
UNIVERSITY OF CALIFORNIA,

IRVINE

Component-Oriented Programming
Languages: Why, What, and How

A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Peter Hans Fröhlich

Dissertation Committee:

Professor Michael Franz, Chair

Professor André van der Hoek

Professor Isaac Scherson

2003

HTTP://WWW.UCI.EDU/
http://www.ics.uci.edu/
http://www.cs.ucr.edu/~phf/
http://www.ics.uci.edu/~franz/
http://www.ics.uci.edu/~andre/
http://www.ics.uci.edu/~isaac/

c© 2003 Peter Hans Fröhlich

http://www.cs.ucr.edu/~phf/

The dissertation of Peter Hans Fröhlich is approved

and is acceptable in quality and form for

publication on microfilm:

Committee Chair

University of California, Irvine

2003

ii

http://www.cs.ucr.edu/~phf/
http://www.uci.edu/

Dedication

In memory of Kimberly Haas

(October 29, 1968 – April 26, 2002)

Dich bedecken

nicht mit Küssen

nur einfach

mit Deiner Decke

(die Dir

von der Schulter

geglitten ist)

daß Du

im Schlaf nicht frierst

Später

wenn Du

erwacht bist

das Fenster zumachen

und Dich umarmen

und Dich bedecken

mit Küssen

und Dich

entdecken

Nachtgedicht, Erich Fried

iii

Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Curriculum Vitae xii

Abstract of the Dissertation xiv

1 Introduction 1
1.1 Problem . 2
1.2 Approach . 5
1.3 Evaluation . 5
1.4 Benefits . 7
1.5 Roadmap . 8

2 Background 10
2.1 Component-Oriented Programming 11

2.1.1 Classic Perspective: Centralized Reuse 11
2.1.2 Modern Perspective: Distributed Extensibility 14
2.1.3 Software Development Paradigms 17

2.2 Component-Oriented Programming Languages 20
2.2.1 Modules . 21
2.2.2 Types and Polymorphism . 23
2.2.3 An Idealized Version of Java 25

2.3 Scope . 26
2.3.1 Component Models . 26
2.3.2 Generative Programming . 28
2.3.3 Composition Environments . 28

iv

3 Stand-Alone Messages 30
3.1 Motivation . 30
3.2 Interface Conflicts . 33

3.2.1 Syntactic Conflicts . 35
3.2.2 Semantic Conflicts . 37
3.2.3 Discussion . 38

3.3 Rethinking Messages . 40
3.3.1 Analysis . 40
3.3.2 Synthesis . 42

3.4 Evaluation . 44
3.4.1 Component Models . 44
3.4.2 Programming Conventions . 45
3.4.3 Design Patterns . 46
3.4.4 Explicit Qualification . 46
3.4.5 Renaming Messages . 47
3.4.6 Overloading Messages . 47
3.4.7 Summary . 48

4 Generic Message Forwarding 50
4.1 Motivation . 51
4.2 The Fragile Base Class Problem . 53

4.2.1 Syntactic Aspect . 53
4.2.2 Semantic Aspect . 56

4.3 Rethinking Inheritance and Delegation 57
4.3.1 Analysis . 58
4.3.2 Synthesis . 60

4.4 The Expressiveness of Forwarding . 62
4.4.1 Decomposing Inheritance . 62
4.4.2 Design Patterns . 67

4.5 Evaluation . 69
4.5.1 Component Models . 69
4.5.2 Programming Conventions . 70
4.5.3 Design Patterns . 70
4.5.4 Generic Wrappers . 70
4.5.5 Summary . 71

5 Lagoona 72
5.1 Overview . 73

5.1.1 Historical Remarks . 73
5.1.2 Core Language . 74

5.2 Object Model . 75
5.2.1 Modules . 79

v

5.2.2 Messages . 80
5.2.3 Interface Types . 81
5.2.4 Implementation Types . 83

5.3 Applications . 85
5.3.1 Structural Interface Conformance 85
5.3.2 Minimal Typing . 86
5.3.3 Component Reentrance . 88
5.3.4 Iterators . 89
5.3.5 Design Guidelines . 91

5.4 Evaluation . 94
5.4.1 Multimethods . 94
5.4.2 Units and Mixins . 95

6 Implementation 97
6.1 General Concerns . 98

6.1.1 Efficienct Execution . 98
6.1.2 Convenient Deployment . 100

6.2 Prototype Implementations . 101
6.2.1 The PYLAG Interpreter . 102
6.2.2 The LAVA Compiler . 102

6.3 Message Dispatch . 105
6.3.1 Basic Dispatch Techniques . 106
6.3.2 Building Dispatch Data Structures 110
6.3.3 Strict Message Sends . 112
6.3.4 Widening Interface References 114
6.3.5 Blind Message Sends and Generic Forwarding 114

6.4 Summary . 115

7 Future Work 117
7.1 Static Typing and Message Forwarding 117
7.2 Type Inference . 119
7.3 Dynamic Optimization . 120
7.4 Aliasing and Representation Exposure 122
7.5 Versioning and Configuration Management 123
7.6 Real-Time Programming and Embedded Systems 124

8 Summary 126
8.1 Achievements . 126
8.2 Shortcomings . 128
8.3 Conclusions . 129

Bibliography 131

vi

List of Figures

1.1 Web browser in terms of components, frameworks, and interfaces . . 3
1.2 Evolution of language abstractions for components 3
1.3 Programming language design and language qualities 7

2.1 Classic component market based on centralized reuse 13
2.2 Modern component market based on distributed extensibility 15
2.3 A web browser in terms of components and frameworks 16
2.4 Evolution of software development paradigms 19
2.5 Evolution of language abstractions for components 19
2.6 Standard model for component-oriented programming languages . . 25
2.7 Research context for component-oriented programming 27

3.1 A component conforming to multiple frameworks 32
3.2 Algebraic specification of stacks . 33
3.3 Interface for a basic stack abstraction 34
3.4 Interface of a compatible stack abstraction 35
3.5 Example stack implementation . 36
3.6 Stack abstraction causing a syntactic interface conflict 37
3.7 Stack abstraction causing a semantic interface conflict 38
3.8 Resolving interface conflicts using adapters 39
3.9 Interface combination in object-oriented languages 41
3.10 Example for implementation polymorphism 42
3.11 Interface for the stack abstraction using stand-alone messages 43
3.12 External view of the new stack abstraction 43
3.13 Interface combination using stand-alone messages 44

4.1 A component requiring adaptation and extension 52
4.2 Example multi stack implementation 54
4.3 A mismatched stack interface . 54
4.4 Example multi stack adapter . 55
4.5 The syntactic fragile base class problem 56
4.6 The semantic fragile base class problem 57

vii

4.7 Two basic inheritance mechanisms . 59
4.8 Adding a method using inheritance or forwarding 60
4.9 Overriding a method using inheritance or forwarding 61
4.10 Call patterns for adding methods using inheritance and fowarding

(dashed arrows are “before adding,” others are “after adding”). . . . 63
4.11 Call patterns for overriding or augmenting methods through inher-

itance (dashed arrows are “before inheritance,” others are “after in-
heritance”). 64

4.12 The intricacies of self-recursive message sends 66

5.1 Notation for syntactic aspects of interfaces and implementations . . . 76
5.2 Lagoona’s model for component-oriented programming 77
5.3 The stack abstraction in Lagoona . 80
5.4 Notation for semantic aspects of interfaces 81
5.5 An implementation of the stack abstraction 82
5.6 Adding counting to the stack abstraction and its implementation . . 84
5.7 Example method illustrating minimal typing 86
5.8 Publishers and subscribers . 87
5.9 Naive publishers and subscribers in Java 88
5.10 Smarter publishers and subscribers in Lagoona 89
5.11 Using iterators in Java . 90
5.12 Implementing iterators in Lagoona . 92
5.13 A flawed interface for bounded stacks 93
5.14 An sound interface for bounded stacks 93
5.15 Bounded and unbounded stack specifications 94

6.1 Mismatch between software and hardware concerns 99
6.2 Architecture of the PYLAG interpreter 103
6.3 Architecture of the LAVA compiler . 104
6.4 Basic message dispatch data structures 108
6.5 Layout of descriptor tables . 111
6.6 Message dispatch for implementation types 112
6.7 Message dispatch for interface types 113

7.1 Declarative forwarding to improve static typing 118
7.2 The type inference problem in Lagoona 121

viii

List of Tables

4.1 The use of inheritance in object-oriented design patterns 68

5.1 Design concerns and language constructs 76
5.2 Explored language design space for messages 96

ix

Acknowledgments

A dissertation reflects the work of many people, most of whom deserve more

credit than they customarily receive. However, keeping track of all the hallway

conversations and newsgroup postings that end up being important after five

years is just too tedious. My only recourse is to thank everyone who ever had

some sort of conversation with me, not necessarily even about the topic of this

dissertation, and to apologize to all not listed below.

I am deeply grateful to my advisor, Prof. Dr. MICHAEL FRANZ, for inviting me

to UC Irvine as a researcher and a student, for constantly sharing his insight and

wisdom, and for suffering patiently under my bizarre working habits. Michael

kept me going when I was about to give up and then nudged me out of the door I

was so afraid to step through. I cannot thank him enough for all he has given me.

I am also indebted to Prof. Dr. ANDRÉ VAN DER HOEK and Prof. Dr. ISAAC

SCHERSON for serving on my dissertation committee and for providing heaps of

helpful feedback on my work. Prof. Dr. LUBOMIR BIC and Prof. Dr. ABEL KLEIN

deserve “extra credit” for sitting through my candidacy exam. Prof. Dr. DAVID

ROSENBLUM introduced me to many advanced issues in software engineering and

made me write a term paper that already contained the kernel of this dissertation.

Prof. Dr. RICHARD LATHROP provided useful advice on giving presentations.

Outside the Irvine campus, Prof. Dr. CLEMENS SZYPERSKI (Queensland Uni-

versity of Technology and Microsoft Research) turned out to be an almost infinite

source of inspiration and aspiration. All of our sizable email exchanges ended up

somewhere in this dissertation, and I am particularly grateful for the long talk we

had at OOPSLA 2001 in Florida. In addition, Clemens was kind enough to serve as

x

an (unofficial) outside member on my dissertation committee. I also want to thank

Prof. Dr. KLAUS KÖHLER (University of Applied Sciences, Munich, Germany) who

sparked my interest in programming languages, advised my diploma thesis, and

encouraged me to persue still higher goals on this side of the Atlantic. Last but not

least, I thank Prof. Dr. THOMAS PAYNE and Prof. Dr. BRETT FLEISCH (University

of California, Riverside) for supporting me during the final months of writing.

I benefitted from countless discussions with fellow graduate students NIALL

DALTON, JOACHIM FEISE, ANDREAS GAL, VIVEK HALDAR, Dr. THOMAS KISTLER,

ZIEMOWIT LASKI, CHRIS LÜER, and CHRISTIAN STORK. While visiting our re-

search group, Dr. WOLFRAM AMME and Dr. FERMÍN REIG were kind enough to

share their insights as well. Short email exchanges with Prof. Dr. MARTÍN ABADI,

Dr. MARTIN BÜCHI, Prof. Dr. KIM BRUCE, Prof. Dr. ERIK ERNST, Prof. Dr. PETER

GROGONO, RICCARDO PUCCELLA, Prof. Dr. MARKKU SAKKINEN, and Dr. WOLF-

GANG WECK were also very helpful.

Finally, I want to thank my friends (especially NAOMI CARPENTER, MATTHEW

DAVIES, REBECCA HARRIS, MICHAEL SHAFAE, LEILA THAROK, and CHRISTIAN

VOGEL), Kim’s family (DIANE and ROBERT BUCK, and LYNNE EDDINGTON), and

of course my parents (ANTONIE and HANS FRÖHLICH), for keeping me at least

somewhat sane during the insanity of graduate school.

Funding. The National Science Foundation (NSF) partially funded the work de-

scribed in this dissertation under grants EIA-9975053 and CCR-0105710.

Publications. Parts of this dissertation were published previously [FFK99, FF00,

Frö00, FF01, Frö02] and benefitted from the comments of numerous (often anony-

mous) reviewers.

xi

Curriculum Vitae

Peter Hans Fröhlich

Born September 20, 1971 in Munich, Germany.
Citizen of Germany.

Education

Diplom-Informatiker (1997)

Department of Computer Science and Mathematics
University of Applied Sciences, Munich, Germany

Master of Science (2000)

Department of Information and Computer Science
University of California, Irvine

Doctor of Philosophy (2003)

School of Information and Computer Science
University of California, Irvine

Academic Experience

Winter 1998 – Spring 1998

Visiting Researcher
Department of Information and Computer Science
University of California, Irvine

Fall 1998 – Winter 1999

Teaching Assistant
Department of Information and Computer Science
University of California, Irvine

xii

http://www.informatik.fh-muenchen.de/
http://www.fh-muenchen.de/
http://www.ics.uci.edu/
http://www.uci.edu/
http://www.ics.uci.edu/
http://www.uci.edu/
http://www.ics.uci.edu/
http://www.uci.edu/
http://www.ics.uci.edu/
http://www.uci.edu/

Academic Experience (continued)

Spring 1999 – Spring 2001

Research Assistant
Department of Information and Computer Science
University of California, Irvine

Summer 2001

Lecturer
Department of Information and Computer Science
University of California, Irvine

Fall 2001 – Summer 2002

Research Assistant
Department of Information and Computer Science
University of California, Irvine

Fall 2002 – current

Lecturer and Research Programmer
Department of Computer Science and Engineering
University of California, Riverside

Industrial Experience

September 1991 – February 1992

Technical Intern
Daimler-Benz Aerospace AG, Munich, Germany

September 1993 – February 1994

Technical Intern
Sisymed Software GmbH, Munich, Germany

March 1997 – December 1997

Software Engineer
NEXUS informatics GmbH, Munich, Germany

July 1998 – September 1998

Software Engineer
COCOSS GbR, Munich, Germany

xiii

http://www.ics.uci.edu/
http://www.uci.edu/
http://www.ics.uci.edu/
http://www.uci.edu/
http://www.ics.uci.edu/
http://www.uci.edu/
http://www.cs.ucr.edu/
http://www.ucr.edu/

Abstract of the Dissertation

Component-Oriented Programming Languages: Why,

What, and How

by

Peter Hans Fröhlich

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2003

Professor Michael Franz, Chair

In this dissertation, I investigate the notion of component-oriented programming

languages. Simply put, a programming language is component-oriented if (and

only if) it facilitates software development following the paradigm of component-

oriented programming. Although this definition might not seem well-founded at

first, it is exactly in this sense that we commonly speak of structured, modular,

or object-oriented programming languages as facilitating software development

following their respective paradigms.

The central question I address here is how component-oriented programming

languages differ from programming languages for those earlier paradigms. This

obviously requires an explanation of component-oriented programming as a soft-

ware development paradigm as well. Given the “object hype” of the early 1990s,

it should come as no surprise that even a paradigm that seems “revolutionary” at

xiv

http://www.cs.ucr.edu/~phf/
http://www.ics.uci.edu/
http://www.uci.edu/
http://www.ics.uci.edu/~franz/

first actually leads to mostly “evolutionary” improvements over earlier program-

ming languages. While these improvements derive from the ideas of component-

oriented programming, their applicability is not restricted to that setting. In this

respect, they are similar to “classic” advances in programming languages such as

the proscription against goto. the case instruction, or the introduction of explicit

module constructs.

The main result I present in this dissertation is a framework of design decisions

for component-oriented programming languages. This framework can be applied

either to revisions of existing languages or to the design of new ones. I focus on

the development of this framework, particularly on the development of the two

novel language mechanisms it is based on: stand-alone messages and generic message

forwarding. Using the example of Lagoona, I illustrate how the framework can be

applied to the design and implementation of an actual programming language.

Finally, I evaluate the framework (and thus Lagoona) in terms of new solutions

to—sometimes long-standing—design and implementation problems drawn from

both object-oriented and component-oriented programming.

xv

Chapter 1

Introduction

At the present time I think we are on the verge of discovering at last
what programming languages should really be like. I look forward to
seeing many responsible experiments with language design during the
next few years; and my dream is that by 1984 we will see a consensus
developing for a really good programming language (or, more likely, a
coherent family of languages).

— DONALD E. KNUTH [Knu74]

Programming languages are the bridge connecting software and hardware, the

conceptual and the tangible poles of computer science. In a first approximation,

software engineering drives programming language design while computer archi-

tecture drives programming language implementation [GJ97]. Thus, as long as these

disciplines continue to evolve, programming languages will continue to evolve as

well.

In this dissertation, I study the impact of component-oriented programming, an

emerging software development paradigm [SGM02], on the design of program-

ming languages. I contribute a novel framework for the macroscopic structure of

component-oriented programming languages, the result of another “responsible

experiment with language design” which hopefully brings us closer to KNUTH’s

dream. In this chapter, I give an overview of the “experiment” and the dissertation.

1

1.1 Problem

The classic idea of “mass-produced software components” has seen a resurgence

of interest in recent years, although not in its “classic” form. In the wake of MCIL-

ROY’s landmark paper [McI69], software components were primarily understood

as units of reuse. Produced and sold by component vendors, bought and integrated

by application vendors, components would end up on a user’s machine as invisi-

ble parts of a “binary blob” called “application.”

In their “modern” form, software components are understood as units of exten-

sion instead and the complementary notion of a component framework has appeared

[SGM02]. Components extend the functionality of frameworks, while frameworks

provide execution environments for components. Furthermore, components and

frameworks can be produced as well as integrated by any interested party at any

time.1 No longer invisible, “modern” software components retain an autonomous

character as “binary blobs” in their own right, even after they are deployed on a

user’s machine.

Figure 1.1 on the following page illustrates this approach to component soft-

ware. A web browser, instead of being a monolithic application, is a framework

responsible for managing network access and screen estate on behalf of compo-

nents that provide user functionality. Composition is hierarchical since components

of one framework can themselves be frameworks for further components. Com-

position is restricted by interfaces to ensure a functioning software system. Com-

position is dynamic since new components can be added to the system at runtime.

Software engineering has long recognized components as one of the few “silver

bullets” that could alleviate the “software crisis” [Bro87]. Established software

development paradigms have in fact consistently identified components with their

primary abstraction mechanism (see Figure 1.2 on the next page):

• In structured programming, components are individual operations (i.e. proce-

dures or functions); this includes MCILROY’s original paper [McI69].

1Note that the “modern” view subsumes the “classic” view: Reuse is still practiced, but not
exclusively by application vendors anymore. See Chapter 2 for the details.

2

...

Web Browser Framework (e.g. Mozilla)

Quick
time

PNG

JPG

...

AVI

MPG

MOV

Java
Virtual

Machine

Adobe
Acrobat

PDF

Figure 1.1: Schematic view of a web browser in terms of components, frameworks,

and interfaces (shown as arrows, omitted within Quicktime for clarity).

Operation

Module

...

Operation

Type

...

Operation

Module

Operation

Type

...

Operation

imports

calls

extends

...

...

imports

Component-Oriented?

Object-Oriented

Modular
Structured

Figure 1.2: Evolution of programming language abstractions for components

through various software development paradigms. (Dashed arrows indicate evo-

lution, repeated arrows for recursive relationships omitted for clarity.)

3

• In modular programming, components are modules that encapsulate a collec-

tion of related operations.

• In object-oriented programming, components are types (i.e. classes), that again

encapsulate a collection of related operations.

Of course, none of the established paradigms has in fact achieved MCILROY’s orig-

inal vision in this way.

For the emerging paradigm of component-oriented programming, a combination

of all these abstraction mechanisms has been suggested instead [SGM02]: Compo-

nents are modules that encapsulate a collection of operations as well as a collection of types.

Component-oriented programming can thus be characterized as a combination of

modular and object-oriented programming, and I will refer to this as the “standard

model” of a component-oriented programming language (see Chapter 2). There

are, however, several problems with this approach, for example:

• Interfaces must frequently be combined to enable composition with multiple

frameworks. In the standard model, this can lead to interface conflicts which

prevent otherwise legal compositions (see Chapter 3).

• Components must frequently be adapted to enable composition with frame-

works they were not explicitly designed for. In the standard model, this can

lead to the fragile base class problem which prevents successful adaptation (see

Chapter 4).

• Conformance of components to interfaces must be (at least partially) struc-

tural. This is not commonly supported in either the modular or the object-

oriented languages the standard model is based on (see Chapter 5).

More generally, while there is a consensus that some of the mechanisms from mod-

ular and object-oriented programming are necessary for component-oriented pro-

gramming, the exact nature of their combination is rarely spelled out.

4

1.2 Approach

In order to solve the problems outlined above, I propose a novel design frame-

work for the structure of component-oriented programming languages. I develop

this framework from specific example problems that lead to two novel language

mechanisms: stand-alone messages and generic message forwarding. The proper-

ties of these mechanisms allow their integration into a coherent framework which

solves the problems outlined above:

• Any combination of two or more interface types is itself a valid interface type

preserving all constituent messages.

• Implementation types can be adapted conveniently and without risk of the

fragile base class problem.

• Conformance between interface and implementation types is structural yet

safe down to the level of constituent messages.

The resulting design framework also supports minimal typing of parameters at

component boundaries as well as retroactive supertyping, two concepts that sup-

port software evolution and refactoring. Using the framework, the problems of

component reentrance can be addressed as well, and there are further applications

in the areas of iteration abstractions, component framework extensibility, and design

guidelines for behavioral subtyping.

1.3 Evaluation

Evaluating programming languages and language mechanisms objectively is noto-

riously difficult. While there is general agreement on the desirable qualities, no two

books or articles seem to agree on the details. I therefore apply two complementary

approaches to evaluate the language mechanisms developed in this dissertation,

one comparative and one qualitative.

5

Comparative evaluations study related mechanisms in other programming lan-

guages as well as related design patterns and idioms. For the most part, I rely

on established and validated programming languages instead of academic proto-

types. These evaluations thus provide detailed analyses of the advantages and

disadvantages relative to known standards.

Qualitative evaluations are based in part on the results of the comparative eval-

uations. I discuss the mechanisms I develop in terms of four core qualities, namely

efficiency, flexibility, safety, and simplicity. To avoid misunderstandings, following

are the definitions used herein:

Efficiency: An efficient programming language tries to associate fixed and prefer-

ably constant runtime costs with each mechanism it offers. Similarly, it tries

to avoid mechanisms for which no such guarantee can be made.2

Flexibility: A flexible programming language allows programmers freedom in

combining and exploiting language mechanisms and provides mechanisms

that are expressive enough to lead to straightforward solutions.

Safety: A safe programming language tries to detect as many programming errors

as possible at compile time. Furthermore, it tries to avoid language mecha-

nisms for which safety can not be enforced in this way. When a mechanism

can neither be analyzed statically nor removed from the language, a safe lan-

guage will at least guarantee detecting the error at runtime.

Simplicity: A simple programming language tries to minimize the number of lan-

guage mechanisms necessary to write useful software. Simple languages are

easy to learn, mostly because they have fewer special cases that must be re-

membered. Simple languages also often have particularly reliable compilers.

As illustrated in Figure 1.3 on the following page, the interplay between these four

qualities drives much of the research in programming language design. These

2In the context of programming languages, efficiency is frequently not just an asymptotic con-
cern: Every instruction the processor has to execute on behalf of the language itself—and not the
client program—is considered one instruction too many.

6

Simplicity Efficiency

FlexibilitySafety

Programming
Language

Design

Figure 1.3: The context for programming language design in terms of four core

language qualities.

qualities are not completely orthogonal. Safety and simplicity, for example, often

influence efficiency in a positive way.

1.4 Benefits

Besides solving a number of technical problems, the benefits derived from my de-

sign framework fall into three major areas. First, the framework covers a previ-

ously unexplored region in the design space of programming languages and sheds

new light on the exact combination of modular and object-oriented features re-

quired for component-oriented programming.

Second, it extends previous results on programming language design, namely

the separation of interface types from implementation types [Sny86] and the sep-

aration of modules from types [Szy92]. Both of these results are by now widely

accepted, and my contribution is to show that messages and methods should be

separated as well, binding messages to modules instead of types.

Third, the framework clarifies a number of the tradeoffs involved in the design

of component-oriented—and often object-oriented—programming languages:

7

• The tradeoff in expressive power between forwarding and recursive mecha-

nisms for code reuse such as inheritance and delegation.

• The tradeoff between the level of extensibility required for component soft-

ware and the level of type safety that can be guaranteed for it.

• The tradeoff between the efficiency of purely static inheritance in class-based

languages and purely dynamic delegation in prototype-based languages.

By providing these insights and clarifications, the design framework developed in

this dissertation should enable future research on component-oriented program-

ming languages to proceed with better focus and thus more productively.

1.5 Roadmap

Research publications tend to be “rational reconstructions” of the actual research

performed, and this dissertation is no exception. Instead of presenting my work

in chronological order, I “fake a rational design process” [PC86] and discuss ques-

tions and findings in topical groupings. Chapters 2 – 5 constitute the core of my

dissertation and focus on language design for component-oriented programming.

Chapters 6 and 7 describe implementation issues and future work addressing the

shortcomings that remain. Note that I discuss related work throughout the thesis

where it is most appropriate instead of collecting it in a separate chapter.

In Chapter 2, I introduce component-oriented programming as a software de-

velopment paradigm. I discuss the “classic” understanding of components as units

of centralized reuse as well as the “modern” understanding of components as units

of distributed extension. Following these preliminaries, I describe the standard

model for the design of component-oriented programming languages, on which I

improve in the remainder of the dissertation.

In Chapter 3, I develop stand-alone messages, the first novel language mechanism

in my design framework. I introduce the problem of interface conflicts and show

that programming languages following the standard model can not resolve them.

8

In the subsequent analysis, I trace this shortcoming to the status of messages in

object-oriented programming languages and argue that they must be independent

of types. Finally, I evaluate stand-alone messages by comparing them to existing

approaches solving similar problems.

In Chapter 4, I develop generic message forwarding, the second novel language

mechanism in my design framework. I introduce the problem of fragile base classes

and show that programming languages following the standard model are prone

to this problem as well. In the subsequent analysis, I trace this shortcoming to

established results on the recursive binding of self references in object-oriented

programming languages. I argue that recursive mechanisms such as inheritance

and delegation must be abandoned in favor of forwarding and exhibit a flexible

mechanism for achieving this. Finally, I evaluate generic message forwarding by

comparing it to existing approaches solving similar problems.

In Chapter 5, I introduce the programming language Lagoona, which is based

on the language mechanisms developed earlier. I outline my design framework

for component-oriented programming languages and relate it to Lagoona’s base

language Oberon. I then review the individual design decisions made in apply-

ing the framework and describe Lagoona in detail. Finally, I evaluate the design

framework—and thus Lagoona—by exhibiting novel solutions to several design

and implementation problems drawn from both object-oriented and component-

oriented programming.

In Chapter 6, I discuss implementation aspects of Lagoona and component-

oriented programming languages in general. I focus on efficient techniques for the

problem of message dispatch, an area where languages following my design frame-

work require more general solutions than those commonly adopted for established

object-oriented programming languages.

In Chapter 7, I outline several directions for future work, addressing shortcom-

ings that remain in Lagoona as well as promising extensions. Finally, in Chapter 8,

I summarize the contributions made in this dissertation and offer my conclusions.

9

Chapter 2

Background

I would like to see components become a dignified branch of software
engineering. . . . I think there are considerable areas of software ready, if
not overdue, for this approach.

— M. DOUGLAS MCILROY [McI69]

A component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. . . . A component can be
deployed independently and is subject to composition by third parties.

— CLEMENS SZYPERSKI [SGM02]

In this chapter, I provide the necessary background information on which the re-

mainder of the dissertation is built. I first review the idea of “software compo-

nents” in the various forms it has taken over the years and show how it relates to

the design of paradigmatic programming languages (Section 2.1). I then introduce

the basic design elements of component-oriented programming languages, the is-

sue I focus on for the remainder of the dissertation (Section 2.2). I conclude the

chapter with a brief discussion of related work in the area of component software,

mainly to properly explain the scope of my work (Section 2.3).

10

2.1 Component-Oriented Programming

As evidenced by MCILROY’s quote from 1968, the idea of software components

has been around for a long time. One problem with ideas as old as this one is that

everybody has their own understanding of what a “component” is (or ought to be).

A similar situation existed for “objects” and “object-oriented programming” until

the late 1980s, when one particular approach to “object-oriented programming”—

in the style of Smalltalk [GR83], Eiffel [Mey92], and C++ [Str00]—finally became

the widely accepted understanding [Weg87].

To gain a clearer understanding of component software, I review the “classic”

as well as the “modern” understanding of the term in detail and then relate both

the design of paradigmatic programming lanuages.

2.1.1 Classic Perspective: Centralized Reuse

The idea of assembling software systems out of existing components instead of

building software systems from scratch was first described by MCILROY in 1968

[McI69]. He envisioned nothing less than an “industrial revolution” of software

production. Drawing analogies to production processes in established industries,

he called for “catalogs” that would list the software components available from

certain vendors, including descriptions of their system requirements and quality

characteristics. Component vendors would specialize in certain areas of exper-

tise, while application vendors—in the business of producing software systems

for users—would select required components from such catalogs and buy them,

instead of developing the equivalent functionality themselves.

The resulting “market of software components” would then in due time run its

course, leaving only vendors of “high-quality” components that are available at

“reasonable” prices behind. The end result would be beneficial for all parties:

• Component vendors could concentrate on their areas of expertise without

having to actually produce applications to survive.

11

• Application vendors could concentrate on the needs of their users without

having to become experts in all the areas their application touches upon.

• Users could expect higher-quality applications at lower prices since the cost

savings and productivity gains would “trickle down” to them.

Even in retrospect, armed with the knowledge that MCILROY’s vision still has not

been realized on any noticable scale, there is an inherent attraction to this idea in

which “free markets” feature so prominently for the benefit of everyone involved.1

Software engineering [Som02], which was essentially “born” as a discipline

at the same conference where MCILROY presented his vision [NR69], has indeed

come back to the idea of software components time and again. This is understand-

able since—as BROOKS put it twenty years later [Bro87]—a flourishing market of

software components is one of the few “silver bullets” that have the potential to

actually alleviate the software crisis. The reason is simply that software compo-

nents are, by design, meant to be reused. They thus reduce the amount of software

development necessary, and development efforts that can be avoided are develop-

ment efforts that cannot go wrong. I will refer to this emphasis on “reuse” as the

“classic” understanding of software components.

Figure 2.1 on the next page illustrates how the resulting market of software

components is supposed to work. Component vendors produce software com-

ponents and sell them on a component market. Application vendors buy these

components in order to produce applications, which they in turn sell on an appli-

cation market. Users, finally, buy these applications and presumably use them to

make their lives better.2 In this model, reuse only occurs within individual appli-

cation vendors. They decide—among other things—what application to produce,

which components to buy, which components to develop internally, and how the
1 It is interesting to speculate on the reasons for this “failure” of software components, but I will

keep such speculations to a minimum. Simply put, they sooner or later involve economic, legal,
and even political arguments, most of which have a tendency to be (at best) comfortably vague or
(at worst) thoroughly misleading. Luckily there are still plenty of technical problems to be solved.

2 Note that I refer to roles played by stakeholders in this model, I do not imply that component
vendors, application vendors, and users are necessarily distinct entities. For example, the user of a
spreadsheet application can simultaneously be the vendor of a spelling checker component and a
3D rendering application, the latter built using an OpenGL component.

12

Component
Vendor 1

Component
Vendor 2

Component
Vendor n

Component
Market

Application
Vendor 1

Application
Vendor 2

Application
Vendor n

Application
Market

User 1 User 2 User n

...

...

...

Figure 2.1: A model of the “classic” market for software components in which

“centralized reuse” by application vendors dominates. Arrows indicate the flow

of software artifacts.

13

resulting application is distributed and deployed. We can therefore summarize the

“classic” understanding of software components as follows:

Classic Understanding: Component software is primarily con-

cerned with reuse of software artifacts in a centralized setting,

where a single software vendor has complete control over the ac-

quisition and integration of components.

2.1.2 Modern Perspective: Distributed Extensibility

As pointed out above, MCILROY’s vision of an “industrial revolution” of software

production has not yet been realized on any noticeable scale. In contrast to an “in-

dustrial revolution,” the development of the modern understanding of component

software can be described as a form of “neoliberalism” instead. The “market” is

given more flexibility by opening it up to all participants, in hopes of increasing

the chances for creating a viable component economy.3

Since “composition” is the central motivation for “components” in the first

place, this requires breaking the dominance of application vendors. In MCILROY’s

vision, all composition takes place within application vendors, while users do not

have any choice besides buying one or the other application. Figure 2.2 on the

following page illustrates how the “modern” market of software components is

supposed to work. Component vendors still produce software components and

sell them on a component market. However, components are supposed to provide

functionality that “something else” is lacking, giving rise to the notion of com-

ponent frameworks. A component framework provides the basic services needed

in a certain application domain and prescribes how various components should

interact to form a functioning software system (i.e. it provides a domain-specific

software architecture). In other words, components extend the functionality of

frameworks, while frameworks provide execution environments for components.

Software components therefore become units of extension instead of units of reuse.
3While this description is sensible in retrospect, it is not historically accurate. The developments

leading to the renewed interest in component software are often technical rather than economical
in nature [SGM02].

14

Component
Vendor 1

Component
Vendor 2

Component
Vendor n

Component
Market

Application
Vendor 1

Application
Vendor 2

Application
Vendor n

Application
Market

User 1

User n

User 2

...

Framework
Market

Framework
Vendor 1

Framework
Vendor 2

Framework
Vendor n

...

Figure 2.2: A model of the “modern” market for software components in which

“distributed extensibility” dominates. Arrows indicate the flow of software arti-

facts.

15

...

Web Browser Framework (e.g. Mozilla)

Quick
time

PNG

JPG

...

AVI

MPG

MOV

Java
Virtual

Machine

Adobe
Acrobat

PDF

Figure 2.3: Schematic view of a web browser in terms of components and frame-

works. Quicktime illustrates hierarchical composition, it is both a component and

a framework in this example.

The presence of components and framework enables users, and not just applica-

tion vendors, to purchase the “parts” for a desired software systems from various

vendors. Specifically, users can in principle obtain a complete system without being

tied to application vendors.

Figure 2.3 illustrates this approach to component software. Instead of being

a monolithic application, a web browser is first of all a framework responsible for

managing network access and screen estate between components that provide user

functionality. Composition is hierarchical since components of one framework can

in their own right be frameworks for further components. The web browser frame-

work is a component for the framework “below” it and relies on its services, while

the Quicktime component is a framework for components that provide function-

ality for specific multimedia file formats.

We can summarize this “modern” understanding of software components as

follows:

16

Modern Understanding: Component software is primarily con-

cerned with the extensibility of software systems in a distributed

setting, where any interested party can develop extensions which

can be acquired and integrated at any time.

2.1.3 Software Development Paradigms

Software engineering is concerned with techniques for the systematic and efficient

production of high-quality software [GJM91]. As a discipline within computer

science, software engineering covers a broad range of topics ranging from require-

ments analysis through configuration management to quality assurance. Regard-

less of the specific techniques employed, however, the result of any software de-

velopment effort worth its name is—obviously—software, usually expressed as

source code in some programming language.

Programming languages therefore share many of the goals that exist for soft-

ware engineering in general, but they also have more specific goals of their own

[GJ97]. Among these, the need for safety and efficiency are of primary impor-

tance. As tools for software development, programming languages need to aid

programmers in expressing their designs accurately and consistently. Language

implementations—compilers as well as interpreters [Wir96, App02]—achieve this

goal by performing a variety of automated analyses on the source code supplied

by programmers [WM95, NNH99]. Compilers use similar analyses to ensure that

source code is translated into native code which makes efficient use of machine re-

sources. In this way, programming languages are the bridge that connects software

and hardware, software engineering and computer systems.

Programming languages are also often the most concrete and tangible form in

which a particular approach to software development—a software development

paradigm—is embodied. Structured programming [DDH72, DeM79], for example,

encourages us to think of a software system as a process that transforms input

data into output data, and which is refined into smaller and smaller subprocesses

as development proceeds. Languages that support (i.e. encourage or even enforce)

17

structured programming, for example Algol 60 [Nau63] or Pascal [JW91], are called

structured programming languages.

For the paradigms of modular and object-oriented programming—based on the

notions of information hiding [Par72], abstract data types [Gut77], and inclusion

polymorphism [CW85]—paradigmatic programming languages exist as well. Lan-

guages such as Modula-2 [Wir89] and the original version of Ada [Int95] are clearly

modular, while languages such as Smalltalk [GR83] and Eiffel [Mey92] are clearly

object-oriented. Programming languages supporting multiple paradigms include

CLU [LSAS77, LG86], C++ [Str00], Java [GJSB00], Modula-3 [CDG+91], Oberon-2

[MW91], and Simula [BDMN73, Mag93].

For the emerging paradigm of component-oriented programming, however, no

paradigmatic programming language has been developed so far. Instead, lan-

guages that combine concepts from modular programming and object-oriented

programming—Java [GJSB00], Modula-3 [CDG+91], Oberon-2 [MW91], and Com-

ponent Pascal [Obe97] for example—are commonly advocated for component-

oriented programming [SGM02].4

Figure 2.4 on the following page illustrates the evolution of programming lan-

guage paradigms that this view implies. Modular as well as object-oriented pro-

gramming adopted certain concepts from structured programming while leaving

others behind. For example, they still use a limited number of control structures,

but they replace procedures as the sole abstraction mechanism by more advanced

ones. Similarly, the paradigm of component-oriented programming can be ex-

pected to adopt concepts from previous paradigms while leaving others behind.

It is interesting to note that established software development paradigms have

in fact consistently identified components with their primary abstraction mecha-

nism (see Figure 2.5 on the next page):

• In structured programming, components are individual operations (i.e. proce-

4The example of Component Pascal [Obe97] is interesting in this regard. The language was
designed—and designed well—specifically with component-oriented programming in mind, and it
even has a commercial implementation. However, as I argue in Chapters 3–5, it is not paradigmatic
in the above sense either.

18

Component-Oriented Programming (2000+?)
Szyperski, ...?

...?

Object-Oriented Programming (ca. 1990)
Dahl, Kay, Meyer, Nygaard, ...

Classes, inclusion polymorphism,
inheritance, ...

Modular Programming (ca. 1980)
Parnas, Wirth, ...

Modules, parametric polymorphism,
separate compilation, ...

Structured Programming (ca. 1970)
Boehm & Jacopini, Dijkstra, Hoare, Wirth, ...

Restricted control flow, type checking, stepwise refinement,
axiomatic semantics, correctness proofs, ...

Figure 2.4: A biased view on the evolution of software development paradigms.

Arrows indicate the flow of (certain) concepts, dates are approximate and (highly)

debatable.

Operation

Module

...

Operation

Type

...

Operation

Module

Operation

Type

...

Operation

imports

calls

extends

...

...

imports

Component-Oriented?

Object-Oriented

Modular
Structured

Figure 2.5: The evolution of programming language abstractions for software com-

ponents. Components were originally considered operations in structured pro-

gramming, then modules or types that contain operations in modular or object-

oriented programming, and now modules that contain operations as well as types.

19

dures or functions); this includes MCILROY’s original paper [McI69].

• In modular programming, components are modules that encapsulate a collec-

tion of related operations.

• In object-oriented programming, components are types (i.e. classes), that again

encapsulate a collection of related operations.

For the emerging paradigm of component-oriented programming, a combination of

all these abstraction mechanisms has been suggested instead [SGM02]: Components

are modules that encapsulate a collection of operations as well as a collection of types.

2.2 Component-Oriented Programming Languages

Now that we have a characterization of component-oriented programming as a

software development paradigm, we return to the design of component-oriented

programming languages. In this section, I essentially repeat the development of

the “standard model” for such a language, which can be inferred from [SGM02]

as well. However, I present the issues that arise in a compressed and streamlined

form suitable for the remainder of the dissertation, and add some remarks on mod-

ules that—to my knowledge—have not appeared before.

Support for a certain development paradigm requires a close correspondence

between the paradigm’s abstractions and those available in a suitable program-

ming language [GJ97]. However, this correspondence does not have to be one-to-

one. Structured programming [DeM79], for example, encourages us to think of a

software system as a “process” that transforms input data into output data, and

which is refined into smaller and smaller “subprocesses” recursively. As long as

a programming language offers some abstraction capable of these transformations,

for example basic procedures or actual processes, it is suitable for structured pro-

gramming. Thus, while it is tempting to design a language full of explicit abstrac-

tions for components, frameworks, connectors, etc., we should first analyze which

existing language mechanisms can support the necessary requirements. Relying on

20

proven concepts is an advisable strategy to keep language design manageable and

well-founded [Hoa73].

As the essence of component-oriented programming, distributed extensibility

should be able to explain the necessary features of an appropriate programming

language. A first observation helps us to distinguish what is surely not important

for such a language. As an organizational paradigm, component-oriented program-

ming is concerned with the composition and interaction of components and frame-

works through interfaces, it is not concerned with their insides in any way. The com-

putational paradigm at the core of a component-oriented programming language

is therefore not constrained, i.e. we can choose an imperative, a functional, or a

logical core. However, we must restrict ourselves to statically typed languages,

otherwise the use of interfaces to ensure the safety of a composition would be im-

possible to guarantee. In the functional domain, for example, we could choose ML

[MTHM97] and Haskell [PJ03], but not Scheme [ADH+98]. In the imperative do-

main, we could choose Java [GJSB00] and Oberon [RW92], but not Python [vR01].

2.2.1 Modules

The principle of distributed extensibility implies a distinction between extensions

themselves on the one hand, and whatever they extend on the other. In component-

oriented programming, these notions are reified as components and framework re-

spectively. An obvious requirement for this distinction is the ability to isolate com-

ponents and frameworks in such a way that no implicit dependencies remain be-

tween them. In programming languages, this requirement can be addressed by

modules. Modules define the static structure of a system by providing rigid bound-

aries which can not be crossed arbitrarily. They thus limit the interactions between

components and frameworks and make dependencies explicit.

There are, however, a large variety of different module systems available in var-

ious programming languages, not all of which are suitable for component-oriented

programming. One possible taxonomy for modules classifies them in terms of ac-

cess and membership [Car89]:

21

• Open modules restrict neither access nor membership in any way. From out-

side a module, all its members can be accessed and new members can be

added retroactively.

• Closed modules restrict access but do not restrict membership. From outside

a module, only exported members can be accessed but new members can still

be added retroactively.

• Sealed modules restrict access as well as membership. From outside a mod-

ule, only exported members can be accessed and no new members can be

added retroactively.

Following this taxonomy, modules must be sealed to be suitable for component-

oriented programming. In both open and closed module systems, new depen-

dencies that are not explicit in the original module can be created, which defeats

distributed extensibility.

Note that Java’s package construct [GJSB00] provides a closed module system

in this sense and is therefore unsuitable as a basis for component-oriented pro-

gramming. Interestingly, the problems caused by packages have been recognized

in Java 1.2 with the introduction of sealed packages, which must be distributed as

Java archive (jar) files. For a sealed package A contained in a file A.jar the Java

virtual machine guarantees that all classes belonging to A have in fact been loaded

from A.jar . Combined with the capability to cryptographically sign jar files, this

achieves the same level of protection that is available in languages that provide

sealed modules, but at a much higher complexity.

A number of further issues arise in regard to this basic construct, not the least

of which is the confusion of modules and classes. It has been shown that although

classes can play the role of modules, the two should be conceptually different be-

cause they serve different purposes [Szy92], and many recent language designs

have indeed separated modules from classes. One major reason for this is that

modules can package a number of related classes into a single deployable unit,

which is required for component-oriented programming.

22

This in turn raises another question: Since certain components might exceed

the complexity that can conceivably be packaged into a single module, should it

not be possible to nest modules? Aside from a number of semantic difficulties with

hierarchical module systems [CHP99]—or nested classes for that matter [IP00]—

we have to consider what constitutes a deployable unit again. If nested modules

are still deployed individually, nesting becomes irrelevant for distributed extensi-

bility. On the other hand, if nested modules are deployed in one “super module,”

we might have to distribute the same (source-level) modules a number of times

because they are part of different components. A flat module space is conceptu-

ally simpler and also has a number of other valuable properties for component-

oriented programming [Szy00].

A final concern is the identity of components, and therefore that of modules.

Distributed extensibility requires that the presence of a particular extension in a

system can not preclude the presence of any other extension.5 Two otherwise un-

related modules must therefore never have the same name, they must have unique

identities. Since no form of “unique identity” can be achieved without some con-

vention, our goal should be to make the conventions as unintrusive and transpar-

ent as possible. Microsoft’s COM [Mic95] uses randomly generated identifiers for

this purpose, but these are hardly transparent. A convention similar to that origi-

nally proposed for Java seems more convenient in this regard: module names are

prefixed with “inverted” Internet domain names, such as edu.uci.ics.Stack .

Although not enforcable, this convention is a good tradeoff, especially when cou-

pled with an import declaration that can introduce abbreviations.

2.2.2 Types and Polymorphism

A component-oriented programming language needs constructs to express inter-

faces and implementations and must also support dynamic and independent ex-

tensibility. In programming languages, interfaces and implementations should be

5The exceptions to this rule are of dynamic nature and concern invariants the system needs to
maintain in order to function properly, for example when the extensions are device drivers of an
operating system.

23

modeled as interface types and implementation types respectively. In this manner,

we can define the conformance of an implementation to an interface by the con-

formance of the corresponding types. Dynamic extensibility requires some form of

polymorphism that allows different instances of implementation types to be bound

to the same interface types at run-time. Inclusion polymorphism [CW85] in object-

oriented languages such as Java [GJSB00] is one way to achieve this, although we

prefer the term implementation polymorphism in this context.

An interface is an abstraction of all possible implementations that can fill a certain

role in the composed system [LG86]. It thus describes minimal assumptions that

frameworks and components can make about each other. Interfaces are essential to

component-oriented programming because they are the only form of coordination

between frameworks and components and the only means by which compositions

can be validated. We can view interfaces as sets of messages (abstract operations)

and implementations as sets of methods (concrete operations). Messages describe

what effect is achieved by an operation, while methods describe how that effect is

achieved. Multiple instances of an implementation can exist concurrently, and mul-

tiple implementations can be part of a component. We say that an implementation

(or an instance) conforms to an interface if it provides methods for all messages in

that interface. In programming languages, interfaces and implementations should

be modeled as interface types and implementation types respectively. In this man-

ner, we can define the conformance of an implementation to an interface by the

conformance of the corresponding types.

Polymorphism supports the dynamic structure of a system by allowing differ-

ent instances of different implementation types to be bound to the same interface

type at runtime. Inclusion polymorphism [CW85] as known from object-oriented

languages is one way to achieve this, although we prefer the term implementation

polymorphism in this context.

24

Module

Operation

Implementation

Method

imports

Component-Oriented?

Interface

Message

implements

extends

extends

Figure 2.6: The “standard model” for component-oriented programming lan-

guages illustrated in the style of Figure 2.5 on page 19.

2.2.3 An Idealized Version of Java

Figure 2.6 summarizes the “standard model” for component-oriented program-

ming languages developed in this section. Sealed modules serve as the elementary

component notion, while interfaces and implementations are mapped to types.

Starting from Java [GJSB00] we can now propose a first approximation for a

component-oriented programming language. The language is essentially an “ide-

alized” version of Java and we adopt the name IJ for it for this reason. In IJ ,

packages are replaced by sealed modules. Imported identifiers are always qualified

fully by the name of the module that exports them. For convenience, the import

declaration is modified to allow the introduction of local abbreviations. For exam-

ple, after the declaration

import S = edu.uci.ics.phf.random;

we can refer to a class Standard exported by this module as S.Standard instead

of using the more involved

edu.uci.ics.phf.random.Standard

everywhere. Furthermore, IJ separates the notions of subtyping and subclass-

ing completely, allowing the hierarchy of interface types to have a different struc-

25

ture than the hierarchy of implementation types [Sny86, Ame87]. Implementation

types declare their conformance to interface types explicitly, and following the Java

approach we allow for multiple subtyping but only single subclassing. For com-

pleteness, we also replace the notion of static methods with proper procedures

declared on the module level.

Note that IJ , besides being a cleaner superset of Java, also subsumes Com-

ponent Pascal [Obe97], Modula-3 [CDG+91], and Oberon-2 [MW91], which are

often regarded as “close approximations” of component-oriented programming

[SGM02].

2.3 Scope

The notion of software components, often in the “classic” sense as explained above,

appears in a number of areas between software engineering, programming lan-

guages, and computer systems. I focus on programming languages in the follow-

ing, and specifically on the concerns induced by the “modern” view of component

software. However, to clarify the scope of my work, I briefly discuss several of

the related areas in this section, mainly to explain what this dissertation does not

address.

2.3.1 Component Models

Component models, such as Microsoft’s COM [Mic95], OMG’s CORBA [Obj99],

and Sun’s JavaBeans [Sun97], are industry standards designed to support software

components. The main emphasis of these models lies on defining interoperability

and packaging conventions in the form of design patterns rather than on provid-

ing comprehensive, paradigmatic support. Many component models also address

aspects that are essentially unrelated to component-oriented programming itself—

such as distribution, concurrency, cross-platform portability, and cross-language

integration—but that nevertheless increase their complexity significantly.

26

Software Engineering

Software Architecture
Configuration Management

Development Processes
...

Programming Languages

Module Systems
Type Systems
Object Models

...

Computer Systems

Compilers
Dynamic Loading

Binary Compatibility
...

Component-
Oriented

Programming

Figure 2.7: Component-oriented programming affects three main “dimensions”

of computer science research: programming languages, software engineering, and

computer systems.

27

From the perspective of this dissertation, component models serve a tempo-

rary purpose until more comprehensive ways for component-oriented program-

ming emerge. Some of the capabilities offered—especially by COM [Mic95] and its

descendant .NET [ECM01]—are indeed valuable and should find their way into

programming languages as well. I will discuss these concepts and their relation-

ship to my work in more detail in later chapters.

2.3.2 Generative Programming

The paradigm of generative programming (GP) [CE00] is based on a number of

ideas, namely domain-specific programming languages, aspect-oriented program-

ming (AOP), and generic programming. In GP, software systems are described

in terms of domain-specific languages that are used to encode domain knowl-

edge on a high level. These descriptions are used to drive AOP [KLM+97] tools

that integrate various reusable and basically unrelated “components” and aspects

to produce customized applications automatically. The functional “components”

are implemented using generic programming techniques (i.e. parametric polymor-

phism).

While GP provides an interesting approach to source-level reuse and mainte-

nance, its “components” are not components in the sense of component-oriented

programming [SGM02]. In GP (and AOP), “components” are reusable and param-

eterized abstractions that only exist on the programming language level, but not

in the deployed application. Thus, once an application has been produced using

GP, the “components” it consists of can not be reused or updated separately from

the application they were compiled into.

2.3.3 Composition Environments

Composition environments are—frequently graphical—tools focusing on the issue

of software composition [LvdH02]. The lines between “regular” software devel-

opment environments and composition environments are quite fuzzy. However,

28

the general emphasis of composition environments is not on the development of

individual components but rather on their composition into applications or sub-

systems.

Information about components, especially in terms of interfaces, is used to en-

force certain consistency requirements. In this regard composition environments

partially compete with the idea of component frameworks, in which consistent

composition is enforced through the design of the framework itself and the com-

munication patterns it allows between components. Architecture description lan-

guages share similar goals and are sometimes used as part of composition envi-

ronments, either to guide composition or to record the details about a particular

configuration of components.

Composition environments are dominated by higher-level concerns than those

I discuss in this thesis. In developing a programming language for component-

oriented programming, I focus on the possible foundation that such environments

could be built on. In other words, instead of making composition easier, I inves-

tigate how to make composition possible at all, especially in the way mandated by

distributed extensibility.

29

Chapter 3

Stand-Alone Messages

1. Everything is an object. 2. Objects communicate by sending and
receiving messages (in terms of objects). 3. Objects have their own
memory (in terms of objects). . . .

— ALAN C. KAY [Kay96]

In this chapter, I develop the concept of stand-alone messages, the first novel lan-

guage mechanism in my design framework for component-oriented programming

languages. I start by motivating the need for software components to conform to

multiple interfaces using a realistic example (Section 3.1). Switching to a simpler

example for clarity, I then introduce the problem of interface conflicts and exhibit

several shortcomings of programming languages following the standard model

(Section 3.2). I trace these shortcomings to the status of messages in object-oriented

programming languages and argue that messages should be independent of types,

leading to the concept of stand-alone messages (Section 3.3). Finally, I evaluate

stand-alone messages by comparing them to a variety of existing approaches for

resolving interface conflicts (Section 3.4).

3.1 Motivation

As discussed in Section 2.1.2, interfaces play a central role in component-oriented

programming. Components rely on interfaces implemented by frameworks to ac-

30

cess their services, while frameworks in turn rely on interfaces implemented by

components to access theirs.

For technical as well as economic reasons, software components often need to

conform to multiple interfaces. Consider, say, a component that presents the result

of a database query within a compound document [Wec96], a scenario illustrated

schematically in Figure 3.1 on the next page On the technical side, instances of

this component have to react to notifications from both the database management

framework and the compound document framework to keep their presentations

current:

• After a change in the database, the component must update its presentation

(if the query is persistent).

• After a change in the document, the component must update its presentation

(and potentially the database).

On the economic side, the component will increase its potential market if it can be

composed with a variety of frameworks for database management and compound

documents.

The principle of distributed extensibility requires that any interested party can

develop a component extending the functionality of any given framework. In par-

ticular, it neither rules out components that extend multiple frameworks simul-

taneously, nor does it restrict such components to extend only certain subsets of

possible frameworks.1

For component-oriented programming languages, this requires that an imple-

mentation type can conform to any number of interface types or, equivalently, that

any combination of interface types is again a valid interface type. As I am about

to show, this requirement is not fulfilled by the standard model for component-

oriented programming languages (see Section 2.2).

1The problem of framework combination [MB97] starts from slightly different assumptions but can
be reduced to the same underlying issue.

31

Compound Document Framework

Database Management Framework

Query
Element

Paragraph
Element

Table
Element

Picture
Element

PNG

JPEG

Query
Optimizer

Schema
Editor

Disk
Interface

Block

File

...

...

Figure 3.1: Schematic view of a software component that needs to conform to a

compound document framework and a database management framework simul-

taneously. Other components are for illustration only.

32

adt Stack aka UnboundedStack
uses

Any, Boolean
defines

Stack<Element: Any>
operations

new: → Stack<Element>
empty: Stack<Element> → Boolean
push: Stack<Element> × Element → Stack<Element>
pop: Stack<Element> 9 Stack<Element>
top: Stack<Element> 9 Element

preconditions
pop(s): not(empty(s))
top(s): not(empty(s))

axioms
empty(new())
not(empty(push(s, e)))
top(push(s, e)) = e
pop(push(s, e)) = s

Figure 3.2: An algebraic specification of the abstract data type Stack. Except for the

type parameter Element with its obvious meaning, the notation follows [Mey97].

3.2 Interface Conflicts

In the following, I use a simple example based on the “infamous” abstract data

type (ADT) Stack to illustrate the problem of interface conflicts in detail.2 For

reference, Figure 3.2 provides a standard algebraic specification of this ADT, using

a variation of MEYER’s notation [Mey97]. The code examples below are given in

IJ , the idealized version of Java outlined in Section 2.2.

Consider a component vendor who decides to specialize in Stack components.

Given the ubiquity of Stack implementations in existing libraries and even text-

books, our vendor has to support a very large number of frameworks to sell any

Stack components at all. Assume the first framework defines the interface shown

in Figure 3.3 on the next page. The design of this interface follows the textbook

2While Stack is “infamous” for having been “overused” in the past, it still serves as an easily
understood abstraction exhibiting most of the problems also found in more complex scenarios.

33

module edu.uci.framework {
public interface Stack {

// pre o != null ; post top() == o;
public void push(Object o);
// pre !empty();
public void pop();
// pre !empty(); post return != null ;
public Object top();
// "no elements?"
public boolean empty();

}
}

Figure 3.3: An interface for the basic stack abstraction in IJ . It is meant to express

the semantics from Figure 3.2 on the page before, but closer to an actual imple-

mentation.

definition ADT Stack closely, and developing an implementation of the interface,

for example in terms of a linked list, is straightforward.

The interface defined by the second framework is given in Figure 3.4 on the

following page. Instead of relying on an empty message, this interface works with

the size of the stack, i.e. the number of elements it currently contains. To support

this interface in addition to the one from Figure 3.3, our component vendor must

add a size method which is again straightforward. The interfaces are compatible

because they only differ in their use of empty and size respectively, and we can

express one in terms of the other using the identity

empty() == (size() == 0)

as an abstraction function [LG86]. If we apply this abstraction function to the spec-

ification, the precondition and postconditions listed as comments become identi-

cal. For reference, Figure 3.5 on page 36 gives an implementation of these first two

interfaces.

34

module gov.nsa.framework {
public interface Stack {

// pre o != null ; post top() == o;
public void push(Object o);
// pre size() > 0
public void pop();
// pre size() > 0; post return != null ;
public Object top();
// post return >= 0; "how many elements?"
public int size();

}
}

Figure 3.4: Another stack abstraction in IJ , compatible with the previous one

(see Figure 3.3 on the preceding page). Since empty() can be expressed in terms

of size() , a single implementation type can conform to both interface types.

3.2.1 Syntactic Conflicts

Our vendor now decides to support the interface shown in Figure 3.6 on page 37

in addition to the previous two. This new interface follows an alternative spec-

ification of the ADT Stack, in which the pop operation not only removes the top

element but also returns it. Compared to the previous two interfaces, there is no

top message, and the signature of pop has changed. To support this interface as

well, the Stack implementation would need two methods for pop with different

signatures. Even if we assume that IJ includes Java’s overloading mechanism, it

is impossible to add this interface to the previous two.

For good reasons, Java does not allow methods to be overloaded on their return

type, which is what would be required here.This is an example for a syntactic inter-

face conflict, violating the principle that any combination of interface types should

again be a valid interface type. Programming languages such as IJ , which follow

the standard model from Section 2.2, therefore do not support distributed extensi-

bility and are not suitable for component-oriented programming.

35

module org.bloat.components {
import US = edu.uci.framework, GS = gov.nsa.framework;
class Link {

Object object; Link next;
}
public class Stack implements US.Stack, GS.Stack {

Link top; int sz;
public void push(Object o) {

Link x = new Link(); x.object = o;
x.next = this .top; this .top = x;
this .sz += 1;

}
public void pop() {

this .top = this .top.next;
this .sz -= 1;

}
public Object top() {

return this .top.object;
}
public int size() {

return this .sz;
}
public boolean empty() {

return this .size() == 0;
}

}
}

Figure 3.5: An implementation of the two compatible interfaces from Figure 3.3 on

page 34 and Figure 3.4 on the preceding page in IJ .

36

module com.sun.framework {
public interface Stack {

// pre o != null ; post top() == o;
public void push(Object o);
// pre !empty(); post return != null ;
public Object pop();
// "no elements?"
public boolean empty();

}
}

Figure 3.6: A Stack abstraction causing a syntactic conflict in IJ .

3.2.2 Semantic Conflicts

Having failed to support one interface, our component vendor now desperately

tries to support another. This fourth and final interface is given in Figure 3.7 on

the following page. Except for the additional size message, this interface is

identical to the first from Figure 3.3 on page 34. Unlike size in the second inter-

face, however, this one returns the number of remaining push operations before some

presumably expensive internal restructuring occurs.3 While both size messages

have identical signatures—and are therefore syntactically indistinguishable—their

semantics are quite different. To support this interface as well, the Stack imple-

mentation would need two different methods for size , one returning the number

of elements and one returning the number of remaining slots, but both having

identical signatures.

Obviously, no amount of overloading in IJ will allow our vendor to accom-

plish this feat. This is an example of a semantic interface conflict, and like syntactic

conflicts before, it violates the principle of distributed extensibility. When inter-

face types are combined, the resulting interface type must preserve all constituent

messages, which is not the case in languages that follow the standard model.

3This information might be necessary in a framework with real-time constraints, and implemen-
tations based on incrementally growing arrays can supply it easily.

37

module org.cthulhu.framework {
public interface Stack {

// pre o != null ; post top() == o;
public void push(Object o);
// pre !empty();
public void pop();
// pre !empty(); post return != null ;
public Object top();
// "no elements?"
public boolean empty();
// post return >= 0; "how many pushes?"
public int size();

}
}

Figure 3.7: A stack abstraction introducing a semantic conflict in IJ .

3.2.3 Discussion

The stack example I have used above to illustrate interface conflicts might seem

overly simplistic. On the one hand, few vendors would ever consider actually en-

tering the “market” for stack components, and most likely such a “market” would

not even exist in the first place. However, the complexity of the example used does

not affect the validity of the conclusions drawn. If a problem can be demonstrated

using a small example, it is obviously possible to find bigger examples that exhibit

it as well.

On the other hand, a number of “obvious” solutions for avoiding interface con-

flicts immediately come to mind, some of which I discuss in more detail below

(see Section 3.4). For example, we could use the Adapter pattern [GVJH95] and

implement five classes inside the stack component, four of which would simply

act as “placeholders” for the fifth, which contains the actual implementation (see

Figure 3.8 on the following page). However, the point here is not whether it is

possible to resolve the problem in other ways once it is detected, or even that we

can make it “less likely” to occur. Instead, we must prevent it from ever occurring.

If any chance for an interface conflict remains, it will rule out some combination

38

org.bloat.components

edu.uci.framework

org.cthulhu.framework

gov.nsa.fram
ework

com
.sun.fram

ework

Adapter

Adapter

Adapter

Adapter

Stack

Figure 3.8: Resolving interface conflicts using adapters [GVJH95]. The stack com-

ponent now consists of five classes, one for the actual implementation (center), and

four adapter classes, one for each framework.

39

of interfaces that—sooner or later—someone will want to perform, thus violating

distributed extensibility.

3.3 Rethinking Messages

The problem of interface conflicts discussed in Section 3.2 is not specific to IJ .

I made only very general assumptions about the “ingredients” for component-

oriented programming languages in Section 2.2 where the basics of IJ were out-

lined. The following analysis therefore applies to many existing programming

languages.

3.3.1 Analysis

Interface conflicts, both syntactic and semantic ones, can arise whenever two or

more interfaces are combined into a new one. Looking at this process in terms of

messages, we observe the following:

• Syntactic conflicts can only arise between messages with identical names and

different signatures.

• Semantic conflicts can only arise between messages with identical names and

identical signatures.

The problem can therefore be reduced to the issue of naming messages: Under

what conditions can we identify a message uniquely given its name?

In most object-oriented programming languages—certainly in established ones

such as C++ [Str00], Eiffel [Mey92], Java [GJSB00], and Smalltalk [GR83]—the

name of a message only identifies it uniquely within the type containing its decla-

ration. When we combine several types T1, . . . , Tn to form a new type T , we there-

fore have to require that all constituent messages can still be identified uniquely in

T , regardless which type introduced them originally. Figure 3.9 on the next page

illustrates this approach. Interface types are “boxes” containing messages, and

messages have unique identities inside their interface types (a). During interface

40

Q RRQ
A(X): Y

C(Z)

B(Y)

A(X): Z

C(Z)

B(X)
A(X): Y

C(Z)

B(Y)

A(X): Z

C(Z)

B(X)

A(X): Y

B(Y)

A(X): Z

B(X)

C(Z)

Conflict!

Conflict!

Conflict?

S = Q + R S = Q + R

Q R

(a) (b) (c)

Figure 3.9: Interface combination in object-oriented programming languages.

Messages “fall” out of their respective interface types Q and R into a new inter-

face type S, losing their identity in the process.

combination, messages “fall” out of their respective interface types, and lose their

unique identity in the process (b). When they “land” inside the new interface type,

syntactic as well as semantic conflicts can occur (c). It should be obvious that giv-

ing messages unique identities only within types by not across types is the cause for

syntactic as well as semantic interface conflicts.

Before proposing a new approach to the identity of messages across types, it

is worth pointing out that there is still a need for identity within types, namely in

the case of methods and implementation types. Consider the example given in

Figure 3.10 on the following page. After we bind an instance of ArrayStack to

the interface reference stack , we expect the message push to invoke the specific

push method declared for ArrayStack . Similarly, after we rebind an instance

of ListStack to the reference, we expect the same message push to invoke a

different push method declared for ListStack . In other words, whenever the

implementation type of the instance bound to the stack reference changes, we

41

...
edu.uci.framework.Stack stack;
...
stack = new edu.uci.components.ArrayStack(16);
stack.push(new Integer(1));
...
stack = new edu.uci.components.ListStack();
stack.push(new Integer(1));
...

Figure 3.10: An example for implementation polymorphism IJ . When we send a

push message through an interface reference, we expect the push method invoked

to change depending on the implementation type of the instance.

want the identity of the methods invoked through that reference to change as well.

In fact, it is this kind of implementation polymorphism that motivated the choice of

object-oriented concepts for component-oriented programming languages in the

first place (see Section 2.2).

3.3.2 Synthesis

Returning to messages and their identities, our goal must be to somehow “de-

tach” messages from interface types. Since methods have to remain relative to

implementation types for polymorphism to work, this will break the traditional

“symmetry” between messages and methods.

In the standard model for component-oriented programming languages (see

Section 2.2), the only reasonable language construct other than types to “attach”

messages to is the module. To emphasize the difference to messages in existing

object-oriented languages, we choose the name stand-alone messages for this con-

cept. Figure 3.11 on the next page illustrates how stand-alone messages would

be used to express the first Stack interface from Figure 3.3 on page 34. At first,

this example does not seem very different from the original form of the interface.

However, in client modules that import edu.uci.framework , the type Stack

will now appear as shown in Figure 3.12 on the next page, with each constituent

42

module edu.uci.framework {
// pre o != null ; post top() == o;
public message void push(Object o);
// pre !empty();
public message void pop();
// pre !empty(); post return != null ;
public message Object top();
// "no elements?"
public message boolean empty();
public interface Stack { push, pop, top, empty }

}

Figure 3.11: An interface for the basic stack abstraction using stand-alone mes-

sages. In contrast to Figure 3.3 on page 34, messages are declared in the module

scope, not in the interface scope.

interface edu.uci.framework.Stack {
edu.uci.framework.push, edu.uci.framework.pop,
edu.uci.framework.top, edu.uci.framework.empty

}

Figure 3.12: The interface type from Figure 3.11 as it appears in client modules. All

constituent messages are qualified by a module name.

43

M2
A(X): Z

C(Z)

B(X)

M1
A(X): Y

C(Z)

B(Y)

Q R

M3
S = Q + R

Figure 3.13: Interface combination for component-oriented programming lan-

guages using stand-alone messages.

message qualified by a module name. At this point, it should be obvious that

stand-alone messages solve the problem of interface conflicts, and that any combi-

nation of interface types is indeed again a valid a valid interface type preserving all

constituent messages. Figure 3.13 illustrates the process of interface combination

in a language that supports stand-alone messages.

3.4 Evaluation

To evaluate the concept of stand-alone messages, I compare them to a number

of existing approaches for resolving the problem of interface conflicts. I focus on

approaches that do not introduce language mechanisms beyond object-oriented

programming first: component models, programming conventions, and design

patterns. Then I turn to approaches that do require mechanisms beyond the ba-

sic ingredients of object-oriented programming: explicit qualification of messages,

renaming messages, and overloading messages. Finally, I summarize my results.

3.4.1 Component Models

Microsoft’s COM is the component model that is most similar to our approach

[Mic95]. Instead of assigning unique identities to messages, COM assigns unique

identities to interface types. Instead of relying on a transparent naming convention

for modules, COM associates an automatically generated globally unique identifier

44

(GUID) with each interface type. Contrary to most object-oriented programming

languages, COM allows an implementation type to conform to multiple interface

types without any conflicts. Combined interface types can also be expressed using

COM’s category mechanism.

While we emphasize explicit programming language support and the associ-

ated advantages, the two approaches are equivalent as far as interface conflicts are

concerned. In particular, we could map stand-alone messages to singleton COM

interfaces and interface types to COM categories.

3.4.2 Programming Conventions

A variety of programming conventions can be suggested to address interface con-

flicts. Defining naming conventions for messages is one of the simplest. The

message push in the interface Stack in the module edu.uci.framework could

by convention be named edu uci framework Stack push . While theoretically

possible, we do not believe that such a convention is acceptable in practice. Ad-

ditional mechanisms for introducing short local names for messages would be

needed, complicating the resulting language. However, even if we accept this com-

plication, we must define new conventions on how names should be abbreviated

if we are concerned about readability. More complex programming conventions

have been suggested as well [BW00].

A general problem with programming conventions is that they are not enforca-

ble by the compiler. This applies to programming languages based on stand-alone

messages as well, since we rely on module names that are unique by convention.

However, no form of “globally unique identity” can be achieved without some con-

vention, so our goal should be to make the conventions as unintrusive and trans-

parent as possible. We believe that, in light of these considerations, conventions

for module names are a good tradeoff.

45

3.4.3 Design Patterns

Certain design patterns can be used to resolve interface conflicts [GVJH95]. In

a variation of the Command pattern, “messages” are modelled as a hierarchy of

classes containing “parameter slots,” while “message sends” are calls to a univer-

sal dispatch method. The dispatch method performs explicit run-time type-tests

and calls the actual method corresponding to the dynamic type of the “message.”

This approach relies on the compiler to generate unique type descriptors for each

class and thus prevents any conflicts between messages. However, static type-

checking is not possible to the desirable extent.4

Variations of the Adapter, Bridge, and Proxy patterns can be used to map mul-

tiple conflicting interface types to a single implementation type. The idea is to

insert additional forwarding classes between clients of an interface type and its

implementation type. Messages sent to the forwarding class are routed to the cor-

responding method in the implementation. While this approach preserves static

type-checking, it can be tedious to write the required forwarding classes without

tool support.

3.4.4 Explicit Qualification

C++ supports the explicit qualification of member functions by classes to avoid

name clashes [Str00]. In our terminology, message sends can be qualified by the

implementation type in which a method should be invoked. As defined in C++,

this mechanism does not support implementation polymorphism as required for

component-oriented programming.

However, we can generalize the idea of explicit qualification by allowing mes-

sage sends to be qualified by interface types. Although this does not restrict poly-

morphism anymore, even a qualified message of the form Stack.pop is not nec-

essarily unique, since multiple interface types with identical names could exist.

4 Interestingly, stand-alone messages were originally inspired by this design pattern from the
Oberon system [WG92]. Language constructs for messages appeared in Object Oberon [MTG89],
the protocols extension for Oberon [Fra95], and finally Lagoona [Fra97b].

46

Therefore, qualification must be extended to include module names as well, at

which point the mechanism becomes equivalent to stand-alone messages, except

for the redundant interface type.

3.4.5 Renaming Messages

In Eiffel, features inherited from ancestor classes can be renamed in a descendant

class to avoid name clashes [Mey92]. In our terminology, an implementation type

conforming to multiple interface types can explicitly choose new local names for

conflicting messages. Note that clients still use the messages declared in the origi-

nal interface type, but the messages are “rerouted” in a way similar to the Adapter

design pattern described above.

Although renaming can be used to resolve interface conflicts, the approach has

two major drawbacks. First, renaming clutters up the name space of the imple-

mentation type. We may have to invent a new name for a message that is less

expressive than the original one, define naming conventions to keep readability

up, and repeat this “renaming excercise” whenever we want to conform to an ad-

ditional interface type. Second, renaming must be extended to combined interface

types in addition to implementation types. This becomes particularly clumsy in

terms of syntax if we also want to support anonymous interface types.

3.4.6 Overloading Messages

Overloading is a form of ad-hoc polymorphism [CW85] supported by a number of

programming languages such as Java [GJSB00] and C++ [Str00]. In our terminol-

ogy, overloading essentially encodes parts of the signature of a message within its

name and uses contextual information available when a message is sent to deter-

mine which actual message is being referred to.

Although overloading helps to avoid some interface conflicts, it has two major

limitations. First, semantic conflicts can not be avoided by overloading since the

semantics of a message can not be expressed by type systems in which type check-

47

ing is decidable [Sch95]. Second, avoiding all syntactic interface conflicts requires

all combinations of parameter and return types to be distinct. This is not generally

possible in the presence of subtyping and the coercions it implies.

3.4.7 Summary

Stand-alone messages break the symmetry between messages and methods that

exists in object-oriented languages. Binding messages to sealed modules instead

of binding them to extensible types allows interface combination without any pos-

sibility for interface conflicts. It also leads to the following interesting property:

Interface Combination: Any combination of interface types is

again a valid interface type preserving all constituent messages.

In other words, using stand-alone messages, the set of interface types is closed un-

der interface combination.

Stand-alone messages provide a simpler solution to the problem of interface

conflicts than those commonly available in other languages. Neither overloading

of messages nor explicit qualification in the style of C++ [Str00] provide a general

solutions in the first place. The latter can be extended to the point where it be-

comes equivalent to stand-alone messages if we disregard the redundant interface

type name. Renaming allows all interface conflicts to be resolved, at the price of

requiring a “fresh” supply of names every now and then. None of these mecha-

nisms, however, actually solves the problem in the right way component-oriented

programming, namely by avoiding it.

Stand-alone messages might, however, affect flexibility in a negative way. Since

messages are now globally unique, it is impossible to “unify” any two messages

retroactively, even if they specify identical syntax (signature) and semantics (spec-

ification). This could conceivably lead to an “explosion” of messages in the long

run. There are a number of points to be made about this. A first observation is

that this is simply the price we have to pay to avoid interface conflicts. If there

was a way to “unify” messages explicitly, this would necessarily introduce the po-

tential for semantic conflicts through the back door. A second observation is that

48

under the market assumptions of component-oriented programming, a relatively

stable number of widely known and used messages will form sooner or later. A

third and final observation is that “unification” of messages has no problematic

consequences if such a decision remains strictly local within modules. I explore

this third option further in Chapter 5 and Chapter 7.

In terms of safety and efficiency, stand-alone messages do not have any particu-

lar advantages or disadvantages.

In retrospect, it seems that KAY’s 1972 summary of object-oriented program-

ming quoted at the beginning of this chapter had the status of messages “right”

for component-oriented programming, while most object-oriented programming

languages—including KAY’s own Smalltalk—have it “wrong” to varying degrees.

49

Chapter 4

Generic Message Forwarding

Though delegation has been the minority viewpoint in object oriented
languages, it is slowly becoming recognized as important for its added
power and flexibility.

— HENRY LIEBERMAN [Lie86]

In this chapter, I develop the concept of generic message forwarding, the second novel

language mechanism in my design framework for component-oriented program-

ming languages. I start by motivating the need to adapt and customize existing

software components to conform to new interfaces using a realistic example (Sec-

tion 4.1). Switching to a simpler example for clarity, I then introduce the fragile

base class problem and exhibit several shortcomings of programming languages

following the standard model (Section 4.2). I trace these shortcomings to the use of

inheritance and delegation in object-oriented programming languages and argue

that these mechanisms should be replaced, leading to the concept of generic mes-

sage forwarding (Section 4.3). I then compare the expressiveness of forwarding as

a mechanism for component adaptation to inheritance and delegation (Section 4.4).

Finally, I evaluate generic message forwarding by comparing it to a variety of ex-

isting approaches for solving the fragile base class problem (Section 4.5).

50

4.1 Motivation

In Chapter 3, our focus was on enabling interface combination in a way that pre-

serves distributed extensibility. In component-oriented programming, interfaces

are the primary means of coordination between otherwise independent compo-

nent vendors and framework vendors. Interfaces ensure—to the extent possible—

that compositions of frameworks and components result in properly functioning

software systems.

For any number of reasons, however, a software component might not support

the exact interface required by some framework we would like to compose it with:

• The framework involved might not be widely used and the component ven-

dor therefore had no incentive to support it explicitly.

• The framework or the component involved might be “legacy” software in the

sense that no party is maintaining them anymore.

• A sufficiently powerful component vendor might decide not to support cer-

tain frameworks for political reasons.

Consider, say, a (very) sophisticated spell checking component that detects de-

fective proofs in doctoral dissertations. We might need this capability within an

existing compound document framework, but the interfaces provided by the com-

ponent do not conform to the spell checking interfaces required by the framework.

This scenario is illustrated in Figure 4.1 on the next page. After studying the in-

terfaces involved, we might decide that it would indeed be possible to use the

component with the framework, but that some of the messages exchanged have to

be altered while others have to be added.

Component-oriented programming languages therefore have to provide sup-

port for adapting and extending existing components retroactively. Given the

presence of object-oriented concepts in the standard model (see Section 2.2) mech-

anisms such as inheritance or delegation might seem to be good candidates for this.

51

?

Compound Document Framework

Paragraph
Element

Table
Element

Picture
Element

PNG

JPEG
...

SupraSpell
V2.7

SupraSpell V2.7

Compound Document Framework

Figure 4.1: Schematic view of a software component that requires adaptation and

extension to conform to a compound document framework. Other components

are for illustration only.

52

4.2 The Fragile Base Class Problem

In the following, I once again use a simple example based on the ADT Stack to

illustrate the fragile base class problem in detail. As in Chapter 3, code examples

are given in IJ , the idealized version of Java outlined in Section 2.2.

Consider a variation of Stack that offers an operation multi pop to remove n > 0

elements at once in addition to the “regular” operations push, pop, top, and empty.

Figure 4.2 on the following page gives a possible implementation of this version of

the data structure. Note how the multi pop method simply sends pop messages

to this for the required number of times to remove several elements.

Assuming we have a MultiStack at our disposal, how can we use objects of

this class with the interface shown in Figure 4.3 on the next page? The obvious

difference is the message size which not provided by MultiStack . In order to

use MultiStack where a Stack is expected, we somehow have to add a size

method to it. But since we consider MultiStack to be (part of) a component in

this example, we can not simply edit the source code. In IJ , however, we can

use inheritance to achieve our goal without access to source code, as illustrated in

Figure 4.4 on page 55. The Adapter class extends MultiStack and adds a field

sz to maintain the current size. It also overrides the methods push and pop in

a way that updates this field whenever the corresponding operations are called.

Finally, it adds a method size to return the current size of the stack.

4.2.1 Syntactic Aspect

Ignoring problems of instantiation, what we have achieved is exactly what we

set out to do, the existing MultiStack was adapted to a framework it was not

designed for. However, there are still two problems, both having to do with the

principle of distributed extensibility again.

Consider what happens when the vendor of MultiStack actually adds a size

operation and (for efficiency reasons maybe) decides to apply the final modifier

to it (see Figure 4.5 on page 56). Once we install this new version of MultiStack ,

53

module org.bloat.components {
class Link {

Object object; Link next;
}
public class MultiStack {

Link top;
public void push(Object o) {

Link x = new Link(); x.object = o;
x.next = this .top; this .top = x;

}
public void pop() {

this .top = this .top.next;
}
public void multi_pop(int n) {

while (n > 0) { this .pop(); n--; }
}
public Object top() {

return this .top.object;
}
public boolean empty() {

return this .top == null ;
}

}
}

Figure 4.2: An IJ implementation of a stack supporting the multi pop operation

to pop n > 0 elements at once. (Error handling omitted for clarity.)

module gov.cia.framework {
public interface Stack {

public void push(Object o);
public void pop();
public void multi_pop(int n);
public Object top();
public int size();

}
}

Figure 4.3: A mismatched stack interface that is not supported by MultiStack

from Figure 4.2.

54

module net.lagoona.adapters {
import BS = org.bloat.components, CS = gov.cia.framework;
public class Adapter

extends BS.MultiStack implements CS.Stack
{

int sz;
// override push and pop
public void push(Object o) {

super .push(o); this .sz += 1;
}
public void pop() {

super .pop(); this .sz -= 1;
}
// add size
public int size() {

return this .sz;
}
// multi pop, top, and empty unchanged

}
}

Figure 4.4: An IJ adapter that allows MultiStack (from Figure 4.2 on the page

before) to be used where Stack (from Figure 4.3 on the preceding page) is ex-

pected. (Error handling omitted for clarity.)

55

module org.bloat.components {
...
public class MultiStack {

...
public void push(Object o) { ... }
public void pop() { ... }
public void multi_pop(int n) { ... }
public Object top() { ... }
public boolean empty() { ... }
public final int size() { ... }

}
}

Figure 4.5: A vendor change causing the syntactic fragile base class problem

(change emphasized).

the Adapter class attempts to override instead of add the size method. Because

it is declared final , however, this breaks our solution. This is commonly referred

to as the syntactic fragile base class problem.

By extending a class like MultiStack through inheritance, we create a syntac-

tic dependency on its interface, making not only assumption about what is con-

tained in this interface, but also about what is not contained in it. Note, however,

that this part of the problem could easily be resolved by stand-alone messages

as described in Chapter 3 or by one of the more common mechanisms described

therein.

4.2.2 Semantic Aspect

A problem that is much more difficult to resolve is the following: Consider what

happens when the vendor of MultiStack changes multi pop to update the

linked list directly instead of sending pop messages.

As with the use of final for size above, this change might be motivated by

performance considerations. If the new version of MultiStack is used through

the Adapter now, the counter sz works fine as long as multi pop is never used.

56

module org.bloat.components {
...
public class MultiStack {

Link top;
public void push(Object o) { ... }
public void pop() { ... }
public void multi_pop(int n) {

while (n > 0) { this .top = this .top.next; n--; }
}
public Object top() { ... }
public boolean empty() { ... }

}
}

Figure 4.6: A vendor change causing the semantic fragile base class problem

(change emphasized, error handling omitted for clarity).

Once it is used, however, the counter value will bear no relation to the actual state of

the stack abstraction anymore. The Adapter only overrides pop for counting, not

multi pop , so if pop is not called, the counter is not updated. This is an example

for the semantic fragile base class problem.

By extending a class like MultiStack through inheritance, we create a seman-

tic dependency on the call patterns within that class. If those call patterns are not

documented, the use of inheritance for component adaptation becomes a guessing

game. Even if our adapter works for a particular version of the adapted compo-

nent, there is no guarantee that it will work for the next version. Note that we can

not simply choose to override multi pop as well and hope to solve the problem.

If we do, we would not count accurately for the original implementation anymore

because we would now update the counter twice instead of not at all.

4.3 Rethinking Inheritance and Delegation

The fragile base class problem discussed in Section 4.2 is not specific to IJ . Indeed,

I made only very general assumptions about the “ingredients” for component-

57

oriented programming languages in Section 2.2 where the basics of IJ were out-

lined. The following analysis therefore applies to many existing programming

languages.

4.3.1 Analysis

Given the problems that inheritance causes in IJ , we could consider variations

of the mechanism used in other object-oriented programming languages and hope

that they provide a better solution to the problem of component adaptation. I

briefly compare three different approaches in this section (see [Tai96] for a more

detailed survey):

1. Inheritance based on overriding methods of a superclass.

2. Inheritance based on augmenting methods with a subclass.

3. Delegation of messages from one object to another object.

The first approach is the mechanism in IJ that we already studied above. It is

also used in languages following the tradition of Simula [BDMN73, Mag93], in-

cluding in Smalltalk [GR83], Eiffel [Mey92], C++ [Str00], Java [GJSB00], Modula-3

[CDG+91], and Oberon-2 [MW91].

The second approach is used in the programming language Beta [MMPN93]

and its derivatives. Figure 4.7 on the following page compares these mechanisms

in terms of the call patterns that arise. In the case of overriding, calls “start” from

the “most derived” class and only reach superclasses when explicitly directed to

the super reference. Even self calls in base classes bind to the “most derived” class.

In the case of augmentation, calls “start” from the base class and only reach sub-

classes when explictly directed to the inner reference. Even self calls in subclasses

bind the the base class.

In terms of component adaptation, overriding allows us to adapt components

in ways that were not foreseen by the original component vendor. However, we

pay the price for this as illustrated by the semantic fragile base class problem. Aug-

mentation, on the other hand, only allows us to adapt components in ways that

58

class A

class B

method X

method X

extendssuper.X

class A

class B

method X

method X

extendsinner.X

self.X

self.X

self.X self.X

self.X self.X

(a) (b)

Figure 4.7: The two basic inheritance mechanisms based on overriding as in Java

(a) and augmentation as in Beta (b). Delegation as in Self works according to (a) as

well. (Arrows represent calls, dashed arrows before inheritance is applied.)

were foreseen by the original component vendor through a “proper” placement of

inner calls. However, while providing a strictly weaker mechanism for adaptation,

it does not solve the semantic fragile base class problem either.1

The third and final approach, delegation [Lie86], is used in the programming

language Self [US87]. Instead of being defined on classes, delegation is defined be-

tween individual objects. Objects “delegate” messages they do not “understand”

to other objects who “answer” on their behalf. While there are a number of advan-

tages to delegation, especially being able to determine “super classes” at runtime,

the mechanism is equivalent to overriding inheritance in regard to the call patterns

that arise [Ste87]. Delegation therefore suffers from the fragile base class problem

as well. In summary, established “alternative” approaches to inheritance do not

allow us to properly adapt components for new interfaces either.

1Even if we augment all three relevant methods from our example, we still could not tell whether
pop is used by multi pop or not.

59

class A
method A1

method A2

class B
method B1

A1

B1

A2

class A
method A1

method A2

class B
method B1

A1

B1

A2

(a) (b)

A1

A2

Figure 4.8: Adding a method using inheritance between classes (a) or forwarding

between objects (b). (Arrows are “calls,” dashed arrows are “instance-of” relation-

ships, dotted arrows are object references).

4.3.2 Synthesis

It should now be obvious that the problem of all mechanisms discussed above is

the recursive binding of the self reference. To avoid the fragile base class problem,

we have to avoid allowing this reference to change in non-local ways while still

allowing us to adapt components as necessary, either by adding operations not pre-

viously supported or by overriding operations to perform slightly different tasks.

The idea of delegation actually points the way to a straightforward solution for

both of these problems.

Consider the task of adding an operation not previously supported by a com-

ponent first. In Figure 4.8, we contrast the use of inheritance and forwarding in this

regard. Instead of a single object in which inheritance and thus recursive binding

of self are performed, we maintain two objects of “unrelated” classes. Instead of

B extending A, it keeps a reference to an A object which can handle the messages

A1 and A2. Since we want to add support for a message B1, class B implements

a method for it. However, B also implements methods for A1 and A2, but these

methods simply “forward” the messages they receive to the A reference (not shown

in Figure 4.8).

60

class A
method A1

method A2

class B

method B1

A1

B1

A2

class A
method A1

method A2

class B

method B1

A1

B1

A2

(a) (b)

A1

A2method A2 method A2

Figure 4.9: Overriding a method using inheritance between classes (a) or forward-

ing between objects (b). (Arrows are “calls,” dashed arrows are “instance-of” rela-

tionships, dotted arrows are object references).

Now consider the task of overriding an operation. In Figure 4.9, we again con-

trast the use of inheritance and forwarding in this regard. To override A2 in B, we

simply implement the changes we need instead of forwarding the message to A

unchanged. If we do need the equivalent of a super call, we send a message to the

A reference explicitly from within B.A2 to achieve this.

Used in this manner, forwarding allows us to perform the necessary component

adaption tasks. Since all involved classes remain “self contained” it also avoids the

fragile base class problem. However, we now have to write a number of methods

that just contain code to send a received message on to another object, a task that

will become quite tedious at some point. Using inheritance, those messages that

were not overridden in a subclass would “automatically” be sent to the imple-

mentation in the superclass.

In other words, we would prefer a mechanism as convenient as inheritance in

that it allows us to express the forwarding relationships necessary without repeat-

ing ourselves for each message, while at the same time being safer in the sense that

it avoids the fragile base class problem. We obviously have to express the forward-

61

ing relationship at least once, however we can take inheritance as an example for

how to approach the problem. Instead of listing all the forwarded messages explic-

itly, we can introduce a single method default that is invoked whenever an object

receives a message that it does not handle explicitly. Inside this default method,

we can then forward this message to another object. To keep the this mechanism

simple and close to the behavior of inheritance, we should leave the identity of

the actual message received opaque during this process, leading to the name generic

message forwarding for the resulting mechanism.

4.4 The Expressiveness of Forwarding

Generic message forwarding as introduced above enables us to perform unforeseen

and safe component adaptation in a convenient manner. However, since it does not

allow for recursive binding of self references, it must clearly be a weaker mecha-

nism than the various forms of inheritance discussed in Section 4.3. While we do

not require the full power of inheritance for component-oriented programming,

the question of how much expressiveness we lose in dropping inheritance mecha-

nisms is still of interest. In this section, I therefore demonstrate to what extent var-

ious forms of inheritance can be “decomposed” into the more basic mechanisms of

object composition and message forwarding using several examples. I also study

a number of common object-oriented design patterns to verify how common those

uses of inheritance that can not be decomposed are in practice.

4.4.1 Decomposing Inheritance

The goal for this section is to decompose various forms of inheritance into the more

basic mechanisms of object composition and message forwarding. To keep the dis-

cussion relatively brief, a number of restrictions that will not change the applica-

bility of the results are imposed. First, we do not discuss the problem of shared

state since it can always be expressed in terms of message sends. Furthermore, we

ignore the problem of object identity and the related question of transparency to

62

class A

class B

method X

method Y

self.X extends

(a) Inheritance

class A

class B

method X

method Y

method X

self.X

other.X

(b) Forwarding

Figure 4.10: Call patterns for adding methods using inheritance and fowarding

(dashed arrows are “before adding,” others are “after adding”).

clients. Finally, since our discussion will focus on call patterns exclusively, we can

safely disregard issues such as encapsulation, aliasing, and further details about

the type or module system.

The “base case” for our discussion of call patterns is a single class A that has

neither ancestors nor descendents. Since inheritance is not used at all, we (trivially)

do not need to decompose it either.

Next, we consider a class A that defines a method X and a descendent class B

that extends A and defines a Y method. This scenario is depicted in Figure 4.10

where we also show the resulting decomposition. On the one hand, since the mes-

sage Y was not known when the method X was implemented, the call pattern

resulting when we send a message X to an instance of B can not involve the Y

method. This case can thus easily be decomposed by implementing X in B to for-

63

class A

class B

method X

method X

extends
super.X

(a) Override (e.g. Java)

class A

class B

method X

method X

extends
inner.X

(b) Augment (e.g. Beta)

Figure 4.11: Call patterns for overriding or augmenting methods through inherit-

ance (dashed arrows are “before inheritance,” others are “after inheritance”).

ward to an instance of A. On the other hand, if we send a message Y to an instance

of B, the method Y could send a X message to self. However, this case is already

handled correctly by the forwarding method X in B. Thus we can accurately de-

compose inheritance relationships that add methods in descendent classes.

For the next two examples, we consider a class A that defines a method Y and

a descendent class B which extends A and also defines a Y method. This scenario

is depicted in Figure 4.11 for two different inheritance mechanisms.

Figure 4.11(a) illustrates the well-known “overriding” semantics of inheritance

used in Smalltalk, Eiffel, Java, and most other object-oriented languages. If we

send the message Y to an instance of A, the method A.Y will be invoked (“before”

in Figure 4.11(a)). However, if we send the same message to an instance of B, the

method B.Y will be invoked (“after” in Figure 4.11(a)). Inside the B.Y method, we

can invoke A.Y by sending the message Y to super. To decompose the “overriding”

semantics, the class B has to hold a reference to an A instance, and to emulate the

receiver super we send messages to that instance.

64

Figure 4.11(b) on the preceding page illustrates the somewhat obscure “aug-

mentation” semantics of inheritance used in Beta. As before, if we send the mes-

sage Y to an instance of A, the method A.Y will be invoked (“before” in Fig-

ure 4.11(b) on the page before). However, if we send the same message to an

instance of B, the method A.Y will still be invoked (“after” in Figure 4.11(b) on

the preceding page). Inside the A.Y method, we can invoke B.Y by sending the

message Y to inner.2 To decompose the “augmentation” semantics, the class A

has to hold a reference to a B instance, and to emulate the receiver inner we send

messages to that instance.

A number of comments are in order at this point. First, note that our decompo-

sition of these two inheritance mechanisms makes their differences more explicit.

The “overriding” semantics allow us to redefine methods in ways that the author

of the ancestor class did not anticipate. The “augmentation” semantics rely on

the author of the ancestor class to provide suitable “hooks” for extension. We can

thus view these inheritance mechanisms as corresponding to wrappers and plugins

in the paradigm of component-oriented programming [SGM02]. Next, note that

while the two inheritance mechanisms can not easily emulate each other, we can

emulate both through composition and forwarding, even concurrently. That is,

we can “extend” a class A through “overriding” by wrapping it in an instance of

a class B and through “augmenting” by supplying it with a plugin instance of a

class C as well. Finally, note that in our model, the concepts of super, inner, and

self are very transparent and therefore easy to understand. Sending a message to

self always invokes a method in the same class, sending a message to super always

invokes a method in the “closest” ancestor class, and sending a message to inner

always invokes a method in the “closest” descendent class. This is not the case in

inheritance-based models, which will complicate the remaining decomposition.

Consider the example in Figure 4.12 on the next page. The class A initially

defines two methods A.X and A.Y and the method A.Y sends the message X to

self, resulting in the dotted call pattern. The descendent class B extends A and

2In Beta, inner is actually a keyword and no message sending is involved; the semantics, how-
ever, are identical.

65

class A class B

method X

method Y

extends

method Y

class Cextends

method X

self self

super

self

Figure 4.12: The intricacies of inheritance with overriding semantics for self mes-

sage sends.

overrides A.Y with a B.Y method. This method does not call A.Y through super

but instead sends X to self, resulting in the dashed call pattern. We have already

seen how to decompose the scenario up to now: we give B a reference to an A

instance and defined B.X as a forwarding method. However, we will now add

a third class to the mix. The descendent class C extends B (and therefore A as

well) and overrides A.X with a C.X method, which also calls A.X through super.

The resulting call pattern can not be easily decomposed. If we define a forwarding

method C.Y the send of X to self in B.Y would cause in C.X to be ignored. We

cannot make C into a plugin for B either since C.X uses super whereas plugins

only work for inner. Also, this would make B dependent on a plugin even when

none is required, i.e. when we only need B and not C instances.

The only viable approach is to pass the “right” self as an explicit parameter with

each message. To see how this works, we need to “follow the message” through

the resulting call pattern. Assume we send Y to an instance c of C with the pa-

rameter self identifying the (arbitrary) source instance. The C.Y method forwards

this message an instance of B and also replaces the existing self parameter with c

instead. In B.Y we send X to the self = c we were passed, but in turn we replace

the self parameter with b again. Instead of the call through super, C.X will send

66

X to the self = b parameter, passing self = c once again. The B.X method simply

forwards to A.X and we have recreated the call pattern induced by inheritance in

this example.

It should be quite obvious that the resulting implementation is very sensitive

to changes in the composition. One possible conclusion to draw from this example

is that inheritance should not be decomposed at all. However, we believe that the

opposite is true. Our decomposition simply sheds some light onto the complexity

of call patterns that object-oriented programs sometimes exhibit. Put another way,

if a call pattern is complex to decompose, chances are that it is complex to under-

stand as well. This complexity remains hidden from the programmer by “virtue”

of the inheritance mechanism, which in turn makes systems exhibiting these call

patterns difficult to understand. Finally we get to the question of how common

these complex call patterns are in practice, which leads us to the next section.

4.4.2 Design Patterns

It should now be obvious that forwarding can not express all the call patterns that

can be constructed using inheritance or delegation. However, it should also be

obvious that we can not retain either mechanism if we want to ensure distributed

extensibility, since both are affected by the fragile base class problem. At this point,

an obvious question to ask is how often those call patterns “beyond” forwarding

arise in practice.

We could obviously study this question by examining a large number of “real

world” systems and measuring frequency of these call patterns. A drawback of

such an approach is that we can never be sure whether the results we obtain are

“representative” or just artifacts of the particular systems chosen. Therefore, in-

stead of studying actual systems, we fall back on a more “abstract” set of examples,

namely design patterns.

Object-oriented design patterns are “elements of reusable object-oriented soft-

ware” that capture proven solutions to recurring software development problems

[GVJH95]. Somewhat unintentionally, design patterns also provide examples for

67

Pattern Abstract Concrete Notes
Abstract Factory + −
Builder + −
Factory Method − + Replacing “inner” (Section 4.4.1)
Prototype + −
Singleton − −
Adapter + +/− Class Adapter / Object Adapter
Bridge + −
Composite + −
Decorator + −
Facade − −
Flyweight + −
Proxy + −
Chain of Responsib. + −
Command + −
Interpreter + −
Iterator + −
Mediator + −
Memento − −
Observer + −
State + −
Strategy + −
Template Method − + Replacing “inner” (Section 4.4.1)
Visitor + −

Table 4.1: Use of inheritance in design patterns [GVJH95] for interface (fully ab-

stract ancestor) or implementation (partially concrete ancestor) reasons.

typical uses of object-oriented programming languages. Given that something is

described as a design pattern, it must have occurred often enough to be identified

as such. Thus, if many design patterns utilize a certain language mechanism, we

can be reasonably sure that many “real world” software systems use the mecha-

nism as well. Here we are particularly interested in how common design patterns

make use of inheritance mechanisms.

In Table 4.1, we list the design patterns from [GVJH95] and classify them re-

garding their use of inheritance. A “+” in the column “Abstract” means that inher-

itance from a fully abstract ancestor class is used to establish a common interface

68

in the sense of subtyping. A “+” in the column “Concrete” means that inherit-

ance from a (partially) concrete ancestor class is used in the sense of subclassing.

Somewhat surprisingly, only three out of 23 design patterns critically depend on

inheritance for subclassing. Two of these, Factory Method and Template Method, use

inheritance to provide “hooks” that descendent classes are expected to override.

As we saw in Section 4.4.1, the resulting call patterns can be decomposed using

the “plugin” approach. Only one variation of the Adapter pattern resists any at-

tempt at decomposition. A Class Adapter uses multiple inheritance for efficiency

reasons: it allows adapting an existing class without the need for auxiliary objects.

Obviously, we can not decompose this particular use of inheritance while staying

true to the intent of the pattern.

Our sample of design patterns illustrates that most uses of inheritance can be

decomposed easily. While it would be a fallacy to conclude that because some

mechanism is not used in design patterns, it is also unused in real systems, we still

get the impression that the importance of inheritance might be overrated to some

extent.

4.5 Evaluation

To evaluate the concept of generic message forwarding, I compare it to a number

of existing approaches for solving the fragile base class problem: component mod-

els, programming conventions, design patterns, and generic wrappers. Finally, I

summarize my results.

4.5.1 Component Models

In the domain of component models, it is again Microsoft’s COM that follows our

approach most directly [Mic95]. There is not support for inheritance in COM, for

the same reasons pointed out above. Instead, COM relies on forwarding of mes-

sages between individual objects, however it does not provide a generic mecha-

nism for this and forwarding has to be performed on a “per message” basis. It

69

would, however, be straightforward to implement generic message forwarding on

top of COM.

4.5.2 Programming Conventions

In their excellent analysis of the fragile base class problem, MIKHAJLOV and Sek-

erinksi develop an elaborate set of programming conventions to restrict inheritance

mechanisms in a suitable way [MS98]. As with stand-alone messages in Chapter 3,

the problem with such an approach is that it can not be enforced by the compiler,

and thus is not reliable enough for component-oriented programming where we

have to rule out the potential for the fragile base class problem to arise.

4.5.3 Design Patterns

The basic idea of forwarding is also at the root of many design patterns [GVJH95],

for example the Adapter or Proxy patterns. As with programming conventions,

these patterns can avoid the fragile base class problem, but they can not be enforced

by the compiler. Regarding support for component-oriented programming, design

patterns are therefore not reliable enough.

4.5.4 Generic Wrappers

Generic wrappers [BW00] provide an alternative to generic message forwarding

that is type safe and allows for most of the component adaptation necessary. How-

ever, the mechanism can not be used to support the construction of flexible frame-

works, in which generic message forwarding allows extensibility in terms of mes-

sages as well as component adaptation.

Unrelated to forwarding, generic wrappers also rely on several programming

conventions that we can rule out through stand-alone messages. It seems promis-

ing to investigate the integration of generic wrappers with stand-alone messages.

70

4.5.5 Summary

Generic message forwarding provides a convenient mechanism for component

adaptation that avoids the fragile base class problem.

The mechanism is simpler to understand than inheritance because it does not

lead to recursive binding of self and the resulting non-local call patterns. While

clearly not as powerful as inheritance in it’s various forms, generic message for-

warding is able to express a large number of typical uses for inheritance. In partic-

ular, it can be used to express all but one out of 23 common object-oriented design

patterns examined.

Generic message forwarding is more flexible than class-based inheritance since

it works along the object graph which can be changed at runtime. In this regard,

generic message forwarding is similar to delegation, but again does not suffer from

the fragile base class problem.

This flexibility does, however, come at a price in terms of safety and efficiency.

In the presence of generic message forwarding, we can not guarantee complete

static type safety anymore since the compiler lacks explicit information about the

structure of the object graph and the forwarding relationships that will be imposed

on it. I will return to this problem in Chapter 5 and Chapter 7, suggesting various

ways in which it can be mitigated. Furthermore, forwarding messages along the

object graph obviously requires more work than statically resolving these relation-

ships in the presence of inheritance. Generic message forwarding is thus in the

same position as delegation when it comes to performance. As I will discuss in

Chapter 6, there are certain situations in which generic message forwarding actu-

ally beats the performance of explicitly coded forwarding relationships following

design patterns.

71

Chapter 5

Lagoona

. . . 8. A programming language is low level when its programs require
attention to the irrelevant. . . . 19. A language that doesn’t affect the way
you think about programming, is not worth knowing. . . .

— ALAN J. PERLIS [Per82]

In this chapter, I present the Lagoona design framework for the organizational

structure of component-oriented programming languages, which is based on the

mechanisms of stand-alone messages and generic message forwarding.

I start with a brief history of the Lagoona project and several remarks on the

imperative language core (Section 5.1). Next I discuss the object model that lan-

guages following the Lagoona design framework exhibit and illustrate these ab-

stract ideas with a number of simple code examples (Section 5.2). This leads into a

discussion of various applications—technical as well as non-technical—of the ob-

ject model, including novel solutions to several important design and implement-

ation problems in component-oriented programming (Section 5.3). Finally, I eval-

uate Lagoona by comparing it to a number of existing proposals for component-

oriented programming languages and related language mechanisms (Section 5.4).

72

5.1 Overview

The design framework I present below was developed as part of the Lagoona

project which investigates programming language support for the paradigm of

component-oriented programming. Besides this focus, however, the project is

also concerned with language design and implementation “for its own sake,” and

several ideas unrelated to component-oriented programming have been explored.

The “art of simplicity” as practiced by WIRTH has been an important guideline

throughout the project and led to tradeoffs that might be a little surprising in this

day and age [BGP00].

5.1.1 Historical Remarks

A complete account of the programming language developments that eventually

lead to Lagoona would have to start with Algol 60 [Nau63, RR64], but such an

account would hardly qualify as a “remark” anymore. I will therefore start with

Oberon [RW92], which could be described as a “minimalist’s” object-oriented pro-

gramming language. Oberon was designed in the 1980s by WIRTH in the tradition

and spirit of Pascal [JW91] and Modula-2 [Wir89], his previous and more well-

known designs. Oberon dropped many of the mechanisms that were rarely used

in Modula-2 with the goal of making the language truly minimal and simple. Only

a few mechanisms were added, most importantly type-extension between record

types, the basis for object-oriented programming.

Oberon retained Modula’s module concept and could thus be described as the

earliest language following the “standard model” for a component-oriented pro-

gramming language (see Section 2.2). More importantly, however, the Oberon Sys-

tem [WG92] already contained many of the ideas that would lead to component-

oriented programming as later formulated by SZYPERSKI and others [SGM02]. One

of these ideas, namely the use of message objects to implement an extensible archi-

tecture for Oberon’s user interface, eventually gave rise to the notion of stand-

73

alone messages.1 The first language construct for messages, albeit still far from

their current form, appeared in Object Oberon [MTG89], an experimental exten-

sion of the Oberon language that added “better” support for object-oriented pro-

gramming. Curiously, the message construct is absent from Oberon-2 [MW91],

which in turn developed out of Object Oberon. The next language construct for

messages appeared in the “protocol extension” proposal for Oberon by FRANZ

[Fra95]. At this point, the notion becomes first recognizable as the current con-

cept, although the emphasis of the proposal is not on messages but rather on a

form of “modular mixin inheritance” that allows new methods to be added to

classes retroactively. In the first Lagoona proposal, messages finally appear in

pretty much their current form, although embedded in quite a different object mo-

del [Fra96, Fra97b]. The same is true for concept of generic message forwarding,

which also has been refined further into the form described in this dissertation.

For the record, the central differences between the original Lagoona proposal

(“Lagoona 97”) and the object model of Lagoona described here are the introduc-

tion of two message send operators leading to improved type safety, the introduc-

tion of structural conformance between interface types, and the removal of type-

extension between implementation types.

5.1.2 Core Language

In spite of the Java-based surface syntax I have used throughout this dissertation,

Lagoona’s imperative core language consists of a simplified version of Oberon.

However, a number of genuine Java influences are present as well, for example the

rule that instances of objects are always treated using reference semantics.

The core language is designed to be as simple as possible. It supports int ,

float , boolean , and char as basic data types, as well as type constructors for

arrays and records (classes). Apart from assignment commands, the core supports

the usual control structures such as if , a safe form of switch without break ,
1Oberon’s message objects would be classified as an application of the Command design pattern

today [GVJH95].

74

while , repeat , and a bounded form of for . Sequences of commands or arith-

metic expressions can be abstracted using a standard procedure mechanism,

with parameter passing following the Ada [Int95] model of explicit in , out , and

inout parameter modes. This allows describing the intended data-flow across a

parameter explicitly, but without committing to a certain implementation of pa-

rameter passing.

As pointed out in Section 2.2, the computational core language is not important

for the organizational structure and could just as well be in the form of a functional

or logical languages. However, our experience with Lagoona implementations is

so far limited to imperative core languages, and I wanted to document the nature

of the core I assume in the following for reference.

I would also like to point out that the core language has been explicitly de-

signed to facilitate simple yet efficient code generation. The control flow structure

is limited and enables the generation of advanced intermediate representations

(such as SSA form) as well as common code generation tasks (such as register al-

location) to be performed in straightforward ways [BM94, Tho98]. There is, for

example, no return command that can be used to leave procedures at arbitrary

points thus complicating the control flow.

5.2 Object Model

The object model at the core of the Lagoona design framework separates many

of the roles traditionally played by classes in object-oriented programming lan-

guages, turning them into individual language constructs. Table 5.1 on the next

page provides a compact comparison of how different design concerns are mapped

onto language constructs in traditional object-oriented languages and in Lagoona.

At the lowest level of Lagoona’s object model are messages and methods. Mes-

sages are abstract operations that describe what effect they achieve, while meth-

ods are concrete operations that describe how a certain effect is achieved. In other

words, messages are specifications for methods, and methods are implementa-

75

Concern Traditional Lagoona
Encapsulation Class (modifiers) Module
Specification Class (abstract method) Message

Class (abstract) Interface Type
Implementation Class (concrete method) Method

Class (concrete) Implementation Type
Modification Class (inheritance) Forwarding

Table 5.1: Design concerns and corresponding language constructs in traditional

object-oriented languages and in Lagoona.

Interface
Type

Implementation
Type

Message Method

implements

conforms to

Figure 5.1: Notation for messages and interface types that include them, as well as

for methods and implementation types to which they are bound.

tions of messages. At the next higher level, messages and methods are grouped

into interface types and implementation types. An interface type is simply a set of

messages, while an implementation type consists of a set of methods and associ-

ated storage definitions. Variables of these types are called interface references and

implementation references respectively. Implementation types serve as generators

for instances, which are first-class values that can be assigned to implementation

or interface references. As with messages and methods, interface types and imple-

mentation types serve as specifications and implementations for each other. We

use the notation shown in Figure 5.1 to express these relationships graphically (the

notion of conformance is defined in more detail below). At the highest level of the

object model are modules which encapsulate sets of messages, methods, interface

types, and implementation types. Modules are unique in the sense that only a sin-

76

Module

Operation

Implementation

Method

imports

Component-Oriented!

Interface

Message implements

requires

Figure 5.2: Lagoona’s model for component-oriented programming languages il-

lustrated in the style of Figure 2.5 on page 19 and Figure 2.6 on page 25.

gle copy of a certain module can exist in a given system. Figure 5.2 summarizes

the design framework graphically.

So far, this description of Lagoona’s object model reads almost like the textbook

definition of any object-oriented programming language. What sets the Lagoona

framework apart are the following additional relations between the concepts intro-

duced above. Although messages are “grouped into” interface types, they are not

declared in the scope of a type but rather in the scope of a module. Since modules

are unique, this implies that messages are unique as well. This is the concept of

stand-alone messages introduced in Chapter 3. In contrast to messages, methods are

declared in the scope of an implementation type. This asymmetry is intentional,

since we want to support multiple implementations of identical specifications on

the level of messages and methods as well as on the level of interface types and im-

plementation types. To relate interface types and implementation types (including

their instances), we need to define some notion of conformance:

1. An interface type B denoting a set of messages MB conforms to an interface

type A denoting a set of messages MA if and only if MB is a superset of MA:

IntIntConf
Γ ` A = MA B = MB MA ⊆ MB

Γ ` A ≤ B
(5.1)

In other words, we employ structural conformance or structural subtyping be-

tween interface types.

77

2. An implementation type C with a set of methods implementing a set of mes-

sages MC conforms to an interface type B denoting a set of messages MB if

and only if MC is a superset of MB:

IntImpConf
Γ ` B = MB C = MC MB ⊆ MC

Γ ` B ≤ C
(5.2)

We extend structural conformance to implementation types, and if (5.1) and

(5.2) hold, A ≤ C will hold as well. Furthermore, this enables a form of inclu-

sion polymorphism that we like to call implementation polymorphism.

3. An interface type never conforms to an implementation type. Of course,

Lagoona allows interface types to be cast to implementation types, guarded

by a dynamic check.

4. Two implementation types only conform if they are the same type. In other

words, we employ occurrence equivalence between implementation types.

This completes the definition of conformance, but the fourth case raises the ques-

tion of how implementation types can be reused or adapted.

At runtime, Lagoona’s object model essentially reduces to a web of indepen-

dent instances that communicate through messages. Assume we are sending a

message m to a receiver r, which can be an interface or an implementation refer-

ence, whose type R denotes a message set MR. We distinguish two message send

operators with different semantics:

1. The first operator → is strict in the sense that the expression m → r is valid if

and only if m is an element of MR:

StrictSend
Γ ` r : R R = MR m ∈ MR

Γ ` m → r
(5.3)

In other words, this operator statically ensures that the message m will be

“handled” by the instance bound to r.

2. The second operator ⇒ is blind in the sense that the expression m ⇒ r is

always valid.

BlindSend Γ ` m ∈ M r : R
Γ ` m ⇒ r

(5.4)

78

Of course, we have to guard the application of this operator by a dynamic

check, similar to the one for casts mentioned above.2

The blind message send operator is necessary to support reuse and adaptation by

intercepting and rerouting messages. Implementation types can define a default

method which is triggered for messages that do not have an explicit method asso-

ciated with them. Inside this default method, messages can be resent or forwarded

to other instances. This is the concept of generic message forwarding introduced in

Chapter 4. The actual message remains opaque during this process. Obviously, the

strict message send operator alone would not be sufficient to support this.

Lagoona’s object model can be viewed as another step towards eliminating the

dominance of the class construct in object-oriented languages. Previous steps in-

clude the separation of interfaces and implementations [Sny86] and the separation

of modules and types [Szy92], both of which are widely accepted by now. In the

remainder of this section I explain each element of Lagoona’s object model in more

detail. I also discuss how these elements are mapped into the actual programming

language using several concrete examples.

5.2.1 Modules

Lagoona’s top-level language construct is the module, which serves a variety of

purposes. Modules are compilation units and result in object files which in turn

are the units of deployment [SGM02]. Modules live in a flat, global namespace and

cannot be nested. However, we employ a “hierarchical” naming convention based

on Internet domain names, similar to the one originally proposed for Java pack-

ages [GJSB00]. Modules are sealed in the sense of CARDELLI [Car89]; only explicitly

exported declarations are visible to clients, and no new declarations can be added

from the outside. Modules can import other modules and then refer to their ex-

ported declarations. These references are fully qualified, but to avoid “excessive”

qualifications we allow the introduction of local aliases for imported modules.

2For sensible assignment semantics, it is also necessary to restrict ⇒ to messages that do not
return a result.

79

module com.lagoona.thesis.stacks {
// pre obj != null ; post top() == o;
public message void push(any obj);
// pre !empty();
public message void pop();
// pre !empty(); post return != null ;
public message any top();
// "no elements?"
public message boolean empty();
public interface Stack { push, pop, top, empty }

}

Figure 5.3: The stack abstraction in Lagoona. Messages are bound to modules, not

types.

The module shown in Figure 5.3 exports all its declarations by marking them

public . The module in Figure 5.5 on page 82 imports the first one under the alias

Sand uses this alias to qualify further references, for example to the message push .

However, several declarations inside the second module are not marked public

and are therefore hidden from its clients.

5.2.2 Messages

One feature that sets Lagoona apart from established object-oriented program-

ming languages is stand-alone messages. As shown in Figure 5.3, messages are

bound to (declared in) modules instead of types. Since modules are unique within

a given system, and since no two messages can have the same name within a given

module, our approach makes messages unique as well. If messages were bound

to types, the approach taken in most conventional object-oriented languages, we

could not guarantee this property in general. Surprisingly, many of the applica-

tions described in Section 5.3 stem from this seemingly trivial difference.

We usually associate a semi-formal specification with each message, in terms

of preconditions, postconditions, and invariants. The push message, for example,

would be characterized with the precondition “obj 6= null” and the postcondition

80

precondition

postcondition

axiom

Interface
Type

Message A

Message B

Message C

requires

ensures

invariant

Figure 5.4: Notation for messages and their dependencies on other messages in

terms of precondition, postconditions, and axioms.

“¬empty”. We use the notation shown in Figure 5.4 to express these relationships

between messages graphically. Finally, we assume that a message and it’s spec-

ification are immutable once published, which is similar to the assumption made

about interfaces in COM [Mic95] and related technologies.

5.2.3 Interface Types

Messages are the basis for interface types (interface in our concrete syntax) which

represent references to objects that implement a certain set of messages. In Fig-

ure 5.3 on the preceding page, the interface type Stack is declared as support-

ing the messages push , pop , top , and empty . If we declare a variable s of type

Stack , we can only assign objects that implement at least these four operations to

s . As explained in Section 5.2, conformance to interface types is structural. The

pervasive interface type any represents the empty message set and is the top el-

ement in the resulting type lattice. Note that the name we give to an interface

type is only a convenient abbreviation; instead of using such a name, we could

also declare isomorphic interface types repeatedly. Conceptually, interface types

81

module com.lagoona.thesis.simple_stacks {
import S = com.lagoona.thesis.stacks;
class Link {

any object; Link next;
}
public class Stack {

Link top;
method void initialize() {

this .top = null ;
}
method void S.push(any obj) {

Link x = new Link(); x.object = obj;
x.next = this .top; this .top = x;

}
method void S.pop() {

this .top = this .top.next;
}
method any S.top() {

return this .top.object;
}
method boolean S.empty() {

return this .top == null ;
}

}
}

Figure 5.5: An implementation of the stack abstraction. Methods implementing

messages are bound to types.

82

in Lagoona are used to decouple independent components, similar to the use of

interfaces in both COM [Mic95] and to a certain extent Java [GJSB00].

5.2.4 Implementation Types

Implementation types (class in our concrete syntax) host methods and declara-

tions for instance variables. Consider the implementation of the Stack abstrac-

tion shown in Figure 5.5 on the page before. Each method implements exactly

one message imported from the module S. The message initialize (and also

finalize) has a special meaning in Lagoona: it is sent by the runtime system

immediately after an instance has been created (or, in the case of finalize , right

before it is garbage collected). The class Link is essentially used as a simple record

type without any methods.

Figure 5.6 on the following page illustrates how message forwarding between

instances is used to “extend” an existing implementation type. In this example, we

want to extend the stack abstraction (and it’s implementation) with an operation

that determines the number of elements currently on the stack. First we introduce

a new message elements which does exactly that. Next we declare a class Stack

that has an interface reference to another stack and an instance variable for the

actual counter. The method elements simply returns the counter value. The

methods S.push and S.pop update the counter and forward their messages to

the “basic” stack instance.

Although not directly related to the extension we want to produce, we also

have to implement the messages S.top and S.empty . The reason is that both

of these messages return a value and can therefore not be handled by the generic

message forwarding mechanism implemented in the default method. However,

implementing the default method as shown allows this extension to be com-

posed with other, unrelated extensions.

83

module com.lagoona.thesis.counting_stacks {
import S = com.lagoona.papers.thesis.stacks;
public message int elements();
public class Stack {

S.Stack stack;
int count;
method void initialize(S.Stack stack) {

this .stack = stack; this .count = 0;
}
method int elements() {

return this .count;
}
method void S.push(any obj) {

this .count += 1; S.push(obj) -> this .stack;
}
method void S.pop() {

this .count -= 1; S.pop() -> this .stack;
}
method any S.top() {

return S.top() -> this .stack;
}
method boolean S.empty() {

return this .count == 0;
}
method void default() {

current => this .stack;
}

}
}

Figure 5.6: Adding counting to the stack abstraction and its implementation.

84

5.3 Applications

In this section, we illustrate how stand-alone messages and generic message for-

warding address a number of recurring design and implementation problems in

both object-oriented programming and component-oriented programming.

5.3.1 Structural Interface Conformance

Conformance of an implementation type A to an interface type B can either be de-

clared explicitly as in Java [GJSB00], or it can be inferred based on a structural prop-

erty as in the Lagoona design framework. Structural conformance has a number

of advantages, especially for software evolution [LBR98]. More importantly, how-

ever, a certain degree of structural conformance is required for component-oriented

programming [BW98].

Consider two interface types A and B that have been defined independently by

vendors A and B. Vendors C and D define—again independently—combinations

of A and B, for example C = A + B and D = B + A. While both C and D support

exactly the same messages, they do not necessarily conform to each other. Most

object-oriented languages rely on a declared form of conformance, i.e. types are

equivalent by name (or by occurrence) instead of by structure (or by extent).

The usual objection to structural conformance is that it is “weaker” than de-

clared conformance because it can result in “accidental” conformance relations that

the programmer did not anticipate. The archetypal example of this problem is an

interface type Cowboy that includes a message draw and an interface type Shape

that also includes a draw message, presumably with different semantics. In a lan-

guage that supports stand-alone messages, accidental conformance of this kind is

not possible. The two draw messages would have to be defined in different mod-

ules and would therefore be distinguishable.

The use of structural conformance has been proposed before. In Modula-3

[CDG+91] structural conformance is used by default, but reference types can be

branded to avoid accidental conformance. However, all brands in a composed sys-

85

...
import f = edu.uci.framework;
...
// does not modify "s"
void printTop(f.Stack s) {

if (!f.empty() -> s) {
print(f.top() -> s);

}
}
...

Figure 5.7: Example method to illustrate minimal typing.

tem (a “program” in Modula-3) must be unique, which can restrict independent

extensibility by mutually unaware vendors. The compound types proposal for Java

[BW98] uses declared conformance for individual interfaces and structural confor-

mance for combined interfaces. Although backward compatible with Java, com-

pound types add additional rules to an already complex language and do not ad-

dress the problem of interface conflicts at all. Another proposal for Java [LBR98]

requires that interfaces for which structural conformance should be used must ex-

tend an explicit marker interface Structural .

In contrast to these approaches, structural conformance in Lagoona does not

require any additional language constructs to avoid accidental conformance. Fur-

thermore, our design is more flexible since any arbitrary combination of messages

can be “promoted” to an interface type which can subsequently be used with the

“correct” conformance relationships.

5.3.2 Minimal Typing

An interesting application of structural conformance is that signatures of messages

can be typed in a “minimal” way to express certain invariants. Consider a method

that prints the top element of a Stack as shown in Figure 5.7. In this example,

the fact that printTop does not modify the Stack is only stated as a comment.

Clients are therefore unable to rely on this information with the same confidence

86

Publisher (1)

Subscriber

Subscriber Subscriber

se
t

Subscriber

Publisher (2)

Subscriber

Subscriber Subscriber

update se
tget

Subscriber

Publisher (3)

SubscriberSubscriber

Subscriber

up
da

te

se
t

Subscriber
se

t

Figure 5.8: Publishers and subscribers as an example for the component reentrance

problem.

that they rely on annotations that are expressed in the type system directly. In

Lagoona, we can express this fact succinctly and safely by using an anonymous

interface type to define the signature of printTop as follows:

void printTop (interface {f.empty,f.top } s)

Given this signature, only the empty and top messages could be sent to s , en-

suring that printTop does indeed not modify the stack. Obviously this holds as

long as printTop does not cast the parameter to another type that exposes more

messages.

87

package org.bloat.pubsub;
public interface Publisher {

public void attach(Subscriber me);
public void detach(Subscriber me);
public Object get();
public void set(Object data);

}
public interface Subscriber {

public void update(Publisher from);
}

Figure 5.9: Naive publishers and subscribers in Java.

5.3.3 Component Reentrance

When we use messages and interface types to specify the functionality of certain

instances, we often make the assumption that each operation executes atomically.

However, for certain design patterns that rely on “callbacks” between instances

this is not the case, leading to the component reentrance problem [MSL99, SGM02].

Consider the Observer (or Publish-Subscribe) design pattern [GVJH95] for exam-

ple, which is used to achieve loose coupling between objects by implicit invoca-

tion. A publisher encapsulates some kind of data that is of interest to subscribers.

When this data changes, the publisher automatically notifies all its current sub-

scribers. Figure 5.9 illustrates how this design pattern could be modeled in Java

using two interfaces Publisher and Subscriber . Subscribers attach them-

selves to a publisher, and whenever set is invoked, the publisher in turn invokes

update on all registered subscribers. Subscribers then use get to retrieve the cur-

rent state of the publisher and update themselves accordingly.

While this sounds great, there are in fact several problems. For example, con-

sider subscribers that send attach or detach to the publisher from within their

update method. Since the publisher is currently traversing some kind of data

structure to update all subscribers, the effect of these operations becomes highly

dependent on the implementation of this traversal. Even worse, as shown in

Figure 5.8 on the page before, subscribers might send set within their update

88

module com.lagoona.pubsub {
public interface Publisher { attach, detach, get, set }
public message void attach(Subscriber me);
public message void detach(Subscriber me);
public message any get();
public message void set(any data);
public interface Subscriber { update }
public message void update(interface { get } from);

}

Figure 5.10: Smarter publishers and subscribers in Lagoona. As shown here, only

get can be sent within update .

method, resulting in infinite recursion.

The component reentrance problem can be solved by implementing publishers

very defensively, e.g. by cloning the data structure before traversal and by pro-

tecting the set method using some kind of flag. However, the problem really

boils down to what messages can be sent to the publisher from within the update

method. If we restrict this set of messages, we can statically ensure that the reen-

trance problem does not occur.

Figure 5.10 shows how we would model the design pattern in Lagoona. In-

stead of typing the from parameter of update with Publisher , we introduce an

anonymous interface type that only supports the get message. While subscribers

can still send other messages if they have another reference to the publisher, or if

they cast the from parameter accordingly, our description of the design pattern

is still more accurate and elegant. To achieve the same result in Java, we would

have to introduce an artificial base type, e.g. PublisherJustGet , that we derive

Publisher from.

5.3.4 Iterators

Certain programming languages, CLU [LAB+79] and Sather [MOSS96] for exam-

ple, offer an iterator construct to traverse encapsulated data structures in a modular

manner. In most object-oriented programming languages, iterators are “emulated”

89

import java.util.Enumeration;
...
class JavaIterator {

...
public void action() {

Enumeration e = container.elements();
while (e.hasMoreElements()) {

Object obj = e.nextElement();
System .out.println(obj);
...

}
}

}

Figure 5.11: Using iterators in Java.

at the library level [GVJH95, SL94]. Using Lagoona’s mechanism for generic mes-

sage forwarding, we can implement iterators that are as powerful as library ap-

proaches, but often as convenient to use as language approaches.

Figure 5.11 shows how iterators are commonly used in Java and similar lan-

guages that follow the library approach. The container class provides a method,

in this case elements , that returns an iterator object. This object encapsulates

the necessary operations to perform the actual traversal, and offers an interface to

check for more elements or to advance to the next element. However, the iteration

loop itself must be implemented manually each time an iteration is required.

In Lagoona, we can offer a more elegant solution that avoids this tedious repe-

tition. Since the default method enables us to specify a strategy for forwarding

messages in the imperative core language, we are by no means limited to just a

single receiver. Instead, we can implement a generic broadcast mechanism for mes-

sages. Figure 5.12 on page 92 shows how we can use this idea to implement iter-

ators in Lagoona. The container Array implements a message forward , which

returns an iterator instance. The iterator contains a reference to the elements to be

traversed and fully encapsulates the iteration strategy. For this example, we have

limited ourselves to forward iteration, but a backward message could easily be

90

added, returning an iterator instance for backward iteration. The actual iteration

is performed by simply sending a message to the iterator instance. The iterator it-

self does not implement any message but instead broadcasts all received messages

to the elements in the container. The actual action to be performed on each element

is located in a method of the container elements. Message parameters can be used

to pass additional context information from the current control flow to this iterator

method. This approach to iterators offers a much cleaner separation between the

iteration code and the application code then traditional iterator schemes. All code

related to the iteration is located in the module containing the container and its

iterator functionality.

5.3.5 Design Guidelines

Stand-alone messages are also helpful as design guidelines during development.

For example, consider designing an interface for bounded stacks based on the in-

terface edu.uci.framework.Stack for unbounded stacks. The existing inter-

face provides the messages push , pop , top , and empty . The only message not

yet provided is full which indicates that no more elements can be pushed . This

reasoning leads to the interface given in Figure 5.13 on page 93.

However, this interface does not capture the intended semantics accurately.

Consider the precondition associated with the push message in Section 3.2. It

states that push only fails if we pass null as a parameter, but for a bounded stack

push should also fail if the stack is full . This insight leads to the interface shown

in Figure 5.14 on page 93.

Focusing on messages and their semantics, for example using a graphical nota-

tion as shown in Figure 5.15 on page 94, thus helped us to uncover an inconsistency

between the interfaces for bounded and unbounded stacks. While developers can

not be forced to design semantically consistent interfaces, we believe that concen-

trating on messages facilitates this process.

Note how introducing a new push message enables us to express the semantic

difference between bounded and unbounded stacks. The interfaces for bounded

91

module com.lagoona.thesis.iterator {
...
class ArrayForwardIterator {

any [] data;
method void default() {

int j = 0;
while (j < this .data.length) {

current => this .data[j++];
}

}
}
class Array {

any [] data;
...
method ArrayForwardIterator forward() {

ArrayForwardIterator i =
new ArrayForwardIterator();

i.data = this .data;
return i;

}
}
class LagoonaIterator {

Array array;
...
method void action() {

array.forward().print();
}

}
}

Figure 5.12: Implementing iterators in Lagoona by leveraging generic message

forwarding for broadcasting.

92

module edu.uci.framework.bounded {
import f = edu.uci.framework;
// "no more pushes?"
public message boolean full();
public interface Stack {

full, f.push, f.pop, f.top, f.empty
}

}

Figure 5.13: A semantically flawed interface for bounded stacks.

module edu.uci.framework.bounded {
import f = edu.uci.framework;
// pre !full() && o != null ; post f.top() == o
public message void push(Object o);
// "no more pushes?"
public message boolean full();
public interface Stack {

push, full, f.pop, f.top, f.empty
}

}

Figure 5.14: An semantically sound interface for bounded stacks modeling behav-

ioral subtyping.

93

Unbounded Stack

Pop

Push

Top

Empty

(a) Unbounded

Bounded Stack

Pop

Push

Top

Empty

Full

(b) Bounded

Figure 5.15: Bounded and unbounded stack specifications.

and unbounded stacks do not conform to each other, which is appropriate if we

intend to model behavioral subtyping [LW94]. However, both interfaces do con-

form to the interface {f.pop, f.top, f.empty } and thanks to structural

conformance we can avoid explicitly introducing this “virtual supertype.”

5.4 Evaluation

To evaluate the Lagoona design framework, I compare it to a number of existing

proposals for component-oriented programming languages and related language

mechanisms.

5.4.1 Multimethods

Stand-alone messages and generic message forwarding can be related to the con-

cept of multimethods [BKK+86, Moo86]. Multimethods, also called generic func-

tions, generalize “regular” methods in that they are dispatched on multiple receiver

objects simultaneously instead of a single one.

94

In a language supporting multimethods, such as Cecil [Cha97], stand-alone

messages can be “emulated” by introducing an additional dispatch parameter

modeling the originating module. Also, generic message forwarding can be emu-

lated by subclassing the receiver to be adapted and adding the appropriate, more

specialized multimethods with new functionality.

Despite recent progress regarding type-safety and modularity of multimeth-

ods [MC99], the concept is not yet supported in mainstream languages. Stand-

alone messages are conceptually simpler than multimethods because they only

rely on the established notion of modules and add no additional concerns for sepa-

rate compilation. Generic message forwarding is also simpler to understand, how-

ever the concept is not as safe as multimethods have recently been made. Over-

all, the biggest advantage of the Lagoona design framework over multimethods

might well be that it maintains the established object-oriented programming style

and only “adapts it” as far as necessary.

5.4.2 Units and Mixins

Recent work on units and mixins [FF98a, FF98b, FKF98, Fla99] is related to Lagoona

design framework in a more interesting way. Units and mixins also aim at the

combination of modular and object-oriented language constructs.

Units provide a module concept that is more flexible than ours: Instead of fixing

the import relations of a set of modules once and for all, units allow the composi-

tion of modules through separate linking specifications. This has several important

applications, for example for the flexible creation of extended objects.

Mixins provide a variation of inheritance (in the sense of subclassing) that

allows derived classes to be parameterized by different base classes. However,

Lagoona’s approach to forwarding and composition already subsumes mixins:

while for mixins the base class relation is determined when units are linked, in

Lagoona we can actually defer this relation until objects are instantiated.

In summary, the units idea is very valuable, and we hope to explore the integra-

tion of a more flexible module system (with a distinct “units” flavor) into Lagoona

95

Message ∈ Type Message ∈ Module
Method ∈ Type Object-Oriented Component-Oriented
Method ∈ Module Useless? Modular

Table 5.2: Explored language design space for messages.

in the future.

96

Chapter 6

Implementation

There is a widespread myth that a language designer can afford to ignore
machine efficiency, because it can be regained when required by the use
of a sophisticated optimizing compiler. This is false: there is nothing that
the good engineer can afford to ignore.

— C. A. R. HOARE [Hoa73]

In this chapter, I discuss a number of implementation concerns for component-

oriented programming languages, particularly for languages that follow the de-

sign framework developed above. I first discuss some general implications of

component software for computer systems and language implementations (Sec-

tion 6.1). Then I briefly describe two prototype implementations of Lagoona—the

extensible interpreter PYLAG and the dynamically optimizing compiler LAVA—

and review the design decisions made for each (Section 6.2). Finally I discuss

efficient techniques for message dispatch, an area where languages following my

design framework require more general solutions than those commonly adopted

for object-oriented languages (Section 6.3). Since I am mainly concerned with

language design and not language implementation in this dissertation, I follow

HOARE’s advice and focus on “non-pessimistic” solutions that achieve decent per-

formance without sophisticated optimizations [Hoa73].

97

6.1 General Concerns

The implementation of component-oriented programming languages differs con-

siderably from the implementation of traditional languages. It is not sufficient to

simply implement a compiler and a basic runtime system, instead a complete exe-

cution environment has to be realized.

Apart from fulfilling traditional compilation tasks, this environment must at

least provide for dynamic loading and dynamic linking of software components at

runtime [Fra97a]. Safety and security concerns have to be addressed as well, for

example by providing garbage collection to ensure memory safety [SGM02] and by

verifying security properties of components acquired from potentially malicious

sources [ADF+01].

6.1.1 Efficienct Execution

The efficient execution of software written in high-level languages is a primary

concern for programming language implementation [Wir96, App02]. In bridging

the gap between software and hardware, compilers rely on a variety of automated

analyses to ensure source code is translated into native code that makes efficient

use of machine resources [WM95, NNH99].

The concerns involved on both sides of this process are frequently at odds.

While programming languages strive to offer sophisticated abstractions to aid pro-

grammers in expressing their designs accurately, computer systems perform most

efficiently once all these abstractions have been elided from the program.

Figure 6.1 on the following page illustrates this mismatch between software

concerns and hardware concerns with a simple example. The software perspective

on the left side shows three abstractions A, B, and C that depend on each other,

for example through some form of procedure call. Whether we consider these

abstractions to be procedures, modules, classes, or components, the point is that

each abstraction is isolated from the others as much as possible. The hardware

perspective on the right side shows how the code generated for these abstractions

98

A

B

C

A
ca

ll

ca
ll

ret
urn

ret
urn

Software
Perspective

A

B

B

C

Hardware
Perspective

pr
oc

es
so

r
Figure 6.1: Mismatch between software (nice abstractions) and hardware (efficient

execution). If the abstractions are components, even common optimizations such

as inlining can not be performed at compile time.

99

should be laid out in memory for a pipelined processor architecture to achieve

maximum performance [HP96, PH98]. Instead of the various branch instructions

that a straightforward compiler would generate to cross abstraction boundaries,

we would prefer not to have any branch instructions and to execute linear code

instead.

In the case of component-oriented programming languages, the potential for

traditional optimizations is inherently limited. The reason for this is simply that

the analyses required achieve better results when they can examine a complete

system as a whole instead of its parts in isolation. However, component software

is by definition never “complete” in this sense. At the time frameworks or compo-

nents are compiled, very little information about the configuration of the deployed

systems they will be part of is available. This remains true even in the case of a soft-

ware vendor who supplies a framework together with a number of components for

it. The principle of distributed extensibility requires that third parties can isolate

these components and either replace them or reuse them with other frameworks.

However, while frameworks and components must be deployed in a completely

isolated form, nothing prevents us from “tearing down” these barriers once they

have actually been composed into a running system. To enable optimization of com-

ponent software, we therefore have to employ dynamic compilation techniques and

defer many code generation tasks from compile-time to load-time. To avoid notice-

able delays caused by time-consuming analyses and optimizations, we also have

to rely on dynamic and continuous optimization that exploits idle time instead of in-

terrupting the user’s workflow. Note that any component-oriented programming

language will have to utilize such techniques to achieve optimal performance, the

concern is not limited to Lagoona.

6.1.2 Convenient Deployment

The notion of distributed extensibility (see Section 2.1.2) allows any party to extend

the functionality of a system at any time, including users of the system. For this rea-

son, the process of acquiring and integrating components can not assume a lot of

100

technical sophistication and must proceed with a minimum of intervention. Com-

ponent software should therefore be deployed in “binary” form [SGM02]. How-

ever, the word “binary” does not necessarily imply “native code” in this context.

Instead, it stands for a combination of the following requirements:

• Components are internally consistent (i.e. type-checked).

• Components contain metadata about the required environment.

• Components can be analyzed and executed with reasonable efficiency.

While it is possible to extend native code to fulfill these requirements [Nec98],

there is an additional dimension to consider as well: If component vendors have

to provide native code versions of all the components they offer for several different

platforms, the resulting management overhead can become a serious impediment.

The binary form for component software should therefore be a portable intermedi-

ate representation that fulfills the above qualities.

The choice of a particular intermediate representation affects both the security

of the execution environment as well as the performance of deployed components.

Interestingly, identical concerns arise in the area of mobile code, where technolo-

gies like Sun’s Java Virtual Machine [LY99] and the Microsoft’s .NET architecture

[ECM01] currently dominate. However, there is increasing evidence that interme-

diate representations based on virtual instruction sets are far from optimal for ad-

dressing security and efficiency concerns [ADF+01]. Intermediate representations

such as slim binaries [Fra94, FK97], which are based on suitably encoded abstract

syntax trees instead, seem to offer significant advantages without compensating

drawbacks [SHF00, ADFvR01].

6.2 Prototype Implementations

Language design is interesting and even fun, but it does not exist in a vacuum.

Design choices made must be validated and a straightforward approach is imple-

menting the language in the form of a prototype interpreter or compiler.

101

6.2.1 The PYLAG Interpreter

I developed the first Lagoona compiler in 1998 as an extension to the Oberon sys-

tem [WG92], but abandoned it as it became obvious that it would have only very

limited impact. Since then, I have concentrated on an extensible Lagoona inter-

preter instead, the latest incarnation of which is implemented in Python [vR01]

and code-named PYLAG for obvious reasons.1

The goal for PYLAG is to serve as a platform in which new language features

and various Lagoona dialects can be explored effectively, and to this end it sup-

ports multiple frontends. As illustrated in Figure 6.2 on the next page, all frontends

translate Lagoona source code into a common intermediate representation, which

is then executed by the interpreter.

Efficiency is not a priority for PYLAG, it indeed uses none of the more efficient

message dispatch techniques outlined below (see Section 6.3). Instead, each mes-

sage send triggers a traversal of the internal object and type graph, quite similar

to early Smalltalk implementations [GR83, Kay96]. It does, however, enforce the

type rules discussed in Chapter 5 strictly and can be used to experiment with new

variations of the same.

The frontend for Oberon-based [RW92] concrete syntax is complete and fol-

lows the original Lagoona syntax closely [Fra97b]. A frontend for the Java-based

[GJSB00] concrete syntax used throughout the dissertation is under development.

6.2.2 The LAVA Compiler

The LAVA project, headed by ANDREAS GAL, provides a second prototype imple-

mentation of Lagoona, exclusively for the Java-based syntax. Its architecture is

illustrated in Figure 6.3 on page 104 and consists of a compiler and a dynamically

optimizing runtime system, both written in Lagoona.2

1Due to chronic instabilities in the actual surface syntax, PYLAG has not yet been released pub-
licly. I hope to remedy this situation in the near future.

2To ease bootstrapping, LAVA is currently hosted in Microsoft’s .NET architecture [ECM01]. It
is expected to become self-hosting in the near future.

102

Oberon-2
Frontend

Java
Frontend

Common
Backend

... others ...Scanner
Parser

Abstract Syntax Tree
Symbol Table

Extensible Interpreter

Common
Intermediate

Representation

Common
Tree BuilderSemantic Analysis

source code source code

Figure 6.2: Architecture of the prototype Lagoona interpreter PYLAG consisting

of multiple frontends (according to the style of concrete syntax supported) and

common analysis and backend phases. Arrows indicate data flow.

103

Compiler

Portable
Object File

Runtime

Scanner / Parser

source code

Semantic Analysis

Abstract Syntax Tree (AST)

Annotated AST

Decoder / Verifier

Code Generator / Optimizer

Encoder / Compressor

Execution / Profiler

Feedback Native Code

Annotated AST

Figure 6.3: Architecture of the prototype Lagoona compiler LAVA consisting of a

compiler frontend and a dynamic code generation backend including a profiler.

Arrows indicate data flow.

104

The goal for LAVA is to explore static and dynamic optimization techniques for

Lagoona [GFF02, FGF02]. The compiler consists of a scanner and parser stage,

followed by semantic analysis and static type-checking. The output of the com-

piler is an annotated abstract syntax tree, which serves as a portable intermediate

representation.

Previous work established such a format as especially suitable for dynamic

code generation and optimization [FK97, KF00, KF01]. In particular, it simplifies

both the code verification step required by the runtime system as well as the gen-

eration of optimized native code.

6.3 Message Dispatch

The central concept Lagoona retains from object-oriented programming languages

is inclusion polymorphism (also subtype polymorphism), the ability to dynamically use

objects of a subtype in most contexts that statically expect one of its supertypes

[CW85].3 In language implementations, polymorphism of this kind leads to the

problem of message dispatch which we can state as follows for Lagoona:

Message Dispatch: Given a message msg to send and an interface

reference rcv to a receiving object, locate the method mth in the

implementation type it of rcv that should be invoked for msg.

Since the implementation type can change with each assignment to the interface

reference, message dispatch must obviously be performed at runtime.

Message dispatch is commonly implemented using various runtime data struc-

tures [Dri99, App02]. For most established object-oriented languages, these data

structures are constructed by the runtime system when an application is started,

based on information supplied by the compiler. They are subsequently used by

code the compiler generated for message sends and usually remain constant for

the execution of the program.
3 Note that the term implementation polymorphism would be more appropriate here since Lagoona

restricts polymorphism to “many forms” of (concrete) implementation types that can be used where
“one form” of (abstract) interface type is expected.

105

Message dispatch has been studied extensively for a variety of object-oriented

programming languages [Dri93, VH94, DH95, ZCC97, LM98, CC99, SHR+00] and

is closely related to the problem of type inclusion required for runtime type tests and

type casts [VHK97]. However Lagoona’s object model differs from the “standard

model” significantly enough to make many of these techniques difficult to apply.

In the following, I address the implementation of message dispatch and type

inclusion for Lagoona without concern for possible dynamic optimizations. The

LAVA project (see Section 6.2.2) focuses on these advanced implementation issues

with the goal of making Lagoona competitive with other aggressively optimizing

implementations of object-oriented programming languages [GFF02, FGF02].

However, even in light of more sophisticated approaches, conservative tech-

niques still have a number of advantages. First and foremost, they are needed

for environments such as embedded systems, in which dynamic optimization is

still deemed too expensive (see Section 7.6). Second, they make execution times

for basic operations such as message sends are much more predictable, which is

important for real-time systems. Finally, sticking to a conservative approach sim-

plifies the compiler and the runtime system considerably, which tends to influence

its reliability—or at least our confidence in its reliability—positively.

6.3.1 Basic Dispatch Techniques

Since message dispatch is a pervasive operation in object-oriented programs, its ef-

ficiency is of primary concern. In early Smalltalk implementations [GR83, Kay96],

each message send would trigger a traversal of the internal object and class graph,

leading to comparatively low performance. However, the problem was soon ad-

dressed in various ways, either through the use of hashing selectors (message

sends in Smalltalk terminology), caching previous results, or the use of tables that

linearize the graphs involved for faster access [DS84, SUH86, Atk86].

The use of dispatch tables has been most widely adopted for object-oriented

programming languages such as C++ [Str00], Java [GJSB00], or Lagoona’s ancestor

Oberon [RW92]. While table-based techniques are not necessarily the most efficient

106

solution for all scenarios, they do have the advantage of predictable, constant time

performance. Figure 6.4 on the next page illustrates the basic strategies for table-

based dispatch.

The problem of finding the appropriate method to invoke given a message and

an implementation type naturally leads to the idea of using a two-dimensional

table as shown in Figure 6.4(a). Messages as well as implementation types are

assigned unique identifiers, usually small integers, and the compiler emits code

indexing this table to perform message dispatch. Depending on the amount of

“dynamism” in the object model of the underlying language, various tradeoffs for

assigning and obtaining these unique identifiers arise.

• Assigning Unique Identifiers:

– In a closed system, where the compiler can perform global analysis, all

identifiers can be assigned statically by the compiler.

– In an open system, where new messages and implementation types can

appear at runtime, all identifiers have to be assigned dynamically by the

runtime system.

• Obtaining Unique Identifiers:

– If messages are first-class citizens, each message reference must contain

a message identifier at runtime.

– If objects are first-class citizens, each object reference must contain a type

identifier at runtime.

This model of dispatch is more general than usually discussed, but we will need it

to better understand the tradeoffs made for Lagoona in the following.

Several comments are in order at this point: First, Lagoona obviously assumes

open systems and we therefore have to postpone assignment of unique identifiers

to runtime. However, the code emitted for a module also requires locally unique

identifiers, which have to be mapped to globally unique ones at runtime.4

4Assuming static compilation; using dynamic compilation we can avoid this additional mapping.

107

m
essages

implementation types

a

d

j

e

g

ih

f

b c

m
essages

a

d

j

h

f b

i

c e

g

(a) (b)

(c)

a b c

d e

gf

ih

j

implementation types

(d)

mth = dispatch(msg, rcv)

msg rcv

...

type idmsg id
params

...
fields

+

mth

Figure 6.4: Basic data structures for message dispatch. A sparse table mapping

(message, implementation type) pairs to methods (a). Slicing the table by imple-

mentation type (b). Slicing the table by message (c). The dispatch process in its

most general form (d); “+” should be read as “index dispatch table,” not as literal

addition.

108

Second, Lagoona’s messages are not first-class citizens in the usual sense of

that term, i.e. they can not be assigned to variables (or passed to and returned

from procedures). Nevertheless, a form of “message reference” is used as part

of generic message forwarding, where the identifier current opaquely refers to

the “currently active message” without information about its actual identity (see

Chapter 4 and Chapter 5).5 I’ll return to this issue in Section 6.3.5 below.

Finally, the explicit mention of “first-class objects” might seem confusing. If

objects were not first-class, we would not have to consider the problem of message

dispatch at all, since the exact implementation type would be known at compile-

time. However, Lagoona’s rules for implementation types, namely that they can

not be used polymorphically with other implementation types, enable us to avoid

message dispatch at runtime in exactly this sense.

Figure 6.4(d) illustrates the most general case of message dispatch in this mo-

del. Message references as well as object references require a tag containing their

globally unique identifier in addition to their actual data contents. The compiler

emits code to dereference both pointers, obtain both tags, and index the dispatch

table to invoke the appropriate method. As pointed out above, Lagoona’s ob-

ject model allow us to avoid either or even both of these separate tags in certain

situations. These peculiar requirements are the primary reasons why established

dispatch techniques can not be applied to Lagoona in a straightforward way.

Two-dimensional dispatch tables as shown in Figure 6.4(a) are usually sparse

since most implementation types only support a comparatively small number of

messages. The only exception to this general rule are special messages such as

initialize and finalize . Various approaches for reducing the size of this

dispatch table have been explored before, see for example [Dri99] for a survey.

Approaches based on compression of the table often rely on global information

and are therefore not an ideal fit in open systems. Furthermore they often can

require a complete rebuilding of the compressed table when new messages or im-

5However, we have recently experimented with first-class messages for Lagoona to explore its
application to parallel and distributed systems as well as to support more fine-grained routing of
messages through reflective capabilities [WY88, Tem94].

109

plementation types are loaded. A more common technique to reduce the size of

the dispatch table is to slice it, either by implementation type or by message. These

two options are illustrated in Figure 6.4(b) and Figure 6.4(c) respectively, and the

former is used regularly in object-oriented programming languages such as C++

[Str00] and Java [GJSB00].

The basic idea is to replace the “type tag” of each object with a pointer to an

appropriate portion of the dispatch table directly (or alternatively, to replace the

“message tag” of a message in a similar way). In established object-oriented lan-

guages this idea works well because inheritance induces a tree structure in which

subclasses have at least the methods their superclasses have, possibly more. Since

these languages do not separate subtyping from subclassing (and hence messages

from methods), a unique offset can be assigned to each method in such a table. In

Lagoona, however, we can not assign identical offsets to identical messages when

they are part of different implementation types. This is illustrated in Figure 6.4 on

page 108 by the varying offsets that messages of the “same color” receive in differ-

ent type-based dispatch tables (and a symmetric problem exists for message-based

slices).6 After this lengthy background on message dispatch, I will now turn to the

specific techniques for languages following the Lagoona design framework.

6.3.2 Building Dispatch Data Structures

Implementing message dispatch for Lagoona requires keeping track of all mes-

sages and implementation types (including methods) currently loaded. As will

become obvious below, we also need to keep track of interface types which do

not appear explicitly in the model sketched above. Figure 6.5 on the next page

illustrates the following discussion of the basic data structures.

When a module is loaded, each of the messages it declares is entered into a

global message table and given a unqiue identifier. Note that it is not necessary to

check for potential duplicates during this process since messages imported from

6Note that we can not leave “holes” in these tables, otherwise we would not save space com-
pared to the full two-dimensional table.

110

A B
X X

Y

Y

Z

B.X

B.Y

B.Z

Code Memory

... "X": id(X)
"Y": id(Y)

"Z": id(Z)

Message Table
...

...

Descriptor A Descriptor B
id(X)
id(Y)

id(X)
id(Y)

id(Z)

"A": id(A)
"B": id(B)

Type Table
...

...

Scenario

finalize
initialize
default

...

Figure 6.5: Layout of the descriptor tables generated at load-time (module names

elided). Message Z was imported and thus received a “lower” identifier.

other modules can not be re-exported. For each implementation type, a descrip-

tor containing the unique identifiers of each implemented messages as well as a

pointer to the relevant method is allocated. In this descriptor, the first three slots

are reserved for the default , initialize , and finalize methods, while the

remaining slots are sorted by message identifier to obtain a canonical form of the

dispatch table. As with messages, each implementation type is also entered into a

global table and given a unique identifier.

In the case of interface types, however, the process of building the dispatch

data structures is somewhat more involved. The actual descriptors themselves

consist of the unique identifiers of all messages the type mandates, sorted as in

the case of implementation types. However, since interface types utilize structural

conformance, we need to take care not to create duplicate entries for types that are

111

1
2

0

5

3
4

... B b; Y() -> b; ...

offset(Y, B) = 5id(B)

+

B.X

B.Y

B.Z

Code MemoryDescriptor B

id(X)
id(Y)

id(Z)
finalize
initialize
default

Figure 6.6: Resolving the message dispatch for implementation types at link-time.

introduced in separate declarations but which are structurally identical. We use a

separate hash table data structure not shown in Figure 6.5 to detect duplicates in

the following way. After building a descriptor for the interface type, we compute a

hash value over the identifiers of all messages the type mandates. For this to work,

it is important that descriptors are built in a canonical, sorted form. If the descrip-

tor is not a duplicate, it is inserted into the hash table, otherwise the descriptor

found in the hash table is used. We also insert interface types into the global type

table for certain optimizations (see below).7

Note that the size of each descriptor table can be determined at compile-time,

but the loader and linker are responsible for populating the descriptor tables with

the appropriate identifiers and pointers.

6.3.3 Strict Message Sends

We have to distinguish two cases for the dispatch of strict message sends depend-

ing on whether the receiver is bound to an implementation reference or an interface

reference. In both cases, however, we know that the message sent will be handled

7The names of explicitly declared interface types could in principle be fully elided without loss
of generality, however we currently retain them in object files. In the future, a better choice might
be to remove named interface types altogether since they can introduce unwanted compile-time
dependencies.

112

2

5

3
4

1
0

1
0

... B b; A a = b; Y() -> a; ...

B.X

B.Y

B.Z

Code MemoryDescriptor B

id(X)
id(Y)

id(Z)
finalize
initialize
default

Descriptor A
id(X)
id(Y)1

0dtp
instance

Reference a

Dispatch (A, B)

Figure 6.7: Resolving the message dispatch for interface types at runtime through

customized dispatch tables.

by the receiver because of type checking (see Chapter 5).

If a message m is send to an instance through an implementation reference of

type T , the address of the target method can be obtained already at link-time by

accessing the descriptor table of T using the compile-time calculated offset (Fig-

ure 6.6 on the preceding page). This is possible since the reference can never point

to an instance of another implementation type, a fact ensured by the type system.

Dispatching a message this way therefore incurs no additional runtime overhead

once loading and linking are completed.

To dispatch messages sent through an interface reference, a dispatch table has to

be generated. This dispatch table maps the message offsets of a particular interface

to the actual methods to be executed on arrival of that message in a particular

implementation type. The set of methods to be matched to the messages has to

be selected according to the actual type of the object which has been assigned to

that interface reference (Figure 6.7). For every interface reference, the compiler

allocates space for an instance pointer and a dispatch table pointer (dtp) used to

send messages to the object hidden behind the interface. Thus, on the machine

level two words are required to represent an interface reference.

113

Pre-generating all possible dispatch tables is a waste of space, as there are n×m

possible combinations of n interface types and m implementation types. Instead,

the mappings are created lazily at runtime whenever an instance is assigned to an

interface reference, and held in a global dispatch table cache managed following

an LRU scheme. 8

6.3.4 Widening Interface References

In certain situations, it is desirable to explicitly widen the interface of an object

reference. In the message set model this means that messages are added to the

set of messages the object behind a particular reference is assumed to implement.

However, in the general case widening can not be verified at compile-time for

obvious reasons.

The verification of explicit casts is performed at runtime using the type descrip-

tors. The message set of the object addressed by the reference is compared to the

message set of the type to which the reference has been cast. If the conformity can-

not be verified, the object must be incompatible to the interface and an exception

is raised.

6.3.5 Blind Message Sends and Generic Forwarding

For blind message sends (see Section 5.2) we first attempt to dispatch as before.

If the message can not be resolved successfully, we examine the default slot of

the dispatch table and if it is filled, we invoke it with the current message id as an

implicit parameter in a reserved register. The original parameters of the message

are still on the call stack, but not accessible inside default . Message sends of the

form current => receiver are treated as a special case by the compiler, but

not by the runtime system. The message id is simply used directly without a sepa-

rate lookup. Trough a chain of forwarding message sends, we can therefore avoid

8Note that this covers assignments that statically “look like” (interface type, interface type) pairs
as well, since the second reference must refer to an instance and thus an implementation type.

114

duplicating parameters on the stack, which would be necessary if we implemented

forwarding without a special language mechanism.

6.4 Summary

In this chapter, I outlined a number of general concerns for the implementation

of component-oriented programming languages, reviewed two prototype imple-

mentations of Lagoona, and discussed an approach to message dispatch suitable

for Lagoona’s object model in detail.

Not all of the decisions described above were “set in stone” when work on

Lagoona began, and since work on dynamic optimization for Lagoona is still on-

going [GFF02, FGF02], certain decisions might be revised again. Furthermore,

while the “essence” of Lagoona has been fully implemented and is expected to

remain stable, we are trying to improve Lagoona further. Concepts such as first-

class messages or a more flexible module system will no doubt have an impact on

the implementation.

In terms of “lessons learned” the LAVA compiler, written in Lagoona, was par-

ticularly important. First of all, its existence demonstrates the feasibility of the

Lagoona design framework. More importantly, however, it yielded valuable in-

sights on programming style. Lagoona places a particular emphasis on the clear

separation of interface and implementation, both regarding types and regarding

modules. In terms of software evolution, it proved to be valuable that this sep-

aration is enforced to a greater extent than in most established object-oriented

languages. However, in terms of programming, we repeatedly found ourselves

tempted to take various “shortcuts” that would violate this separation but which

would be possible in languages like Java [GJSB00] or C++ [Str00]. Also, we repeat-

edly wanted to use inheritance in the sense of subclassing rather than forward-

ing as available in Lagoona. I believe that these experiences are part of learning

the style of programming that component software requires while simultaneously

“unlearning” what we had been doing for almost a decade prior. As was the

115

case with previous software development paradigms, such transitions are rarely

straightforward, but almost always productive in the long run.

Working out the details of Lagoona in terms of its implementation also proved

to be harder than expected, for example in relation to interface types and their

structural conformance rules. Our prior experience had been in languages where

named-based conformance between types dominates. While implementing type

checking for structural conformance was straightforward, the approach to stor-

ing this information in object files—in the sense of symbol files [Cre94, Wir96]—to

support separate compilation was initially less obvious. We eventually developed

the method described above, which relies on hashing to efficiently determine du-

plicate interface types, but initially we followed a much more complex approach

based on automatically generating unique interface type names.

When the Lagoona design framework is applied to an existing language and its

implementation, these problems a bound to occur again since most existing com-

piler technology relies on name-based conformance.9 More importantly, however,

it may be difficult to achieve a straightforward integration of Lagoona’s concepts

with the same elegance if the underlying language lacks a sensible module con-

struct. This is true for many languages, including Java [GJSB00], C++ [Str00], and

Eiffel [Mey92] that would otherwise be decent starting points. In the end, it may

be the lack of modularity that these languages provide that might keep them from

being used successfully for component-oriented programming.

9In this regard it is interesting to note that most formalizations of programming languages, even
for those with name-based conformance, actually use structural conformance rules.

116

Chapter 7

Future Work

A fair conclusion might be that “why” is well understood, “what” is still
subject to debate, and “how” is completely up in the air.

— NANCY G. LEVESON of Software Safety [Lev86]

As is the case with most research projects, the results I have presented in this dis-

sertation “naturally” lead to further questions, to be addressed in the future. Some

of these questions arise from various shortcomings of the completed project, while

others become apparent along the way, but can not be investigated in detail due to

external constraints. In this chapter, I briefly outline some of the areas—both for

Lagoona and for component-oriented programming languages in general—where

future work seems most promising.

7.1 Static Typing and Message Forwarding

In Chapter 5, I discussed the design of Lagoona’s message send operators and

showed that generic message forwarding, if allowed to be used as originally in-

tended, leads to a loss of static typing. At compile-time, that is, when a component

is created by a vendor, Lagoona can not guarantee that a blind message send will

be handled in the system as it is finally deployed. I also explained that we can not

avoid this loss if extensibility in terms of messages is desired.

117

interface X { R, S, T }
interface Y { Q, R, S, T }

class A {
...
method int Q() { ... }
method void R() { ... }
method int S(int x, int y) { ... }
method void T(string s) { ... }
...

}

class B {
A a;
...
forward R, S -> this .a;
...
method void T(string s) {

... T(s) -> this .a; ...
}
...

}

Figure 7.1: A declarative form of forwarding to improve static typing in Lagoona.

Forwarding relationships are made explicit instead of being “buried” inside the

default method as arbitrary code.

If we accept this loss in extensibility and want to remedy the situation directly

at the language level, the only possible alternative seems to be removing generic

message forwarding in its current form. Instead of allowing arbitrary code in the

default method, a more restricted, declarative form of forwarding could be used,

making forwarding relationships more explicit. One possible form that such a

mechanism could take is illustrated in Figure 7.1. Class B holds a reference to an

A instance and declares that messages R and S will be forwarded to that instance

unchanged. Message T is handled explicitly, presumably to “augment” its imple-

mentation in A in some way, but Qis neither forwarded automatically nor handled

explicitly. Therefore A conforms to both X and Y, while B only conforms to X.

118

While the basic tradeoff between static typing and extensibility remains, the

declarative approach has further advantages: It avoids the problem of “sudden

feature acquisition” (see Chapter 5), and it also helps to make message dispatch

more efficient since we do not have to rely on predictions about potential receivers

anymore (see Chapter 6). The details of this declarative approach to message

forwarding should be worked out to make a more informed decision as far as

Lagoona is concerned.

7.2 Type Inference

The idea of type inference stems from the observation that types can often be de-

termined automatically by the compiler, without the programmer declaring them

explicitly [APS93, Age96, Sch95]. Trivial forms of type inference are used in al-

most all programming languages, for example when a compiler “infers” that the

literal “1” has the type int . Similarly, structural conformance to interface types

in Lagoona can be seen as a limited form of type inference: Unlike in “regular”

object-oriented programming languages, conformance is never declared explicitly.

In functional programming languages like ML [MTHM97] and Haskell [PJ03],

type inference has been generalized much further, to the point where it has become

an “essential” aspect of the “programming experience.” In these languages, types

are inferred from the way identifiers are actually used, including types of functions.

For example, a function id that simply returns its argument would be given a type

of the form

id : any → any

while a function min that returns the smaller of its two arguments would receive

a type of the form

min : ordered × ordered → ordered

instead. These types are inferred from the implementation of their corresponding

functions: id does not apply operation to its argument and thus “works” for any

119

type, while min needs to compare its arguments using a less operation, which is

defined only for ordered types.

For Lagoona, type inference in this style would enable feedback about minimal

typing (Section 5.3.2). Consider a variable x of some interface type X. If inside

a certain scope we only send two of the 27 messages supported by X through x ,

the compiler could issue a warning and suggest to use a smaller interface type

instead. Note, however, that we can not propagate inferred types across module

boundaries. The problem with this is that a change in the implementation could

trigger a change in the type of a parameter, which could in turn break indepen-

dently developed components. In Lagoona, type inference would therefore take

a different form than in established functional languages, besides having to deal

with imperative features of course. Instead of inferring types purely “bottom-up,”

we need to infer types “top-down” as well. The problem we are left with is illus-

trated in Figure 7.2 on the next page, and it should prove interesting to investigate

whether more efficient type inference algorithms can be found for this special case.

Besides using type inference to provide feedback for programmers, the idea

might also be helpful to improve static typing in the presence of forwarding (see

Chapter 5 and Section 7.1). Combined with basic data-flow analysis results, a type

inference algorithm could conservatively approximate the possible sets of mes-

sages that will be handled through forwarding. Note that it is important to find an

efficient type inference algorithm since this analysis can only be performed accu-

rately at load-time or run-time in the system as it is finally deployed. The results

of such an analysis would in turn help to perform more effective dynamic opti-

mizations [Joh86, Atk86, BG93, APS93, ZCC97].

7.3 Dynamic Optimization

The dynamic optimizations performed by the LAVA compiler help Lagoona’s per-

formance significantly, especially regarding message dispatch for strict message

sends (see Chapter 5). However, they are currently less successful in the case of

120

a: A b: B c: C

A1(...) -> a
C1(...) -> c

{A1}

{A1, A2, A3} {B1, B2} {C1}

a: A

{A1, A2, A3}

A2(...) -> a

{A2}

{A2}

X

Y

Y(a)

{A2}

{A1, A2}

other call sites

{C1}C1(...) -> c

{C1}

{}

{A2}

{A2}

{C1}

Figure 7.2: The “limited” type inference problem in Lagoona. Arrows into an ab-

straction represent the “maximum set” of messages possible (i.e. declared type),

arrows out of an abstraction represent the “actual set” of messages used by the

implementation (i.e. inferred type).

121

blind message sends that occur during generic message forwarding. There are two

reasons for this, both of which should be addressed in the future.

First, as pointed out in Section 7.1 and Section 7.2 above, improvements in

Lagoona that would lead to tighter results for type-checking would help in op-

timizing these message sends further. Ideally, we would be able to predict the

eventual target method invoked through a “chain” of forwarding relationships as

soon as an instance is assigned to an interface reference. The question whether

such changes to the language, which potentially restrict the extensibility of com-

ponent software further, are acceptable remains to be explored.

Second, the current LAVA implementation in many cases fails to predict less fre-

quently used message send operations correctly, leading to the dynamic compiler

“wasting” significant amounts of time in optimizing code passages that are rarely

used. In other words, we need to improve the pay-off prediction process that we

apply to the feedback we obtain from the profiler. Said feedback is used to make

decisions as to which parts of a system are optimized next. One way we plan to

address this is by developing an improved suit of benchmarks that focus on the

various patterns of call frequencies possible, and ideally we would like to measure

the behavior of “real world” applications. However, porting such applications or

even existing benchmark suits to Lagoona is a slow process.

7.4 Aliasing and Representation Exposure

Composition, the mechanism at the core of component-oriented programming, is

almost universally mapped to object references in programming languages (see

Section 2.2). In contrast to object-oriented programming, where inheritance in the

sense of subclassing dominates, composition is also the standard approach to reuse

in component-oriented programming. However, whereas inheritance is a “static”

mechanism resolved at compile-time, composition is a “dynamic” mechanism. In

this context, it becomes important to address issues of representation exposure and

abstract aliasing directly at the level of programming languages [DLN98].

122

Consider the implementation of a class Stack once again. If we want to avoid

implementing the actual data structure used inside this class, we have to obtain a

reference to a suitable data structure from elsewhere. An obvious choice is to spec-

ify this data structure using an interface type, and to require a conforming object

reference in the initializer. However, another part of the system could retain this

object reference and thus break the abstraction a Stack promises. For example, if

an instance of some List class is passed, the internal state of the Stack could be

changed in unexpected ways through a retained List reference.

Several language mechanisms addressing various aspects of this problem have

been proposed in recent years [Alm97, Lei98, CPN98, VB99, BR00, MPH00]. For

Lagoona, I plan to either adopt an existing mechanism or (if none are suitable)

design a customized mechanism in the near future. The static guarantees about

possible dynamic aliasing relationships provided by such a mechanism should not

only simplify reasoning about the correctness of component software, they should

also prove helpful for certain code optimizations.

7.5 Versioning and Configuration Management

Software components retain their autonomous character even after they have been

deployed as part of a software system. While this facilitates the addition, removal,

and modification of components by third parties, it also creates new versioning

and configuration management issues.

Traditionally, research in software configuration management has focused on

assisting software vendors who work with source code and related artifacts, and

who execute related development processes [Tic88, Tic92, CW98]. Versioning and

configuration management support for software consumers and third parties is a rel-

atively recent topic of interest, and would be especially beneficial for component-

oriented programming.

Existing approaches to this kind of support often rely on meta data descriptions

that are distinct from source code. For example, the Software Dock infrastructure

123

[HHW99], which addresses deployment-related activities such as release, install,

update, and reconfigure, relies on deployable software descriptions (DSDs) written in

a specialized declarative language. Other systems leverage existing research in

software architectures [OMT98, KM98] and rely on architecture description lan-

guages (ADLs). The additional tools necessary to process these descriptions are

often not integrated well with the underlying operating system or programming

language, providing only a partial solution.

I believe that some—if not all—mechanisms to support deployment-side ver-

sioning and configuration management can be integrated into component-oriented

programming languages and their runtime systems. In modular programming

languages, symbol files are traditionally responsible for ensuring the version con-

sistency of modules before they are loaded and linked [LS79, Cre94], and recent

work suggests that versioning can indeed be lifted to the language level [Sew01].

Such an integration would simplify software maintenance since separate formal-

ism such DSDs or ADLs become unneccesary. Furthermore, it would allow the

compiler to leverage the additional information for optimizations.

7.6 Real-Time Programming and Embedded Systems

In order to become a “full-fledged” software development paradigm on par with

structured, modular, and object-oriented programming, the ideas of component-

oriented programming must be applicable universally. The domain of real-time

and embedded systems seems particularly challenging in this regard.

On the one hand, available resources are extremely constrained: How could

we ever hope to provide an execution environment supporting dynamic loading,

compilation, linking, and possibly even optimization on a simple micro-controller?

On the other hand, the flexibility afforded by component software would be espe-

cially beneficial in this domain. Embedded systems are often produced in great

quantities, and, at this point in time, they are pervasive. The possibility of dynam-

ically upgrading a system, in case of an urgent safety or security issue say, would

124

therefore be helpful to both producers and consumers of such systems.

As part of my dissertation research, I briefly investigated the suitability of

Lagoona for this domain [FFK99]. The only positive result, however, was an ele-

gant approach to schedule “non-essential” computations in the face of hard dead-

lines. Given the (potential) benefits and (certain) challenges, I hope to investigate

component-oriented programming for real-time embedded systems in more detail.

125

Chapter 8

Summary

Writing this sort of report is like building a big software system. When
you’ve done one you think you know all the answers and when you start
another you realize you don’t even know all the questions.

— BRIAN RANDELL [BR70]

Although RANDELL’s words of wisdom already make me worried about my next

research publication, I am still glad to finally reach the last chapter of this one. In

it, I summarize what has been achieved (Section 8.1), what remains to be improved

(Section 8.2), and what can be learned from the Lagoona project (Section 8.3).

8.1 Achievements

In this dissertation, I developed a novel design framework for the organizational

structure of component-oriented programming languages. The framework can be

applied to type-safe core languages with arbitrary computational structure and is

thus reusable. The Lagoona family of programming languages has been devel-

oped by applying the framework to the core of Oberon [RW92] and Java [GJSB00].

The framework is based on two novel language mechanisms, namely stand-

alone messages and generic message forwarding. Stand-alone messages are bound

to sealed modules instead of extensible types and therefore have globally unique

126

identities. Stand-alone messages allow languages implementing the framework to

guarantee the following two properties:

Interface Combination: Any combination of two or more inter-

face types is itself a valid interface type preserving all constituent

messages.

Interface Conformance: Conformance between interface and im-

plementation types is structural yet safe down to the level of con-

stituent messages.

Both of these properties are required for programming languages that need to sup-

port the principle of distributed extensibility at the core of component-oriented

programming. Both of these properties do not require any additional language

mechanisms besides stand-alone messages.

Generic message forwarding is a compositional black-box code reuse mecha-

nism for adapting and extending implementation types. Compared to inheritance

or delegation, it does not suffer from the fragile base class problem. Compared

to forwarding without explicit language support, it is more convenient to use and

can be more efficient as well.

I have illustrated the utility of these mechanisms and the design framework in

terms of minimal typing, retroactive supertyping, component reentrance, iteration

abstraction, and component framework extensibility.

I have shown that the Lagoona framework occupies a previously unexplored

point in the design space of programming languages and sheds new light on the ex-

act combination of features from modular and object-oriented languages required

for component-oriented programming. In particular, separating messages from

methods can be viewed as another step towards the separation of concepts sub-

sumed by classes in traditional object-oriented languages. Previous results in this

direction include the separation of interface and implementation types (subtyp-

ing and subclassing) [Sny86] and the separation of modules from types [Szy92],

127

which both are by now widely accepted. I have also shown how Lagoona’s mech-

anisms can be implemented efficiently without undue overhead, sometimes even

with definite performance advantages over established object-oriented languages.

I have clarified the difference in expressive power between forwarding and recur-

sive code reuse mechanisms such as inheritance and delegation that are unsuitable

for component-oriented programming. I have also clarified the tradeoff between

the level of extensibility required in a component framework and the level of type

safety that can be guaranteed for it.

In summary, I hope that the design framework developed in this dissertation

will enable future research on component-oriented programming languages to

proceed with better focus and thus more productively.

8.2 Shortcomings

Although languages based on the Lagoona design framework provide numerous

advantages for component-oriented programming, there are several “remaining

troublespots” as well.

Regarding stand-alone messages, the very fact that they are globally unique

could turn out to be problematic since it might lead to an “explosion” of messages.

Consider, for example, the problem faced by component vendors if there are 300

different messages defined for a certain operation, all with identical semantics, yet

all unique by design of the mechanism. I have discussed this problem briefly in

Section 3.4.7, Chapter 5, and Chapter 7, but possible mechanisms to avoid it seem

less important than the question of whether it would actually arise. For obvious

reasons, this can not be evaluated conceptually, a strategy that I have otherwise

preferred in this dissertation. Instead, it will be necessary to collect experimental

evidence and return to the issue in the future.

In the case of generic message forwarding, however, several conceptual prob-

lems regarding the safety and efficiency of the mechanism remain. As discussed in

Chapter 4, generic message forwarding and the related concept of blind message

128

sends can not be statically checked. However, as pointed out there as well, this

is a necessary consequence of the principle of distributed extensibility combined

with the desire to allow extensibility even with regard to the messages exchanged

through a component framework. Nevertheless, the problem of accidental feature

acquisition seems quite troubling. Again, it is difficult to evaluate the actual prob-

lems caused by the use of generic message forwarding in this regard conceptually.

The same applies regarding the efficiency of generic message forwarding. While it

is obviously more expensive to forward messages along a chain of receivers than

to dispatch within an inheritance hierarchy, it should be noted that forwarding af-

fords much more flexibility. Furthermore, providing generic message forwarding

on the language level is actually more efficient than implementing it “by hand”

with regular message sends (see Chapter 6). I have outlined two possible ap-

proaches to these issues in Section 7.1 and Section 7.2, yet experimental evidence

would surely be important here as well.

8.3 Conclusions

Time spent on the design of programming languages is frequently considered

“time wasted” by those with a particularly “pragmatic” attitude. This is especially

true in case of academic exercises such as this one, which can not reasonably be

expected to “pay off” within a few years, and, in fact, may never do so.

If I had been discouraged by this several years ago, I certainly would not have

learned as much about either programming languages or component software as

I tried to share in this dissertation. This will remain true regardless of how well I

was actually able to convey these insights, but I’ll try to work on that. . .

From this perspective, the most important conclusion I can draw from the

Lagoona project is simply this: Programming language design is a viable and

valuable approach to understanding new programming techniques and software

development paradigms. Only when we try to “cast” the general ideas into con-

crete language mechanisms, and only when these mechanisms lead to coherent

129

programming languages, only then can we be sure to understand them.

On a less philosophical level, I believe the most surprising result of my work on

component-oriented programming languages was finding a solution to the long-

standing problem of “name clashes” in the form of stand-alone messages. In ret-

rospect the solution seems quite trivial, but that hardly explains the number of

trees that have been used to describe the problem. A classic article on program-

ming in Simula contains the earliest mention of the problem I could find [DH72],

and it continues to reappear regularly from then on [Sny86, Knu88, OH92, Mez97,

BW00]. And of course it haunts and complicates most object-oriented program-

ming languages. The second most surprising result is the wide array of appli-

cations stand-alone message open up in terms of safe structural conformance. I

hope that at least these considerations will eventually “make it” into mainstream

languages, following in the tradition of the proscription against goto [BJ66, Dij68],

the case instruction [Hoa73], and the introduction of explicit module constructs

[Par72, GMS77, LSAS77, Wir77].

Finally, I can not avoid to comment on the idea of component software itself.

I believe the major result from MCILROY’s original vision up to the much more

evolved ideas of SZYPERSKI is that they challenge and guide research. I do not be-

lieve, however, that we will ever see a true “free market of software components”

in which competition rules and the best components win the day. The reason for

this is not a flaw in the idea of component software, it is simply the fact that there

are no “free markets” in the first place. Of course I am willing to be proven wrong

on this judgement, and whatever the eventual outcome, component software sure

provides research challenges for years to come. . .

It is the responsibility of intellectuals to speak the truth and to expose lies.
This, at least, may seem enough of a truism to pass without comment.
Not so, however. For the modern intellectual, it is not at all obvious.

— NOAM CHOMSKY [Cho67]

130

Bibliography

[ADF+01] Wolfram Amme, Niall Dalton, Michael Franz, Peter H. Fröhlich, Vivek

Haldar, Peter S. Housel, Jeffery von Ronne, Christian H. Stork, and

Sergiy Zhenochin. Project TRANSPROSE: Reconciling mobile-code se-

curity with execution efficiency. In Proceedings of the DARPA Infor-

mation Survivability Conference and Exhibition, pages II.196–II.210, Ana-

heim, CA, June 2001.

[ADFvR01] Wolfram Amme, Niall Dalton, Michael Franz, and Jeffery von Ronne.

SafeTSA: A type safe and referentially secure mobile-code represen-

tation based on static single assignment form. In Proceedings of the

Conference on Programming Language Design and Implementation (PLDI),

Snowbird, UT, June 2001.

[ADH+98] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams IV,

D. P. Friedman, E. Kohlbecker, Jr. G. L. Steele, D. H. Bartley, R. Hal-

stead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman,

and M. Wand. Revised5 report on the algorithmic language scheme.

Higher-Order and Symbolic Computation, 11(1):7–105, August 1998.

[Age96] Ole Agesen. Concrete Type Inference: Delivering Object-Oriented Applica-

tions. PhD thesis, Department of Computer Science, Stanford Univer-

sity, 1996. Published by Sun Microsystem Laboratories (SMLI TR-96-

52).

[Alm97] P. S. Almeida. Balloon types: Controlling sharing of state in data

131

types. In M. Aksit and S. Matsuoka, editors, Proceedings of the Euro-

pean Conference on Object-Oriented Programming (ECOOP), pages 19–32,

June 1997.

[Ame87] Pierre America. Inheritance and subtyping in a parallel object-

oriented language. In Proceedings of the European Conference on Object-

Oriented Programming (ECOOP), volume 276 of Lecture Notes in Com-

puter Science, pages 234–242. Springer-Verlag, 1987.

[App02] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge

University Press, 2nd edition, 2002.

[APS93] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type infer-

ence for SELF: Analysis of objects with dynamic and multiple inherit-

ance. In Oscar M. Nierstrasz, editor, Proceedings of the European Confer-

ence on Object-Oriented Programming (ECOOP), volume 707 of Lecture

Notes in Computer Science, pages 247–267. Springer-Verlag, 1993.

[Atk86] Robert G. Atkinson. Hurricane: An optimizing compiler for Smalltalk.

In Norman Meyrowitz, editor, Proceedings of the Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA),

pages 151–158, Portland, OR, November 1986.

[BDMN73] M. G. Birtwistle, Ole-Johan Dahl, B. Myhrhaug, and Kristen Nygaard.

Simula Begin. Petrocelli / Charter, New York, NY, 1973.

[BG93] Gilad Bracha and David Griswold. Strongtalk: Typechecking

Smalltalk in a production environment. In Andreas Paepcke, edi-

tor, Proceedings of the Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications (OOPSLA), pages 215–230, Washing-

ton D.C., September 1993.

[BGP00] Lazlo Böszörmenyi, Jürg Gutknecht, and Gerhard Pomberger, editors.

The School of Niklaus Wirth: The Art of Simplicity. Morgan Kaufman,

September 2000.

132

[BJ66] C. Boehm and G. Jacopini. Flow diagrams, turing machines and lan-

guages with only two formation rules. Communications of the ACM,

9(5):366–371, May 1966.

[BKK+86] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masin-

ter, Mark Stefik, and Frank Zdybel. CommonLoops: Merging Lisp

and object-oriented programming. In Norman Meyrowitz, editor,

Proceedings of the Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 17–29, Portland, OR,

November 1986.

[BM94] Marc M. Brandis and Hanspeter Mössenböck. Single-pass genera-

tion of static single-assignment form for structured languages. ACM

Transactions on Programming Languages and Systems, 16(6):1684–1698,

November 1994.

[BR70] John N. Buxton and Brian Randell, editors. Software Engineering Tech-

niques: Report on a Conference Sponsored by the NATO Science Commit-

tee, Rome, Italy, 27th to 31th October, 1969. Scientific Affairs Division,

NATO, Brussels, Belgium, April 1970. Available at http://www.cs.

ncl.ac.uk/people/brian.randell/home.formal/NATO/ .

[BR00] Ciaran Bryce and Chrislain Razafimahefa. An approach to safe object

sharing. In Proceedings of the Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), pages 367–381,

Minneapolis, Minnesota, October 2000.

[Bro87] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents in soft-

ware engineering. IEEE Computer, 20(4):10–19, April 1987. Reprinted

in [Bro95].

[Bro95] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software

Engineering (20th Anniversary Edition). Addison-Wesley, 1995.

133

http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/
http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/

[BW98] Martin Büchi and Wolfgang Weck. Compound types for Java. In Pro-

ceedings of the Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA), pages 362–373, Vancouver, British

Columbia, October 1998.

[BW00] Martin Büchi and Wolfgang Weck. Generic wrappers. In Proceedings

of the European Conference on Object-Oriented Programming (ECOOP),

pages 201–225, Sophia Antipolis and Cannes, France, June 2000.

[Car89] Luca Cardelli. Typeful programming. SRC Research Report 45, Digital

Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301,

May 24, 1989.

[CC99] Craig Chambers and Weimin Chen. Efficient multiple and predicate

dispatching. In Proceedings of the Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), pages 238–255,

Denver, CO, November 1999.

[CDG+91] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill

Kalsow, and Greg Nelson. Modula-3 language definition. In Greg

Nelson, editor, Systems Programming in Modula-3, chapter 2, pages 11–

66. Prentice-Hall, 1991.

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:

Methods, Tools, and Applications. Addison-Wesley, 2000.

[Cha97] Craig Chambers. The Cecil language: Specification and rationale.

Technical report, Department of Computer Science and Engineer-

ing, University of Washington, Box 352350, Seattle, WA 98195-2350,

USA, March 1997. Available at http://www.cs.washington.

edu/research/projects/cecil/ .

[Cho67] Noam Chomsky. The responsibility of intellectuals. New York Review

of Books, September 23, 1967. Reprinted in [Cho87].

134

http://www.cs.washington.edu/research/projec ts/cecil/
http://www.cs.washington.edu/research/projects/cecil/
http://www.cs.washington.edu/research/projects/cecil/

[Cho87] Noam Chomsky. The Chomsky Reader. Pantheon Books, New York, NY,

1987.

[CHP99] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module?

In Proceedings of the Conference on Programming Language Design and

Implementation (PLDI), pages 37–49, Atlanta, GA, May 1999.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Ownership types

for flexible alias protection. In Proceedings of the Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA),

pages 48–64, Vancouver, British Columbia, October 1998.

[Cre94] Régis Crelier. Separate Compilation and Module Extension. PhD the-

sis, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland,

1994.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data ab-

straction, and polymorphism. ACM Computing Surveys, 17(4):471–522,

December 1985.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for soft-

ware configuration management. ACM Computing Surveys, 30(2):232–

282, June 1998.

[DDH72] Ole-Johan Dahl, Edsger Wybe Dijkstra, and Charles Antony Richard

Hoare, editors. Structured Programming. Academic Press, London,

England, 1972.

[DeM79] Tom DeMarco. Structured Analysis and System Specification: Tools and

Techniques. Prentice-Hall, 1979.

[DH72] Ole-Johan Dahl and Charles Antony Richard Hoare. Hierarchi-

cal program structures. In Ole-Johan Dahl, Edsger Wybe Dijkstra,

and Charles Antony Richard Hoare, editors, Structured Programming,

pages 175–220. Academic Press, London, England, 1972.

135

[DH95] Karel Driesen and Urs Hölzle. Minimizing row displacement dis-

patch tables. In Proceedings of the Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), pages 141–155,

Austin, TX, 1995.

[Dij68] Edsger Wybe Dijkstra. Go to statement considered harmful. Commu-

nications of the ACM, 11(3):147–148, March 1968.

[DLN98] David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling

with rep exposure. SRC Research Report 156, Digital Systems Re-

search Center, 130 Lytton Avenue, Palo Alto, CA 94301, July 29, 1998.

[Dri93] Karel Driesen. Selector table indexing & sparse arrays. In Andreas

Paepcke, editor, Proceedings of the Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), pages 259–

270, Washington D.C., September 1993.

[Dri99] Karel Driesen. Software and Hardware Techniques for Efficient Polymor-

phic Calls. PhD thesis, Department of Computer Science, University of

California, Santa Barbara, CA, June 1999. Also published as Technical

Report TR-CS-99-24.

[DS84] L. Peter Deutsch and Allan M. Schiffmann. Efficient implementation

of the Smalltalk-80 system. In Proceedings of the Symposium on Principles

of Programming Languages (POPL), pages 297–302, Salt Lake City, UT,

January 1984.

[ECM01] ECMA. The .NET Common Language Infrastructure. Technical Re-

port TR/84, ECMA, Geneva, Switzerland, June 2001.

[FF98a] Robert Bruce Findler and Matthew Flatt. Modular object-oriented pro-

gramming with units and mixins. In Proceedings of the International

Conference on Functional Programming (ICFP), pages 94–104, Baltimore,

MD, 1998.

136

[FF98b] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT

languages. In Proceedings of the Conference on Programming Language

Design and Implementation (PLDI), pages 236–246, Montreal, Canada,

June 1998.

[FF00] Peter H. Fröhlich and Michael Franz. Stand-alone messages: A

step towards component-oriented programming languages. In Jürg

Gutknecht and Wolfgang Weck, editors, Proceedings of the Joint Mod-

ular Languages Conference, volume 1897 of Lecture Notes in Computer

Science, pages 90–103, Zürich, Switzerland, September 2000. Springer-

Verlag.

[FF01] Peter H. Fröhlich and Michael Franz. On certain basic properties of

component-oriented programming languages. In David H. Lorenz

and Vugranam C. Sreedhar, editors, Proceedings of the Workshop on

Language Mechanisms for Programming Software Components (at OOP-

SLA), pages 15–18, Tampa Bay, FL, October 15 2001. Technical Report

NU-CCS-01-06, College of Computer Science, Northeastern Univer-

sity, Boston, MA 02115. Available at http://www.ccs.neu.edu/

home/lorenz/oopsla2001/ .

[FFK99] Michael Franz, Peter H. Fröhlich, and Thomas Kistler. Towards lan-

guage support for component-oriented real-time programming. In

Proceedings of the International Workshop on Object-Oriented Real-Time

Dependable Systems (WORDS), Monterey, CA, November 1999.

[FGF02] Peter H. Fröhlich, Andreas Gal, and Michael Franz. On reconciling

objects, components, and efficiency in programming languages. Tech-

nical Report 02-12, Department of Information and Computer Science,

University of California, Irvine, CA 92697-3425, USA, March 2002. Re-

vised May 2002.

137

http://www.ccs.neu.edu/home/lorenz/oopsla2001/
http://www.ccs.neu.edu/home/lorenz/oopsla2001/
http://www.ccs.neu.edu/home/lorenz/oopsla2001/

[FK97] Michael Franz and Thomas Kistler. Slim binaries. Communications of

the ACM, 40(12):87–94, December 1997.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.

Classes and mixins. In Proceedings of the Symposium on Principles of Pro-

gramming Languages (POPL), pages 173–183, San Diego, CA, January

1998.

[Fla99] Matthew Flatt. Programming Languages for Reusable Software Compo-

nents. PhD thesis, Department of Computer Science, Rice University,

Houston, TX, June 1999.

[Fra94] Michael Franz. Code Generation On-The-Fly: A Key to Portable Soft-

ware. PhD thesis, Swiss Federal Institute of Technology (ETH), Zürich,

Switzerland, March 1994.

[Fra95] Michael Franz. Protocol extension: A technique for structuring large

extensible software-systems. Software: Concepts and Tools, 16(2):14–26,

July 1995.

[Fra96] Michael Franz. The programming language Lagoona: A fresh look

at object-orientation. Technical Report 96-40, Department of Infor-

mation and Computer Science, University of California, Irvine, CA

92697-3425, USA, September 1996.

[Fra97a] Michael Franz. Dynamic linking of software components. IEEE Com-

puter, 30(3):74–81, March 1997.

[Fra97b] Michael Franz. The programming language Lagoona: A fresh look

at object-orientation. Software: Concepts and Tools, 18(1):14–26, March

1997.

[Frö00] Peter H. Fröhlich. Component-oriented programming languages:

Messages vs. methods, modules vs. types. In Proceedings of the Work-

shop on Programming Languages and Computer Architecture, Bad Honnef,

138

Germany, May 2000. Technical Report 2007, Institute for Computer

Science and Applied Mathematics, Christian-Albrechts-University,

Kiel, Germany.

[Frö02] Peter H. Fröhlich. Inheritance decomposed. In Andrew Black, Erik

Ernst, Peter Grogono, and Markku Sakkinen, editors, Proceedings of

The Inheritance Workshop (at ECOOP), Malaga, Spain, June 14, 2002.

Technical Report, Information Technology Research Institute (ITRI),

University of Jyväskylä, Finland, June 2002.

[GFF02] Andreas Gal, Peter H. Fröhlich, and Michael Franz. An efficient exe-

cution model for dynamically reconfigurable component software. In

Jan Bosch, Clemens Szyperski, and Wolfgang Weck, editors, Proceed-

ings of the International Workshop on Component-Oriented Programming

(WCOP), Malaga, Spain, June 10, 2002. http://www.research.

microsoft.com/˜cszypers/Events/WCOP2002/ .

[GJ97] Carlo Ghezzi and Mehdi Jazayeri. Programming Language Concepts.

John Wiley & Sons, 3rd edition, 1997.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of

Software Engineering. Prentice-Hall, 1991.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-

guage Specification. Addison-Wesley, 2nd edition, 2000.

[GMS77] Charles M. Geschke, James H. Jr. Morris, and Edwin H. Satterthwaite.

Early experience with Mesa. Communications of the ACM, 20(8):540–

553, August 1977.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its

Implementation. Addison-Wesley, 1983.

[Gut77] John Guttag. Abstract data types and the development of data struc-

tures. Communications of the ACM, 20(6):396–404, June 1977.

139

http://www.research.microsoft.com/~cszypers/Events/WCOP2002/
http://www.research.microsoft.com/~cszypers/Events/WCOP2002/

[GVJH95] Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, 1995.

[HHW99] Richard Hall, Dennis Heimbigner, and Alexander L. Wolf. A coop-

erative approach to support software deployment using the Software

Dock. In Proceedings of the International Conference on Software Engineer-

ing (ICSE), pages 174–183, Los Angeles, CA, May 1999.

[HJ89] Charles Antony Richard Hoare and C. B. Jones, editors. Essays in Com-

puting Science. Prentice-Hall, 1989.

[Hoa73] Charles Antony Richard Hoare. Hints on programming language de-

sign. Technical Report STAN-CS-73-403, Computer Science Depart-

ment, School of Humanities and Sciences, Stanford University, De-

cember 1973. Available at ftp://reports.stanford.edu/pub/

cstr/reports/cs/tr/73/403/CS-TR-73-403.pdf . Reprinted

in [HJ89, pp. 193–216].

[HP96] John L. Hennesey and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufman, 2nd edition, 1996.

[HW01] Daniel M. Hoffman and David M. Weiss, editors. Software Fundamen-

tals: Collected Papers by David L. Parnas. Addison-Wesley, 2001.

[Int95] International Standards Organization. (ISO/IEC 8652:1995): Informa-

tion Technology — Programming Languages — Ada. 1995.

[IP00] Atsushi Igarashi and Benjamin C. Pierce. On inner classes. In

Proceedings of the European Conference on Object-Oriented Programming

(ECOOP), pages 129–153, Sophia Antipolis and Cannes, France, June

2000.

[Joh86] Ralph E. Johnson. Type-checking Smalltalk. In Norman Meyrowitz,

editor, Proceedings of the Conference on Object-Oriented Programming,

140

ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/73/403/CS-TR-73-403.pdf
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/73/403/CS-TR-73-403.pdf
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/73/403/CS-TR-73-403.pdf

Systems, Languages, and Applications (OOPSLA), pages 315–321, Port-

land, OR, November 1986.

[JW91] Kathleen Jensen and Niklaus Wirth. Pascal: User Manual and Report.

Springer-Verlag, 4th edition, 1991.

[Kay96] Alan C. Kay. The early history of Smalltalk. In Thomas J. Bergin and

Richard G. Gibson, editors, History of Programming Languages, pages

511–597. Addison-Wesley / ACM Press, 1996.

[KF00] Thomas Kistler and Michael Franz. Automated data-member layout

of heap objects to improve memory-hierarchy performance. ACM

Transactions on Programming Languages and Systems, 22(3):490–505,

May 2000.

[KF01] Thomas Kistler and Michael Franz. Continuous program opti-

mization: Design and evaluation. IEEE Transactions on Computers,

50(6):549–566, June 2001.

[KLM+97] Gregor Kiczales, John Lamping, Chris Maeda, Cristina Videira Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.

In M. Aksit and S. Matsuoka, editors, Proceedings of the European Con-

ference on Object-Oriented Programming (ECOOP), June 1997.

[KM98] Jeff Kramer and Jeff Magee. Analysing dynamic change in software

architectures: A case study. In International Conference on Configurable

Distributed Systems (CDS), pages 91–100, Annapolis, MD, May 1998.

[Knu74] Donald E. Knuth. Structured programming with goto statements.

ACM Computing Surveys, 6(4):261–301, December 1974. Reprinted in

[Knu92].

[Knu88] Jørgen Lindskov Knudsen. Name collision in multiple classification

hierarchies. In S. Gjessing and Kirsten Nygaard, editors, Proceedings of

141

the European Conference on Object-Oriented Programming (ECOOP), vol-

ume 322 of Lecture Notes in Computer Science, pages 93–109. Springer-

Verlag, 1988.

[Knu92] Donald E. Knuth. Literate Programming. Number 27 in CSLI Lec-

ture Notes. Center for the Study of Language and Information (CSLI),

Stanford, CA, 1992.

[LAB+79] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig

Schaffert, Robert Scheifler, and Alan Snyder. CLU Reference Man-

ual. Technical Report MIT/LCS/TR-225, MIT Laboratory for Com-

puter Science, October 1979.

[LBR98] Konstantin Läufer, Gerald Baumgartner, and Vincent F. Russo. Safe

structural conformance for Java. Technical Report OSU-CISRC-6/98-

TR20, Department of Computer and Information Science, Ohio State

University, Columbus, OH 43210-1277, June 1998.

[Lei98] K. Rustan M. Leino. Data groups: Specifying the modification of ex-

tended state. In Proceedings of the Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), pages 144–

153, Vancouver, British Columbia, October 1998.

[Lev86] Nancy G. Leveson. Software safety: Why, what, and how. ACM Com-

puting Surveys, 18(2):125–163, June 1986.

[LG86] Barbara Liskov and John Guttag. Abstraction and Specification in Pro-

gram Development. MIT Press / McGraw-Hill, 1986.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared

behavior in object oriented systems. In Norman Meyrowitz, editor,

Proceedings of the Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 214–223, Portland, OR,

November 1986.

142

[LM98] Gary T. Leavens and Todd D. Millstein. Multiple dispatch as dispatch

on tuples. In Proceedings of the Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), pages 374–387,

Vancouver, British Columbia, October 1998.

[LS79] Hugh C. Lauer and Edwin H. Satterthwaite. The impact of Mesa on

system design. In Proceedings of the International Conference on Software

Engineering (ICSE), September 1979.

[LS00] Gary T. Leavens and Murali Sitaraman, editors. Foundations of

Component-Based Systems. Cambridge University Press, 2000.

[LSAS77] Barbara Liskov, Alan Snyder, Russel Atkinson, and Craig Schaf-

fert. Abstraction mechanisms in CLU. Communications of the ACM,

20(8):564–576, August 1977.

[LvdH02] Chris Lüer and André van der Hoek. Composition environments for

deployable software components. Technical Report 02-18, Depart-

ment of Information and Computer Science, University of California,

Irvine, CA 92697-3425, USA, August 2002.

[LW94] Barbara H. Liskov and Jeanette M. Wing. A behavioral notion of

subtyping. ACM Transactions on Programming Languages and Systems,

16(6):1811–1841, November 1994.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison-Wesley, 2nd edition, 1999.

[Mag93] Boris Magnusson. An overview of simula. In Jørgen Lindskov Knud-

sen, Mats Löfgren, Ole Lehrmann Madsen, and Boris Magnusson, ed-

itors, Object-Oriented Environments: The Mjølner Approach, chapter 5,

pages 79–98. Prentice-Hall, 1993.

[MB97] Michael Mattsson and Jan Bosch. Framework composition: Problems,

causes and solutions. In Proceedings of the Conference on Technology of

143

Object-Oriented Languages and Systems (TOOLS), pages 203–214, Santa

Barbara, CA, July 1997.

[MC99] Todd Millstein and Craig Chambers. Modular statically typed multi-

methods. In Proceedings of the European Conference on Object-Oriented

Programming (ECOOP), volume 1628 of Lecture Notes in Computer Sci-

ence, pages 279–303. Springer-Verlag, June 1999.

[McI69] M. Douglas McIlroy. Mass produced software components. In Naur

and Randell [NR69], pages 138–155.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,

2nd edition, 1997.

[Mez97] Mira Mezini. Dynamic object evolution without name collisions. In

M. Aksit and S. Matsuoka, editors, Proceedings of the European Con-

ference on Object-Oriented Programming (ECOOP), pages 190–219, June

1997.

[Mic95] Microsoft Corporation. The Component Object Model (Version 0.9),

October 1995. Available at http://www.microsoft.com/COM/

resources/COM1598C.ZIP .

[MMPN93] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Ny-

gaard. Object-Oriented Programming in the Beta Programming Language.

Addison-Wesley / ACM Press, 1993.

[Moo86] David A. Moon. Object-oriented programming with Flavors. In Nor-

man Meyrowitz, editor, Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), pages

1–8, Portland, OR, November 1986.

144

http://www.microsoft.com/COM/resources/COM1598C.ZIP
http://www.microsoft.com/COM/resources/COM1598C.ZIP
http://www.microsoft.com/COM/resources/COM1598C.ZIP

[MOSS96] Stephan Murer, Stephen Omohundro, David Stoutamire, and

Clemens Szyperski. Iteration abstraction in Sather. ACM Transactions

on Programming Languages and Systems, 18(1):1–15, January 1996.

[MPH00] Peter Müller and Arnd Poetsch-Heffter. Modular specification and

verification techniques for object-oriented software components. In

[LS00], pages 137–160, 2000.

[MS98] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base

class problem. In Eric Jul, editor, Proceedings of the European Confer-

ence on Object-Oriented Programming (ECOOP), volume 1445 of Lecture

Notes in Computer Science, pages 355–382, Brussels, Belgium, July 1998.

Springer-Verlag.

[MSL99] Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis. Developing

components in presence of re-entrance. In Proceedings of the World

Congress on Formal Methods in the Development of Computing Systems

(FM), volume 1709 of Lecture Notes in Computer Science, pages 1301–

1320, Toulouse, France, September 1999. Springer-Verlag.

[MTG89] Hanspeter Mössenböck, Josef Templ, and Robert Griesemer. Object

Oberon: An object-oriented extension of Oberon. Technical Report

109, Institute of Computer Systems, Swiss Federal Institute of Tech-

nology (ETH), Zürich, Switzerland, June 1989.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The

Definition of Standard ML. MIT Press, revised edition, 1997.

[MW91] Hanspeter Mössenböck and Niklaus Wirth. The programming lan-

guage Oberon-2. Structured Programming, 12(4):179–195, 1991.

[Nau63] Peter Naur. Revised report on the algorithmic language Algol 60. Com-

munications of the ACM, 6(1):1–17, January 1963.

145

[Nec98] George C. Necula. Compiling with Proofs. PhD thesis, School of Com-

puter Science, Carnegie Mellon University, Pittsburgh, PA, September

1998.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles

of Program Analysis. Springer-Verlag, 1999.

[NR69] Peter Naur and Brian Randell, editors. Software Engineering: Report on

a Conference Sponsored by the NATO Science Committee, Garmisch, Ger-

many, 7th to 11th October, 1968. Scientific Affairs Division, NATO, Brus-

sels, Belgium, January 1969. Available at http://www.cs.ncl.ac.

uk/people/brian.randell/home.formal/NATO/ .

[Obe97] Oberon microsystems. Component Pascal Language Definition, Septem-

ber 1997. Available at http://www.oberon.ch/ .

[Obj99] Object Management Group. The Common Object Request Broker: Ar-

chitecture and Specification (Version 2.3.1), October 1999. Available at

http://www.omg.org/cgi-bin/doc?formal/99-10-07 .

[OH92] Harold Ossher and William Harrison. Combination of inheritance hi-

erarchies. In Proceedings of the Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), pages 25–40,

Vancouver, British Columbia, Canada, October 1992.

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor.

Architecture-based runtime software evolution. In Proceedings of the

International Conference on Software Engineering (ICSE), pages 177–186,

Kyoto, Japan, April 1998.

[Par72] David L. Parnas. On the criteria to be used in decomposing systems

into modules. Communications of the ACM, 15(12):1053–1058, Decem-

ber 1972. Reprinted in [HW01].

146

http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/
http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/
http://www.oberon.ch/
http://www.oberon.ch/
http://www.oberon.ch/
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?formal/99-10-07

[PC86] David L. Parnas and Paul C. Clements. A rational design process:

How and why to fake it. IEEE Transactions on Software Engineering,

12(2):251–257, February 1986. Reprinted in [HW01].

[Per82] Alan J. Perlis. Epigrams in programming. ACM SIGPLAN Notices,

17(9):7–13, September 1982.

[PH98] David A. Patterson and John L. Hennesey. Computer Organization and

Design: The Hardware/Software Interface. Morgan Kaufman, 2nd edi-

tion, 1998.

[PJ03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press, 2003. Also available at

http://www.haskell.org/ .

[RR64] Brian Randell and L. J. Russell. Algol 60 Implementation: The Translation

and Use of Algol 60 Programs on a Computer. Academic Press, London,

England, 1964.

[RW92] Martin Reiser and Niklaus Wirth. Programming in Oberon: Steps Beyond

Pascal and Modula. Addison-Wesley / ACM Press, 1992.

[Sch95] Michael I. Schwartzbach. Polymorphic type inference. Lecture Series

LS-95-3, Basic Research in Computer Science (BRICS), Department of

Computer Science, University of Aarhus, Ny Munkegade, building

540, DK-8000 Aarhus C, Denmark, June 1995.

[Sew01] Peter Sewell. Modules, abstract types, and distributed versioning.

In Proceedings of the Symposium on Principles of Programming Languages

(POPL), pages 236–247, London, England, January 2001.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Compo-

nent Software: Beyond Object-Oriented Programming. Addison-Wesley

/ ACM Press, 2nd edition, 2002.

147

http://www.haskell.org/
http://www.haskell.org/
http://www.haskell.org/

[SHF00] Christian H. Stork, Vivek Haldar, and Michael Franz. Generic adap-

tive syntax-directed compression for mobile code. Technical Report

00-42, Department of Information and Computer Science, University

of California, Irvine, CA 92697-3425, USA, November 2000. Revised

April 2001.

[SHR+00] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja

Vallee-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Prac-

tical virtual method call resolution for Java. In Proceedings of the Con-

ference on Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA), pages 264–281, Minneapolis, Minnesota, October

2000.

[SL94] Alexander A. Stepanov and Meng Lee. The Standard Template Li-

brary. Technical Report X3J16/94-0095, WG21/N0482, Silicon Graph-

ics Inc., 1994.

[Sny86] Alan Snyder. Encapsulation and inheritance in object-oriented pro-

gramming languages. In Norman Meyrowitz, editor, Proceedings of

the Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), pages 38–45, Portland, OR, November 1986.

[Som02] Ian Sommerville. Software Engineering. Addison-Wesley, 6th edition,

2002.

[Ste87] Lynn Andrea Stein. Delegation is inheritance. In Proceedings of the Con-

ference on Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA), pages 138–146, Orlando, FL, October 1987.

[Str00] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,

special edition, 2000.

[SUH86] A. Dain Samples, David Ungar, and Paul Hilfinger. SOAR: Smalltalk

without bytecodes. In Norman Meyrowitz, editor, Proceedings of the

148

Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications (OOPSLA), pages 107–118, Portland, OR, November 1986.

[Sun97] Sun Microsystems. The JavaBeans Specification (Version 1.01), July 1997.

Available at http://www.javasoft.com/beans/docs/beans.

101.pdf .

[Szy92] Clemens Szyperski. Import is not inheritance—why we need both:

Modules and classes. In Proceedings of the European Conference on

Object-Oriented Programming (ECOOP), volume 615 of Lecture Notes in

Computer Science, pages 19–32, Utrecht, The Netherlands, June 1992.

Springer-Verlag.

[Szy00] Clemens Szyperski. Modules and components: Rivals or partners? In

Laszlo Böszörmeny, Jürg Gutknecht, and Gustav Pomberger, editors,

The School of Niklaus Wirth. Morgan Kaufman, 2000.

[Tai96] Antero Taivalsaari. On the notion of inheritance. ACM Computing

Surveys, 28(3):428–479, September 1996.

[Tem94] Josef Templ. Metaprogramming in Oberon. PhD thesis, Swiss Federal

Institute of Technology (ETH), Zürich, Switzerland, 1994.

[Tho98] Mikkel Thorup. All structured programs have small tree width and

good register allocation. Information and Computation, 142(2):159–181,

May 1998.

[Tic88] Walter F. Tichy. Tools for software configuration management. In Pro-

ceedings of the International Workshop on Software Version and Configura-

tion Control, pages 1–20, Grassau, Germany, January 1988.

[Tic92] Walter F. Tichy. Programming-in-the-large: Past, present, and future.

In Proceedings of the International Conference on Software Engineering

(ICSE), pages 362–367, Melbourne, Australia, 1992.

149

http://www.javasoft.com/beans/docs/beans.101.pdf
http://www.javasoft.com/beans/docs/beans.101.pdf
http://www.javasoft.com/beans/docs/beans.101.pdf
http://www.javasoft.com/beans/docs/beans.101.pdf

[US87] David Ungar and Randall B. Smith. SELF: The power of simplicity. In

Proceedings of the Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 227–242, Orlando, FL,

December 1987.

[VB99] Jan Vitek and Boris Bokowski. Confined types. In Proceedings of the

Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications (OOPSLA), pages 82–96, Denver, CO, November 1999.

[VH94] Jan Vitek and R. Nigel Horspool. Taming message passing: Efficient

method look-up for dynamically typed languages. In Mario Tokoro

and Remo Pareschi, editors, Proceedings of the European Conference on

Object-Oriented Programming (ECOOP), volume 821 of Lecture Notes in

Computer Science, pages 432–449, Bologna, Italy, July 1994. Springer-

Verlag.

[VHK97] Jan Vitek, Nigel R. Horspool, and Andreas Krall. Efficient type inclu-

sion tests. In Proceedings of the Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), pages 142–157,

Atlanta, GA, October 1997.

[vR01] Guido van Rossum. Python Reference Manual Release 2.2, December

2001. Available at http://www.python.org/ .

[Wec96] Wolfgang Weck. On Document-Centered Mathematical Component Soft-

ware. PhD thesis, Swiss Federal Institute of Technology (ETH), Zürich,

Switzerland, 1996.

[Weg87] Peter Wegner. Dimensions of object-based language design. In Pro-

ceedings of the Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA), pages 168–182, Orlando, FL, Octo-

ber 1987.

[WG92] Niklaus Wirth and Jürg Gutknecht. Project Oberon: The Design of an

Operating System and Compiler. Addison-Wesley / ACM Press, 1992.

150

http://www.python.org/
http://www.python.org/
http://www.python.org/

[Wir77] Niklaus Wirth. Modula: A programming language for modular mul-

tiprocessing. Software: Practice and Experience, 7(1):3–35, June 1977.

[Wir89] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 4th edition,

1989.

[Wir96] Niklaus Wirth. Compiler Construction. Addison-Wesley, 1996.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-

Wesley, 1995.

[WY88] Takuo Watanabe and Akinori Yonezawa. Reflection in an object-

oriented concurrent language. In Proceedings of the Conference on

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 306–315, San Diego, CA, September 1988.

[ZCC97] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient dy-

namic dispatch without virtual function tables: The SmallEiffel com-

piler. In Proceedings of the Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), pages 125–141, At-

lanta, GA, October 1997.

151

	List of Figures
	List of Tables
	Acknowledgments
	Curriculum Vitae
	Abstract of the Dissertation
	Introduction
	Problem
	Approach
	Evaluation
	Benefits
	Roadmap

	Background
	Component-Oriented Programming
	Classic Perspective: Centralized Reuse
	Modern Perspective: Distributed Extensibility
	Software Development Paradigms

	Component-Oriented Programming Languages
	Modules
	Types and Polymorphism
	An Idealized Version of Java

	Scope
	Component Models
	Generative Programming
	Composition Environments

	Stand-Alone Messages
	Motivation
	Interface Conflicts
	Syntactic Conflicts
	Semantic Conflicts
	Discussion

	Rethinking Messages
	Analysis
	Synthesis

	Evaluation
	Component Models
	Programming Conventions
	Design Patterns
	Explicit Qualification
	Renaming Messages
	Overloading Messages
	Summary

	Generic Message Forwarding
	Motivation
	The Fragile Base Class Problem
	Syntactic Aspect
	Semantic Aspect

	Rethinking Inheritance and Delegation
	Analysis
	Synthesis

	The Expressiveness of Forwarding
	Decomposing Inheritance
	Design Patterns

	Evaluation
	Component Models
	Programming Conventions
	Design Patterns
	Generic Wrappers
	Summary

	Lagoona
	Overview
	Historical Remarks
	Core Language

	Object Model
	Modules
	Messages
	Interface Types
	Implementation Types

	Applications
	Structural Interface Conformance
	Minimal Typing
	Component Reentrance
	Iterators
	Design Guidelines

	Evaluation
	Multimethods
	Units and Mixins

	Implementation
	General Concerns
	Efficienct Execution
	Convenient Deployment

	Prototype Implementations
	The Pylag Interpreter
	The Lava Compiler

	Message Dispatch
	Basic Dispatch Techniques
	Building Dispatch Data Structures
	Strict Message Sends
	Widening Interface References
	Blind Message Sends and Generic Forwarding

	Summary

	Future Work
	Static Typing and Message Forwarding
	Type Inference
	Dynamic Optimization
	Aliasing and Representation Exposure
	Versioning and Configuration Management
	Real-Time Programming and Embedded Systems

	Summary
	Achievements
	Shortcomings
	Conclusions

	Bibliography

