
On Certain Basic Properties of
Component-Oriented

Programming Languages

Position Paper

Peter H. Fröhlich
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

phf@acm.org

Michael Franz
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

franz@uci.edu

ABSTRACT
The essence of component-oriented programming is a new
understanding of extensibility in which the development and
integration of extensions is a distributed activity, not a cen-
tralized one as in previous software development paradigms.
Component-oriented programming languages must therefore
be designed to have certain basic properties that support
rather than impede the distributed extensibility of software
systems. We discuss a number of existing language mech-
anisms in this regard and provide examples from Lagoona,
an experimental component-oriented programming language
we are developing.

1. INTRODUCTION AND BACKGROUND
In 1986, Nancy Leveson observed the following regarding
software safety [12]: “A fair conclusion might be that ‘why’
is well understood, ‘what’ is still subject to debate, and
‘how’ is completely up in the air.” Today, the same is
true for the paradigm of component-oriented programming:
There is broad agreement that “component-oriented pro-
gramming is good,” but there is much less agreement on
“what component-oriented programming is” and certainly
none on “how to do component-oriented programming.” The
number of approaches and technologies that have been pro-
posed for component-oriented programming in the past pro-
vide ample evidence of this.

With the publication of Douglas McIlroy’s classic paper [13]
in 1968, software components became a “silver bullet” for
software engineering [2] and reappeared regularly through
the decades. Components in this “classic” sense are primar-
ily concerned with reuse, either in the form of buying needed
components cheaper than their development cost, or in the
form of assembling multiple products out of existing com-

ponents. However, software reuse has been possible (if not
practiced) for a long time: In the paradigms of structured,
modular, and object-oriented programming, components in
this sense took the form of procedures, modules, and classes.
If “component-oriented programming” is to mean anything
as a software development paradigm, its essence must be
something other than reuse. Also, if this essence exists, it
should be possible to design component-oriented program-
ming languages to support it.

During our work on Lagoona [6, 8] it became clear that
the essence of component-oriented programming is its un-
derstanding of extensibility. A software system is usually
considered extensible only if certain well-defined means for
adding functionality have been designed into it.1 Procedure
variables can serve as such well-defined means in the struc-
tured and modular paradigms, while subtype polymorphism
can be used in the object-oriented paradigm. Although
these mechanisms enable the construction of extensible sys-
tems, the process of developing and integrating extensions
is not defined by the respective paradigms. Programming
languages for these paradigms usually require the developer
of an application and an extension to be the same party (or
at least to have access to the source code), and restrict the
integration of an extension to compile time. Component-
oriented programming breaks with this centralized process
by mandating that both development and integration of ex-
tensions is possible in a distributed fashion:

• Any interested party can develop an extension.

• New extensions can be integrated at any time.

These requirements are usually known as independent ex-
tensibility and dynamic extensibility [18], but we prefer the
more encompassing term distributed extensibility.2

This insight is not new, but it has a tendency to get lost
among terms such as architecture, component, connector,
1Obviously every software system is “extensible” in a very
basic sense since we can rewrite arbitrary amounts of it.
However, this is neither practical for making extensions, nor
useful for classifying software systems.
2Note that we do not claim that distributed extensibility
is impossible to achieve using the technology of previous
paradigms. It is, however, harder to achieve.



configuration, framework, market, or middleware that are
used pervasively in the literature [16, 18, 11]. Although we
refrain from doing so here, all of these terms can indeed
be explained solely with the requirement of distributed ex-
tensibility. For example, components and frameworks arise
from the need to delineate the extensions present in a sys-
tem from the core system itself. Focussing on distributed
extensibility proved valuable in making several key design
decisions for Lagoona, decisions we believe to be true for
other component-oriented programming languages as well.
However, while this perspective helps in pointing out “what
not to do” and “what still needs to be addressed” when de-
signing a component-oriented programming language, it is
not helpful in finding out “how to do it.” This is where the
language designer’s creativity comes into play.

In the following, we first discuss several fundamental design
decisions for component-oriented programming languages in
section 2 and then focus on a number of specific language
mechanisms and their impact on distributed extensibility in
section 3. Section 4 concludes the paper with a summary.

2. FUNDAMENTAL DESIGN
The design of a component-oriented programming language
starts with three fundamental insights: the need for inter-
faces, the need for modules, and the need for polymorphism.

An interface is an abstraction of all possible implementa-
tions that can fill a certain role in the composed system.It
thus describes minimal assumptions that frameworks and
components can make about each other. Interfaces are es-
sential to component-oriented programming because they
are the only form of coordination between frameworks and
components and the only means by which compositions can
be validated. We can view interfaces as sets of messages
(abstract operations) and implementations as sets of meth-
ods (concrete operations). Messages describe what effect is
achieved by an operation, while methods describe how that
effect is achieved. Multiple instances of an implementation
can exist concurrently, and multiple implementations can be
part of a component. We say that an implementation (or an
instance) conforms to an interface if it provides methods for
all messages in that interface. In programming languages,
interfaces and implementations should be modeled as inter-
face types and implementation types respectively. In this
manner, we can define the conformance of an implementa-
tion to an interface by the conformance of the corresponding
types.

Modules define the static structure of a system by providing
rigid boundaries which can not be crossed arbitrarily. They
thus help to isolate frameworks and components from each
other, to limit their interaction, and to make dependencies
explicit. Modules must be sealed [4] to be suitable for this
purpose: From outside the module we can neither access
members that were not exported explicitly, nor can we add
new members retroactively. Polymorphism supports the dy-
namic structure of a system by allowing different instances
of different implementation types to be bound to the same
interface type at runtime. Inclusion polymorphism [5] as
known from object-oriented languages is one way to achieve
this, although we prefer the term implementation polymor-
phism in this context.

Note that these considerations do not restrict us to a partic-
ular model of computation. Component-oriented program-
ming languages could be based on an imperative, a func-
tional, or possibly even a logical model. For Lagoona we
chose an imperative model in the tradition of Oberon [20],
mainly because of our previous experience with it.

3. LANGUAGE MECHANISMS
We now consider a number of language mechanisms and
their impact on the distributed extensibility of software sys-
tems in detail. Both known facts and open issues will be
described to varying extents.

3.1 Modules Revisited
We already discussed the central role of modules in section 2.
However, a number of further issues often arise in regard
to this basic construct, not the least of which is the con-
fusion of modules and classes. It has been shown that al-
though classes can play the role of modules, the two should
be conceptually different because they serve different pur-
poses [17], and many recent language designs have indeed
separated modules from classes. One major reason for this
is that modules can package a number of related classes into
a single deployable unit.

This in turn raises another question: Since certain compo-
nents might exceed the complexity that can conceivably be
packaged into a single module, should it not be possible to
nest modules? Aside from a number of semantic difficulties
with hierarchical module systems (or nested classes for that
matter), we have to consider what constitutes a deployable
unit again. If nested modules are still deployed individually,
nesting becomes irrelevant for distributed extensibility. On
the other hand, if nested modules are deployed in one “su-
per module,” we might have to distribute the same (source-
level) modules a number of times because they are part of
different components. A flat module space is conceptually
simpler and also has a number of other valuable properties
for component-oriented programming [19].

Another concern is the identity of components, and there-
fore that of modules. Distributed extensibility requires that
the presence of a particular extension in a system can not
preclude the presence of any other extension.3 Two other-
wise unrelated modules must therefore never have the same
name, they must have unique identities. Since no form of
“unique identity” can be achieved without some convention,
our goal should be to make the conventions as unintrusive
and transparent as possible. Microsoft’s COM [14] uses ran-
domly generated identifiers for this purpose, but these are
hardly transparent. For Lagoona, we have adopted a con-
vention similar to that originally proposed for Java: module
names are prefixed with “inverted” Internet domain names,
such as net.lagoona.base.Stack. Although not enforcable,
we believe that this convention is a good tradeoff, especially
when coupled with an import declaration that can introduce
abbreviations.

3The exceptions to this rule are of dynamic nature and con-
cern invariants the system needs to maintain in order to
function properly, for example when the extensions are de-
vice drivers of an operating system.



3.2 Interface Conflicts
Components often need to conform to multiple interfaces.
Consider a component that presents the results of a database
query within a compound document. Instances of this com-
ponent have to react to notifications from the database and
the compound document framework to keep their presenta-
tion current. Even though the frameworks could have been
developed by different organizations, conforming to both of
their interfaces must not lead to conflicts.

However, if we use existing object-oriented technology to
achieve polymorphism, such conflicts will sooner or later oc-
cur. The reason for this is that messages are bound to inter-
face types and therefore only have a unique identity there.
When two interface types are combined as in the scenario
sketched above, syntactic and semantics conflicts can arise
between messages with the same name.

In Lagoona, we have introduced the concept of stand-alone
messages that are bound to modules instead of types [9].
Since modules have a unique identity already, messages in
Lagoona are also always unique. Therefore, any combina-
tion of interface types results in a legal interface type and
also preserves all constituent messages. Other programming
languages provide mechanisms for resolving interface con-
flicts once they occur, but this is not useful if we want to
achieve distributed extensibility. Lagoona avoids interface
conflicts by design instead.

Stand-alone messages lead to an interesting insight if we
consider the design space for the identity of messages and
methods (as defined in section 1 above) relative to modules
and types: Binding both messages and methods to types
leads to object-oriented languages, while binding both to
modules leads to modular languages. Component-oriented
languages require that messages are bound to modules to
avoid conflicts, while methods remain bound to types to
support polymorphism.

3.3 Structural Conformance
The need to support multiple interfaces also has implications
for the conformance of two types in a component-oriented
programming language. In the scenario outlined above, as-
sume that database notifications are described by an inter-
face A, while document notifications are described by an in-
terface B. Consider the consequences of someone introduc-
ing a new interface type AB that combines these interfaces.
If we use declared conformance between types, a component
that supports interfaces A and B is not compatible with the
new interface AB, even though it describes identical require-
ments. For this reason, a component-oriented programming
language must offer structural conformance between types
[3], and this is indeed what we alluded to in section 1.

Structural conformance is often seen as “weaker” than de-
clared conformance, because it can result in “accidental”
conformance relations that the developer did not anticipate.
However, in a language that supports stand-alone messages,
accidental conformance is impossible: Even messages with
identical names and signatures are distinct in such a lan-
guage, because they were defined in different modules. In
Lagoona, we can thus safely support structural conformance
as required by the component-oriented paradigm, without

any of the drawbacks usually associated with this.

3.4 Inheritance and Forwarding
The concept of inheritance in object-oriented programming
was once hailed as the “golden way” towards extensible soft-
ware systems. However, the mechanism is generally not suit-
able for achieving distributed extensibility.4 Assume a con-
tainer class A that supports operations Add for adding an
element, Rem for removing an element, as well as MulRem
for removing several elements at once. We want to define a
derived class B that also supports queries about the number
of elements currently in the container. However, we can not
implement B without knowing the implementation details
of A as well: If the developer of A implements MulRem by
calling Rem repeatedly, we have to override Rem to main-
tain an accurate count; if MulRem does not call Rem, we
have to override MulRem instead. This is known as the
fragile baseclass problem in the literature, and it can be re-
solved by following an elaborate set of design conventions
[15]. If we want to avoid it altogether, we have to restrict
the use of inheritance or abolish the mechanism completely.

In Lagoona, we have chosen the latter option and replaced
inheritance with a generic forwarding mechanism. When an
object (instance of an implementation type) receives a mes-
sage, and a corresponding method implementing this mes-
sage exists, that method is executed. If no matching method
is found, but a special default method is implemented, that
method is executed instead. Inside a default method we can
generically resend the message to other instances. If neither
a matching method nor a default method exists, execution
is aborted with an exception. It is easy to see how to resolve
the problem in our example using this mechanism. Instead
of deriving a new class B, we develop an implementation
type B that has a reference to an instance of A. We imple-
ment the methods corresponding to the messages Add, Rem,
and MulRem by first maintaining our count and then send-
ing the message to the A instance. We also implement a
default method to forward all other messages to A.

There are, however, certain problems with this approach.
First, it is hard to make guarantees about a particular mes-
sage send since an empty default method can be used to
ignore all messages an object does not explicitly implement.
We currently resolve this by offering two versions of message
sends to the developer, one that is strict and requires a corre-
sponding method in the receiver, and one that is non-strict
and makes no guarantees that a message is ever handled.
While this at least makes the decision explicit, it is not
entirely satisfactory. Second, forwarding all received mes-
sages to another object in the default method can result in
a “sudden feature-acquisition” that was not intended. This
issue is currently not resolved in Lagoona. Finally, there
are certain useful applications of inheritance that are not
easily expressed through forwarding, in particular when we
define hierarchical data structures like abstract syntax trees.
While a final decision for Lagoona is still pending, we are
considering to allow inheritance within a module, but not
across module boundaries where it becomes a problem for

4In fact, the example of inheritance caught our attention
on the website announcing this workshop. We believed the
issue to be settled. . .



distributed extensibility. We hope to resolve these problems
in the near future.

3.5 Implementation Aspects
We would like to briefly point out three important imple-
mentation aspects of component-oriented programming lan-
guages: portability, efficiency, and safety. Components (and
therefore modules) should be deployed in a “binary” form
which allows their integration with a minimum of interven-
tion. However, if the developer of a component has to pro-
vide numerous “binary” versions for several different plat-
forms, the resulting management overhead can become a
serious problem. Therefore, the “binary” form should be a
portable intermediate representation. Instead of virtual in-
struction sets as used by the Java Virtual Machine or the
.NET architecture, we propose the use of abstract syntax
trees in the form of slim binaries [7]. Such a format has
a number of properties that make it more suitable to opti-
mization in the context of dynamic compilation, and thus
leads to portable and efficient execution. It is also suit-
able for dynamic optimization, which is particularly relevant
to component-oriented programming [10]: While we have
to deploy frameworks and components as well-encapsulated
entities in this setting, nothing prevents us from “tearing
down” these barries at runtime in order to perform optimiza-
tions such as program specialization or inlining that would
otherwise not be possible. Finally, abstract syntax trees
have proven to be useful for establishing certain safety prop-
erties that are as important for component-oriented pro-
gramming as they are for mobile-code systems where we
first studied them [1].

4. CONCLUSIONS
We have argued that the essence of component-oriented pro-
gramming lies in a new understanding of the notion of exten-
sibility as it applies to software systems. Previous paradigms
were only concerned with making systems extensible in prin-
ciple and implied the existence of a central authority man-
aging all extensions. Component-oriented programming re-
quires that extensions can be developed and integrated in a
distributed fashion, without any central authority. We have
shown that several basic properties of component-oriented
programming languages can be derived solely from this un-
derstanding of extensibility. The fundamental properties
implied by distributed extensibility are the need for inter-
faces, modules, and polymorphism. However, there is still
a large number of individual choices to be made within
this framework. We discussed modules, stand-alone mes-
sages, structural conformance, and inheritance in more de-
tail. Space limitations forced us to ignore the issues of rep-
resentation exposure, configuration management, and ad-
vanced type systems, all of which are of importance for
component-oriented programming.

Acknowledgments
We would like to thank Kimberly Haas and the anonymous
referees for valuable comments on earlier versions of this
paper. We are also indebted to Niall Dalton, Vivek Haldar,
and Clemens Szyperski for numerous interesting discussions,
and to the workshop organizers for being extraordinarily
patient. This work was partially supported by the National
Science Foundation under grants EIA-9975053 and CCR-
0105710.

5. REFERENCES
[1] W. Amme, N. Dalton, M. Franz, P. H. Fröhlich, V. Haldar,

P. S. Housel, J. v. Ronne, C. H. Stork, and S. Zhenonchin.
Project transPROse: Reconciling Mobile-Code Security
With Execution Efficiency. In Proceedings of the DARPA
Information Survivability Conference and Exhibition, pages
II.196–II.210, Anaheim, CA, June 2001.

[2] F. P. Brooks, Jr. No Silver Bullet: Essence and Accidents
in Software Engineering. IEEE Computer, 20(4):10–19,
Apr. 1987.

[3] M. Büchi and W. Weck. Compound Types for Java. In
Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 362–373, Vancouver, British Columbia, Oct. 1998.

[4] L. Cardelli. Typeful Programming. SRC Research
Report 45, Digital Systems Research Center, May 1989.

[5] L. Cardelli and P. Wegner. On Understanding Types, Data
Abstraction, and Polymorphism. ACM Computing Surveys,
17(4):471–522, Dec. 1985.

[6] M. Franz. The Programming Language Lagoona: A Fresh
Look at Object-Orientation. Software: Concepts and Tools,
18(1):14–26, Mar. 1997.

[7] M. Franz and T. Kistler. Slim Binaries. Communications of
the ACM, 40(12):87–94, Dec. 1997.

[8] P. H. Fröhlich and M. Franz. The Programming Language
Lagoona. Technical report, Department of Information and
Computer Science, University of California, Irvine.
Forthcoming.

[9] P. H. Fröhlich and M. Franz. Stand-Alone Messages: A
Step Towards Component-Oriented Programming
Languages. In Proceedings of the Joint Modular Languages
Conference, pages 90–103, Zürich, Switzerland, Sept. 2000.

[10] T. Kistler and M. Franz. Continuous Program
Optimization: Design and Evaluation. IEEE Transactions
on Computers, 50(6):549–566, June 2001.

[11] G. T. Leavens and M. Sitaraman, editors. Foundations of
Component-Based Systems. Cambridge University Press,
2000.

[12] N. G. Leveson. Software Safety: Why, What, and How.
ACM Computing Surveys, 18(2):125–163, June 1986.

[13] M. D. McIlroy. Mass-Produced Software Components. In
Proceedings of the NATO Software Engineering
Conference, pages 138–155, Brussels, Belgium, Oct. 1968.

[14] Microsoft Corporation. The Component Object Model
(Version 0.9), Oct. 1995.

[15] L. Mikhajlov and E. Sekerinski. The Fragile Base Class
Problem and Its Solution. Technical Report 117, Turku
Centre for Computer Science, Turku, Finland, June 1997.

[16] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
1996.

[17] C. Szyperski. Import is not Inheritance—Why we need
both: Modules and Classes. In Proceedings of the European
Conference on Object-Oriented Programming, pages 19–32,
Utrecht, The Netherlands, June 1992.

[18] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 1998.

[19] C. Szyperski. Modules and Components: Rivals or
Partners. In L. Böszörmeny, J. Gutknecht, and
G. Pomberger, editors, The School of Niklaus Wirth.
Morgan-Kaufmann, 2000.

[20] N. Wirth and J. Gutknecht. Project Oberon: The Design
and Implementation of an Operating System and Compiler.
Addison-Wesley, 1992.


