for frame
properties to the verification of invariants (see Paragraph 6.3.1.2), we check
statically that invariants do not occur as dependee in any depends-clause.
Thereby, we ensure that invariants cannot “slip” into the downward-closure
of a modifies-clause. That is, we can prove locally in the scope of a method
m that an invariant is not covered by m’s modifies-clause without having to
care about the dependencies that might be introduced by program extensions.
The syntax checks guarantee the following lemma (the proof is analogous to
Proof 5.2.3):

6.2 Specification of Type Invariants 203

Lemma 6.2.1. In each program with well-formed interface specification, the
following property holds:

invL(L) ∧K 6= L ⇒ ¬(K
OS−→ L)

6.2.2 Example

To illustrate the declaration of type invariants, we specify the well-formedness
criteria for class List (see App. C.1 for the implementation of List). A list
object is well-formed if

1. the first- and last-locations reference different Node-objects (we have
one dummy node at each end of the list);

2. the last node can be reached from the first by following a sequence of
next-references;

3. the last node has no successor (this is required for the function col to
work correctly, see Paragraph 4.2.1.3).

These properties are formalized as type invariant of List:

protected def inv by $(this.first) 6= null ∧ $(this.last) 6= null ∧
ρ($(this.first), $(this.last), $, next)∧
$($(this.last).next)) = null∧
$(this.first) 6= $(this.last);

protected depends inv on {Y.first | Y = this};
protected depends inv on {Y.last | Y = this};
protected depends inv on {Y.next | ρ($(this.first), Y, $, next)∨

Y = $(this.last)};
It is easy to see that this invariant is well-formed:

Obligation 5.1: X.inv depends on the first- and last-locations of X and
the next-locations of all nodes of the list. That is, all dependees are
reachable from X. The proof obligation can easily be shown by using
Lemma 3.1.10.

Obligation 5.2: X.inv depends only on locations of objects belonging to the
same universe as X (X.first and X.last) and a child universe thereof
(dependees of the form Y.next).

Obligation 5.3: The guard of all dependees of X.inv w.r.t. the universe to
which X belongs is List. Since the invariant inv is declared in this class,
the authenticity requirement is met.

Obligation 5.4: The depends-clauses are declared in the class that is the
guard of the dependees (class List).

The above example illustrates that invariants as well as their representations
and dependencies can be declared like abstract fields. In particular, represen-
tations and dependencies can be hidden from clients by using access modes.
In Subsection 6.3.2, we prove that List’s createList-method preserves the
above invariant.

204 6. Modular Specification and Verification of Type Invariants

6.2.3 Formal Meaning of Invariants

In this subsection, we formalize the invariant semantics explained in Para-
graph 6.1.3.2. The relevant invariants of living objects have to hold in all
visible states. That is,

1. they have to hold in the initial state in which program execution begins.
2. they can be assumed in the prestate of every nonprivate method except

readonly instance methods and must be preserved by each nonprivate
method.

Whereas the former condition is trivially true since there are no living objects
in the initial state, we have to generate proof obligations to guarantee the
latter property. To do that, we introduce the following function:

inv : Store ×Universe → Bool
inv(OS , U) ⇔def ∀L : univV (obj (L)) E U ∧ alive(obj (L),OS)∧

invL(L) ⇒ invrep(L,OS)

inv(OS , U) yields whether all invariants of living objects that belong to U or
one of U ’s descendants hold in store OS . Based on this function, we express
the proof obligations for invariants by a pre-post-pair. The formal meaning in
terms of Hoare triples is therefore defined by the semantics of the pre-post-
pair (see Paragraph 4.2.2.2). Each nonprivate readwrite method implicitly
contains the following pre-post-pair, where mode is the access mode of the
method:

mode pre U = U ;
post inv($, U);

Recall from the semantics of pre-post-pairs that for nonprivate readwrite
methods, inv($,U) is added to the precondition when the pre-post-pair is
translated into a Hoare triple. That is, the above pre-post-pair expresses that
every nonprivate readwrite method m must preserve the relevant invariants
of objects that are alive in m’s prestate and must establish the invariants
of objects that are created during execution of m. Since readonly methods
do not modify the object store, we do not need proof obligations for these
methods.

6.3 Verification of Type Invariants

The meaning of type invariants leads to proof obligations for all nonpri-
vate readwrite methods of a program. In this section, we show how these
obligations can be proved modularly by reducing invariant verification to
verification of frame properties.

6.3 Verification of Type Invariants 205

6.3.1 Verification Methodology

In analogy to the verification of frame properties, invariants can be verified
by applying the proof strategy of Lemma 3.3.2. That is, it suffices to verify
method bodies based on the assumption that all virtual methods behave
according to their specifications. In this subsection, we show that invariants
meet the requirements of Lemma 3.3.2 and explain how method bodies can
be verified modularly.

6.3.1.1 Using the Proof Strategy for Program Composition. Like
frame properties, invariants meet the requirements of the proof strategy of
Lemma 3.3.2. Due to the similarity to ordinary abstract fields, invariants meet
requirements 1, 3, and 4 in the same way (see Section 5.4). Requirement 2 is
fulfilled for the following reason: By defining the invariant semantics based on
inv (which universally quantifies over all invariants of a program), we achieve
that the declaration of invariants does not lead to new proof obligations
for imported methods. Instead, each nonprivate method has to preserve all
relevant invariants of living objects, independent of the scope the method is
declared in.

Therefore, we can verify invariants by (1) verifying method bodies under
the assumption that all virtual methods behave according to their specifica-
tions, and (2) applying the proof strategy of Lemma 3.3.2 to show the proof
obligations for virtual methods and to discard the assumptions. Consequently,
we focus on the verification of method bodies in the following.

6.3.1.2 Verification of Method Bodies. Conceptually, the proof obli-
gation stemming from invariants for the body b of a nonprivate readwrite
method m can be split into two parts:

1. b establishes the invariants of all objects that are created during execution
of b. b can create new objects (1) by the new-statement or (2) by method
invocations. In the former case, the type declaration of the newly created
object and thus its invariants are present in m’s scope, which allows one
to prove that the invariants are established. In the latter case, the invoked
method n belongs to one of the following groups:
– n is private. In this case, the code of n is available for verification and

can be used to show that the invariants are established.
– n is readonly. Readonly methods must not create objects.
– n is nonprivate and readwrite. In this case, n must establish the in-

variants of the objects it creates. It remains to show that b does not
violate the invariants after they have been established by n. This is
analogous to the verification of frame properties, which allows us to
apply the same methodology.

2. b preserves the relevant invariants of all objects that are allocated in m’s
prestate. To show this obligation, we use the frame properties of b and
prove that no relevant invariant is covered by m’s modifies-clause. To

206 6. Modular Specification and Verification of Type Invariants

prove that, we (1) show that no invariant is contained in the location set
M mentioned in m’s modifies-clause, and (2) apply Lemma 6.2.1 to show
that M ’s downward-closure does also not contain invariants.

Both parts can be verified modularly. In the general case (i.e., when new-
statements are followed by method invocations in a method body), both parts
have to be proved in an interweaved way to guarantee that the invariants
of new objects are established before methods are invoked. However, most
method bodies (especially method bodies that do not create objects) allow
one to prove the two parts separately. To simplify verification of such method
bodies, we formalize this methodology by the following lemma:

Lemma 6.3.1 (Modularity Lemma for Invariants). If the specification
of an open or closed program P is well-formed and if there is a proof in P
for the sequents

A |. { P ∧ inv($,U) ∧ invL(L) ∧ alive(obj (L), $) ∧ univV (obj (L)) E U∧
$ = OS ∧D = δ(M, $) }

COMP
{ L ∈ D ∨ $≡L OS }

(6.1)

and

A |. { P ∧ inv($,U) ∧ invL(L) ∧ ¬alive(obj (L), $) ∧ univV (obj (L)) E U }
COMP
{ alive(obj (L), $)⇒invrep(L, $) }

(6.2)

and if invL(L) ⇒ L 6∈ M holds, then there is a proof for

A |. { P ∧ inv($,U) ∧ U = U } COMP { inv($, U) }

where M is the location set mentioned in the modifies-clause of the method
that contains COMP (resp. of COMP in case COMP is a method), and D,
L, OS, and U are logical variables that do not occur in P.

Sequent 6.1 can be obtained by applying the strength-rule to the sequent for
COMP’s frame properties. For method bodies, this sequent is usually proved
during verification of frame properties. The proof of this lemma is rather
straightforward and can be found in App. D.3.

6.3.2 Example

In this subsection, we prove that the body of List@createList preserves all rel-
evant invariants. The example demonstrates how method bodies that contain
both method invocations and object creation can be verified. In particular,
the example illustrates the application of Lemma 6.3.1.

To prove that List@createList preserves all relevant invariants, we have
to show the following sequent

6.4 Discussion 207

A |. { inv($,U) ∧ U = U ∧ TA } body(List@createList) { inv($, U) } (6.3)

where A contains the triples for the two pre-post-pairs and the frame prop-
erties of List@init (see App. C.1), and TA abbreviates the type and liveness
annotations for the body of List@createList. Since List@createList’s modifies-
clause is empty, it suffices to show the following two sequents (see App. D.3
for the proofs) to apply Lemma 6.3.1 which yields Sequent 6.3 and completes
the proof.

A |. { invL(L) ∧ alive(obj (L), $) ∧ $ = OS ∧ TA ∧ univV (obj (L)) E U∧
D = δ(?, $) }
body(List@createList)

{ $≡L OS ∨ L ∈ D }
(6.4)

A |. { TA ∧ inv($,U) ∧ invL(L) ∧ ¬alive(obj (L), $) ∧ univV (obj (L)) E U }
body(List@createList)

{ alive(obj (L), $)⇒invrep(L, $) }
(6.5)

This example concludes our discussion of modular specification and verifi-
cation of type invariants. We have shown that type invariants can be regarded
as abstract fields which allows us to apply the specification and verification
technique for frame properties to type invariants. In particular, a novel se-
mantics of type invariants and appropriate restrictions on the permissible
dependencies of invariants enable us to show the proof obligations stemming
from invariants modularly.

6.4 Discussion

In this section, we discuss the expressiveness of our type invariants and
explain how the presented specification and verification technique can be
adapted for the treatment of history constraints.

6.4.1 Module Invariants

Applying the modularity requirements for abstract fields to type invariants
allows us to verify invariants modularly. We have discussed the limitations
imposed by these requirements in Subsection 5.2.7. In particular, we pointed
out that Obligation 5.1 requires that the abstraction or the invariant of an
object X may only depend on locations reachable from X. Whereas this
restriction is natural for data abstraction of object structures and can also
be found for type invariants in the literature [PH97b], it is a more severe
limitation for general invariants: For some implementations, it is useful to
specify the relation between different object structures (such as disjointness)
or properties of whole object configurations (i.e., sets of objects that are not
necessarily linked by references). If the objects of such configurations are not
reachable from a single object, we cannot express properties of the configu-
rations as type invariants. We illustrate that in Example 6.4.1.

208 6. Modular Specification and Verification of Type Invariants

Example 6.4.1. Different MyBean-objects are supposed to have disjoint lists
as representations. Since MyBean is implemented using type universes (see
App. C.2), this property is not guaranteed by the type system. Therefore, we
would like to specify it as invariant of class MyBean:

def inv by $(this.beanRep) 6= null∧
∀Y : Y 6= this ∧ Y 6= null ⇒ $(Y.beanRep) 6= $(this.beanRep);

depends inv on {Y.beanRep | univV (Y) = univV (this)};

However, this invariant does not satisfy Obligation 5.1 since Y.beanRep is in
general not reachable from this. Thus, the invariant is not well-formed.

Example 6.4.1 demonstrates that our framework does in general not allow
one to specify properties of object configurations as type invariants. However,
such properties are interesting, in particular, to achieve stronger alias control
than provided by type universes. As explained in [LN00] certain kinds of
properties of object configurations can be expressed by so-called program
invariants or module invariants. Module invariants are invariants that are
tailored towards the particular purpose of specifying object configurations.
Therefore, they must be more expressive than type invariants in this aspect,
but can be more restrictive in other areas.

A simple approach to providing module invariants is as follows: Module
invariants are specified as part of a module interface. A module invariant in
module M may only depend on concrete locations with fields declared in M.
Thus, it is present in any scope in which one of its dependees is accessible.
This allows one to generate and show proof obligations for all methods that
might violate the module invariant, since each of these methods has M in its
scope. Therefore, such invariants can be verified modularly. Although they are
very restrictive, such module invariants enable one to specify properties like
the one illustrated in Example 6.4.1 (the invariant depends only on beanRep-
locations).

The focus of this chapter is on demonstrating that the techniques for the
modular specification and verification of frame properties carry over to type
invariants. Therefore, we do not discuss module invariants in more detail. A
formalization of module invariants is considered future work.

6.4.2 History Constraints

History constraints are used to specify a property of the history of values
which a location may take [LW93, LW94]. More precisely, a history constraint
describes a reflexive, transitive relation on object stores. Specification frame-
works that have history constraints use a semantics for history constraints
that is similar to the semantics of invariants (see e.g., [Lea97]): (1) History
constraints are associated with type declarations. The history constraint of
type declaration T expresses properties of the history of the values held by
the locations of T-objects and objects reachable from T-objects. (2) The pre-

6.5 Related Work 209

and poststates of all nonprivate methods have to fulfill the history constraints
for all objects that are allocated in the prestate. That is, each ordered pair of
visible states in the execution of a program must fulfill the history constraints
for all objects allocated in the earlier state.

Because of their similar semantics, history constraints lead to the same
problems for modular specification and verification as type invariants (see
Subsection 6.1.2). However, we can apply the same techniques to solve these
problems:

1. History constraints can be regarded as abstract fields that map the states
of an object structure in two stores to a boolean value.

2. Like invariants, history constraints have dependencies. If all dependees
of a history constraint c hold the same values in two stores then these
stores must fulfill c.

3. Dependencies of history constraints have to be explicitly declared. The
same modularity requirements as for abstract fields and invariants apply.

4. The semantics of history constraints has to be weakened. Nonprivate
methods have to fulfill the history constraints of objects belonging to the
current universe and its descendants only (relevant history constraints).

By these properties, we can verify history constraints modularly: In analogy
to the modularity theorem for frame properties (Theorem 5.4.1), the modu-
larity rules guarantee that the pre- and poststates of each method m fulfill all
relevant history constraints declared outside m’s scope. For all other relevant
history constraints, we can use their definitions to show that they are fulfilled
by m’s pre- and poststate.

We do not elaborate on history constraints here. However, the sketch
above indicates that our techniques can by extended to handle modular spec-
ification and verification of history constraints.

6.5 Related Work

Although invariants are a fundamental concept for formal reasoning and can
be found in almost all specification frameworks, many approaches treat invari-
ants rather superficially: For instance, Anna [Luc90] keeps invariants implicit
which does not allow one to use them for formal reasoning; Eiffel [Mey92b]
uses a semantics that does not guarantee that invariants hold in all visible
states and that is thus not appropriate for formal verification. In the follow-
ing, we discuss related work on the semantics and on modular verification of
type invariants.

Meaning of Invariants. The basic idea that invariants must hold in all visible
states is widely accepted [Hoa72, LG86, Mey88]. However, the proof obliga-
tions used to guarantee this property differ significantly.

210 6. Modular Specification and Verification of Type Invariants

Many frameworks require the invariant of a type T to be preserved by T’s
exported methods only (see for instance LM3 [Jon91a, Lar, FAQ 4.14], Eiffel
[Mey92b, Sections 9.12 and 9.17], other work by Meyer [Mey88, Mey92a],
and [LW94]). These proof obligations guarantee that invariants hold in all
visible states if (1) the internal state of an object of type T can only be
modified by T’s methods (in particular, there are no protected or public
fields) and (2) invariants express properties of single objects rather than
object structures only (otherwise, modification of any object of the object
structure could violate the invariant [Szy98, HK00]).

In a more general setting, the stronger proof obligations described in
Subsection 6.1.1 are required. This semantics is formalized in [PH97b]. We
explained the problems of this semantics for modular verification in Subsec-
tion 6.1.2 and solved them by using explicit dependencies for invariants and
by introducing the notion of relevant invariants.

Larch/C++ [Lea97] adapted Poetzsch-Heffter’s invariant semantics. In
contrast to our work, Larch/C++ requires only public methods to preserve
invariants.

[HK00] presents a proof system that guarantees that invariants hold in
all visible states. The basic idea of this proof system is to syntactically ana-
lyze invariants to determine which methods of a program could violate which
invariants. Thus, appropriate proof obligations for these methods can be gen-
erated. The presented approach is sound, but has two major drawbacks: (1) It
requires that a method can only update fields of the this-object. (2) Without
appropriate restrictions, the syntactic analysis of invariants does not work for
modular programs.

Like in this book, [Lei95b] regards invariants as abstract fields. However,
Leino’s invariants do not lead to proof obligations. Thus, invariants that are
required for the verification of a method implementation must be mentioned
in the method’s precondition, and preservation of invariants is handled by
modifies-clauses. The same approach is taken in the ESC project [DLNS98].
As we have explained in Paragraph 6.1.3.2, this treatment of invariants is
not based on the notion of visible states. Therefore, one has to refer to the
single modifies-clauses (and possibly the declared dependencies) to deduce
the states in which an invariant holds.

Modular Verification of Invariants. In frameworks, where invariants of a type
T lead to proof obligations for T’s methods only (see above), modularity does
not cause problems for verification since each method must only preserve in-
variants that are present in its scope. However, this approach is too restrictive
for realistic OO-programs since it forbids invariants over object structures.

Replacing invariants by ordinary boolean abstractions that do not lead
to proof obligations (as in [Lei95b]) circumvents the problem of modular
verification of invariants. Techniques for the modular verification of frame
properties can be used to show that invariants hold in certain execution
states.

6.5 Related Work 211

[LS97a] investigates the modular verification of object invariants, that is,
invariants that depend only on the locations of a single object. To prove
modularly that each method of a program preserves all object invariants,
Leino and Stata use their modularity requirements for static dependencies
(see Paragraph 5.5.1.3) to restrict the dependencies of invariants. To tackle
the problem of dependencies on inherited locations (see Paragraph 5.2.7.4),
they use so-called write protected fields that allow them to relax their mod-
ularity requirements.

Leino and Nelson [LN00, Section 9.3] mention the need for program invari-
ants that allow one to specify properties of several objects or object structures
such as injectivity of certain locations. The modularity requirements that are
necessary to verify program invariants modularly are extremely restrictive.
In particular, Leino and Nelson do not allow invariants to depend on abstract
locations. Furthermore, an invariant must be present in each scope in which
the field of one of its dependees is accessible. This requirement essentially
forbids dynamic dependencies on locations with fields declared in imported
modules, and thus most program invariants about object structures. How-
ever, they are capable of expressing properties like the invariant discussed in
Subsection 6.4.1. Therefore, designated program invariants are no substitute
for type invariants, but they complement type invariants for more expres-
sive specifications. Rüping [Rüp94] presents a notion of module invariants
that is similar to Leino’s and Nelson’s program invariants. He uses the same
modularity requirements to make modular verification possible.

7. Conclusion

“Normal science [. . .] is a highly cumulative enterprise, eminently
successful in its aim, the steady extension of the scope and precision
of scientific knowledge.” Thomas S. Kuhn [Kuh70, p. 52]

In the previous chapters, we presented techniques for the modular specifica-
tion and verification of object-oriented programs. For the first time, modular
sound techniques for the treatment of frame properties and type invariants
in modular OO-programs were developed. The key to this achievement is the
combination of specification and verification techniques with a type system
for alias control. Their formal integration allowed us to define novel seman-
tics for modifies-clauses and type invariants as well as to provide modularity
requirements for explicit dependencies that make the modular verification of
frame properties and invariants possible.

In this chapter, we summarize the technical contributions of this book,
sketch the research project in which the work for this book was carried out,
and explain how the presented techniques can be implemented in verification
tools. Besides the development of new techniques, our investigation of for-
mal specification and verification provided insights to the nature of modular
OO-programming and the language features used for this task. Thereby, we
identified promising directions for future research in these and related areas.
Their description concludes this book.

7.1 Summary and Contributions

In this section, we summarize the main contributions of this book.

Summary. Modular program development is driven by four objectives: Ex-
plicit structure, separate development, information hiding, and reuse. To be
suitable for modular development, specification and verification techniques
must be capable of handling language features for modular programming and
support these objectives, that is, enable modular development of specifica-
tions and proofs. This book presented modular specification and verification

214 7. Conclusion

techniques for functional behavior, frame properties, and invariants of object-
oriented programs written in a Java-like language. The presented techniques
are based on the hierarchical universe programming model that restricts alias-
ing. A sophisticated type system is used to enforce this programming model.

The universe programming model divides the object store into dynamic
components. Readwrite references between objects of different dynamic com-
ponents — and thus aliases — are restricted. Readonly references can con-
nect arbitrary objects, but may not be used to modify the states of referenced
objects. The universe type system can be used to statically check whether a
program respects this programming model. For this purpose, the type system
uses different universes for the representations of different dynamic compo-
nents. In each universe, there is a dynamic type for each type declaration of a
program. Although structurally identical, the dynamic types in different uni-
verses are distinct. Therefore, objects of one dynamic type cannot be assigned
to variables expecting another, which allows one to control reference passing
between different dynamic components. The types for readonly references are
supertypes of the corresponding readwrite types. Thus, variables of readonly
types can hold references to objects that belong to arbitrary universes. By
providing object universes, type universes, and readonly types, the universe
type system supports implementation patterns such as dynamic components
with several interface objects, iterators, and binary methods that cannot be
handled by related approaches.

Whereas aliasing is expressed and controlled by a type system, we specify
other program properties by declarative interface specifications and prove
them by a Hoare-style programming logic. This programming logic ensures
that properties that can be proved for an open program also hold in all well-
formed extensions of this program. That is, the logic guarantees modular
soundness of our verification technique. Our interface specification technique
supports information hiding (1) by describing the different interfaces of a
type declaration in different theories of the data and state model and (2) by
providing access modes for the specification primitives. Thereby, we guarantee
that interface specifications do not reveal implementation details that are
supposed to be hidden.

We presented an interface specification language that provides abstract
fields with explicit dependencies, pre-post-specifications, modifies-clauses,
and type invariants. Abstract fields are used to map objects or object struc-
tures to values of the abstract domain. Functional method behavior can be
expressed by pre-post-specifications.

Modifies-clauses and explicit dependencies are used to specify frame prop-
erties. To make modular verification of frame properties possible, we use the
universe programming model (1) to define the notion of relevant locations of
a method execution, (2) to formalize a novel semantics for modifies-clauses
that is limited to relevant locations, and (3) to restrict the permissible de-
pendencies of an abstract location by modularity rules. These rules enable us

7.1 Summary and Contributions 215

to axiomatize the depends-relation in a consistent way and to prove a mod-
ularity theorem for frame properties. In the formalizations and rules, static
and dynamic dependencies are treated in a uniform way, which leads to a
leaner formal model and simplifies proofs.

Regarding type invariants as special abstract fields enables us to apply
the specification and verification technique for frame properties to invariants.
In particular, we define a novel semantics for invariants that makes modular
verification of invariants possible.

Contributions. In the following, we summarize the main contributions of this
book for researchers in the area of formal specification and verification, for
programming language designers, for interface specification language design-
ers, and for programmers.

Researchers in Formal Specification and Verification. We already men-
tioned the main contributions for our main audience in Subsection 1.5.3.
We revisit them here to point out which contributions are specific to OO-
programming and which can be applied as well to procedural languages that
provide abstract data types (for instance, based on records). In general, sub-
typing and inheritance lead to additional complexity for most of the presented
problems, techniques, and formalizations. On the other hand, classes and ob-
jects provide a clear structure of programs and object stores which simplified
the development of the universe programming model and of modular specifi-
cation and verification techniques.

– Universe programming model and type system: We introduced the universe
type system since alias control is difficult to achieve in the presence of sub-
typing and inheritance (see Subsection 1.3.5). Although some problems of
alias control do not occur in procedural languages, the universe program-
ming model is still useful to structure the heap memory. Most concepts
of the universe type system can be adapted to procedural programming.
However, readonly types are realized as supertypes of readwrite types and
rely on subtyping and cast-statements which are typical OO-features.

– Definition of modular correctness: Our definition of modular correctness is
specifically tailored towards languages that provide subtyping and dynamic
method binding. For procedural programs, a simpler notion of modular cor-
rectness would suffice. Moreover, the composition of proofs for procedural
programs is simpler since the effects of dynamic binding that are described
in Paragraph 3.3.4.1 do not occur.

– Modular specification and verification of frame properties: Besides the ex-
tended state problem (see Subsection 1.3.4) which is caused by inheritance
and thus specific to OO-programs, modular specification and verification
of frame properties in object-oriented and procedural settings entail sim-
ilar problems, especially the need to reason about abstractions that are
declared outside the scope of the module to be verified. Therefore, our ex-
plicit dependencies, modularity requirements, and the refined semantics of
modifies-clauses can be applied to procedural programs as well.

216 7. Conclusion

– Modular specification and verification of type invariants: Modular verifi-
cation of invariants in procedural programs leads to the same problems
as in OO-programs (see Subsection 6.1.2). The specification and verifica-
tion technique described in Chapter 6 can also be applied to procedural
programs.

Programming Language Designers. The most interesting contribution for
this group is the statically-checkable universe type system for alias control.
Aside from its benefit for formal verification, the type system can be applied
to structure object stores, to prevent unwanted side-effects due to aliasing,
to simplify thread synchronization, and to support distributed programming.
Readonly references and methods are useful language features in general, not
only in the context of modular verification.

The discussion of module concepts, information hiding, and encapsulation
in Subsection 2.1.2 revealed several problems in these areas and sketched solu-
tions. Furthermore, this book suggested several directions for future research
that are presented below.

Interface Specification Language Designers. This book explained which
features should be provided by an interface specification language to sup-
port modular verification. It clarified the semantics of interface specifications
that is necessary to enable modular verification, which helps specification
language designers to define precise semantics for their languages. Moreover,
we explained the need for information hiding in interface specifications and
showed how it can be achieved. Aside from classical interface specifications,
the universe type system is an interesting supplement for interface specifica-
tion languages to express and check sharing properties.

Programmers. Although most techniques presented here are too complex
to be directly applied in industrial software development, programmers can
learn from this book. We claim that implementations that are difficult to
verify are also difficult to maintain. Therefore, also programmers that do
not want to apply our verification techniques should aim at developing im-
plementations that respect our universe programming model and the mod-
ularity requirements for abstractions and invariants. Even without the sup-
port of language features such as the universe type system, programmers
should structure their programs and apply alias control by convention. Our
treatment of modular correctness showed what kind of properties have to
be described in informal specifications to enable safe subclassing of reused
implementations. Although most programmers do not use formal interface
specification languages, the specification techniques presented in this book
can guide programmers to comprehensive documentation.

7.2 The Lopex Project 217

7.2 The Lopex Project

Most of the techniques presented in this book have been developed in the
research project Lopex at the University of Hagen, Germany. Lopex stands for
“logic-based programming environments constructed from formal language
specifications”. Such programming environments are software development
tools that support formal specification and verification. As part of the project,
we have developed a prototype of a logic-based programming environment for
a subset of Java: The Java Interactive Verification Environment Jive.

The Jive system supports formal specification and verification of non-
modular programs written in the Java subset Svenja [MMPH97]. The spec-
ification and verification technique used in Jive is based on Poetzsch-Heffter’s
work [PH97b]: Declarative interface specifications and Hoare logic are used
to specify and verify programs.

When a specified Svenja program is fed into Jive, the system syntax
and type checks the program and its specification and generates a set of proof
obligations in terms of Hoare triples from the interface specification. Users
can then interactively develop proofs for these obligations by (1) applying
rules of the programming logic, (2) using control operations such as copy and
paste of proof parts, or (3) invoking so-called proof strategies that automate
recurring proof steps. For the individual proof steps, users are supported by
the general-purpose theorem prover PVS [COR+95]. The current proof state
is visualized by a graphical user interface. Different views to a proof session
help users not to get lost in complex proofs.

In the next section, we explain how the modular specification and ver-
ification technique presented in this book can be implemented in the Jive
system.

7.3 Tool Support

As becomes clear from this book, specifications and correctness proofs for OO-
programs tend to be rather complex. To keep this complexity manageable,
developers of specifications and proofs should be supported by sophisticated
software tools that perform three important tasks:

1. They prevent or detect flaws by checking programs, specifications, and
proofs for syntactical correctness. For instance, they guarantee that the
rules of the programming logic are applied correctly.

2. They automate recurring proof steps by strategies. Thereby, they reduce
the effort of verification and allow users to focus on the interesting proof
parts.

3. They allow users to visualize programs, specifications, and proofs. Dif-
ferent views present only those parts of a project that are relevant at a
certain stage. This way, much of the complexity can be hidden from the
user.

218 7. Conclusion

The Jive system performs these tasks for the formal specification and verifi-
cation of nonmodular OO-programs. Due to its smart architecture [MPH00a],
Jive can be enhanced to support modular specification and verification with-
out fundamentally changing the system. In this section, we sketch the adap-
tions that are necessary to handle the techniques described in this book.

Support for modular specification and verification requires adaption of
the parser, the data and state model, the generation of proof obligations,
and the verification support. We sketch the required modifications in these
areas in the following. An implementation description of Jive can be found
in [MMPH00].

Frontend. The frontend parses and checks specified programs. It must be
enhanced in three ways: (1) It must handle the new specification primitives
described in this book, namely abstract fields, def- and depends-clauses, and
modifies-clauses. (2) We have to implement the universe type system. To
do that, we have to adjust the parser and implement the additional context
conditions (see Subsection 2.2.5). (3) The frontend must be capable of reading
and analyzing single modules instead of complete programs. For all of these
modifications, we can apply standard techniques from compiler construction.

Data and State Model. In the Jive system, the PVS language is used to
formalize the data and state model. In its current version, this formaliza-
tion works only for closed programs since it contains inclusive axioms (see
Paragraph 3.1.1.4) for types, etc. To support open programs, we have to use
the data and state model described in Subsection 3.1.1. Since the formal
language used in this book is essentially a subset of the PVS language, the
translation is straightforward. Furthermore, we have to adapt the generation
of program-dependent theories in order to support information hiding. We
have explained the resulting theory structure in Paragraph 3.1.1.1.

Proof Obligations. The generation of proof obligations has to be adapted in
three ways: (1) To guarantee well-formedness, interface specifications lead
to proof obligations in predicate logic. The Jive system must be enhanced
to permit program-independent lemmas as proof obligations and to gener-
ate these obligations. Since such lemmas are already supported as parts of
proofs, these modifications are straightforward. (2) Whereas Jive already
provides requires-clauses, pre-post-pairs, and invariants, we have to add the
generation of proof obligations for modifies-clauses. (3) We have to implement
specification inheritance.

Verification Support. To support the presented verification technique, we
have to modify Jive w.r.t. three aspects: (1) To provide universes, the pro-
gramming logic of Jive has to be slightly changed. (2) Modularity requires
the specifications of imported modules to be available for verification as Hoare
lemmas (see Paragraph 1.4.4.3). (3) Application of language properties (see
Section 3.2) requires to automatically generate new proofs from existing ones.
These generation steps as well as the strategy for the composition of open

7.4 Directions for Future Work 219

programs (see Paragraph 3.3.4.2) can be implemented as proof strategies in
the system. Besides these necessary changes, a variety of features can be
added to facilitate modular verification and, in particular, the handling of
dependencies. Dealing with dependencies should be simplified by (partial)
visualizations of the depends-relation like in Figure 5.7. The automaton used
to generate the axioms for the notdepends-relation (see Subsection 5.2.5) al-
lows the system to provide powerful strategies that automate parts of the
verification of frame properties. In particular, parts of the case distinctions
described in Subsection 5.4.1 can be generated automatically.

For our current research project Verificard on “tool-assisted specification
and verification of Java Card programs” [Ver01], we will develop the next
release of Jive. In particular, we plan to implement at least parts of the
modifications suggested above.

7.4 Directions for Future Work

The extensive treatment of modular specification and verification in this book
illustrates the complexity of this topic. Although we solved several open prob-
lems in this area, a lot of work is still to be done in order to develop languages
and techniques that are easy to apply, supported by sophisticated tools, and
sufficiently powerful to find their way to becoming common software devel-
opment practice. In this section, we briefly discuss the tasks that we consider
the next steps towards this goal.

Language Design. In this book, we investigated modular specification and
verification based on the limited language support provided by most OO-
languages. We presume that more refined language features can help to
make the presented techniques more expressive, easier to apply, and partly
statically-checkable, which would bring us closer to the goal of component-
based programming. Especially the following areas seem promising to us:

– Information hiding and encapsulation: In current OO-languages, access
modes support information hiding and encapsulation based on classes and
modules only. With more fine-grained access control, weaker modular-
ity requirements for abstract fields might suffice for modular verification
of frame properties and invariants. Therefore, we suggest to investigate
(1) access modes that control access on the object level, (2) encapsula-
tion techniques for whole object structures, (3) better friend mechanisms,
(4) write-protected fields, (5) access modes that specifically support hi-
erarchical classes and modules, and (6) combinations of the first five ap-
proaches. For instance, fields that are readable and writable for a class and
its subclasses, but only readable for friends might help to solve the problem
described in Example 5.2.2.

220 7. Conclusion

– Inheritance: Due to inheritance and information hiding, subclasses can con-
tain inherited methods without even knowing of their existence. However,
these methods can modify the state of subclass objects and, thus, their ab-
stract value. This problem becomes manifest at two points of this book: the
definition of guards for object universes and the problem of dependencies
on locations with inherited fields. Alternative inheritance mechanisms (see
e.g., Sather [SOM94] and Beta [MMPN93]) might be helpful to simplify
the structure and, thus, modular specification and verification of programs.

– Module concepts: To keep the results of this book applicable to a wide range
of languages, we used a very simple module concept. Whereas module con-
cepts for functional programming languages have been studied intensely,
modularization features in OO-languages are often neglected [Szy92]. How-
ever, sophisticated module concepts can help to control aliasing and to
simplify verification. In particular, access modes for type declarations, hi-
erarchical classes and modules, composition techniques that support both
combination and synthesis of classes and modules, and even a unification
of classes and modules are interesting topics for future research.

Type Systems for Alias Control. The universe type system plays a vital role
for our specification and verification technique. In this book, we presented
the core of a type system for alias control. For practical applications, a vari-
ety of extensions could make the type system more expressive. In particular,
genericity is an important feature that is not supported yet. Parameterization
over universes (similar to context parameters in ownership types [CPN98])
would allow the universe type system to support role separation. Besides
its well-known applications, parameterization over type declarations would
improve reusability of implementations that use type universes (see Para-
graph 2.2.4.2). Furthermore, support for static fields should be provided.

Techniques for alias analysis could be used to infer alias information and
thus universe type information from ordinary Java programs. This is inter-
esting to generate universe type annotations automatically for existing class
libraries.

In subsection 2.2.6, we have mentioned several applications for the uni-
verse type system: Optimization, synchronization in concurrent programs,
object migration in distributed programs, and implementation of operational
interface specifications. Each of them is an interesting research area that has
not been explored yet.

Programming Logics. To our knowledge, the problem of modular complete-
ness of programming logics (see Paragraph 3.3.4.1) has not been addressed
so far. We expect both the development of modular complete programming
logics for OO-languages and research on modular completeness and its rela-
tion to the common notion of relative completeness to provide new insights
to the semantics of modular OO-programs.

7.4 Directions for Future Work 221

Dependencies. Explicit dependencies and appropriate modularity rules make
modular verification of frame properties and invariants possible. However, for
practical applications, the solution presented in this book must be improved
in various ways:

– Expressiveness: Although we already managed to generalize the depends-
clauses and modularity rules of Leino’s and Nelson’s approach, we are
still not able to handle certain implementation patterns (see for instance
Example 5.2.2) and to express certain sharing properties. For the latter
application, requiring that dependees must be reachable from the corre-
sponding dependents is too restrictive. To solve this problem, we suggest
to explore two approaches: (1) By providing modifies-clauses that also de-
scribe the modification of newly created objects, we could use a weaker
consistency obligation (Obligation 5.1) that does not require reachability
of dependees. (2) Module invariants could be used to specify those patterns
of aliasing that are particularly interesting for modular verification based
on the universe type system (see Subsection 6.4.1).

– Static checkability: Syntactically restricted depends-clauses could allow a
verification tool to check at least some of the proof obligations for well-
formed interface specifications statically. Furthermore, they could sim-
plify the axiomatization of the notdepends-relation. However, restrict-
ing depends-clauses will in general affect expressiveness of the technique.
Therefore, major case studies should be carried out to determine the right
balance between expressiveness and static checkability.

Implementation and Case Studies. In this book, we focused on techniques
for modular specification and verification. To evaluate these techniques and
to develop methods for specification and verification, extensive case studies
should be carried out. Such case studies will provide insights to (1) strengths
and shortcomings of our techniques, (2) proof methods that are necessary to
develop sophisticated verification tools and proof strategies, (3) the scalability
of our techniques, and (4) possible simplifications of the whole framework.

To make case studies feasible, the universe type system and support for
our specification and verification technique have to be implemented in a ver-
ification tool such as Jive. As mentioned in Section 7.3, we plan to do at
least parts of this work in the Verificard project. In this project, our tech-
niques will also be used to specify the Java Card API. That is, we can apply
the techniques to a class library and thus evaluate their usefulness for this
interesting application area (see introduction).

222 7. Conclusion

According to Thomas S. Kuhn, “normal science” is a steady accumulation
of knowledge that eventually leads to a scientific revolution — radically new
ideas, theories, and techniques (see quote at the beginning of this chapter).
In the area of software development, such a revolution could lead to a break-
through of component-based development. We envision that prefabricated
components with precisely documented behavior and certified quality could
be bought from different vendors and combined to new programs. Sophisti-
cated techniques and highly automated tools could be applied by program-
mers to show correctness of the composite program based on the correctness
of its constituents. In the tradition of normal science, this book aims at
bringing us closer to that revolution and, thus, to the efficient development
of reliable software.

A. Formal Background and Notations

In this appendix, we explain the formal background of our techniques and
explain notations and naming conventions.

A.1 Formal Background

The techniques presented in this book can be formulated in different formal
systems. We use multisorted first-order logic and recursive data type defini-
tions since (1) such specifications are expressive enough for our purposes and
simple enough to be handled by most computer scientists; (2) the program-
ming logic used in this book was developed for a similar framework [PH97b];
(3) such specifications are supported by most of the available proof checkers
and theorem provers such as PVS [OSR93], Isabelle [Pau94], and LP (the
Larch Prover [GG91]) which allows us to use any of those as reasoning aids.
Formulas. A multisorted signature Σ is a tuple 〈S, F 〉 where S is a set of sorts
and F is a set of functions equipped with a mapping fsig : F → (S∗ × S).
fsig maps each function to its function signature. Function signatures are
written in the form (s1 × . . . × sn → s0). Functions with signatures of the
form → s0 are called constants of sort s0.

All multisorted signatures contain a sort Bool and for each sort s the
function =s with function signature (s×s → Bool) denoting equality on sort
s; we drop the subscript if sort s is clear from the context.

Let Σ = 〈S, F 〉 be a signature, VAR be an S-sorted set of logical variables,
and let the set of Σ-terms of sort s, denoted by T (Σ,VAR)s, be defined as
usual (see e.g. [Wir90, Section 2.1]). The set of Σ-formulas WFF (Σ) is the
least set satisfying the following properties:

1. every term of sort Bool is in WFF (Σ);
2. if G,H ∈ WFF (Σ), then ¬G, (G∧H), (G∨H), (G ⇒ H), and (G ⇔ H)

are in WFF (Σ);
3. if Xs ∈ VARs and G ∈ WFF (Σ), then (∀Xs : G) and (∃Xs : G) are in

WFF (Σ).

Σ-formulas are denoted by bold capital letters P, Q, etc. The logical op-
erators have the usual precedences: ¬,∧, ∨,⇒,⇔,∀,∃ with ¬ having the
highest precedence.

224 A. Formal Background and Notations

Substitution of all free occurrences of a variable X or a constant c by a
term t in formula P is denoted by P[t/X] resp. P[t/c]. In both cases, the sort
of the term and the sort of the variable or constant have to be identical.

Data Types. Sorts can be introduced by uninterpreted sort declarations of
the form s : Sort or by abstract data type definitions (see below).

We assume the following four basic data types with the usual operations:
data type Boolean with sort Bool and constants true and false; data type
Nat of nonnegative integers with sort Nat, the usual operations, and the
canonical total ordering; data type Integer with infinite sort Integer, finite
sort Int, and the usual integer operations1. The sort Int is used to model the
finite integer range of our programming language. A formalization of Integer,
Int, and appropriate mappings can be found in [PH97b].

Recursive data types play an important role in specification and program-
ming. Accordingly, almost every specification framework provides a special
construct for their definition (see e.g., [OSR93, Pau94, GH93]). We use the
following notation to define recursive data types:

data type
DSrt1 = constr1,1 (sel11,1 : USrt11,1, . . . , sel

m1,1
1,1 : USrt

m1,1
1,1)

| . . .

| constr1,c1 (sel11,c1 : USrt11,c1 , . . . , sel
m1,c1
1,c1

: USrt
m1,c1
1,c1

)

. . .

DSrtn = constrn,1 (sel1n,1 : USrt1n,1, . . . , sel
mn,1
n,1 : USrt

mn,1
n,1)

| . . .
| constrn,cn (sel1n,cn

: USrt1n,cn
, . . . , sel

mn,cn
n,cn : USrt

mn,cn
n,cn)

end data type

Such a definition introduces

– the sorts DSrt i;
– the constructor functions constr i,j ; the sorts USrtk

i,j have to be either pre-
viously defined or in {DSrt1, . . . ,DSrtn}.

– a discriminator function constr i,j? : DSrt i → Bool . constr i,j?(t) yields
true if t is constructed by constr i,j and false otherwise.

– the selector functions selki,j ; selector functions are optional.
– the usual set of axioms for abstract data types (e.g., for structural induc-

tion, extensionality, etc. See e.g., [OSR93] for details.)

To keep the framework simple, we do not provide parameterized sorts. How-
ever, we assume a set of list and set data types with elements of various sorts.
We write list/set of S to abbreviate the sort of lists resp. sets with elements
of sort S. These data types provide the usual constructors and operations.
1 see [PH97b] for a formalization of Integer.

A.2 Notations 225

Theories. Universal specifications are grouped into theories. Each definition,
axiom, lemma, etc. belongs to exactly one theory. To refer to specification
parts of other theories in a theory T , these theories have to be imported
explicitly by T . We assume that each theory imports the prelude theory that
contains the predefined data types (see above). The import relation on the-
ories has to be acyclic.

A.2 Notations

Formulas. In formulas, we use roman font for constants and italic fonts for
variables. In axioms and lemmas, all free variables are universally quantified
at the outermost level, where the quantification ranges over all values of
the sort of the quantified variable. For instance, an axiom imports(M, N) is
equivalent to ∀(N : ModId) : imports(M, N) (note that M is a constant). For
brevity, we keep the sorts of variables and constants implicit where possible,
but use the naming conventions described in the next paragraph.

Naming Conventions for Variables. We use certain names for variables and
constants of different sorts. The connection of names and sorts is summarized
in the following table. Unless otherwise stated, the names in the left column
are used for variables and constants of the sorts in the right column (if there
are several sorts for one name, the correct sort becomes clear from the con-
text). Except for the indices A and C, primed or indexed variables have the
same sort as the corresponding plain variables.

Names Sorts Names Sorts
M AccessMode M , S set of ModId
FA AFieldId i, j, k, l, n, N , M Nat
KA, LA ALocation O, OID ObjId
FC CFieldId R regExpr
C,D, E ClassId f , g, fA, gA, T@f, S@g SimpleAFieldId
KC , LC CLocation f , g, fC , gC , T@f, S@g SimpleCFieldId
d DepId OS Store
F , G FieldId R, S, T TypeId , DynType, Type
T@m, S@n ImplId U , V , W Universe
K, L Location X, Y , Z Value
M , N ModId T:m, S:n VirtualMethodId

Notations for Proofs and Proof Outlines. In proofs, we mention the properties
used in a proof step (formulas, axioms, lemmas, rules, etc.) in comments,
which are enclosed in double brackets ([[]]). If several properties are used in
one step, we enumerate them separated by commas meaning “and”. A formula
followed by axioms or lemmas in parentheses means that the formula can be
derived by the mentioned axioms and lemmas.

Proofs in programming logic are mostly presented as so-called proof out-
lines. In proof outlines, proofs are displayed as programs annotated with for-
mulas and rule applications. A rule application is displayed by two horizontal

226 A. Formal Background and Notations

lines with arrows pointing at each other. The antecedent and the program
part of the succedent are printed between the lines whereas the pre- and the
postcondition of the succedent are displayed above the upper and below the
lower line, resp. For applications of the strength- and the weak-rule, only
an implication is displayed. Assumptions are not presented in proof outlines.
This notation is very intuitive and therefore not explained in detail here (see
[PH97b, Owi75] for further information).

We use double horizontal lines to display the application of a language
property operator (see Def. 3.2.1). That is, a double horizontal line can be
read as “if there is a proof for the sequent above the double line, then there is
a proof for the sequent below.” In proof outlines, the application of language
property operators is displayed analogously by a pair of double horizontal
lines with arrows at the end.

B. Predefined Type Declarations

Each Mojave program contains three predefined type declarations: Like in
Java, Object is the root of the class hierarchy. Interface is used as a default
if a class does not implement any other interface. Operator contains a set
of static methods for the usual unary and binary operations. Since these
methods cannot be implemented in Mojave, they are marked as native to
indicate that their behavior is predefined. For brevity, we present only the
methods that are needed in this book. The full set of operator methods (in
particular, methods for arithmetic operations) can be found in [MMPH97].

public class Object {
public boolean native equals(readonly Object p) readonly
public pre p = O ∧ this = T ∧ tidD(typeof (this)) = ctid(Object) ∧ $ = OS;
public post result = bool(O = T) ∧ $ = OS;
}
public interface Interface {}
public class Operator {
public static native boolean equalO

(readonly Object a, readonly Object b) readonly
public pre a = X ∧ b = Y ∧ $ = OS;
public post result = bool(X = Y) ∧ $ = OS;

public static native boolean equalB (boolean a, boolean b) readonly
public pre aB(a) = A ∧ aB(b) = B ∧ $ = OS;
public post result = bool(A = B) ∧ $ = OS;

public static native boolean condAnd (boolean a, boolean b) readonly
public pre aB(a) = A ∧ aB(b) = B ∧ $ = OS;
public post result = bool(A ∧B) ∧ $ = OS;

public static native boolean condOr (boolean a, boolean b) readonly
public pre aB(a) = A ∧ aB(b) = B ∧ $ = OS;
public post result = bool(A ∨B) ∧ $ = OS;

public static native boolean not (boolean a) readonly
public pre aB(a) = A ∧ $ = OS;
public post result = bool(¬A) ∧ $ = OS;

. . .
}

C. Examples

The following two sections contain the example used throughout this book: a
doubly linked list with positions and iterators (module LIST), and a dynamic
component with properties (module PROPERTY). To illustrate the concrete
syntax of Mojave and to demonstrate the application of the universe type
system, we present the implementation of both modules in the following. The
classes Node, List, ListPos, and ListProperty also contain specifications.
For these classes, we present the abstract fields and type invariants with def-
and depends-clauses, the requires- and modifies-clauses of their methods, and
some pre-post-pairs. In the example, we use true as default formula if req-
clauses or single pre- or postconditions are omitted.

C.1 Doubly Linked List

module LIST;

public class Node {
public Node prev, next;
public readonly Object elem;
public invariant inv;

public def inv by ($(this.next) 6= null⇒$($(this.next).prev) = this)∧
($(this.prev) 6= null⇒$($(this.prev).next) = this)∧
ρ(this,null , $, next) ∧ ρ(this,null , $, prev);

public depends inv on {Y.next | ρ(this, Y, $, next) ∨ Y = $(this.prev)};
public depends inv on {Y.prev | ρ(this, Y, $, prev) ∨ Y = $(this.next)};
}

public class List {
protected rep<this> Node first, last;

public abstract list of Value val;
protected def val by cut(col($(this.first), $));

protected depends val on {Y.first | Y = this}; // a
protected depends val on {Y.elem | ρ($(this.first), Y, $, next)}; // b
protected depends val on {Y.next | ρ($(this.first), Y, $, next)}; // c
protected depends val on {Y.prev | ρ($(this.first), Y, $, next)}; // d

230 C. Examples

public invariant inv;
protected def inv by $(this.first) 6= null ∧ $(this.last) 6= null∧

ρ($(this.first), $(this.last), $, next)∧
$($(this.last).next) = null∧
$(this.first) 6= $(this.last);

protected depends inv on {Y.first | Y = this};
protected depends inv on {Y.last | Y = this};
protected depends inv on {Y.next | ρ($(this.first), Y, $, next)∨

Y = $(this.last)};
private int init()

req ∀KC : $(KC) 6= this;

private pre this = X
post invrep(X.inv, $)

private pre invL(L) ∧ ¬alive(obj (L), $)
post alive(obj (L), $)⇒invrep(L, $)

modifies {this.val, this.inv};
{

rep<this> Node f,l;

f = new rep<this> Node(); l = new rep<this> Node();
f.next = l; l.prev = f;
this.first = f; this.last = l;

}

public static List createList()
{

int dummy;
result = new List();
dummy = result.init();

}

public boolean isEmpty() readonly
req inv($,U);
{

readonly Node f,l;

f = this.first; l = this.last;
f = f.next; result = Operator.equalO(f,l);

}

public int appFront(readonly Object v)
modifies {this.val} ∪ {Y.position | $(Y.theList) = this ∧ $(Y.valid)};
{

rep<this> Node f,nn,n;

f = this.first; nn = new rep<this> Node();
nn.elem = v; nn.prev = f;
n = f.next; nn.next = n;
f.next = nn; n.prev = nn;

}

C.1 Doubly Linked List 231

protected int remove(readonly Node n)
req n 6= null ∧ ρ($(this.first), n, $, next) ∧ n 6= $(this.first)∧

n 6= $(this.last);
modifies {this.val} ∪

{Y.position | $(Y.theList) = this∧
$(Y.position) ≥ index ($(this.first), n, $)} ∪
{Y.valid | $(Y.theList) = this∧
$(Y.position) = index ($(this.first), n, $)};

{
rep<this> Node nn,pr,ne;

nn = (rep<this> Node) n;
pr = nn.prev;
ne = nn.next;
pr.next = ne;
ne.prev = pr;
// this is needed to preserve the invariant for nn
nn.prev = null;
nn.next = null;

}

public readonly Object getFirst() readonly
req inv($,U);
{

readonly Node n;

n = this.first;
n = n.next;
result = n.elem;

}

public ListPos getPos(int index)
req aI (index) > 0 ∧ aI (index) ≤ length($(this.val));
{

rep<this> Node n;
boolean b1;

n = this.first;
b1 = true;
while(b1) {

n = n.next;
index = Operator.plus(index,-1);
b1 = Operator.greater(index,0);

}
result = new ListPos();
result.list = this;
result.pos = n;

}

232 C. Examples

protected int setAtPos(readonly Node n, readonly Object v)
req n 6= null ∧ index ($(this.first), n, $) = N ∧N > 0;

protected pre $(n.next) 6= null ∧ v = V ∧ this = L ∧ $(L.val) = S;
post $(L.val) = update(S, N, V);
modifies {this.val};

{
rep<this> Node nn;

nn = (rep<this> Node) n;
nn.elem = v;

}

public boolean equalsList(readonly List l) readonly
req l 6= null ∧ inv($,U);
{

readonly Node n1,n2,l1,l2;
boolean b, b1, b2, e;
readonly Object o1,o2;

result = true;
n1 = this.first;
n2 = l.first;
n1 = n1.next; // skip dummy node
n2 = n2.next; // skip dummy node
l1 = this.last;
l2 = l.last;
b = true;
b1 = true;

while(b) {
o1 = n1.elem;
o2 = n2.elem;
e = Operator.equalO(o1,o2);
if (e) { // elements are equal

n1 = n1.next;
n2 = n2.next;
b1 = Operator.equalO(n1,l1);
b2 = Operator.equalO(n2,l2);
b1 = Operator.not(b1);
b2 = Operator.not(b2);
b = Operator.condAnd(b1,b2);

} else {
result = false;
b = false;

}
}
b = Operator.condOr(b1,b2);
if (b) result = false; else ;

}
}

C.1 Doubly Linked List 233

public class ListPos {
protected List list;
protected readonly Node pos;

public abstract Value anchor;
def anchor by $($(this.list).first);

protected depends anchor on {Y.list | Y = this}; // e
depends anchor on {Y.first | Y = $(this.list)}; // f

public abstract Nat position;
protected def position by index ($(this.anchor), $(this.pos), $);
public depends position on {Y.anchor | Y = this}; // g
protected depends position on {Y.pos | Y = this}; // h
public depends position on {Y.next | ρ($(this.anchor), Y, $, next}; // i

public abstract Bool valid;
protected def valid by ρ($(this.anchor), $(this.pos), $, next)∧

$(this.anchor) 6= $(this.pos)∧
$($(this.pos).next) 6= null ;

public depends valid on {Y.position | Y = this}; // j

public abstract Value theList;
protected def theList by $(this.list);
protected depends theList on {Y.list | Y = this}; // k

public invariant inv;
protected def inv by $(this.list) 6= null ∧ $(this.pos) 6= null
protected depends inv on {Y.list | Y = this};
protected depends inv on {Y.pos | Y = this};

public int setValue(readonly Object v)
req $(this.valid);

public pre $(this.theList) = L ∧ $(L.val) = S ∧ v = V ∧
$(this.position) = N ;

post $(L.val) = update(S, N, V);
modifies {$(this.theList).val};

{
List l;
readonly Node n;
l = this.list;
n = this.pos;
result = l.setAtPos(n,v);

}

public readonly Object getValue() readonly
req $(this.valid) ∧ inv($,U);

{
readonly Node n;
n = this.pos;
result = n.elem;

}
}

234 C. Examples

public class Iter extends ListPos {
protected readonly Node lastReturned;

public static Iter createIter(List l) {
readonly Node f;
readonly List rol;

result = new Iter();
rol = l;
f = rol.first;
result.list = l;
f = f.next;
result.pos = f;

}

public boolean hasNext() readonly {
readonly Node p,ln;
readonly List l;

p = this.pos;
l = this.list;
ln = l.last;
result = Operator.notequalO(p,ln);

}

public readonly Object next() {
readonly Node p;

p = this.pos;
result = p.elem;
this.lastReturned = p;
p = p.next;
this.pos = p;

}

public int remove() {
List l;
readonly Node n;

l = this.list;
n = this.lastReturned;
result = l.remove(n);

}
}

C.2 Property Editor 235

C.2 Property Editor

module PROPERTY imports LIST;

public class MyBean {
rep<MyBean> List beanRep;

public static MyBean createMyBean() {
rep<MyBean> List l;
l = rep<MyBean> List.createList();
result = new MyBean(); result.beanRep = l;

}

public Property getProperty(int i) {
rep<MyBean> List l; rep<MyBean> ListPos pos;

l = this.beanRep; pos = l.getPos(i);
result = ListProperty.createListProperty(pos);

}
}

public interface Property {
public int setValue(readonly Object v);
public readonly Object getValue() readonly;

}

public class ListProperty implements Property {
protected rep<MyBean> ListPos lp;

public abstract Nat propPos;
protected def propPos by $($(this.lp).position);
protected depends propPos on {Y.lp | Y = this}; // l
protected depends propPos on {Y.position | Y = $(this.lp)}; // m

public abstract Value propList;
protected def propList by $($(this.lp).theList);
protected depends propList on {Y.lp | Y = this}; // n
protected depends propList on {Y.theList | Y = $(this.lp)}; // o

public invariant inv;
protected def inv by $(this.lp) 6= null ∧ $($(this.lp).valid);
protected depends inv on {Y.lp | Y = this};
protected depends inv on {Y.valid | Y = $(this.lp)};
public static ListProperty createListProperty(rep<MyBean> ListPos p)
req p 6= null ∧ $(p.valid);

{ result = new ListProperty(); result.lp = p; }

public int setValue(readonly Object v)
modifies {$(this.propList).val};
{ rep<MyBean> ListPos p; p = this.lp; result = p.setValue(v); }

public readonly Object getValue() readonly
req inv($,U);
{ readonly ListPos p; p = this.lp; result = p.getValue(); }

D. Auxiliary Lemmas, Proofs, and Models

D.1 Auxiliary Lemmas and Proofs from Chapter 3

Proof of Lemma 3.1.1:
¹T is reflexive and transitive by definition. It remains to show antisymmetry:

S ¹T T ∧ T ¹T S ⇒ S = T

This proof runs by case distinction on the forms of S and T .

Case 1: S = grndT (S′)
S ¹T T ∧ T ¹T S ∧ S = grndT (S′)
⇒ [Axiomatization of ¹T]
T = grndT (T ′) ∧ S = grndT (S′) ∧ S′ ¹M T ′ ∧ T ′ ¹M S′ for some T ′

⇒ [Antisymmetry of ¹M (Axiom subM1)]
T = grndT (T ′) ∧ S = grndT (S′) ∧ S′ = T ′

⇒
S = T

The cases for rep, readonly, and primitive types are analogous or trivial. 2

For a more convenient handling of universes, we introduce an auxiliary func-
tion h that yields the depth of a universe in the universe hierarchy:

h : Universe → Nat
h(stdU) = 0
h(typeU (T, U)) = 1 + h(U)
h(objU (OID , C, U)) = 1 + h(U)

The following two auxiliary lemmas about h are used in the proof of
Lemma 3.1.3. Basically, both lemmas express that the natural number N
used in the universe order EN is the difference between the depths of the two
compared universes.

Lemma D.1.1.

U EN V ⇒ h(U)− h(V) = N

Proof of Lemma D.1.1:
We prove this lemma by induction on N :

238 D. Auxiliary Lemmas, Proofs, and Models

Induction Basis: N = 0
U E0 V ⇒ U = V ⇒ h(U)− h(V) = 0
Induction Step: N ≥ 0
U EN+1 V
⇒ [[Definition of EN]]
∃W, T,OID , C : (U = typeU (T, W) ∨ U = objU (OID , C, W)) ∧W EN V
⇒ [[Induction hypothesis]]
∃W, T,OID , C : (U = typeU (T, W) ∨ U = objU (OID , C, W)) ∧ h(W)− h(V) = N
⇒ [[Definition of h]]
∃W : h(U) = 1 + h(W) ∧ h(W)− h(V) = N
⇒
h(U)− h(V) = N + 1

2

Lemma D.1.2.

U EN V ∧ V EM W ⇒ U EN+M W

Proof of Lemma D.1.2:
We prove the lemma by induction on N :

Induction Basis: N = 0
U E0 V ∧ V EM W
⇒ [[Definition of EN]]
U = V ∧ V EM W
⇒
U E0+M W

Induction Step: N ≥ 0
U EN+1 V ∧ V EM W
⇒ [[Definition of EN]]
∃U ′, T,OID , C : (U = typeU (T, U ′) ∨ U = objU (OID , C, U ′)) ∧ U ′ EN V ∧
V EM W
⇒ [[Induction hypothesis]]
∃U ′, T,OID , C : (U = typeU (T, U ′) ∨ U = objU (OID , C, U ′)) ∧ U ′ EN+M W
⇒ [[Definition of EN]]
U EN+M+1 W

2
Proof of Lemma 3.1.3:

1. Reflexivity
U E0 U ⇒ ∃N : U EN U ⇒ U E U

2. Transitivity
U E V ∧ V EW
⇒ [[Definition of E]]
∃N, M : U EN V ∧ V EM W
⇒ [[Lemma D.1.2]]
∃N, M : U EN+M W
⇒ [[Definition of E]]
U EW

D.1 Auxiliary Lemmas and Proofs from Chapter 3 239

3. Antisymmetry
U E V ∧ V E U
⇒ [[Definition of E]]
∃N, M : U EN V ∧ V EM U
⇒ [[Lemma D.1.1]]
∃N, M : U EN V ∧ h(U)− h(V) = N ∧ h(V)− h(U) = M
⇒ [[N and M are natural numbers ⇒ N = M = 0]]
U = V

2

Proof of Lemma 3.1.5:
¹ is reflexive and transitive by definition. The proof of antisymmetry

S ¹ T ∧ T ¹ S ⇒ S = T

runs by case distinction on the forms of S and T .

Case 1: S = refDT (S′, U)
S ¹ T ∧ T ¹ S ∧ S = refDT (S′, U)
⇒ [Axiomatization of ¹]
T = refDT (T ′, U) ∧ S = refDT (S′, U) ∧ S′ ¹M T ′ ∧ T ′ ¹M S′ for some T ′

⇒ [Antisymmetry of ¹M (Axiom subM1)]
T = refDT (T ′, U) ∧ S = refDT (S′, U) ∧ S′ = T ′

⇒
S = T

The case for dynamic readonly types is analogous. The cases for primitive
dynamic types are trivial. 2

Proof of Lemma 3.1.7:
The proof runs by case distinction on the forms of S and T .

Case 1: S = grndT (S′)
S ¹T T ∧ S = grndT (S′)
⇒ [Axiomatization of ¹T]
S = grndT (S′)∧
(T = grndT (T ′) ∧ S′ ¹M T ′ ∨ T = roT (T ′) ∧ S′ ¹M T ′) for some T ′

⇒ [Definition of dyn]
(dyn(T, X, U) = refDT (T ′, U) ∨ dyn(T, X, U) = roDT (T ′))∧
dyn(S, X, U) = refDT (S′, U) ∧ S′ ¹M T ′

⇒ [Axiomatization of ¹]
dyn(S, X, U) ¹ dyn(T, X, U)

Case 2 (S = trepT (S′, R)) is analogous to Case 1.

Case 3:. S = orepT (S′)
S ¹T T ∧ S = orepT (S′) ∧ ref ?(X)
⇒ [Axiomatization of ¹T]
S = orepT (S′) ∧ (T = orepT (T ′) ∧ S′ ¹M T ′ ∨ T = roT (T ′) ∧ S′ ¹M T ′)∧
X = ref(C,OID , V) for some T ′, C,OID , V
⇒ [Definition of dyn]
dyn(S, X, U) = refDT (S′, objU (OID , C, U)) ∧ S′ ¹M T ′∧
(dyn(T, X, U) = refDT (T ′, objU (OID , C, U)) ∨ dyn(T, X, U) = roDT (T ′))
⇒ [Axiomatization of ¹]
dyn(S, X, U) ¹ dyn(T, X, U)

240 D. Auxiliary Lemmas, Proofs, and Models

Case 4 (S = roT (S′)) is analogous to Case 1. Cases 5 and 6 (S = booleanT and
S = intT) are trivial.

Case 7: S = nullT
S ¹T T ∧ S = nullT
⇒ [Axiomatization of ¹T]
(T = grndT (T ′) ∨ T = trepT (T ′, R) ∨ T = orepT (T ′) ∨ T = roT (T ′)∨
T = nullT) ∧ S = nullT for some T ′, R
⇒ [Definition of dyn]
dyn(T, X, U) = refDT (T ′, V) ∨ dyn(T, X, U) = roDT (T ′)∨
dyn(T, X, U) = nullDT ∧ dyn(S, X, U) = nullDT for some V
⇒ [Axiomatization of ¹]
dyn(S, X, U) ¹ dyn(T, X, U)

2
Proof of Lemma 3.1.8:

presentL(L, S) ∧ imports(module(T),module(S))
⇒ [[Definition of presentL]]
imports(module(S),module(dtype(fid(L)))) ∧ imports(module(T),module(S))
⇒ [[Transitivity of imports (Axiom import1)]]
imports(module(T),module(dtype(fid(L))))
⇒ [[Definition of presentL]]
presentL(L, T)

2
Proof of Lemma 3.1.9:

accessibleL(L, T)
⇒ [[Definition of accessibleL]]
accessible(accessMode(fid(L)), dtype(fid(L)), T)
⇒ [[Lemma 3.1.2]]
imports(module(T),module(dtype(fid(L))))
⇒ [[Definition of presentL]]
presentL(L, T)

2
Proof of Lemma 3.2.2:
The proof runs by case distinction on the forms of S and T .
Case 1: grndT?(S)
dyn(S ∗ T, X, U)
= [[Definition of ∗]]
dyn(T, X, U)
= [[orepT?(T) ⇒ X = Y , definitions of dyn and univ]]
dyn(T, Y, univ(dyn(S, X, U)))

Case 2: S = trepT (S′, R)
univ(dyn(S, X, U)) = univ(refDT (S′, typeU (R, U))) = typeU (R, U)

Case 2.1: T = grndT (T ′)
dyn(S ∗ T, X, U) = [[Definition of ∗]]
dyn(trepT (T ′, R), X, U) = [[Definition of dyn]]
refDT (T ′, typeU (R, U)) = refDT (T ′, univ(dyn(S, X, U)))
= [[Definition of dyn]]
dyn(grndT (T ′), Y, univ(dyn(S, X, U))) = dyn(T, Y, univ(dyn(S, X, U)))

D.1 Auxiliary Lemmas and Proofs from Chapter 3 241

Case 2.2: trepT?(T)
The combination S ∗ T is undefined.

Case 2.3: orepT?(T)
The combination S ∗ T is undefined.

Case 2.4: T = roT (T ′)
dyn(S ∗ T, X, U) = [[Definition of ∗]]
dyn(roT (T ′), X, U) = [[Definition of dyn]]
dyn(roT (T ′), Y, univ(dyn(S, X, U))) = dyn(T, Y, univ(dyn(S, X, U)))

Case 2.5: T = booleanT ∨ T = intT ∨ T = nullT
S ∗ T = T ∧ (T = booleanT ∨ T = intT ∨ T = nullT)
⇒ [[Definition of dyn]]
dyn(T, Y, univ(dyn(S, X, U))) = dyn(S ∗ T, X, U)

Case 3: S = orepT (S′)
univ(dyn(S, X, U)) = univ(refDT (S′, objU (oid(X), cidV (X), U))) =
objU (oid(X), cidV (X), U)

Case 3 is analogous to Case 2.

Case 4: roT?(S)
roT?(S) ∧ ¬roT?(S)
⇒
false
⇒
dyn(T, Y, univ(dyn(S, X, U))) = dyn(S ∗ T, X, U)

Case 5: booleanT?(S) ∨ intT?(S) ∨ nullT?(S)
The combination S ∗ T is undefined.

2
Proof of Lemma 3.2.3:
The proof runs by case distinction on the form of T .
Case 1: T = grndT (T ′)
dyn(T, Y, V) = dyn(grndT (T ′), Y, V)
= [[Definition of dyn]]
refDT (T ′, V)
¹ [[Axiomatization of ¹]]
roDT (T ′)
= [[Definition of dyn]]
dyn(roT (T ′), X, U)
= [[Definition of ∗]]
dyn(S ∗ T, X, U)

Case 2 (T = trepT (T ′, R)) and Case 3 (T = orepT (T ′)) are analogous to Case 1.

Case 4: T = roT (T ′)
dyn(T, Y, V) = dyn(roT (T ′), Y, V)
= [[Definition of dyn]]
roDT (T ′)
= [[Definition of dyn]]
dyn(roT (T ′), X, U)
= [[Definition of ∗]]
dyn(S ∗ T, X, U)
⇒ [[Reflexivity of ¹ (Lemma 3.1.5)]]
dyn(T, Y, V) ¹ dyn(S ∗ T, X, U)

242 D. Auxiliary Lemmas, Proofs, and Models

Case 5: T = booleanT ∨ T = intT ∨ T = nullT
S ∗ T = T ∧ (T = booleanT ∨ T = intT ∨ T = nullT)
⇒ [[Definition of dyn]]
dyn(T, Y, V) = dyn(S ∗ T, X, U)
⇒ [[Reflexivity of ¹ (Lemma 3.1.5)]]
dyn(T, Y, V) ¹ dyn(S ∗ T, X, U)

2

For the proof of Lemma 3.2.5, we show that the readonly annotations can be
removed from a sequent:

Lemma D.1.3.

A |. { P ∧ $ = OS } COMP { Q ∧ $ = OS }

A |. { P } COMP { Q }

Proof of Lemma D.1.3:

A |. { P ∧ $ = OS } COMP { Q ∧ $ = OS }
[[weak-rule]]

A |. { P ∧ $ = OS } COMP { Q }
[[ex-rule]]

A |. { ∃OS : P ∧ $ = OS } COMP { Q }
[[strength-rule]]

A |. { P } COMP { Q }
2

Proof of Lemma 3.2.5:
We use the same proof technique as for the type safety proof (Proof 3.2.1).
We omit all cases that are trivial or analogous to the corresponding cases in
the type safety proof. The derivations are trivial for readwrite methods and
statements in readwrite methods. Thus, we show only the cases for readonly
methods and statements in readonly methods.

Induction Basis.

new-axiom: new-statements are not allowed in readonly methods.

field-write-axiom: field-write-statements are not allowed in readonly methods.

predefined method implementations: Since all predefined methods have $ =
OS in their pre- and postconditions, the proofs for that methods are trivial
and therefore omitted.

Induction Step.

invocation-rule: For method invocations, we have to look at both cases: (1) the
invocation statement occurs in a readwrite method; (2) the invocation state-
ment occurs in a readonly method. Case (1) is trivial if the invoked method
is readwrite. Otherwise, we derive

D.2 Auxiliary Lemmas and Proofs from Chapter 5 243

ro(A) |. { P ∧ $ = OS } S:n { Q ∧ $ = OS }
[[Lemma D.1.3]]

ro(A) |. { P } S:n { Q }
[[invocation-rule]]

ro(A) |. { w 6= null ∧P[w/this, e1/p1, . . . , en/pn, univV (w)/U] }
v = w.S:n(e1, . . . , en);

{ Q[v/result] }
If the invocation-statement occurs in a readonly method, the invoked method
must be readonly (context-condition). Thus, we derive:
{ w 6= null ∧P[w/this, e1/p1, . . . , en/pn, univV (w)/U] ∧ $ = OS }
⇒
{ w 6= null ∧ (P ∧ $ = OS)[w/this, e1/p1, . . . , en/pn, univV (w)/U] }
v = w.S:n(e1, . . . , en); [[applying the invocation-rule to the ind. hypothesis]]

{ (Q ∧ $ = OS)[v/result] }
⇒
{ Q[v/result] ∧ $ = OS }

subtype-rule: We assume that S:m overrides T:m. If T:m is readonly, S:m
has to be readonly (context condition); the proof for this case is trivial. The
proof is also trivial if both methods are readwrite. If T:m is readwrite and
S:m is readonly, we prove the consequent by applying Lemma D.1.3 and the
subtype-rule.

class-rule: A virtual method for a non-abstract method is readonly if and only
if the corresponding implementation is readonly. Thus, the proof is trivial. 2

D.2 Auxiliary Lemmas and Proofs from Chapter 5

Before we prove Lemmas 5.2.1 and 5.2.2, we introduce three auxiliary lemmas:

Lemma D.2.1. Each location can be composed by applying the appropriate
constructor to its object and its field id:

(i) mklc(L) ⇒ L = mklc(locC (obj (L), scfid(cfid(fid(L)))))
(ii) mkla(L) ⇒ L = mkla(locA(obj (L), safid(afid(fid(L)))))

Proof of Lemma D.2.1:

(i) L = mklc(cloc(FC ,OID , U)) for some FC ,OID , U [[Definition of Location]]
mklc(locC (obj (L), scfid(cfid(fid(L)))))
= [[Definitions of fid,obj]]
mklc(locC (ref (otype(cfield(FC)),OID , U), scfid(cfid(cfield(FC)))))
= [[Definition of locC]]
mklc(cloc(mkCFieldId(scfid(cfid(cfield(FC))), otype(cfield(FC))),OID , U))
= [[cfid(cfield(FC)) = FC , Axiom field8]]
mklc(cloc(FC ,OID , U)) = L

(ii) analogously.

2

244 D. Auxiliary Lemmas, Proofs, and Models

Lemma D.2.2. The type of the object of a location L is a subtype of the
declaration type of L’s field:

tidD(typeof (obj (L))) ¹M dtype(fid(L))

Proof of Lemma D.2.2:
Case 1: L = mklc(cloc(FC ,OID , U)) for some FC ,OID , U
tidD(typeof (obj (L))) = [[Def. of obj]]
tidD(typeof (ref (otype(cfield(FC)),OID , U))) = [[Def. of typeof and fid]]
tidD(refDT (ctid(otype(fid(L))), U)) = [[Def. of tidD]]
cid(otype(fid(L))) ¹M [[Axiom field3]]
dtype(fid(L))

Case 2 (L = mkla(aloc(FA,OID , U)) for some FA,OID , U) is analogous.

2

Lemma D.2.3. For each dependency L
OS−→ K, the object of the dependee is

alive in OS if the object of the dependent in alive in OS:

alive(obj (L),OS) ∧ L
OS−→ K⇒alive(obj (K),OS)

Proof of Lemma D.2.3:
For closed programs P, OS−→ is the smallest relation satisfying dep1, dep2,
and the axioms generated for the depends-clauses declared in P. Therefore,
from L

OS−→ K we can conclude that there is a sequence of locations L0, . . . , Ln

such that L0 = L, Ln = K, and Li−1
OS−→ Li(i = 1, . . . , n), where each of

these dependencies stems either from dep1 or from a depends-clause with id
di. In the former case, we have Li−1 = Li, and thus

alive(obj (Li−1),OS)⇒alive(obj (Li),OS)

In the latter case, we know from the axioms generated for the
depends-clause di that dc(di, obj (Li−1), obj (Li),OS) and, thus,
alive(obj (Li),OS) holds. From the transitivity of implication, we con-
clude alive(obj (L0),OS)⇒alive(obj (Ln),OS). Since the property holds for
all closed programs, it also holds for all open programs. 2

Proof of Lemma 5.2.1:
For closed programs P, we prove the lemma by case distinction: (1) For
concrete locations, the lemma is a direct consequence of Axiom dep3.
(2) For abstract locations, we prove the lemma as follows: We abbrevi-
ate tidD(typeof (obj (L))) by SL. From Lemma D.2.2, we know SL ¹M

dtype(fid(L)). Since SL is the TypeId of a class, the representation of
safid(afid(fid(L))) must be defined for objects of type SL (context condi-
tion 3 for def-clauses). That is, there is a class T in P that is a superclass of
SL (SL ¹M T) and that contains a def-clause for safid(afid(fid(L))). Since the
specification of P is well-formed, we can use Obligation 5.1 for this def-clause
to conclude:

D.2 Auxiliary Lemmas and Proofs from Chapter 5 245

(obj (L) 6= null ∧ tidD(typeof (obj (L))) ¹M T ∧ alive(obj (L),OS)∧
alive(obj (L),OS ′) ∧ wt(OS) ∧ wt(OS ′)∧
(∀KC : mkla(locA(obj (L), f))

OS−→ mklc(KC)⇒OS(KC) = OS ′(KC)) ⇒
OS ≡mkla(locA(obj(L),f)) OS ′)

⇒ [[obj (L) 6= null , SL ¹M T, Lemma D.2.1]]

(alive(obj (L),OS) ∧ alive(obj (L),OS ′) ∧ wt(OS) ∧ wt(OS ′)∧
(∀KC : L

OS−→ mklc(KC)⇒OS(KC) = OS ′(KC)) ⇒ OS ≡L OS ′)

⇒ [[Lemma D.2.3]]

(alive(obj (L),OS) ∧ alive(obj (L),OS ′) ∧ wt(OS) ∧ wt(OS ′)∧
(∀KC : L

OS−→ mklc(KC) ∧ alive(obj (mklc(KC)),OS)⇒OS(KC) = OS ′(KC)) ⇒
OS ≡L OS ′)

Since the property holds for all closed programs, it also holds for all open
programs. 2

Proof of Lemma 5.2.2:
The proof of this lemma is analogous to Proof 5.2.1. Essentially, we have to
show

alive(obj (L),OS) ∧ wt(OS) ⇒ wt(OS〈S, U〉) ∧ ∀KC : OS(KC) = OS〈S, U〉(KC)

which follows from Axiom store5. 2

Proof of Lemma 5.2.3:
We prove that the lemma holds for all closed programs P. Analogously to
Proof D.2.3, we conclude that there is a sequence of locations L0, . . . , Ln such
that L0 = L, Ln = K, and Li−1

OS−→ Li(i = 1, . . . , n), where each of these
dependencies stems either from dep1 or from a depends-clause with id di.

In the former case, we have Li−1 = Li, and thus

univV (obj (Li−1)) = univV (obj (Li)) .

In the latter case, we know from the axioms generated for the depends-clause
di that dc(di, obj (Li−1), obj (Li),OS) holds. Since P’s specification is well-
formed, we conclude from Obligation 5.2 for di:

dc(di, obj (Li−1), obj (Li),OS) ∧ wt(OS)⇒univV (obj (Li)) E univV (obj (Li−1))

Since E is reflexive and transitive, we get

univV (obj (Li)) E univV (obj (Li−1)) for i = 1, . . . , n

in both cases, and thus univV (obj (K)) E univV (obj (L)). The property holds
for all closed programs and, thus, for all open programs. 2

246 D. Auxiliary Lemmas, Proofs, and Models

The following lemma is used in Proof 5.2.4.

Lemma D.2.4.

univV (obj (J)) E univV (obj (K)) ∧ univV (obj (K)) E univV (obj (L))∧
accessMode(fid(L)) = public ∧ accessibleL(L, guard(K, univV (obj (L)))∧
accessibleL(K, guard(J, univV (obj (K))) ⇒ accessibleL(L, guard(J, univV (obj (L)))

Proof of Lemma D.2.4:

Case 1: univV (obj (K)) = univV (obj (L))
univV (obj (K)) = univV (obj (L)) ∧ accessMode(fid(L)) = public∧
accessibleL(L, guard(K, univV (obj (L))) ∧ accessibleL(K, guard(J, univV (obj (K)))
⇒ [[Definition of guard]]
accessMode(fid(L)) = public∧
accessibleL(L, dtype(fid(K))) ∧ accessibleL(K, guard(J, univV (obj (L)))
⇒ [[Definition of accessibleL]]
accessMode(fid(L)) = public∧
accessible(accessMode(fid(L)), dtype(fid(L)), dtype(fid(K)))∧
accessible(accessMode(fid(K)), dtype(fid(K)), guard(J, univV (obj (L))))
⇒ [[Lemma 3.1.2]]
accessMode(fid(L)) = public∧
imports(module(dtype(fid(K))),module(dtype(fid(L))))∧
imports(module(guard(J, univV (obj (L))),module(dtype(fid(K))))
⇒ [[Transitivity of imports (Axiom import1)]]
accessMode(fid(L)) = public∧
imports(module(guard(J, univV (obj (L))),module(dtype(fid(L))))
⇒ [[Definitions of accessible, accessibleL]]
accessibleL(L, guard(J, univV (obj (L))))

Case 2: univV (obj (K)) / univV (obj (L))
univV (obj (J)) E univV (obj (K)) ∧ univV (obj (K)) / univV (obj (L))∧
accessibleL(L, guard(K, univV (obj (L))))
⇒ [[Definitions of guard , E, and /]]
guard(K, univV (obj (L))) = guard(J, univV (obj (L)))∧
accessibleL(L, guard(K, univV (obj (L))))
⇒
accessibleL(L, guard(J, univV (obj (L))))

2

Proof of Lemma 5.2.4:
We prove that the lemma holds for all closed programs P. Analogously to
Proof D.2.3, we conclude that there is a sequence of locations L0, . . . , Ln such
that L0 = L, Ln = K, and Li−1

OS−→ Li(i = 1, . . . , n), where each of these
dependencies stems either from dep1 or from a depends-clause with id di.
We show by induction on N :

N ≥ 1 ∧N ≤ n∧VN
i=1 Li−1

OS−→ Li ∧ wt(OS)⇒accessibleL(L0, guard(LN , univV (obj (L0))))
(D.1)

D.2 Auxiliary Lemmas and Proofs from Chapter 5 247

Induction Basis: N = 1
Case 1: L0 = L1

L0 = L1

⇒ [[Definitions of guard and accessibleL]]
accessibleL(L0, guard(LN , univV (obj (L0))))

Case 2: L0 6= L1

dc(d1, obj (L0), obj (L1),OS) ∧ wt(OS) ∧ 1 ≤ n [[axiom for the dep-clause d1]]
⇒ [[P’s specification is well-formed, Obligation 5.3 for d1]]
accessibleL(L0, guard(LN , univV (obj (L0))))

Induction Step: N ≥ 1
Case 1: L0 = LN+1

analogously to induction basis

Case 2: L0 6= LN+1VN+1
i=1 Li−1

OS−→ Li ∧ wt(OS) ∧N + 1 ≤ n
⇒VN

i=1 Li−1
OS−→ Li ∧ LN

OS−→ LN+1 ∧ wt(OS) ∧N ≤ n

⇒
2424 Induction hypothesis, analogously to induction basis,

analogously to Proof 5.2.3,
L0 is abstract (dep3) ⇒accessMode(fid(L0)) = public

3535
univV (obj (LN+1)) E univV (obj (LN)) ∧ univV (obj (LN)) E univV (obj (L0))∧
accessibleL(L0, guard(LN , univV (obj (L0))))∧
accessibleL(LN , guard(LN+1, univV (obj (LN)))) ∧ accessMode(fid(L0)) = public
⇒ [[Lemma D.2.4]]
accessibleL(L0, guard(LN+1, univV (obj (L0))))

For closed programs, Lemma 5.2.4 is trivial if L = K (see induction basis).
Otherwise, it is a direct consequence of Formula D.1. Since the property holds
for all closed programs, it also holds for all open programs. 2

For a more convenient handling of regular expressions and rc, we define the
following function that corresponds to rc but takes sets of words (i.e., se-
quences of DepId) as argument. L : regExpr → set of list of DepId maps
regular expressions R to the set of words described by R. We use the stan-
dard definition of L [HU79].

l : set of list of DepId ×Value ×Value × Store → Bool
l(M, X, Y,OS) ⇔def ∃w ∈ M : w = a1 . . . ak ∧ ∃Z0, . . . , Zk :

Z0 = X ∧ Zk = Y ∧
kV

i=1

dc(ai, Zi−1, Zi,OS)

Lemma D.2.5. Applying rc to a regular expression R is equivalent to ap-
plying l to L(R):

rc(R, X, Y,OS) ⇔ l(L(R), X, Y,OS)

248 D. Auxiliary Lemmas, Proofs, and Models

Proof of Lemma D.2.5:
We prove this lemma by induction over the structure of R.

Induction Basis:
Case 1: R = ?
rc(?, X, Y,OS) ⇔ false ⇔ l(?, X, Y,OS)

Case 2: R = ε
rc(ε, X, Y,OS) ⇔ X = Y
l(L(ε), X, Y, OS) ⇔ ∃w ∈ L(ε) : w = a1 . . . a0 ∧ ∃Z0 : Z0 = X ∧ Z0 = Y ⇔
X = Y

Case 3: R = d
rc(d, X, Y,OS) ⇔ dc(d, X, Y,OS) ⇔
∃w ∈ L(d) : w = d ∧ ∃Z0, Z1 : Z0 = X ∧ Z1 = Y ∧ dc(d, Z0, Z1,OS) ⇔
l(L(d), X, Y,OS)

Induction Step:
Case 1: R = R1R2

rc(R1R2, X, Y,OS)
⇔ [[Definition of rc]]
∃Z : rc(R1, X, Z,OS) ∧ rc(R2, Z, Y,OS)
⇔ [[Induction hypothesis]]
∃Z : l(L(R1), X, Z,OS) ∧ l(L(R2), Z, Y,OS)
⇔ [[Definition of l]]
∃Z : ∃w1 ∈ L(R1), w2 ∈ L(R2) : w1 = a1 . . . ak ∧ w2 = ak+1 . . . al ∧ ∃Z0, . . . , Zl :

Z0 = X ∧ Zk = Z ∧ Zk+1 = Z ∧ Zl = Y ∧
lV

i=1

dc(ai, Zi−1, Zi,OS)

⇔ [[Definition of L]]
∃w ∈ L(R1R2) : w = a1 . . . al ∧ ∃Z0, . . . , Zl : Z0 = X ∧ Zl = Y ∧

lV
i=1

dc(ai, Zi−1, Zi,OS)

⇔ [[Definition of l]]
l(L(R1R2), X, Y,OS)

Case 2: R = R1 + R2

rc(R1 + R2, X, Y,OS)
⇔ [[Definition of rc]]
rc(R1, X, Y,OS) ∨ rc(R2, X, Y,OS)
⇔ [[Induction hypothesis]]
l(L(R1), X, Y,OS) ∨ l(L(R2), X, Y,OS)
⇔ [[Definition of l]]
(∃w1 ∈ L(R1) : w1 = a1 . . . ak ∧ ∃Z0, . . . , Zk : Z0 = X ∧ Zk = Y ∧
kV

i=1

dc(ai, Zi−1, Zi,OS)) ∨
(∃w2 ∈ L(R2) : w2 = a1 . . . an ∧ ∃Z0, . . . , Zn : Z0 = X ∧ Zn = Y ∧
nV

i=1

dc(ai, Zi−1, Zi,OS))

⇔ [[Definition of L]]
∃w ∈ L(R1 + R2) : w = a1 . . . am ∧ ∃Z0, . . . , Zm : Z0 = X ∧ Zm = Y ∧
mV

i=1

dc(ai, Zi−1, Zi,OS)

⇔ [[Definition of l]]
l(L(R1 + R2), X, Y,OS)

D.2 Auxiliary Lemmas and Proofs from Chapter 5 249

Case 3: R = R∗1
rc(R∗1, X, Y,OS)
⇔ [[Definition of rc]]

∃N : ∃Z0, . . . , ZN : Z0 = X ∧ ZN = Y ∧
NV

i=1

rc(R1, Zi−1, Zi,OS)

⇔ [[Induction hypothesis]]

∃N : ∃Z0, . . . , ZN : Z0 = X ∧ ZN = Y ∧
NV

i=1

l(L(R1), Zi−1, Zi,OS)

⇔ [[Definition of l]]

∃N : ∃Z0, . . . , ZN : Z0 = X ∧ ZN = Y ∧
NV

i=1

h
∃w ∈ L(R1) : w = a1 . . . ak∧

∃A0, . . . , Ak : A0 = Zi−1 ∧Ak = Zi ∧
kV

j=1

dc(aj , Aj−1, Aj ,OS)
i

⇔
∃N : ∃w ∈ L(R1) : w = a1 . . . ak ∧ ∃Z0, . . . , ZN×k :
NV

i=1

kV
j=1

dc(aj , Zi×j−1, Zi×j ,OS) ∧ Z0 = X ∧ ZN×k = Y

⇔ [[Definition of L]]
∃N : ∃w ∈ L(R∗1) : w = (a1 . . . ak)N ∧ ∃Z0, . . . , ZN×k :
NV

i=1

kV
j=1

dc(aj , Zi×j−1, Zi×j ,OS) ∧ Z0 = X ∧ ZN×k = Y

⇔ [[p := N × k]]
∃p : ∃w ∈ L(R∗1) : w = a1 . . . ap ∧ ∃Z0, . . . , Zp : Z0 = X ∧ Zp = Y ∧

pV
i=1

dc(ai, Zi−1, Zi,OS)

⇔ [[Definition of l]]
l(L(R∗1), X, Y, OS)

2

Proof of Lemma 5.4.1:
Like the other program properties, we prove Lemma 5.4.1 by induction on
the depth of the proof for A |. A. Since many cases are trivial (e.g., the
cases for statements that do not modify the object store) or analogous to
the proofs for other language properties (e.g., the cases for the assumpt- and
false-axiom), we show only the interesting cases here.

Induction Basis.
new-axiom:

{ P[new($, cid(tid(T)), univ(τ(T)))/v, $〈cid(tid(T), univ(τ(T)))〉/$] ∧ $ = OS∧
U = U ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }
⇒ [[Axiom store5]]

{ P[new($, cid(tid(T)), univ(τ(T)))/v, $〈cid(tid(T), univ(τ(T)))〉/$]∧
(¬univV (obj (mklc(KC))) E U⇒$〈cid(tid(T), univ(τ(T)))〉(KC) = OS(KC)) }
⇒
{ (P ∧ (¬univV (obj (mklc(KC))) E U ⇒ $(KC) =
OS(KC)))[new($, cid(tid(T)), univ(τ(T)))/v, $〈cid(tid(T), univ(τ(T)))〉/$] }
v = new T(); [[new-axiom]]

{ P ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

250 D. Auxiliary Lemmas, Proofs, and Models

field-write-axiom:

{ w 6= null ∧P[$〈locC (w, S@f) := e〉/$] ∧ $ = OS ∧ U = U∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }

⇒ [[¬roT?([w]), Lemmas 3.1.6 and 3.1.4, Definition of dyn]]

{ w 6= null ∧P[$〈locC (w, S@f) := e〉/$] ∧ $ = OS ∧ univV (w) E U }
⇒ [[Axiom store1]]

{ w 6= null ∧P[$〈locC (w, S@f) := e〉/$]∧
(¬univV (obj (mklc(KC))) E U⇒$〈locC (w, S@f) := e〉(KC) = OS(KC)) }
⇒
{ w 6= null ∧ (P ∧ (¬univV (obj (mklc(KC))) E U ⇒
$(KC) = OS(KC)))[$〈locC (w, S@f) := e〉/$] }
w.S@f= e; [[field-write-axiom]]

{ P ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

predefined method implementations: Since all predefined methods have $ =
OS in their pre- and postconditions, the local update property is a trivial
consequence.

Induction Step.
invocation-rule: If the invoked method S:n is readonly, we derive1:

A |. { P } S:n { Q }
[[Lemma 3.2.5]]

ro(A) |. { P ∧ $ = OS } S:n { Q ∧ $ = OS }
[[assumpt-intro-rule]]

lu(A), ro(A), typed(A) |. { P ∧ $ = OS } S:n { Q ∧ $ = OS }
By this sequent, we derive the desired property. We omit the assumptions for
brevity. In the following, we assume that p0, . . . , pl are the formal parameters
of S:n.

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ $ = OS ∧ U = U∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }

⇒
{ w 6= null ∧ (P ∧ $ = OS)[w/this, e1/p1, . . . , el/pl, univV (w)/U] }
v = w.S:n(e1, . . . , el); [[applying the invocation-rule to the above sequent]]

{ (Q ∧ $ = OS)[v/result] }
⇒
{ Q[v/result] ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

1 We use the double line to indicate the application of a language property oper-
ator.

D.2 Auxiliary Lemmas and Proofs from Chapter 5 251

For invocations of readwrite methods, we derive:

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ $ = OS ∧ U = U∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }

⇒ [[S:n is readwrite ⇒ ¬roT?([w]), Lemmas 3.1.6 and 3.1.4, Definition of dyn]]

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ univV (w) E U∧
$ = OS ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }
⇒ [[analogous to Proof 3.2.1]]

{ ∃U ′ : w 6= null ∧ (P ∧ $ = OS ∧ U = U ′ ∧Vl
i=0 typeof (pi) ¹ τ([pi])∧

wt($))[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ U ′ E U }
↓ [[ex-rule]]

{ w 6= null ∧ (P ∧ $ = OS ∧ U = U ′ ∧Vl
i=0 typeof (pi) ¹ τ([pi])∧

wt($))[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ U ′ E U }
↓ [[inv-rule]]

{ w 6= null ∧ (P ∧ $ = OS ∧ U = U ′ ∧Vl
i=0 typeof (pi) ¹ τ([pi])∧

wt($))[w/this, e1/p1, . . . , el/pl, univV (w)/U] }
v = w.S:n(e1, . . . , el); [[applying the invocation-rule to the ind. hypothesis]]

{ (Q ∧ (¬univV (obj (mklc(KC))) E U ′⇒$(KC) = OS(KC)))[v/result] }
↑ [[inv-rule]]

{ (Q ∧ (¬univV (obj (mklc(KC))) E U ′⇒$(KC) = OS(KC)))[v/result] ∧ U ′ E U }
⇒ [[Transitivity of E (Lemma 3.1.3)]]

{ Q[v/result] ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }
↑ [[ex-rule]]

{ Q[v/result] ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

invocation-var-rule:

{ P[x/Z] ∧ $ = OS ∧ U = U ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧

(static(T@m) ⇔ this = null) }
⇒ [[OS and U are fresh logical variables, i.e., are different from Z]]

{ (P ∧ $ = OS ∧ U = U ∧Vn
i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧

(static(T@m) ⇔ this = null))[x/Z] }
v = w.S:n(e1, . . . , el); [[applying the invocation-var-rule to the ind. hypothesis]]

{ (Q ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)))[x/Z] }
⇒ [[U, KC ,OS are fresh logical variables, i.e., are different from Z]]

{ Q[x/Z] ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

252 D. Auxiliary Lemmas, Proofs, and Models

implementation-rule: We abbreviate the triple { P } T@m { Q } by A.

lu(A), ro(A), typed(A), lu(A), ro(A), typed(A) |.
{ P ∧ $ = OS ∧ U = U ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null) ∧ (static(T@m) ⇔ this = null)∧Vn

i=k+1 vi = init(τ([vi])) }
body(T@m)
{ Q ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

[[strength-rule]]
lu(A), ro(A), typed(A), lu(A), ro(A), typed(A) |.
{ P ∧ $ = OS ∧ U = U ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null) ∧Vn

i=k+1 vi = init(τ([vi])) }
body(T@m)
{ Q ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

[[implementation-rule]]
lu(A), ro(A), typed(A), ro(A), typed(A) |.
{ P ∧ $ = OS ∧ U = U ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
T@m
{ Q ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }
ro(A) |. ro(A) [[Lemma 3.2.5]]

[[assumpt-elim-rule]]
lu(A), ro(A), typed(A), typed(A) |.
{ P ∧ $ = OS ∧ U = U ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
T@m
{ Q ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }
typed(A) |. typed(A) [[Lemma 3.2.1]]

[[assumpt-elim-rule]]
lu(A), ro(A), typed(A) |.
{ P ∧ $ = OS ∧ U = U ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
T@m
{ Q ∧ (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

2

D.2 Auxiliary Lemmas and Proofs from Chapter 5 253

Proof of Lemma 5.4.3:

Case 1: mklc?(L)

L
OS−→ K ∧ accessibleL(K, T)

⇒ [[Axiom dep3]]
accessibleL(L, T)

Case 2: mkla?(L)
Case 2.1: univV (obj (L)) = univV (obj (K))

accessMode(fid(L)) = public ∧ L
OS−→ K ∧ wt(OS) ∧ accessibleL(K, T)

⇒ [[Lemma 5.2.4]]
accessMode(fid(L)) = public ∧ accessibleL(L, guard(K, univV (obj (K))))∧
accessibleL(K, T)
⇒ [[Definition of guard]]
accessibleL(L, dtype(fid(K))) ∧ accessMode(fid(L)) = public ∧ accessibleL(K, T)
⇒ [[Lemma 3.1.2]]
accessMode(fid(L)) = public∧
imports(module(dtype(fid(K))),module(dtype(fid(L))))∧
imports(module(T),module(dtype(fid(K))))
⇒ [[Transitivity of imports (Axiom import1)]]
accessMode(fid(L)) = public ∧ imports(module(T),module(dtype(fid(L))))
⇒ [[Definition of accessible, accessibleL]]
accessibleL(L, T)

Case 2.2: univV (obj (L)) 6= univV (obj (K))

ctid?(T) ∧ T 6= ctid(Object) ∧ L
OS−→ K ∧ wt(OS) ∧ univV (obj (L)) E U∧

(univV (obj (K)) = U∨
univV (obj (K)) = typeU (S, U) ∧ imports(module(T),module(S))∨
univV (obj (K)) = objU (OID , C, U) ∧ ctid(C) ¹M T)
⇒ [[univV (obj (K)) 6= U (Lemma 5.2.3 and antisymmetry of E); Lemma D.1.1]]

ctid?(T) ∧ T 6= ctid(Object) ∧ L
OS−→ K ∧ wt(OS) ∧ univV (obj (L)) = U∧

(univV (obj (K)) = typeU (S, U) ∧ imports(module(T),module(S))∨
univV (obj (K)) = objU (OID , C, U) ∧ ctid(C) ¹M T)
⇒ [[Lemma 5.4.2]]
accessibleL(L, T)

2

Proof of Lemma 5.4.1:
Like the proofs for language properties, this proof runs by induction on the
depth of the proof for A |. A. In the following, we present the interesting
cases of this proof: The cases for statements that modify the object store and
the case for the class-rule.

254 D. Auxiliary Lemmas, Proofs, and Models

Induction Basis.
new-axiom:

{ P[new($, cid(tid(S)), univ(τ(S)))/v, $〈cid(tid(S), univ(τ(S)))〉/$] ∧ $ = OS∧
alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }
⇒
{ P[new($, cid(tid(S)), univ(τ(S)))/v, $〈cid(tid(S), univ(τ(S)))〉/$]∧
OS = $ ∧ alive(obj (L), $) ∧ wt($) }
⇒ [[Lemma 5.2.2]]

{ (P ∧OS ≡L $)[new($, cid(tid(S)), univ(τ(S)))/v, $〈cid(tid(S), univ(τ(S)))〉/$] }
v = new S(); [[new-axiom]]

{ P ∧OS ≡L $ }

field-write-axiom:

{ v 6= null ∧P[$〈locC (v, S@f) := e〉/$] ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }
⇒ [[Lemma 3.1.9, analogously to Proof 3.2.1]]

{ v 6= null ∧P[$〈locC (v, S@f) := e〉/$] ∧ typeof (v) ¹ dyn([v], this,U)∧
typeof (this) ¹ τ([this]) ∧ (static(T@m) ⇔ this = null) ∧ $ = OS∧
alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬accessibleL(L, T) ∧ wt($)∧
wt($〈locC (v, S@f) := e〉) }
⇒

��
Context conditions of Mojave;
definition of dyn,axiom import5, orepT?([v]) ⇒ ¬static(T@m)

��
{ v 6= null ∧P[$〈locC (v, S@f) := e〉/$] ∧ accessibleL(locC (v, S@f), T)∧
univV (obj (L)) E U ∧ (univV (v) = U ∨ univV (v) = typeU (S′,U)∧
imports(module(T),module(S′)) ∨ univV (v) = objU (oid(this), cidV (this),U)∧
ctid(cidV (this)) ¹M T ∧ this 6= null) ∧ $ = OS ∧ alive(obj (L), $)∧
¬accessibleL(L, T) ∧ wt($) ∧ wt($〈locC (v, S@f) := e〉) }

⇒

2664
2664 Case 1: L

$−→ locC (v, S@f)⇒false
(ctid?(T) ∧ T 6= ctid(Object), Lemma 5.4.3)

Case 2: ¬L
$−→ locC (v, S@f)⇒OS ≡L $〈locC (v, S@f) := e〉

(Lemma 5.2.1)

3775
3775

{ v 6= null ∧P[$〈locC (v, S@f) := e〉/$] ∧ $〈locC (v, S@f) := e〉≡L OS }
⇒
{ v 6= null ∧ (P ∧ $≡L OS)[$〈locC (v, S@f) := e〉/$] }
v.S@f= e; [[field-write-axiom]]

{ P ∧ $≡L OS }

predefined method implementations: Since all predefined methods have $ =
OS in their pre- and postconditions, the local update property follows from
the reflexivity of ≡ (Lemma 4.2.1).

D.2 Auxiliary Lemmas and Proofs from Chapter 5 255

Induction Step.

invocation-rule: If the invoked method is readonly, we derive:

A |. { P } S:n { Q }
[[Lemma 3.2.5]]

ro(A) |. { P ∧ $ = OS ′ } S:n { Q ∧ $ = OS ′ }
[[subst-rule]]

ro(A) |. { P ∧ $ = OS } S:n { Q ∧ $ = OS }
[[assumpt-intro-rule]]

uc(A), lu(A), ro(A), oal(A), typed(A) |. { P ∧ $ = OS } S:n { Q ∧ $ = OS }
By this sequent, we derive the desired property. We omit the assumptions for
brevity.

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ $ = OS∧
alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null) }
⇒
{ w 6= null ∧ (P ∧ $ = OS)[w/this, e1/p1, . . . , el/pl, univV (w)/U] }
v = w.S:n(e1, . . . , el); [[applying the invocation-rule to the above sequent]]

{ (Q ∧ $ = OS)[v/result] }
⇒ [[Reflexivity of ≡ (Lemma 4.2.1)]]

{ Q[v/result] ∧OS ≡L $ }
For readwrite methods, we derive the desired property by case distinction.

Case 1:
univV (obj (L)) E univV (w)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w)

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ $ = OS∧
alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null)∧
univV (obj (L)) E univV (w)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }
⇒ [[Axiom import3, Lemma 3.1.8; analogously to Proof 3.2.1]]

{ w 6= null ∧ (P ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U∧
¬presentL(L, S) ∧Vl

i=0 typeof (pi) ¹ τ([pi])∧
wt($))[w/this, e1/p1, . . . , el/pl, univV (w)/U] }
v = w.S:n(e1, . . . , el); [[applying the invocation-rule to the ind. hyp.]]

{ (Q ∧OS ≡L $)[v/result] }
⇒
{ Q[v/result] ∧OS ≡L $ }

(D.2)

256 D. Auxiliary Lemmas, Proofs, and Models

Case 2:
univV (obj (L)) = U ∧ ¬univV (obj (L)) E univV (w)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w)

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ $ = OS∧
alive(obj (L), $) ∧ univV (obj (L)) = U ∧ ¬univV (obj (L)) E univV (w)∧
¬presentL(L, T) ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }
⇒

�� ¬roT?([w]), Definition of dyn, axiom import5,
orepT?([w]) ⇒ ¬static(T@m)

��
{ ∃KC : univV (obj (L)) = U ∧ univV (w) 6= U ∧ ¬presentL(L, T)∧
L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) ∧ wt(OS)∧
(univV (w) = U∨
univV (w) = typeU (S′,U) ∧ imports(module(T), module(S′))∨
univV (w) = objU (oid(this), cidV (this),U)∧
ctid(cidV (this)) ¹M T ∧ this 6= null) }
⇒ [[ctid?(T) ∧ T 6= ctid(Object), Lemma 5.4.2]]

{ ¬presentL(L, T) ∧ accessibleL(L, T) }
⇒ [[Contradiction (Lemma 3.1.9)]]

{ false }
v = w.S:n(e1, . . . , el); [[false-axiom]]

{ false }
⇒
{ Q[v/result] ∧OS ≡L $ }

(D.3)

Case 3:
univV (obj (L)) / U ∧ ¬univV (obj (L)) E univV (w)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w)

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ $ = OS∧
alive(obj (L), $) ∧ univV (obj (L)) / U ∧ ¬univV (obj (L)) E univV (w)∧
¬presentL(L, T) ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }
⇒ [[Lemma 5.2.3, definition of dyn]]

(∀K : L
OS−→ K ∧ wt(OS)⇒univV (obj (K)) E univV (obj (L)))∧

univV (obj (L)) / U ∧ univV (w) E1 U ∧ ¬univV (obj (L)) E univV (w)∧
wt(OS) ∧ ∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }
⇒ [[Contradiction (mklc(KC) for K, Lemmas D.1.1 and D.1.2)]]

{ false }
v = w.S:n(e1, . . . , el); [[false-axiom]]

{ false }
⇒
{ Q[v/result] ∧OS ≡L $ }

(D.4)

D.2 Auxiliary Lemmas and Proofs from Chapter 5 257

Case 4:

¬∃KC : L
OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w)

First, we apply several language property operators. We omit the assumptions
in the following for brevity.

{ P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) ∧R = τ(ret(S:n)) ∧ alive(X, $)∧

$ = OS ∧ U = U }
↑ [[all-rule]]

{ P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) ∧R = τ(ret(S:n)) ∧ alive(X, $)∧

$ = OS ∧ U = U }
⇒
{ P ∧Vl

i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) ∧R = τ(ret(S:n)) ∧ alive(X, $)∧
$ = OS ∧ U = U ∧Vl

i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) }
↓ [[Lemma 5.4.1]]

{ P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) ∧R = τ(ret(S:n)) ∧ alive(X, $) }

↓ [[Lemma 3.2.4]]

{ P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) ∧R = τ(ret(S:n)) }

↓ [[Lemma 3.2.1]]
{ P }
S:n

{ Q }
↑ [[Lemma 3.2.1]]

{ Q ∧ typeof (result) ¹ R ∧ wt($) }
↑ [[Lemma 3.2.4]]

{ Q ∧ typeof (result) ¹ R ∧ wt($) ∧ alive(X, $) }
↑ [[Lemma 5.4.1]]

{ Q ∧ typeof (result) ¹ R ∧ wt($) ∧ alive(X, $)∧
(¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }

↑ [[all-rule]]
{ ∀KC : Q ∧ typeof (result) ¹ R ∧ wt($) ∧ alive(X, $)∧
(¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)) }
⇒
{ Q ∧ wt($) ∧ alive(X, $)∧
∀KC : (¬univV (obj (mklc(KC))) E U ⇒ $(KC) = OS(KC)) }

258 D. Auxiliary Lemmas, Proofs, and Models

By this sequent, we derive (we omit the assumptions for brevity):

{ w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ $ = OS∧
alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null)∧
¬(∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w)) }
⇒ [[use univV (w) for U ; analogously to Proof 3.2.1]]

{ ∃U, R : w 6= null ∧ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($)∧

R = τ(ret(S:n)) ∧ alive(obj (L), $) ∧ $ = OS∧
U = U)[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ alive(obj (L),OS)∧
wt(OS) ∧ ¬(∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E U) }
↓ [[ex-rule]]

{ w 6= null ∧ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) ∧R = τ(ret(S:n))∧

alive(obj (L), $) ∧ $ = OS ∧ U = U)[w/this, e1/p1, . . . , el/pl, univV (w)/U]∧
alive(obj (L),OS) ∧ wt(OS)∧
¬(∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E U) }
↓ [[inv-rule]]

{ w 6= null ∧ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) ∧R = τ(ret(S:n))∧

alive(obj (L), $) ∧ $ = OS ∧ U = U)[w/this, e1/p1, . . . , el/pl, univV (w)/U] }
↓ [[subst-rule]]

{ w 6= null ∧ (P ∧Vl
i=0 typeof (pi) ¹ τ([pi]) ∧ wt($) ∧R = τ(ret(S:n))∧

alive(X, $) ∧ $ = OS ∧ U = U)[w/this, e1/p1, . . . , el/pl, univV (w)/U] }
v = w.S:n(e1, . . . , el);

{ (Q ∧ wt($) ∧ alive(X, $)∧
∀KC : (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)))[v/result] }

↑ [[subst-rule]]
{ (Q ∧ wt($) ∧ alive(obj (L), $)∧
∀KC : (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)))[v/result] }

↑ [[inv-rule]]
{ (Q ∧ wt($) ∧ alive(obj (L), $) ∧ alive(obj (L),OS) ∧ wt(OS)∧
∀KC : (¬univV (obj (mklc(KC))) E U⇒$(KC) = OS(KC)))[v/result]∧
¬(∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E U) }
⇒ [[Lemma 5.2.1]]

{ Q[v/result] ∧OS ≡L $ }
↑ [[ex-rule]]

{ Q[v/result] ∧OS ≡L $ }

(D.5)

D.2 Auxiliary Lemmas and Proofs from Chapter 5 259

Now, we combine the four cases by the disjunct-rule, which yields the desired
property. In the following, we abbreviate

w 6= null ∧P[w/this, e1/p1, . . . , el/pl, univV (w)/U] ∧ $ = OS∧
alive(obj (L), $) ∧ ¬presentL(L, T) ∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null)

by P′, Q[v/result]∧OS ≡L $ by Q′, and uc(A), lu(A), ro(A), oal(A), typed(A)
by S. We derive:

S |. { P′ ∧ univV (obj (L)) = U ∧ ¬univV (obj (L)) E univV (w)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }
v = w.S:n(e1, . . . , el);
{ Q′ } [[D.3]]

S |. { P′ ∧ univV (obj (L)) / U ∧ ¬univV (obj (L)) E univV (w)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }
v = w.S:n(e1, . . . , el);
{ Q′ } [[D.4]]

[[disjunct-rule]]
S |. { P′ ∧ univV (obj (L)) E U ∧ ¬univV (obj (L)) E univV (w)∧

∃KC : L
OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }

v = w.S:n(e1, . . . , el);
{ Q′ }

S |. { P′ ∧ univV (obj (L)) E U ∧ univV (obj (L)) E univV (w)∧
∃KC : L

OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }
v = w.S:n(e1, . . . , el);
{ Q′ } [[D.2]]

[[disjunct-rule]]
S |. { P′ ∧ univV (obj (L)) E U∧

∃KC : L
OS−→ mklc(KC) ∧ univV (obj (mklc(KC))) E univV (w) }

v = w.S:n(e1, . . . , el);
{ Q′ }

S |. { P′ ∧ univV (obj (L)) E U ∧ ¬∃KC : L
OS−→ mklc(KC)∧

univV (obj (mklc(KC))) E univV (w) }
v = w.S:n(e1, . . . , el);
{ Q′ } [[D.5]]

[[disjunct-rule]]
S |. { P′ ∧ univV (obj (L)) E U } v = w.S:n(e1, . . . , el); { Q′ }

260 D. Auxiliary Lemmas, Proofs, and Models

implementation-rule: We abbreviate the triple { P } T@m { Q } by A.

uc(A), lu(A), ro(A), oal(A), typed(A), uc(A), lu(A), ro(A), oal(A), typed(A) |.
{ P ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vn

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) ∧ (static(T@m) ⇔ this = null)∧
(static(T@m) ⇔ this = null) ∧Vn

i=k+1 vi = init(τ([vi])) }
body(T@m) { Q ∧OS ≡L $ }

[[strength-rule]]
uc(A), lu(A), ro(A), oal(A), typed(A), uc(A), lu(A), ro(A), oal(A), typed(A) |.
{ P ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($)∧
(static(T@m) ⇔ this = null) ∧Vn

i=k+1 vi = init(τ([vi])) }
body(T@m) { Q ∧OS ≡L $ }

[[implementation-rule]]
uc(A), lu(A), ro(A), oal(A), typed(A), lu(A), ro(A), oal(A), typed(A) |.
{ P ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
T@m { Q ∧OS ≡L $ }

typed(A) |. typed(A) [[Lemma 3.2.1]]

oal(A) |. oal(A) [[Lemma 3.2.4]]

ro(A) |. ro(A) [[Lemma 3.2.5]]

lu(A), ro(A), typed(A) |. lu(A) [[Lemma 5.4.1]]
[[assumpt-elim-rule]]

uc(A), lu(A), ro(A), oal(A), typed(A) |.
{ P ∧ $ = OS ∧ alive(obj (L), $) ∧ univV (obj (L)) E U ∧ ¬presentL(L, T)∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
T@m { Q ∧OS ≡L $ }

subtype-rule: According to the requirements of Theorem 5.4.1, applications
of the subtype-rule do not occur in the proof for A |. A.

class-rule: Let S@m = impl(T:m). We derive from the induction hypothesis
(S abbreviates uc(A), lu(A), ro(A), oal(A), typed(A)):

S |. { typeof (this) = refDT (T,U) ∧P ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧ ¬presentL(L, S) ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
S@m
{ Q ∧OS ≡L $ }

¬presentL(L, T)⇒¬presentL(L, S) [[T ¹M S, axiom import2, Lemma 3.1.8]]
[[strength-rule]]

S |. { typeof (this) = refDT (T,U) ∧P ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧ ¬presentL(L, T) ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
S@m
{ Q ∧OS ≡L $ }

D.3 Auxiliary Lemmas and Proofs from Chapter 6 261

By this sequent and the induction hypothesis, we prove:

S |. { typeof (this) = refDT (T,U) ∧P ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧ ¬presentL(L, T) ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
S@m
{ Q ∧OS ≡L $ }

S |. { typeof (this) ≺ refDT (T,U) ∧P ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧ ¬presentL(L, T) ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
T:m
{ Q ∧OS ≡L $ }

[[class-rule]]

S |. { typeof (this) ¹ refDT (T,U) ∧P ∧ $ = OS ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧ ¬presentL(L, T) ∧Vk

i=0 typeof (vi) ¹ τ([vi]) ∧ wt($) }
T:m
{ Q ∧OS ≡L $ }

2

D.3 Auxiliary Lemmas and Proofs from Chapter 6

Lemma D.3.1. In all programs with well-formed interface specifications, the
following property holds: If L is the location for an invariant and two stores
are L-equivalent then invrep yields the same value for L in both stores.

invL(L) ∧OS ≡L OS ′ ∧ invrep(L,OS) ⇒ invrep(L,OS ′)

Proof of Lemma D.3.1:
We prove that the lemma holds in all closed programs and thus in all open
programs as well. In closed programs with well-formed interface specifica-
tions, we can assume that the appropriate axioms about L-equivalence and
invrep are generated for L and the simple field id of L.

invL(L) ∧OS ≡L OS ′ ∧ invrep(L,OS)

⇒ [[Definition of invL, L = aloc(locA(X, f)) for suitable X and f]]

L = aloc(locA(X, f)) ∧OS ≡X.f OS ′ ∧ invrep(L,OS)

⇒ [[Axioms generated for invrep]]

L = aloc(locA(X, f)) ∧OS ≡X.f OS ′ ∧ repf(X,OS)

⇒ [[Axioms generated for ≡]]

L = aloc(locA(X, f)) ∧ repf(X,OS ′)

⇒ [[Axioms generated for invrep]]

invrep(L,OS ′)

2

262 D. Auxiliary Lemmas, Proofs, and Models

Proof of Lemma 6.3.1:
We prove the sequent in several steps. We omit the assumption set A for
brevity.

{ P ∧ inv($,U) ∧ invL(L) ∧ alive(obj (L), $) ∧ univV (obj (L)) E U }
⇒ [[Definition of inv ; invL(L) ⇒ L 6∈ M , Lemma 6.2.1]]

{ ∃D,OS : P ∧ inv($,U) ∧ invL(L) ∧ alive(obj (L), $) ∧ $ = OS∧
univV (obj (L)) E U ∧D = δ(M, $) ∧ L 6∈ D ∧ invL(L) ∧ invrep(L,OS) }

↓ [[ex-rule]]
{ P ∧ inv($,U) ∧ invL(L) ∧ alive(obj (L), $) ∧ univV (obj (L)) E U∧
$ = OS ∧D = δ(M, $) ∧ L 6∈ D ∧ invL(L) ∧ invrep(L,OS) }

↓ [[inv-rule]]
{ P ∧ inv($,U) ∧ invL(L) ∧ alive(obj (L), $)∧
univV (obj (L)) E U ∧ $ = OS ∧D = δ(M, $) }
COMP [[Sequent 6.1]]

{ L ∈ D ∨ $≡L OS }
↑ [[inv-rule]]

{ (L ∈ D ∨ $≡L OS) ∧ L 6∈ D ∧ invL(L) ∧ invrep(L,OS) }
⇒
{ $≡L OS ∧ invL(L) ∧ invrep(L,OS) }
⇒ [[Lemma D.3.1]]

{ alive(obj (L), $)⇒invrep(L, $) }
↑ [[ex-rule]]

{ alive(obj (L), $)⇒invrep(L, $) }

(D.6)

Applying the disjunct-rule to Sequents 6.2 and D.6 yields:

{ P ∧ inv($,U) ∧ invL(L) ∧ univV (obj (L)) E U }
COMP
{ alive(obj (L), $)⇒invrep(L, $) }
By this sequent, we derive:

{ P ∧ inv($,U) ∧ U = U ∧ univV (obj (L)) E U ∧ invL(L) }
⇒
{ P ∧ inv($,U) ∧ univV (obj (L)) E U ∧ invL(L)∧
(univV (obj (L)) E U ∧ invL(L)) }

↓ [[inv-rule]]
{ P ∧ inv($,U) ∧ univV (obj (L)) E U ∧ invL(L) }
COMP

{ alive(obj (L), $)⇒invrep(L, $) }
⇒
{ alive(obj (L), $) ∧ univV (obj (L)) E U ∧ invL(L)⇒invrep(L, $) }

↑ [[inv-rule]]
{ (alive(obj (L), $) ∧ univV (obj (L)) E U ∧ invL(L)⇒invrep(L, $))∧
(univV (obj (L)) E U ∧ invL(L)) }

(D.7)

D.3 Auxiliary Lemmas and Proofs from Chapter 6 263

From Sequent 6.2, we get:

{ P ∧ inv($,U) ∧ U = U ∧ ¬(univV (obj (L)) E U ∧ invL(L)) }
↓ [[inv-rule]]

{ P ∧ inv($,U) ∧ U = U }
⇒ [[We can assume that there is at least one invariant, e.g., in Object]]

{ ∃L : P ∧ inv($,U) ∧ invL(L) ∧ ¬alive(obj (L), $) ∧ univV (obj (L)) E U }
↓ [[ex-rule]]

{ P ∧ inv($,U) ∧ invL(L) ∧ ¬alive(obj (L), $) ∧ univV (obj (L)) E U }
COMP [[Sequent 6.2]]

{ alive(obj (L), $)⇒invrep(L, $) }
⇒
{ true }

↑ [[ex-rule]]
{ true }

↑ [[inv-rule]]
{ ¬(univV (obj (L)) E U ∧ invL(L)) }
⇒
{ (alive(obj (L), $) ∧ univV (obj (L)) E U ∧ invL(L)⇒invrep(L, $))∧
¬(univV (obj (L)) E U ∧ invL(L)) }

(D.8)

We apply the disjunct-rule to Sequents D.7 and D.8 and derive the desired
sequent:

{ P ∧ inv($,U) ∧ U = U }
↓ [[all-rule]]

{ P ∧ inv($,U) ∧ U = U }
COMP [[Disjunction of Sequents D.7 and D.8]]

{ alive(obj (L), $) ∧ univV (obj (L)) E U ∧ invL(L)⇒invrep(L, $) }
↑ [[all-rule]]

{ ∀L : alive(obj (L), $) ∧ univV (obj (L)) E U ∧ invL(L)⇒invrep(L, $) }
⇒ [[Definition of inv]]

{ inv($, U) }
2

Proof of Sequent 6.4. In the following proofs, TA′ abbreviates the type and
liveness annotations for List@init. Sequent 6.4 is obtained by applying the
assumpt-intro-rule to the following sequent:

264 D. Auxiliary Lemmas, Proofs, and Models

{ invL(L) ∧ alive(obj (L), $) ∧ $ = OS ∧ TA ∧ univV (obj (L)) E U∧
D = δ(?, $) }
⇒ [[Axioms store11, store7, store5, store8 and store10, Lemma 5.2.2]]
{ new($, List,U) 6= null ∧ ∀KC : $〈List,U〉(KC) 6= new($, List,U) ∧ invL(L)∧
alive(obj (L), $〈List,U〉) ∧ TA ∧ univV (obj (L)) E U ∧ $〈List,U〉≡L OS∧
obj (L) 6= new($, List,U) }
result = new List();
{ result 6= null ∧ ∀KC : $(KC) 6= result ∧ invL(L) ∧ alive(obj (L), $) ∧ TA∧
univV (obj (L)) E U ∧ $≡L OS ∧ obj (L) 6= result }
⇒ [[Lemmas 3.1.6, 3.1.4, and 6.2.1]]
{ ∃D′,OS ′ : result 6= null ∧ ∀KC : $(KC) 6= result ∧ alive(obj (L), $) ∧ $ = OS ′∧
TA ∧ univV (obj (L)) E univV (result) ∧D′ = δ({result.val, result.inv}, $)∧
L 6∈ D′ ∧OS ′≡L OS }

↓ [[ex-rule]]
{ result 6= null ∧ ∀KC : $(KC) 6= result ∧ alive(obj (L), $) ∧ $ = OS ′ ∧ TA∧
univV (obj (L)) E univV (result) ∧D′ = δ({result.val, result.inv}, $) ∧ L 6∈ D′∧
OS ′≡L OS }

↓ [[inv-rule]]
{ result 6= null ∧ ∀KC : $(KC) 6= result ∧ alive(obj (L), $) ∧ $ = OS ′ ∧ TA∧
univV (obj (L)) E univV (result) ∧D′ = δ({result.val, result.inv}, $) }
⇒
{ result 6= null ∧ (∀KC : $(KC) 6= this ∧ alive(obj (L), $) ∧ $ = OS ′ ∧ TA′∧
univV (obj (L)) E U∧
D′ = δ({this.val, this.inv}, $))[result/this, univV (result)/U] }
dummy=result.List@init(); [[assumpt-axiom, invocation-rule]]

{ $≡L OS ′ ∨ L ∈ D′ }
↑ [[inv-rule]]

{ ($≡L OS ′ ∨ L ∈ D′) ∧ L 6∈ D′ ∧OS ′≡L OS }
⇒ [[Lemma 4.2.1]]
{ $≡L OS ∨ L ∈ D }

↑ [[ex-rule]]
{ $≡L OS ∨ L ∈ D }

Proof of Sequent 6.5. We prove the sequent in three steps: (1) We prove that
List@createList preserves the invariants of the objects List@init creates (Se-
quent D.9); (2) We show that List@createList establishes the invariant of the
new List-object (Sequent D.10); (3) We build the disjunction of Sequents D.9
and D.10 which yields Sequent 6.5.

{ TA ∧ invL(L) ∧ ¬alive(obj (L), $〈List,U〉) }
⇒ [[Axioms store11, store5, store8 and store10]]

{ new($, List,U) 6= null ∧ ∀KC : $〈List,U〉(KC) 6= new($, List,U) ∧ TA∧
invL(L) ∧ ¬alive(obj (L), $〈List,U〉) }
result = new List();

{ result 6= null ∧ ∀KC : $(KC) 6= result ∧ TA∧
invL(L) ∧ ¬alive(obj (L), $) }
⇒
{ result 6= null ∧ (∀KC : $(KC) 6= this ∧ TA′ ∧ invL(L)∧
¬alive(obj (L), $))[result/this, univV (result)/U] }
dummy=result.List@init(); [[assumpt-axiom, invocation-rule]]

{ alive(obj (L), $)⇒invrep(L, $) }

(D.9)

D.3 Auxiliary Lemmas and Proofs from Chapter 6 265

{ TA ∧ invL(L) ∧ obj (L) = new($, List,U) }
⇒ [[Axioms store11, store5, store8 and store10]]

{ new($, List,U) 6= null ∧ ∀KC : $〈List,U〉(KC) 6= new($, List,U) ∧ TA∧
typeof (new($, List,U)) = refDT (ctid(List),U) ∧ invL(L)∧
obj (L) = new($, List,U) }
result = new List();

{ result 6= null ∧ ∀KC : $(KC) 6= result ∧ TA∧
typeof (result) = refDT (ctid(List),U) ∧ invL(L) ∧ obj (L) = result }
⇒
{ ∃X : result 6= null ∧ ∀KC : $(KC) 6= result ∧ TA ∧ result = X∧
typeof (X) = refDT (ctid(List),U) ∧ invL(L) ∧ obj (L) = X }

↓ [[ex-rule]]

{ result 6= null ∧ ∀KC : $(KC) 6= result ∧ TA ∧ result = X∧
typeof (X) = refDT (ctid(List),U) ∧ invL(L) ∧ obj (L) = X }

↓ [[inv-rule]]

{ result 6= null ∧ ∀KC : $(KC) 6= result ∧ TA ∧ result = X }
⇒
{ result 6= null∧
(∀KC : $(KC) 6= this ∧ TA′ ∧ this = X)[result/this, univV (result)/U] }
dummy=result.List@init(); [[assumpt-axiom, invocation-rule]]

{ invrep(X.inv, $)[dummy/result] }
⇒
{ invrep(X.inv, $) }

↑ [[inv-rule]]

{ invrep(X.inv, $) ∧ typeof (X) = refDT (ctid(List),U)∧
invL(L) ∧ obj (L) = X }
⇒ [[Lemma D.2.2]]

{ alive(obj (L), $)⇒invrep(L, $) }
↑ [[ex-rule]]

{ alive(obj (L), $)⇒invrep(L, $) }

(D.10)

Finally, we build the disjunction of Sequents D.9 and D.10 which yields Se-
quent 6.5:

{ TA ∧ inv($,U) ∧ invL(L) ∧ ¬alive(obj (L), $) ∧ univV (obj (L)) E U }
⇒ [[Axiom store7]]

{ TA ∧ invL(L) ∧ (obj (L) = new($, List,U) ∨ ¬alive(obj (L), $〈List,U〉)) }
body(List@createList) [[disjunct-rule]]

{ alive(obj (L), $)⇒invrep(L, $) }

266 D. Auxiliary Lemmas, Proofs, and Models

D.4 A Model for the Axiomatization of the
Depends-Relation

As explained in Subsection 5.1.2, the notdepends-relation in an open pro-
gram P can only be axiomatized in a reasonable way if P has a well-formed
interface specification. Otherwise, extensions of P could introduce dependen-
cies that are inconsistent with the axiomatization of the notdepends-relation.
Consequently, we show in the following that there is a model for the axiom-
atization of the depends-relation and its negation for each program that has
a well-formed interface specification. To show that, we prove two properties:
(1) There is a model for each closed program. (2) Each model for a closed
program P is also a model for the cores of all open programs that contain P.

Lemma D.4.1. Let P be a closed program with set of modules S. If P has
a well-formed interface specification, then the function

dep : Location × Location × Store → Bool
dep(X.f, Y.g,OS) ⇔def rc(Rf,g(S), X, Y,OS)

is a model for −→ .

For the proof of the above lemma, we need the following auxiliary lemma. It
relates the automaton for a set of modules S to the automaton for a subset S′

of S. Essentially, it says that program extensions cannot introduce dependen-
cies between locations if (1) the fields of the locations and (2) the guards of
the dependee w.r.t. all universes between the universe to which the dependee
belongs and the universe to which the dependent belongs are declared in S′.
This property is guaranteed by the visibility rule. The lemma is needed to
show that the axiomatization of the notdepends-relation is consistent.

Lemma D.4.2.

a1 . . . aN ∈ L(Rf,g(S)) ∧
NV

i=1

dc(ai, Zi−1, Zi,OS) ∧ wt(OS) ∧ S′ ⊆ S∧
module(dtype(fid(Z0.f))) ∈ S′ ∧module(dtype(fid(ZN .g))) ∈ S′∧�
∀U : univV (ZN) / U E univV (Z0)⇒module(guard(ZN .g, U)) ∈ S′

�
⇒

a1 . . . aN ∈ L(Rf,g(S′))

Proof of Lemma D.4.2:
We prove the lemma by induction on N :

D.4 A Model for the Axiomatization of the Depends-Relation 267

Induction Basis: N = 0
ε ∈ L(Rf,g(S)) ∧module(dtype(fid(Z0.f))) ∈ S′

⇒ [[Automaton does not contain ε-transitions]]
f = g ∧module(dtype(fid(Z0.f))) ∈ S′

⇒
ε ∈ L(Rf,g(S′))

Induction Step: N ≥ 0

a1 . . . aN+1 ∈ L(Rf,g(S)) ∧
N+1V
i=1

dc(ai, Zi−1, Zi,OS) ∧ wt(OS) ∧ S′ ⊆ S∧
module(dtype(fid(Z0.f))) ∈ S′ ∧module(dtype(fid(ZN+1.g))) ∈ S′∧
(∀U : univV (ZN+1) / U E univV (Z0)⇒module(guard(ZN+1.g, U)) ∈ S′)

⇒
2424 the transition labeled with aN+1 leads

from the state for h to the state for g;
Obligations 5.2 and 5.3 for aN+1

3535
univV (ZN+1) E univV (ZN) ∧ accessibleL(ZN .h, guard(ZN+1.g, univV (ZN)))∧
module(dtype(fid(ZN+1.g))) ∈ S′∧
(∀U : univV (ZN) / U ⇒ guard(ZN .h, U) = guard(ZN+1.g, U))∧
a1 . . . aN ∈ L(Rf,h(S)) ∧

N+1V
i=1

dc(ai, Zi−1, Zi,OS) ∧ wt(OS) ∧ S′ ⊆ S∧
module(dtype(fid(Z0.f))) ∈ S′ ∧module(guard(ZN+1.g, univV (ZN))) ∈ S′

(∀U : univV (ZN+1) / U E univV (Z0)⇒module(guard(ZN+1.g, U)) ∈ S′)∧
⇒ [[Definition of accessibleL]]

a1 . . . aN ∈ L(Rf,h(S)) ∧
NV

i=1

dc(ai, Zi−1, Zi,OS) ∧ wt(OS) ∧ S′ ⊆ S∧
module(dtype(fid(Z0.f))) ∈ S′ ∧module(dtype(fid(ZN .h))) ∈ S′∧
(∀U : univV (ZN) / U E univV (Z0)⇒module(guard(ZN .h, U)) ∈ S′)∧
module(guard(ZN+1.g, univV (ZN))) ∈ S′

⇒
��

Induction hypothesis, Obligation 5.4 for aN+1;
T is the declaration type of dep-clause aN+1

��
a1 . . . aN ∈ L(Rf,h(S′)) ∧module(dtype(fid(ZN .h))) ∈ S′∧
module(guard(ZN+1.g, univV (ZN))) = module(T)∧
module(guard(ZN+1.g, univV (ZN))) ∈ S′

⇒ [[the declarations of h and aN+1 are in S′]]
a1 . . . aN+1 ∈ L(Rf,g(S′))

2

Based on Lemma D.4.2, we can now prove Lemma D.4.1.

Proof of Lemma D.4.1:

1. Reflexivity (Axiom dep1):

ε ∈ L(Rf,f) [[Definition of R0
A,B]]

⇒
∃w ∈ L(Rf,f) : w = a1 . . . a0 ∧ ∃Z0 : Z0 = X ∧ Z0 = X
⇒ [[Definition of l]]
l(L(Rf,f), X, X,OS)
⇒ [[Lemma D.2.5]]
rc(Rf,f , X, X,OS)
⇒ [[Definition of dep]]
dep(X.f, X.f,OS)

268 D. Auxiliary Lemmas, Proofs, and Models

2. Transitivity (Axiom dep2):

dep(X.f, Y.g,OS) ∧ dep(Y.g, Z.h,OS)
⇒ [[Definition of dep, Lemma D.2.5]]
l(L(Rf,g), X, Y,OS) ∧ l(L(Rg,h), Y, Z,OS)
⇒ [[Definition of l]]
∃v ∈ L(Rf,g) : v = a1 . . . am ∧ ∃Z0, . . . , Zm :

Z0 = X ∧ Zm = Y ∧
mV

i=1

dc(ai, Zi−1, Zi,OS)∧
∃w ∈ L(Rg,h) : w = b1 . . . bn ∧ ∃Z0, . . . , Zn :

Z0 = Y ∧ Zm = Z ∧
nV

i=1

dc(bi, Zi−1, Zi,OS)

⇒ [[shifting indices: am+i := bi]]
∃v ∈ L(Rf,g), w ∈ L(Rg,h) : v = a1 . . . am ∧ w = am+1 . . . am+n∧
∃Z0, . . . , Zm+n : Z0 = X ∧ Zm = Y ∧ Zm = Y ∧ Zm+n = Z∧
m+nV
i=1

dc(ai, Zi−1, Zi,OS)

⇒ [[Definition of L [HU79, p. 28], k := m + n]]
∃w ∈ L(Rf,gRg,h) : w = a1 . . . ak ∧ ∃Z0, . . . , Zk : Z0 = X ∧ Zk = Z∧
kV

i=1

dc(ai, Zi−1, Zi,OS)

⇒ [[Definition of l]]
l(L(Rf,gRg,h), X, Z,OS)
⇒ [[L(Rf,gRg,h) ⊆ L(Rf,h)]]
l(L(Rf,h), X, Z,OS)
⇒ [[Lemma D.2.5, Definition of dep]]
dep(X.f, Z.h,OS)

3. Concrete locations (Axiom dep3): For concrete locations X.f, we get

dep(X.f, Y.g,OS)
⇒ [[Definition of dep, Lemma D.2.5]]
l(L(Rf,g), X, Y,OS)
⇒ [[f = g⇒Rf,g = ε, f 6= g⇒Rf,g = ?]]
X.f = Y.g

4. Axioms for depends-clauses: Consider the axiom that is generated for a
depends-clause d: dc(d,X, Y,OS)⇒X.f OS−→ Y.g. For such an axiom, we
derive:

dc(d, X, Y,OS)
⇒ [[Definition of rc]]
rc(d, X, Y,OS)
⇒ [[Lemma D.2.5]]
l({d}, X, Y,OS)
⇒ [[{d} ⊆ L(Rf,g)]]
l(L(Rf,g), X, Y,OS)
⇒ [[Lemma D.2.5, Definition of dep]]
dep(X.f, Y.g,OS)

5. Axioms for the negation of −→:
Axioms for f and g are generated for scopes S′, S′ ⊆ S that contain the
declaration of both fields. The set of states, transitions, and the alphabet

D.4 A Model for the Axiomatization of the Depends-Relation 269

of A(S′) are subsets of the states, transitions, and the alphabet of A(S).
We assume that the states are consistently renumbered when a program
is extended. Therefore, we can omit σS and σS′ in the following.

dep(X.f, Y.g,OS) ∧ wt(OS) ∧ S′ ⊆ S∧
module(dtype(fid(X.f))) ∈ S′ ∧module(dtype(fid(Y.g))) ∈ S′∧
(∀U : univV (Y) / U E univV (X)⇒module(guard(Y.g, U)) ∈ S′)
⇒ [[Definition of dep, Lemma D.2.5]]
l(L(Rf,g(S)), X, Y,OS) ∧ wt(OS) ∧ S′ ⊆ S∧
module(dtype(fid(X.f))) ∈ S′ ∧module(dtype(fid(Y.g))) ∈ S′∧
(∀U : univV (Y) / U E univV (X)⇒module(guard(Y.g, U)) ∈ S′)
⇒ [[Definition of l]]
∃w ∈ L(Rf,g(S)) : w = a1 . . . ak ∧ ∃Z0, . . . , Zk : Z0 = X ∧ Zk = Y ∧
kV

i=1

dc(ai, Zi−1, Zi,OS) ∧ wt(OS) ∧ S′ ⊆ S∧
module(dtype(fid(X.f))) ∈ S′ ∧module(dtype(fid(Y.g))) ∈ S′∧
(∀U : univV (Y) / U E univV (X)⇒module(guard(Y.g, U)) ∈ S′)
⇒ [[Lemma D.4.2]]
∃w ∈ L(Rf,g(S

′)) : w = a1 . . . ak ∧ ∃Z0, . . . , Zk : Z0 = X ∧ Zk = Y ∧
kV

i=1

dc(ai, Zi−1, Zi,OS)∧
⇒ [[Definition of l]]
l(L(Rf,g(S

′)), X, Y,OS)
⇒ [[Lemma D.2.5]]
rc(Rf,g(S

′), X, Y,OS)

2

Lemma D.4.3. Let P ′ be an open program with core S′, and P a closed
program with set of modules S. If P ′ has a well-formed interface specification
and P ′ contains P (i.e., S′ ⊆ S), then the model for the axiomatization of
the depends-relation for P is also a model for the axiomatization for the core
of P ′.
Proof of Lemma D.4.3:
The depends-relation and its negation are axiomatized by dep1, dep2, dep3,
the axioms generated for the depends-relation, and the axioms generated
for its negation. Each of these axioms that is contained in the universal
specification for the core of P ′ is also contained in the universal specification
for P (S′ ⊆ S). Thus, the model for P is also a model for the core of P ′. 2

KMMPN83

[AdB94] P. America and F. de Boer. Reasoning about dynamically evolving process
structures. Formal Aspects of Computing, 6:269–316, 1994.

[AL97] M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In
M. Bidoit and M. Dauchet, editors, TAPSOFT ’97: Theory and Practice of
Software Development, 7th International Joint Conference CAAP/FASE, Lille,
France, volume 1214 of Lecture Notes in Computer Science, pages 682–696.
Springer-Verlag, 1997.

[Alm97] P. S. Almeida. Balloon types: Controlling sharing of state in data types. In
M. Akşit and S. Matsuoka, editors, ECOOP ’97: Object-Oriented Programming,
volume 1241 of Lecture Notes in Computer Science, pages 32–59. Springer-
Verlag, 1997.

[Ame83] American National Standards Institute, Inc. Ada Programming Language,
ansi/mil-std-1815a edition, January 1983.

[Ame87] P. America. Inheritance and subtyping in a parallel object-oriented lan-
guage. In J. Bézivin, editor, ECOOP ’87, European Conference on Object-
Oriented Programming, Paris, France, volume 276 of Lecture Notes in Computer
Science, pages 234–242. Springer-Verlag, 1987.

[Ame89] P. America. A behavioural approach to subtyping in object-oriented pro-
gramming languages. Technical Report 443, Philips Research Laboratories,
Nederlandse Philips Bedrijven B. V., 1989.

[Ame91] P. America. Designing an object-oriented programming language with
behavioural subtyping. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Foundations of Object-Oriented Languages, volume 489 of Lecture Notes
in Computer Science, pages 60–90. Springer-Verlag, 1991.

[Apt81] K. R. Apt. Ten years of Hoare logic: A survey — part I. ACM Trans. on
Prog. Languages and Systems, 3:431–483, 1981.

[BA96] M. Ben-Ari. Understanding Programming Languages. John Wiley & Sons,
1996.

[Bac88] R. J. R. Back. A calculus of refinement for program derivations. Acta
Informatica, 25:593–624, 1988.

[Ban95] G. S. Banavar. An Application Framework for Compositional Modularity.
PhD thesis, The University of Utah, 1995.

[Bar97] J. Barnes. Ada 95 Rationale, volume 1247 of Lecture Notes in Computer
Science. Springer, 1997.

[BC90] G. Bracha and W. Cook. Mixin-based inheritance. ACM SIGPLAN No-
tices, 25(10):303–311, October 1990. OOPSLA ECOOP ’90 Proceedings, N.
Meyrowitz (editor).

[BG77] R. M. Burstall and J. A. Goguen. Putting theories together to make speci-
fications. In Proc. 5th International Joint Conference on Artificial Intelligence,
pages 1045–1058. Morgan Kaufmann Publishers, 1977.

272 KMMPN83

[BG94] P. Borba and J. A. Goguen. On refinement and FOOPS. Technical Report
PRG-TR-17-94, Oxford University Computing Laboratory, 1994.

[Bij89] A. Bijlsma. Calculating with pointers. Science of Computer Programming,
12:191–205, 1989.

[BL91] G. Bracha and G. Lindstrom. Modularity meets inheritance. Technical
Report UUCS-91-017, University of Utah, October 1991.

[BLO94] G. S. Banavar, G. Lindstrom, and D. Orr. Type-safe composition of object
modules. In Computer Systems and Education, pages 188–200. McGraw Hill,
1994. Also available as University of Utah Technical Report UUCS-94-001.

[BMR95] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in pro-
cedure specifications. IEEE Transactions on Software Engineering, 21(10):785–
798, October 1995.

[Boe99] F. S. de Boer. A WP-calculus for OO. In W. Thomas, editor, Foundations
of Software Science and Computation Structures, volume 1578 of Lecture Notes
in Computer Science, pages 135–149. Springer-Verlag, 1999.

[Bok99] B. Bokowski. Implementing “object ownership to or-
der”. Presented at the Intercontinental Workshop on Aliasing in
Object-Oriented Systems at ECOOP’99), 1999. Available from
http://cuiwww.unige.ch/~ecoopws/iwaoos/papers/index.html.

[Boo94] G. Booch. Object oriented analysis and design with applications. Addison-
Wesley, 1994.

[BPF97] K. B. Bruce, L. Petersen, and A. Fiech. Subtyping is not a good “match”
for object-oriented languages. In M. Akşit and S. Matsuoka, editors, ECOOP
’97: Object-Oriented Programming, volume 1241 of Lecture Notes in Computer
Science, pages 104–127. Springer-Verlag, 1997.

[BPJ00] J. van den Berg, E. Poll, and B. Jacobs. First steps in formalis-
ing JML. In S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leavens,
P. Müller, and A. Poetzsch-Heffter, editors, Formal Techniques for Java Pro-
grams. Technical Report 269, Fernuniversität Hagen, 2000. Available from
www.informatik.fernuni-hagen.de/pi5/publications.html.

[Bra92] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and
Multiple Inheritance. PhD thesis, The University of Utah, 1992.

[BRS99] M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describing
linked data structures. In S. D. Swierstra, editor, Programming Languages and
Systems (ESOP ’99), volume 1576 of Lecture Notes in Computer Science, pages
2–19. Springer-Verlag, 1999.

[Bud91] T. Budd, editor. Object-Oriented Programming. Addison-Wesley, 1991.
[BV99] B. Bokowski and J. Vitek. Confined types. In Proceedings of Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA),
ACM SIGPLAN Notices, 1999.

[CDD+89] D. Carrington, D. Duke, R. Duck, P. King, and G. Rose. Object-Z: an
object oriented extension to Z. North-Holland, 1989.

[CFR93] T. R. Colburn, J. H. Fetzer, and T. L. Rankin. Program Verification.
Kluwer Academic Publishers, 1993.

[CGR96] P. Chalin, P. Grogono, and T. Radhakrishnan. Identification of and so-
lutions to shortcomings of LCL, a larch/c interface specification language. In
M.-C. Gaudel and J. Woodcock, editors, FME ’96: Industrial Benefit and Ad-
vances in Formal Methods, volume 1051 of Lecture Notes in Computer Science,
pages 385–404. Springer-Verlag, January 1996.

[CH96] G. Cornell and C. S. Horstmann. Java bis ins Detail. Heise, 1996.
[CL94] Y. Cheon and G. T. Leavens. The Larch/Smalltalk interface specifica-

tion language. ACM Transactions on Software Engineering and Methodology,
3(3):221–253, July 1994.

KMMPN83 273

[Cla93] U. Claussen. Objektorientiertes Programmieren. Springer-Verlag, 1993.
[COR+95] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial

Introduction to PVS, April 1995.
[Cou90] P. Cousot. Methods and logics for proving programs. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B, chapter 15, pages
841–993. Elsevier Science Publishers, 1990.

[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexi-
ble alias protection. In Proceedings of Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), volume 33(10) of ACM SIGPLAN
Notices, October 1998.

[Dav99] M. Davis. Immutables. Java-Report, 4(4):70–77, April 1999.
[DGLM95] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs. where

clauses: Constraining parametric polymorphism. In Proceedings of the 10th
Annual Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’95), volume 30 of ACM SIGPLAN Notices, pages 156–
168, 1995.

[Dha97] K. K. Dhara. Behavioral subtyping in object-oriented languages. Technical
Report 97-09, Iowa State University, May 1997.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[Dip98] P. Dippold. Logische Grundlagen einer Teilsprache von Java. Master’s

thesis, Fernuniversität Hagen, 1998. (in German).
[DK92] E. H. Durr and J. van Katwijk. VDM++: A formal specification language

for object-oriented design. In TOOLS Europe ’92, pages 63–77, 1992.
[DL96] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through

specification inheritance. In Proceedings of the 18th International Conference
on Software Engineering, pages 258–267. IEEE Computer Society Press, 1996.

[DLN98] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure.
Research Report 156, Digital Systems Research Center, 1998.

[DLNS98] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended
static checking. Research Report 159, Digital Systems Research Center, 1998.
see also www.research.digital.com/SRC/esc/Esc.html.

[ES90] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[Fai85] R. E. Fairley. Software Engineering Concepts. McGraw-Hill, 1985.
[FGJM85] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles

of OBJ2. In Principles of Programming Languages, pages 52–66. ACM, 1985.
[Flo67] R. W. Floyd. Assigning meanings to programs. In Mathematical Aspects

of Computer Science, volume 19 of Proceedings of Symposia in Applied Mathe-
matics, pages 19–32. American Mathematical Society, 1967.

[FM96] J. Feiler and A. Meadow. Essential OpenDoc. Addison-Wesley, 1996.
[FM98] C. Fischer and D. Meemken. JaWa: Java with assertions. In C. H. Cap,

editor, JIT ’98 Java-Informations-Tage 1998. Springer-Verlag, 1998.
[Gea97] D. M. Geary. Graphic Java 1.1: Mastering the AWT. Sun Microsystems

Press, 1997.
[GG91] S. J. Garland and J. V. Guttag. A guide to LP, the Larch Prover. Technical

Report 82, Digital Systems Research Center, 1991.
[GH93] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal

Specification. Springer-Verlag, 1993.
[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.

Addison-Wesley, Reading, MA, 1996.
[GMP90] D. Guaspari, C. Marceau, and W. Polak. Formal verification of Ada pro-

grams. IEEE Transactions on Software Engineering, 16(9):1058–1075, Septem-
ber 1990.

274 KMMPN83

[GP82] W. D. Gillett and S. V. Pollack. An Introduction to Engineered Software.
Holt, Rinehart and Winston, 1982.

[GTZ98] D. Genius, M. Trapp, and W. Zimmermann. An approach to improve
locality using sandwich types. In X. Leroy and A. Ohori, editors, Proceedings
of the 2nd Types in Compilation Workshop, volume 1473 of Lecture Notes in
Computer Science, pages 194–214. Springer-Verlag, 1998.

[GWM+00] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouan-
naud. Introducing OBJ. In G. Malcolm, editor, Software Engineering with OBJ:
algebraic specification in action. Kluwer, 2000.

[Ham97] G. Hamilton. JavaBeans. Sun Microsystems, Inc., 1997. Available from
http://java.sun.com/beans/docs/spec.html

[Har92] S. P. Harbison, editor. Modula-3. Prentice Hall, 1992.
[HC97] C. S. Horstmann and G. Cornell. Core Java. Sunsoft Press, 1997.
[Heh93] E. C. R. Hehner. A Practical Theory of Programming. Texts and Mono-

graphs in Computer Science. Springer-Verlag, 1993.
[HJ99] M. Huisman and B. Jacobs. Java program verification via a Hoare logic with

abrupt termination. Technical Report CSI-R9912, Computing Science Institute,
Univ. Nijmegen, 1999.

[HJ00] M. Huisman and B. Jacobs. Java program verification via a Hoare logic
with abrupt termination. In E. Maibaum, editor, Fundamental Approaches to
Software Engineering, volume 1783 of Lecture Notes in Computer Science, pages
284–303. Springer-Verlag, 2000.

[HK00] K. Huizing and R. Kuiper. Verification of object-oriented programs using
class invariants. In E. Maibaum, editor, Fundamental Approaches to Software
Engineering, volume 1783 of Lecture Notes in Computer Science, pages 208–221.
Springer-Verlag, 2000.

[HLW+92] J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Holt. Report on
ECOOP’91 workshop W3: The Geneva convention on the treatment of object
aliasing. OOPS Messenger, 3(2):11–16, 1992.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 583, 1969.

[Hoa72] C. A. R. Hoare. Proofs of correctness of data representation. Acta Infor-
matica, 1:271–281, 1972.

[Hog91] J. Hogg. Islands: Aliasing protection in object-oriented languages. In
A. Paepcke, editor, OOPSLA ’91 Conference Proceedings, pages 271–285, Oc-
tober 1991. SIGPLAN Notices, 26 (11).

[Hol91] I. J. Holyer. Functional Programming with Miranda. Pitman, 1991.
[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 1979.
[HW73] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming

language PASCAL. Acta Informatica, pages 335–355, 1973.
[IP00] A. Igarashi and B. C. Pierce. On inner classes. In E. Bertino, editor, ECOOP

2000: Object-Oriented Programming, volume 1850 of Lecture Notes in Computer
Science, pages 129–153. Springer-Verlag, 2000.

[JBH+98] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel,
and H. Tews. Reasoning about Java classes. In Proceedings of Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), 1998. Also
available as TR CSI-R9812, University of Nijmegen.

[JLMPH99] B. Jacobs, G. T. Leavens, P. Müller, and A. Poetzsch-Heffter. For-
mal techniques for Java programs. In A. Moreira and D. Demeyer, editors,
Object-Oriented Technology. ECOOP’99 Workshop Reader, volume 1743 of
Lecture Notes in Computer Science. Springer-Verlag, 1999. Available from
www.informatik.fernuni-hagen.de/pi5/publications.html.

KMMPN83 275

[JML] JML interest list. Archive at www.cs.iastate.edu/~leavens/JML.html.
[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall,

1990.
[Jon91a] K. D. Jones. LM3: A Larch interface language for Modula-3: A defini-

tion and introduction. Technical Report 72, Digital Equipment Corporation,
Systems Research Center, 1991.

[Jon91b] H. B. M. Jonkers. Upgrading the pre- and postcondition technique. In
S. Prehn and W. J. Toetenel, editors, VDM ’91: Formal Software Development
Methods, volume 551 of Lecture Notes in Computer Science, pages 428–456.
Springer-Verlag, 1991.

[Jos97] R. Joshi. Extended static checking of programs with cyclic dependencies.
Technical Note 1997-028, Digital Systems Research Center, 1997. In J. Mason,
editor, 1997 SRC Intern Projects.

[Kas90] U. Kastens. Übersetzerbau. Oldenburg, 1990.
[Kee89] S. E. Keene. Object-Oriented Programming in Common Lisp. Addison-

Wesley, 1989.
[KMMPN83] B. Bruun Kristensen, O. Lehrmann Madsen, B. Møller-Pedersen, and

K. Nygaard. Abstraction mechanisms in the BETA programming language. In
Tenth ACM Symposium on Principles of Programming Languages, pages 285–
298, Austin, Texas, 1983.

[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Pren-
tice Hall, 1988.

[Kra98] R. Kramer. iContract—the Java Design by Contract tool. In R. Ege,
M. Singh, and B. Meyer, editors, Technology of Object-Oriented Languages Tools
26. IEEE Computer Society, 1998.

[Kru92] C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183,
June 1992.

[KT90] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 14, pages 789–
840. Elsevier Science Publishers, 1990.

[KT99] G. Kniesel and D. Theissen. JAC — Java with transitive read-
only access control. Presented at the Intercontinental Workshop on Alias-
ing in Object-Oriented Systems at ECOOP’99, 1999. Available from
http://cuiwww.unige.ch/~ecoopws/iwaoos/papers/index.html.

[Kuh70] T. S. Kuhn. The Structure of Scientific Revolutions, volume 2 of Interna-
tional Encyclopedia of Unified Science. The University of Chicago Press, 2nd
edition, 1970.

[Lak96] J. Lakos. Large-Scale C++ Software Design. Addison-Wesley, 1996.
[Lam86] L. Lamport. LATEX: A document preparation system. Addison-Wesley,

1986.
[Lar] Larch frequently asked questions. Available from

www.cs.iastate.edu/~leavens/larch-faq.html.
[LB99] G. T. Leavens and A. L. Baker. Enhancing the pre- and postcondition

technique for more expressive specifications. In J. M. Wing, J. Woodcock,
and J. Davies, editors, FM’99 – Formal Methods: World Congress on Formal
Methods in Development of Computer Systems, volume 1709 of Lecture Notes
in Computer Science, pages 1087–1106. Springer-Verlag, 1999.

[LBR99a] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed
design. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifica-
tions of Businesses and Systems, pages 175–188. Kluwer Academic Publishers,
1999.

276 KMMPN83

[LBR99b] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-06c,
Iowa State University, Department of Computer Science, January 1999.

[LCD+94] B. Liskov, D. Curtis, M. Day, S. Ghemawhat, R. Gruber, P. Johnson,
and A. C. Myers. Theta Reference Manual. MIT Laboratory for Computer
Science, Cambridge, MA, February 1994. Programming Methodology Group
Memo 88, available from www.pmg.lcs.mit.edu/papers/thetaref/.

[LD00] G. T. Leavens and K. K. Dhara. Concepts of behavioral subtyping and a
sketch of their extension to component-based systems. In G. T. Leavens and
M. Sitaraman, editors, Foundations of Component-Based Systems. Cambridge
University Press, 2000.

[Lea88] G. T. Leavens. Verifying Object-Oriented Programs that use Subtypes.
PhD thesis, Massachusetts Institute of Technology, 1988. Published as
MIT/LCS/TR-439 in February 1989.

[Lea96] G. T. Leavens. An overview of Larch/C++: Behavioral specifications for
C++ modules. In H. Kilov and W. Harvey, editors, Specification of Behavioral
Semantics in Object-Oriented Information Modeling, chapter 8, pages 121–142.
Kluwer Academic Publishers, Boston, 1996.

[Lea97] G. T. Leavens. Larch/C++ reference manual. HTML version available
from www.cs.iastate.edu/~leavens/larchc++manual/lcpp_toc.html, July
1997.

[Lei95a] K. R. M. Leino. A myth in the modular specification of programs. Note
KRML 63-0, 1995.

[Lei95b] K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995.

[Lei97] K. R. M. Leino. Ecstatic: An object-oriented programming language with
an axiomatic semantics. In B. Pierce, editor, Proceedings of the Fourth Interna-
tional Workshop on Foundations of Object-Oriented Languages, 1997. Available
from: www.cs.indiana.edu/hyplan/pierce/fool/.

[Lei98] K. R. M. Leino. Data groups: Specifying the modification of extended state.
In Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’98), volume
33(10) of ACM SIGPLAN Notices, pages 144–153, October 1998.

[LG86] B. Liskov and J. Guttag. Abstraction and Specification in Program Devel-
opment. MIT Press, 1986.

[LH92] K. Lano and H. Haughton. Reasoning and refinement in object-oriented
specification languages. In O. L. Madsen, editor, ECOOP ’92 European Con-
ference on Object-Oriented Programming, volume 615 of Lecture Notes in Com-
puter Science, pages 78–97. Springer-Verlag, 1992.

[LMMPH00] M. Labeth, J. Meyer, P. Müller, and A. Poetzsch-Heffter. Formal
verification of a doubly linked list implementation: A case study using the Jive
system. Technical Report 270, Fernuniversität Hagen, 2000.

[LN97] K. R. M. Leino and G. Nelson. Abstraction and specification revisited. A
revised version of this manuscript is available as technical report [LN00], 1997.

[LN00] K. R. M. Leino and G. Nelson. Data abstraction and information hiding.
Technical Report 160, Compaq Systems Research Center, 2000.

[LS97a] K. R. M. Leino and R. Stata. Checking object invariants. Technical Report
1997-007, Digital Systems Research Center, January 1997.

[LS97b] K. R. M. Leino and R. Stata. Direct dependencies and the pivot visibility
rule. Note KRML 69-0, 1997.

[LS99] K. R. M. Leino and R. Stata. Virginity: A contribution to the specification
of object-oriented software. Information Processing Letters, 70(2):99–105, April
1999.

KMMPN83 277

[LSS99] K. R. M. Leino, J. B. Saxe, and R. Stata. Checking Java pro-
grams via guarded commands. In B. Jacobs, G. T. Leavens, P. Müller,
and A. Poetzsch-Heffter, editors, Formal Techniques for Java Programs.
Technical Report 251, Fernuniversität Hagen, 1999. Available from
www.informatik.fernuni-hagen.de/pi5/publications.html.

[Luc90] D. C. Luckham. Programming with Specifications: An Introduction to
Anna. A Language for Specifying Ada Programs. Springer-Verlag, 1990.

[LW90] G. T. Leavens and W. E. Weihl. Reasoning about object-oriented pro-
grams that use subtypes (extended abstract). In N. Meyrowitz, editor, OOP-
SLA ECOOP ’90 Proceedings, volume 25(10) of ACM SIGPLAN Notices, pages
212–223. ACM, October 1990.

[LW93] B. Liskov and J. M. Wing. Specifications and their use in defining subtypes.
In A. Paepcke, editor, Proceedings of the 1998 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA ’93), volume 28 of ACM SIGPLAN Notices, pages 16–28. ACM Press,
1993.

[LW94] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans-
actions on Programming Languages and Systems, 16(6), 1994.

[LW97] G. T. Leavens and J. M. Wing. Protective interface specifica-
tions. In M. Bidoit and M. Dauchet, editors, TAPSOFT ’97: The-
ory and Practice of Software Development, 7th International Joint Con-
ference CAAP/FASE, Lille, France, volume 1214 of Lecture Notes in
Computer Science, pages 520–534. Springer-Verlag, 1997. Available from
ftp://ftp.cs.iastate.edu/pub/techreports/TR96-04/TR.ps.gz.

[Mey86] B. Meyer. Genericity is versus inheritance. In OOPSLA ’86 Conference
Proceedings, volume 21 of ACM SIGPLAN Notices, 1986.

[Mey88] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
[Mey92a] B. Meyer. Design by contract. In D. Mandrioli and B. Meyer, editors,

Advances in object-oriented software engineering. Prentice Hall, 1992.
[Mey92b] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
[Mey02] J. Meyer. Design and Implementation of Interactive Program Verification

Tools. PhD thesis, Fernuniversität Hagen, 2002. (to appear).
[MH69] J. McCarthy and P. Hayes. Some philosophical problems from the stand-

point of artificial intelligence. In B. Melzter and D. Michie, editors, Machine
Intelligence 4, pages 463–502. Edinburgh University Press, 1969.

[Min96] N. Minsky. Towards alias-free pointers. In P. Cointe, editor, ECOOP ’96
European Conference on Object-Oriented Programming, volume 1098 of Lecture
Notes in Computer Science, pages 189–209. Springer-Verlag, 1996.

[MMPH97] P. Müller, J. Meyer, and A. Poetzsch-Heffter. Programming and inter-
face specification language of Jive — specification and design rationale. Tech-
nical Report 223, Fernuniversität Hagen, 1997.

[MMPH99] P. Müller, J. Meyer, and A. Poetzsch-Heffter. Making executable in-
terface specifications more expressive. In C. H. Cap, editor, JIT ’99 Java-
Informations-Tage 1999, Informatik Aktuell. Springer-Verlag, 1999. Available
from www.informatik.fernuni-hagen.de/pi5/publications.html.

[MMPH00] J. Meyer, P. Müller, and A. Poetzsch-Heffter. The
jive system—implementation description. Available from
www.informatik.fernuni-hagen.de/pi5/publications.html, 2000.

[MMPN93] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley, 1993.

[Mor94] C. Morgan. Programming from Specifications. Prentice Hall, 1994.
[MPH97a] P. Müller and A. Poetzsch-Heffter. Formal specification techniques for

object-oriented programs. In M. Jarke, K. Pasedach, and K. Pohl, editors,

278 KMMPN83

Informatik 97: Informatik als Innovationsmotor, Informatik Aktuell. Springer-
Verlag, 1997.

[MPH97b] P. Müller and A. Poetzsch-Heffter. Preserving the correctness of object-
oriented programs under extension. In R. Berghammer and F. Simon, edi-
tors, Programming Languages and Fundamentals of Programming. Christian-
Albrechts-Universität Kiel, 1997. Technical Report 9717.

[MPH98] P. Müller and A. Poetzsch-Heffter. Kapselung und Methodenbindung:
Javas Designprobleme und ihre Korrektur. In C. H. Cap, editor, JIT
’98 Java-Informations-Tage 1998, Informatik Aktuell. Springer-Verlag, 1998.
Available from www.informatik.fernuni-hagen.de/pi5/publications.html
(in German).

[MPH99a] P. Müller and A. Poetzsch-Heffter. Alias control is crucial for modular
verification. In A. Moreira and D. Demeyer, editors, Object-Oriented Technol-
ogy. ECOOP’99 Workshop Reader, volume 1743 of Lecture Notes in Computer
Science, pages 154–156. Springer-Verlag, 1999. (position paper).

[MPH99b] P. Müller and A. Poetzsch-Heffter. Universes: A type sys-
tem for controlling representation exposure. In A. Poetzsch-Heffter and
J. Meyer, editors, Programming Languages and Fundamentals of Pro-
gramming. Fernuniversität Hagen, 1999. Technical Report 263, URL:
www.informatik.fernuni-hagen.de/pi5/publications.html.

[MPH00a] J. Meyer and A. Poetzsch-Heffter. An architecture for interactive pro-
gram provers. In S. Graf and M. Schwartzbach, editors, Tools and Algorithms
for the Construction and Analysis of Software (TACAS), volume 276 of Lecture
Notes in Computer Science, pages 63–77, 2000.

[MPH00b] P. Müller and A. Poetzsch-Heffter. Modular specification and verifica-
tion techniques for object-oriented software components. In G. T. Leavens and
M. Sitaraman, editors, Foundations of Component-Based Systems. Cambridge
University Press, 2000.

[MPH00c] P. Müller and A. Poetzsch-Heffter. A type system for controlling repre-
sentation exposure in Java. In S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T.
Leavens, P. Müller, and A. Poetzsch-Heffter, editors, Formal Techniques for
Java Programs. Technical Report 269, Fernuniversität Hagen, 2000. Available
from www.informatik.fernuni-hagen.de/pi5/publications.html.

[MS96] D. R. Musser and A. Saini. STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library. Addison-Wesley, 1996.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (revised). MIT Press, 1997.

[Mül95] P. Müller. Specification and implementation of an annotation language for
an object-oriented programming language. Master’s thesis, Technische Univer-
sität München, 1995. (In German).

[MZW97] A. Moormann Zaremski and J. M. Wing. Specification matching software
components. ACM Transactions on Software Engineering and Methodology,
1997.

[Nel91] G. Nelson, editor. Systems Programming with Modula-3. Pren-
tice Hall, 1991. Current version of language definition available from
www.research.digital.com/SRC/m3defn/html/m3.html

[NO98] T. Nipkow and D. von Oheimb. Java`ight is type-safe — definitely. In Proc.
25th ACM Symp. Principles of Programming Languages, pages 161–170. ACM
Press, New York, 1998.

[NVLA99] J. Noble, J. Vitek, D. Lea, and P. S. Almeida. Aliasing in object oriented
systems. In A. Moreira and D. Demeyer, editors, Object-Oriented Technology.
ECOOP’99 Workshop Reader, volume 1743 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1999.

KMMPN83 279

[NVP98] J. Noble, J. Vitek, and J. M. Potter. Flexible alias protection. In E. Jul,
editor, ECOOP ’98: Object-Oriented Programming, volume 1445 of Lecture
Notes in Computer Science. Springer-Verlag, 1998.

[OCL] OCL frequently asked questions. Archive at
www.cs.ukc.ac.uk/research/sse/oclws2k/oclfaq.txt.

[Ohe99] D. von Oheimb. Hoare logic for mutual recursion and local variables.
In C. Pandu Rangan, V. Raman, and R. Ramanujam, editors, Foundations of
Software Technology and Theoretical Computer Science, volume 1738 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[Ohe00] D. von Oheimb. Axiomatic semantics for Java`ight. In
S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leavens, P. Müller,
and A. Poetzsch-Heffter, editors, Formal Techniques for Java Programs.
Technical Report 269, Fernuniversität Hagen, 2000. Available from
www.informatik.fernuni-hagen.de/pi5/publications.html.

[OMG] OMG. UML resource page. Available from www.omg.org/uml/.
[Omo94] S. M. Omohundro. The Sather 1.0 specification. Technical report, Inter-

national Computer Science Institute, 1994.
[ON98] D. von Oheimb and T. Nipkow. Machine-checking the Java specification:

Proving type-safety. In J. Alves-Foss, editor, Formal Syntax and Semantics of
Java, volume 1523 of Lecture Notes in Computer Science. Springer, 1998.

[OSR93] S. Owre, N. Shankar, and J. M. Rushby. The PVS specification language
(beta release). Technical report, Computer Science Laboratory SRI Interna-
tional, April 1993.

[OW97] M. Odersky and P. Wadler. Pizza into Java: Translating theory into prac-
tice. In The 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM Press, 1997.

[Owi75] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. Tr-75-251,
Comp. Science Dept., Cornell University, 1975.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Communications of the ACM, 5(12):1053–1058, December 1972. Reprinted
in [You79].

[Pau91] L. C. Paulson. ML for the working Programmer. Cambridge University
Press, 1991.

[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer-Verlag, 1994.

[Per90] D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B, chapter 1, pages 1–57. Elsevier Science
Publishers, 1990.

[PH97a] A. Poetzsch-Heffter. Prototyping realistic programming languages based
on formal specifications. Acta Informatica, 34:737–772, 1997.

[PH97b] A. Poetzsch-Heffter. Specification and verification of object-oriented pro-
grams. Habilitation thesis, Technical University of Munich, Jan. 1997. URL:
www.informatik.fernuni-hagen.de/pi5/publications.html.

[PH00] A. Poetzsch-Heffter. Konzepte objektorientierter Programmierung.
Springer-Verlag, 2000.

[PHM98] A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-
oriented languages. In D. Gries and W. De Roever, editors, Programming Con-
cepts and Methods (PROCOMET), 1998.

[PHM99] A. Poetzsch-Heffter and P. Müller. A programming logic for sequen-
tial Java. In S. D. Swierstra, editor, Programming Languages and Systems
(ESOP ’99), volume 1576 of Lecture Notes in Computer Science, pages 162–
176. Springer-Verlag, 1999.

280 KMMPN83

[Pre97] C. Prehofer. Feature-oriented programming: A fresh look at objects. In
M. Akşit and S. Matsuoka, editors, ECOOP ’97: Object-Oriented Programming,
volume 1241 of Lecture Notes in Computer Science, pages 32–59. Springer-
Verlag, 1997.

[Rei95] W. Reif. The KIV approach to software verification. In M. Broy and
S. Jähnichen, editors, Korso: Methods, Languages, and Tools for the Construc-
tion of Correct Software, volume 1009 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

[RL00] C. Ruby and G. T. Leavens. Safely creating correct subclasses without see-
ing superclass code. In OOPSLA 2000 Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, volume 35(10) of ACM SIGPLAN
Notices, pages 208–228, October 2000.

[Ros97] J. Rose. Inner Classes Specification. Sun Microsystems, Inc., 1997. Avail-
able from http://java.sun.com/products/jdk/1.1/docs.

[RS92] L. Rapanotti and A. Socorro. Introducing FOOPS. Technical Report PRG-
TR-28-92, Oxford University Computing Laboratory, 1992.

[RS93] W. Reif and K. Stenzel. Reuse of proofs in software verification. In R. Shya-
masundar, editor, Foundation of Software Technology and Theoretical Computer
Science, volume 761 of Lecture Notes in Computer Science, pages 284–293.
Springer-Verlag, 1993.

[RSSB98] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifi-
cations and interactive proofs with KIV. In W. Bibel and P. Schmitt, editors,
Automated Deduction — A Basis for Applications. Kluwer Academic Publish-
ers, 1998.

[Rüp94] A. Rüping. Modules in object-oriented systems. In R. Ege, M. Singh, and
B. Meyer, editors, TOOLS 14 — Technology of Object-Oriented Languages and
Systems. Prentice Hall, 1994.

[RW92] M. Reiser and N. Wirth, editors. Programming in Oberon. ACM Press,
1992.

[She95] D. Sheppard. An Introduction to Formal Specification with Z and VDM.
McGraw-Hill, 1995.

[SMC74] W. Stevens, G. Myers, and L. Constantine. Structured design. IBM
Systems Journal, 13(2):115–139, May 1974. Reprinted in [You79].

[Sny86] A. Snyder. Encapsulation and inheritance in object-oriented programming
languages. In OOPSLA ’86 Conference Proceedings, volume 21 of ACM SIG-
PLAN Notices, pages 38–45, 1986.

[Sny87] A. Snyder. Inheritance and the development of encapsulated software sys-
tems. In B. Shriver and P. Wegner, editors, Research Directions in Object-
Oriented Programming, pages 165–188. MIT Press, 1987.

[SOM94] C. A. Szypersky, S. Omohundro, and S. Murer. Engineering a program-
ming language: The type and class system of Sather. In J. Gutknecht, editor,
Programming Languages and System Architectures, volume 782 of Lecture Notes
in Computer Science, pages 208–227. Springer-Verlag, 1994.

[ST88] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165–210, 1988.

[Ste96] B. Steensgaard. Points-to analysis in almost linear time. In Proc. 23rd
ACM Symp. Principles of Programming Languages, pages 32–41. ACM Press,
1996.

[Str91] B. Stroustrup, editor. The C++ Programming Language, 2nd Edition.
Addison-Wesley, 1991.

[Suz80] N. Suzuki, editor. Automatic Verification of Programs with Complex Data
Structures. Garland Publishing, 1980.

KMMPN83 281

[SWO95] M. Sitaraman, B. W. Weide, and W. F. Ogden. Using abstraction re-
lations to verify abstract data type representations. Technical Report OSU-
CISRC-9/95-TR39, Ohio State University, September 1995.

[Szy92] C. A. Szypersky. Import is not inheritance — why we need both: Mod-
ules and classes. In O. L. Madsen, editor, ECOOP ’92 European Conference
on Object-Oriented Programming, volume 615 of Lecture Notes in Computer
Science, pages 19–32. Springer-Verlag, 1992.

[Szy98] C. A. Szypersky. Component Software — Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1998.

[TWW82] J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type specification:
parameterization and the power of specification techniques. ACM TOPLAS,
4:711–773, 1982.

[Ull94] J. D. Ullman. Elements of ML Programming. Prentice-Hall, 1994.
[UR93] M. Utting and K. Robinson. Modular reasoning in an object-oriented re-

finement calculus. In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors,
Mathematics of Program Construction, volume 669 of Lecture Notes in Com-
puter Science, pages 344–367. Springer-Verlag, 1993.

[Ver01] The Verificard project. www.verificard.org, 2001.
[Wad90] P. Wadler. Linear types can change the world! In M. Broy and C. B.

Jones, editors, Programming Concepts and Methods (PROCOMET), 1990.
[WE87] J. Welsh and J. Elder. Introduction to Modula-2. Prentice Hall, 1987.
[WGSD89] M. Woodman, R. Griffiths, J. Souter, and M. Davies. Portable Modula-2

Programming. McGraw-Hill, 1989.
[Win83] J. M. Wing. A two-tiered approach to specifying programs. Technical Re-

port TR-299, Massachusetts Institute of Technology, Laboratory for Computer
Science, 1983.

[Win87] J. M. Wing. Writing Larch interface language specifications. ACM Trans-
actions on Programming Languages and Systems, 9(1):1–24, January 1987.

[Wir82] M. Wirsing. Structured algebraic specifications. In B. Robinet, editor,
Proc. AFCET Symp. on Mathematics for Computer Science, pages 93–108,
1982.

[Wir88] N. Wirth. From Modula to Oberon. Software Practice and Experience,
18(7), 1988.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 13, pages 675–788. Elsevier
Science Publishers, 1990.

[Wir96] N. Wirth. Compiler Construction. Addison-Wesley, 1996.
[WK99] J. Warmer and A. Kleppe. The Object Constraint Language, precise mod-

eling with UML. Addison-Wesley, 1999.
[WPP+83] M. Wirsing, P. Pepper, H. Partsch, W. Dosch, and M. Broy. On hier-

archies of abstract data types. Acta Informatica, 20:1–33, 1983.
[WSR00] R. Wilhelm, M. Sagiv, and T. Reps. Shape analysis. In D. A. Watt, editor,

Compiler Construction, volume 1781 of Lecture Notes in Computer Science,
pages 1–17. Springer-Verlag, 2000.

[XdRH97] Q. Xu, W.-P. de Roever, and J. He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Aspects of Computing,
9(2):149–174, 1997.

[XP99] H. Xi and F. Pfenning. Dependent types in practical programming. In
Proc. 26th ACM Symp. Principles of Programming Languages, pages 214–227.
ACM Press, New York, 1999.

[XS98] Q. Xu and M. Swarup. Compositional reasoning using the assumption-
commitment paradigm. In W.-P. de Roever, H. Langmaack, and A. Pnueli,

282 KMMPN83

editors, Compositionality: The Significant Difference, volume 1536 of Lecture
Notes in Computer Science, pages 565–583. Springer-Verlag, 1998.

[You79] E. N. Yourdon. Classics in Software Engineering. Yourdon Press, 1979.

List of Figures

2.1 Abstract Syntax of Mojave . 41
2.2 Object Store with Ownership Relation . 53
2.3 Object Structure for a Doubly Linked Integer List 55
2.4 Object Structure for a Doubly Linked Object List with Iterator . . 58
2.5 Object Structure for a Doubly Linked List with Position. 62
2.6 Implementation of equalsList . 63
2.7 Implementation of Property Pattern . 65
2.8 Object Structure for a MyBean-Object . 65
2.9 Example for Type Combinator . 66

3.1 Conceptual Theory Structure for One Class . 79
3.2 Theory Structure for Two Modules . 80
3.3 Language-Independent Axioms and Rules . 98

5.1 Non-local Dependency . 149
5.2 Case 1 for Field Updates . 150
5.3 Case 2 for Field Updates . 150
5.4 Case 1 for Method Invocations . 152
5.5 Case 2 for Method Invocations . 153
5.6 Case 3 for Method Invocations . 153
5.7 Automaton for Example 5.2.1 . 163
5.8 Automaton for Module LIST . 167

Index

L, 247
U , 84
A, 162
Γ , 92
Γbody(m), 92
Γpost, 92
Γpre(m), 92
Σ-formula, 223
δ, 176
ρ, 91
σ, 162
τ , 94
:, 43, 86
@, 43, 86
∗ , 67
∼= , 68
≺ , 85
¹ , 85
¹M , 81
¹T , 81
/ , 83
E , 83
(), 90
〈 := 〉, 90
〈 , 〉, 90
−→ , 157
≡ , 127

aB , 84
Abstract field, 9, 126
Abstraction, 125
– explicit, 126
– implicit, 126
Abstraction function, 126
Abstraction function, 126
Abstraction relation, 126
Access mode, 18, 48
Accessibility property, 178
accessible, 83
accessibleL, 89
AccessMode, 41

accessMode, 87
Adaptability, 19
AFieldId , 86
aI , 84
Alias
– dynamic, 14
– static, 14
Alias control, 53
alive, 90
All-rule, 98
ALocation, 88
Ancestor, 30
Annotation
– method, 93
– statement, 93
Antecedent, 93
Assumpt-axiom, 98
Assumpt-elim-rule, 98
Assumpt-intro-rule, 98
Assumption, 93
Authenticity requirement, 154
Axiom
– assumpt-, 98
– cast-, 94
– dep1, 157
– dep2, 157
– dep3, 157
– false-, 98
– field-read-, 94
– field-write-, 94
– field1, 87
– field2, 87
– field3, 87
– field4, 88
– field5, 88
– field6, 88
– field7, 88
– field8, 88
– field9, 88
– import1, 82

286 Index

– import2, 82
– import3, 82
– import4, 82
– import5, 82
– import6, 82
– inclusive, 82
– new-, 94
– skip-, 94
– store1, 90
– store2, 90
– store3, 90
– store4, 90
– store5, 90
– store6, 91
– store7, 91
– store8, 91
– store9, 91
– store10, 91
– store11, 91
– store12, 91
– store13, 91
– subM1, 81
– subM2, 81

Behavior
– functional, 123
Behavioral interface specification, 4
Behavioral subtyping, 136
Belong to, 54, 89
body , 93
booleanDT , 84
booleanT , 41

Call-rule, 95
Call-var-rule, 96
Cast-axiom, 94
CFieldId , 86
Child universe, 30, 54
cid , 41
cidV , 84
Class-rule, 96
ClassId , 41
Client, 50
Client code, 3
Client interface, 18
CLocation, 88
Closed program, 44
Co-dependency, 13
col , 129
Combination, 19
Component, 2
Component-based development, 2
Composability, 19

Conjunct-rule, 98
Consequent, 93
Core, 45
Correctness
– closed programs, 110
– modular, 111
Cover, 13
ctid , 41
Current universe, 59
cut , 129

Data abstraction, 125
dc, 156
Declaration type, 43, 87
Def-clause, 128
Defines-clause, 128
Definition 3.2.1, 99
Definition 3.2.2, 100
Definition 3.2.3, 100
Definition 3.2.4, 108
Definition 3.2.5, 109
Definition 3.3.1, 110
Definition 3.3.2, 111
Definition 5.4.1, 180
Definition 5.4.2, 183
dep, 266
dep1, 157
dep2, 157
dep3, 157
Dependee, 144
Dependency
– dynamic, 30
– static, 30
Dependent, 144
Depends, 9
Depends-clause, 156
Depends-relation, 147
Descendant, 30
Desugaring of modifies-clauses, 176
Disjunct-rule, 98
Downward closure, 176
dtype, 87
dyn, 85
Dynamic dependency, 30
Dynamic alias, 14
Dynamic component, 52
Dynamic type, 54, 84
Dynamization, 85
DynType, 84

Encapsulation, 18, 47
– representation, 55
ex-rule, 98

Index 287

Example 1.3.1, 7
Example 1.3.2, 8
Example 1.3.3, 11
Example 1.3.4, 13
Example 1.4.1, 24
Example 3.3.1, 113
Example 5.1.1, 145
Example 5.1.2, 154
Example 5.2.1, 161
Example 5.2.2, 172
Example 5.2.3, 175
Example 6.1.1, 197
Example 6.4.1, 208
Explicit abstraction, 126
Extended state problem, 11
Extended state, 6, 12

False-axiom, 98
fid , 89
Field
– abstract, 9, 126
Field-read-axiom, 94
Field-write-axiom, 94
field1, 87
field2, 87
field3, 87
field4, 88
field5, 88
field6, 88
field7, 88
field8, 88
field9, 88
FieldId , 86
Frame problem, 143
Frame properties, 3, 143
Friend, 18
Functional behavior, 123

grndT , 41
Ground type, 42
Guard, 153
guard , 159

H, 162
h, 237
Helper method, 196
History constraint, 208
Hoare lemma, 27
Hoare triple, 93

If-rule, 94
iid , 41
impl , 93
Implementation-rule, 96

Implicit abstraction, 126
ImplId , 41, 43
Import, 40
import1, 82
import2, 82
import3, 82
import4, 82
import5, 82
import6, 82
imports, 82
Inclusive axiom, 82
index , 131
Information hiding, 47
init , 85
Inside, 53
intDT , 84
Interface, 50
– client, 18
– specialization, 18
Interface specification, 4
Interface object, 52
Interface type, 50
InterfaceId , 41
intT , 41
inv , 204
Inv-rule, 98
Invariant
– module, 170, 208
– program, 208
– relevant, 200
invL, 202
Invocation-rule, 95
Invocation-var-rule, 95
invrep, 202
invSF , 202
itid , 41

Jive, 217

l, 247
L-equivalence, 127
lal , 108
Language property operator, 99
Lemma
– Hoare, 27
Lemma 3.1.1, 82
Lemma 3.1.2, 83
Lemma 3.1.3, 84
Lemma 3.1.4, 85
Lemma 3.1.5, 85
Lemma 3.1.6, 86
Lemma 3.1.7, 86
Lemma 3.1.8, 89

288 Index

Lemma 3.1.9, 89
Lemma 3.1.10, 91
Lemma 3.2.1, 101
Lemma 3.2.2, 101
Lemma 3.2.3, 101
Lemma 3.2.4, 109
Lemma 3.2.5, 109
Lemma 3.3.1, 111
Lemma 3.3.2, 116
Lemma 4.2.1, 127
Lemma 4.2.2, 129
Lemma 5.2.1, 158
Lemma 5.2.2, 158
Lemma 5.2.3, 159
Lemma 5.2.4, 160
Lemma 5.2.5, 168
Lemma 5.2.6, 168
Lemma 5.4.1, 180
Lemma 5.4.2, 181
Lemma 5.4.3, 183
Lemma 6.2.1, 203
Lemma 6.3.1, 206
Lemma D.1.1, 237
Lemma D.1.2, 238
Lemma D.1.3, 242
Lemma D.2.1, 243
Lemma D.2.2, 244
Lemma D.2.3, 244
Lemma D.2.4, 246
Lemma D.2.5, 247
Lemma D.3.1, 261
Lemma D.4.1, 266
Lemma D.4.2, 266
Lemma D.4.3, 269
list of, 224
locA, 89
Local creation property, 180
Local update property, 180
Locality, 148
Locality requirement, 149
Locality rule, 149
Location, 88
– relevant, 146
Location, 88
locC , 89
Logical variable, 223
Lopex, 217
lrtype, 89

Main module, 45
Method annotation, 93
Method implementation, 43
mkAFieldId , 86

mkCFieldId , 86
ModId , 41
Modifies-clause, 176
– desugaring, 176
Modular correctness, 111
Modular development, 2
Modular soundness, 27, 112
Modularity theorem, 154, 179
Module, 46
Module, 41
module, 82
Module invariant, 170, 208
Mojave, 39

new , 90
New-axiom, 94
Notdepends-relation, 148
Null type, 42
nullDT , 84
nullT , 41

oal , 108
obj , 89
Object type, 87
Object universe, 30, 54
ObjId , 84
objU , 83
Obligation 5.1, 157
Obligation 5.2, 159
Obligation 5.3, 160
Obligation 5.4, 160
Open program, 44
orep type, 42
orepT , 41
otype, 87
Outside, 53
Owner, 54
Ownership model, 52
Ownership relation, 52

Package, 46
par , 68
Pivot location, 169
Postcondition, 93
Poststate, 92
Pre-post-pair, 131
Pre-post-specification, 131
Precondition, 93
Prelude theory, 225
Present, 89
presentL, 89
Prestate, 92
Private protected, 49
Program

Index 289

– closed, 44
– open, 44
Program invariant, 208
Program component, 93
Program element, 17
Proof outline, 225
Proper subtype, 81
Property editor, 64
Public theory, 78

RA,B , 163
RN

A,B , 163
Range type, 87
rc, 164
Reachability, 91
Readonly type, 42
ref , 84
refDT , 84
Reference type, 42
regExpr , 164
Relevant invariant, 200
Relevant location, 146
rep type, 59
Representation, 52, 128
Representation encapsulation, 55
Representation containment, 52
Req-clause, 131
Requires-clause, 131
ret , 68
roDT , 84
roT , 41
rtype, 87
Rule
– all-, 98
– assumpt-elim-, 98
– assumpt-intro-, 98
– call-, 95
– call-var-, 96
– class-, 96
– conjunct-, 98
– disjunct-, 98
– if-, 94
– implementation-, 96
– inv-, 98
– invocation-, 95
– invocation-var-, 95
– seq-, 94
– static-invocation-, 95
– static-invocation-var-, 95
– strength-, 98
– subst-, 98
– subtype-, 96
– weak-, 98

– while-, 94
rule
– ex-, 98

safid , 86
scfid , 86
Scope, 47
Seq-rule, 94
Sequent, 93
set of, 224
Signature, 223
SimpleAFieldId , 86
SimpleCFieldId , 41, 86
Skip-axiom, 94
Software component, 2
Sort, 223
Soundness
– modular, 27, 112
Specialization interface, 18
Specification
– interface, 4
– pre-post-, 131
– universal, 4
– well-formed, 124
Standard universe, 54
State, 92
– visible, 196
Statement annotation, 93
static, 83
Static dependency, 30
Static alias, 14
Static-invocation-rule, 95
Static-invocation-var-rule, 95
stdU , 83
Store, 90
store1, 90
store2, 90
store3, 90
store4, 90
store5, 90
store6, 91
store7, 91
store8, 91
store9, 91
store10, 91
store11, 91
store12, 91
store13, 91
Strength-rule, 98
subM1, 81
subM2, 81
Subst-rule, 98
Subtype, 81

290 Index

– proper, 81
Subtype-rule, 96
Succedent, 93
Svenja, 217
Synthesis, 19

TA, 134
Target type, 44
Theorem 5.4.1, 184
Theory, 22
– prelude, 225
– public, 78
tid , 41
tidD , 84
trep type, 42
trepT , 41
Triple, 93
Type, 54
– dynamic, 54, 84
– ground, 42
– null, 42
– orep, 42
– readonly, 42
– reference, 42
– rep, 59
– trep, 42
Type, 41
Type universe, 30
Type combinator, 66
Type declaration, 54
Type universe, 54, 56
TypeDecl , 41
TypeId , 41
typeof , 85
typeU , 83

Unique variable, 76
Uniqueness, 76
univ , 84
Universal specification, 4
Universe, 29, 54
– child, 30, 54
– current, 59
– object, 30, 54
– standard, 54
– type, 30, 54, 56
Universe, 83
univV , 84

Value, 84
Variable
– logical, 223
Verificard, 219
View, 50

Virtual method, 43
VirtualMethodId , 41, 43
Visibility requirement, 155
Visible state, 196

Weak-rule, 98
Well-formed specification, 124
While-rule, 94
wt , 100

