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SUMMARY

Oberon simultaneously refers to a modular, extensible operating system and an object-oriented
programming language developed for its implementation. Although the original Oberon System
had been conceived as the native operating system for a custom-built workstation, further
implementations for several commercial platforms were developed later and are described here.
All of these implementations are based on an efficient, retargetable Oberon compiler, and each
provides a complete Oberon environment and the original library interface. This paper describes
the structure of the compiler, summarizes the experience gained in adapting it for various CISC
and RISC processors, and presents some empirical performance data. It also sheds light on the
task of grafting an operating environment onto a variety of existing operating systems.
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INTRODUCTION

Late in 1985, J. Gutknecht and N. Wirth initiated theOberon Projectwith the goal
of developing a complete operating system for small workstations ‘from scratch’.
Their implementation was targeted towards the personal workstationCeres1 and first
presented in 1988. As a by-product of the operating system design effort, a new
programming language and a compiler for it came into being. Most of the operating
system, as well as the compiler itself, are written in this new programming language.
The new operating system and programming language were both given the name of
the project, and are now called theOberon Systemand the Oberon Language,
respectively.2,3

Encouraged by the attention that the Oberon language and system received in the
computing community, a second project was started in early 1989, with the goal of
making Oberon available to interested parties without access to Ceres computers. At
that point, Ceres computers were unavailable outside of ETH. The first person
engaged in this second project became R. Crelier, who developed a portable compiler
for the Oberon language,4 in which the machine-independent parts were separated
from the target-machine specific details. It was recognized that the effort of porting
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a compiler to other target architectures could be reduced significantly by encapsulating
the machine-independent parts, so that the authors of new code generators need not
understand the parser and symbol table handler. Like the original Oberon compiler,
from which it was derived, the portable compiler was itself written in the Oberon
language and generated code for the Ceres, which is based on a National Semiconduc-
tor 32000 processor.5

M. Franz joined the project in mid-1989. His task was to create a second code
generator for the portable Oberon compiler that would output object code for Motorola
68020 processors.6 The envisaged target machine was an Apple Macintosh II computer.7

Soon afterwards, J. Templ became another member of the team, his goal being a code
generator for the Sun SPARC architecture.8,9 Meanwhile, R. Crelier kept on refining
his portable compiler, improving the front-end, streamlining the interface to the code-
generator, and documenting it. By the end of 1989, first versions of the code
generators for Motorola 68020 and SPARC were operational.

At this point it was decided that all of the Oberon system should be ported, and
not only the compiler. This would be aided greatly by the fact that the Oberon
system was itself written in Oberon, with minor exceptions. In the months that
followed, M. Franz and J. Templ implemented the low-level functions of the Oberon
system for their respective target machines, while R. Crelier, whose portable compiler
had reached a stable state by then, started on the development of a fourth code
generator, for the MIPS R2000 processor architecture.10 By mid-1990, first versions
of Oberon for Macintosh II and SPARC were running, and in early 1991 a prototype
for the Digital Equipment DECstation was completed.

Around the same time, a fourth person, M. Brandis, entered the project with the
intent to develop a code generator for the IBM RISC System/6000 architecture.11,12

Later on, he was able to port the rest of the system to the target machine quickly,
because portable interfaces to the UNIX file system13 and the X Window System
display library14 as well as a portable memory allocator and garbage collector existed
already from other Oberon implementations. Oberon for the RS/6000 was released
in mid-1991. At the same time, the portable Oberon compiler was modified slightly
to support the language extensions of Oberon-2.15

From September to December 1991, a new workstation, later christened
Chameleon,16 was developed around the LSI Logic LR33000 MIPS Embedded
Processor,17 which is compatible with the MIPS R3000. The Oberon System was
ported as the native operating system to this machine in January 1992 by R. Crelier.
This took only one month because the existing code generator for the DECstation
could be used.

Today, Oberon is available on seven different processor architectures, and further
versions are still forthcoming. Moreover, several companies have acquired the source
code of our portable Oberon compiler and have developed, or are developing,
commercial implementations of Oberon.

ARCHITECTURE OF THE COMPILER

In contrast to other programs written in a high-level programming language, a
compiler has to be modified to produce code for a new machine. Therefore, it is
worthwhile paying attention to portability before writing it. The time invested in
designing a well-structured compiler, separating machine-independent from machine-
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dependent parts, is rewarded many times when porting it. However, many compilers
developed with the goal of being portable have turned out to be not only portable,
but inefficient in terms of compilation speed and quality of compiled code. Portability
and efficiency have been given equal importance in our approach. Hence, automated
retargetable code generation has not been considered. Instead, we looked at more
conventional and faster techniques, in particular single-pass compilation.

In a single-pass recursive-descent compiler, all phases of compilation are executed
‘simultaneously’, i.e. the actions of syntax analysis, code generation, type checking
etc., are interleaved. Because all required attributes are passed on the procedure
stack, no intermediate representation of the source text is needed between the
different phases. This makes the compiler compact and efficient, but not easily
portable. Since machine-dependent and machine-independent phases are closely
coupled, it is difficult to modify the compiler for a new machine. One solution to
the problem is to clearly separate the compilation phases into two groups: afront-
end consisting of the machine-independent phases (lexical and syntactic analysis,
type checking) and aback-endconsisting of the machine-dependent phases (storage
allocation, code generation).

Effectively, compilation thereby becomes a two-pass process, although the source
text is processed only once. The interface between front-end and back-end is a
complex data structure in memory instead of a sequential file, taking advantage of
large stores. Only the back-end needs to be modified when the compiler is ported.
The front-end enters declarations into a symbol table and builds an abstract syntax
tree representing the program statements. If no errors are found, control is passed
to the back-end, which generates code on the basis of this syntax tree. Since this
structure is guaranteed to be free of errors, type checking or error recovery are not
part of the back-end, which is a noteworthy advantage. Only implementation restric-
tions must be checked for. Another advantage of an intermediate representation is
that additional passes may be inserted to improve code quality. Such an optimization
phase cannot be embedded easily in a conventional single-pass compiler, if at all.

Module structure

The front-end and the back-end are implemented separately as a set of nine
modules, all written in Oberon (seeFigure 1).

The lowest module of this hierarchy is OPM, where M stands formachine. We
must distinguish between the host machine on which the compiler is running, and
the target machine for which the compiler is generating code. Most of the time, the
two machines are the same, except when using a cross-compiler. OPM defines and
exports several constants used to parametrize the front-end. Some of these constants
reflect target machine characteristics or implementation restrictions. For example,
they are used in the front-end to detect overflow conditions in the evaluation of
constant expressions. But OPM has a second function, too. It works as the interface
between the compiler and the host machine. This interface includes procedures to
read the text to be compiled, to read and write data in symbol files,18 and to display
text (e.g. error messages) on the screen. All these input and output operations are
strongly dependent on the operating system. The compiler is structured in such a
way that it can be easily ported to environments other than the Oberon System. If
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Figure 1. Module import graph (an arrow from A to B means B imports A)

the compiler resides in the Oberon System environment, the host-dependent part of
OPM is based on the standard modulesTexts and Files.

The topmost module OP2 is very small. It is the interface to the user, and
therefore host-machine dependent. Like the host-dependent part of OPM, this module
remains unchanged when the compiler is used in the Oberon System environment.
It first calls the front-end with the source text to be compiled as a parameter. If no
error is detected, it then calls the back-end, passing the syntax tree that was generated
by the front-end.

Between the highest and the lowest module, one finds the front-end and the back-
end, which consist of four and three modules, respectively. During compilation, there
is no interaction between these two sets of modules. The symbol table and the
syntax tree are defined in the module OPT and are accessed both by the front-end
and the back-end. This explains the presence of import arrows from OPT to back-
end modules visible in the import graph ofFigure 1. But there is no transfer of
control, such as procedure calls.
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The front-end is controlled by the module OPP, a recursive-descent parser. Its
main task is to check syntax and to call procedures constructing the symbol table
and the syntax tree. The parser requests lexical symbols from the scanner (OPS)
and calls procedures of OPT, the symbol table handler, and of OPB, the syntax tree
builder. OPB also checks for type compatibility.

The back-end is controlled by OPV, the tree traverser. It first augments the symbol
table with machine-dependent data (using OPM constants), such as the sizes of
types, the addresses of variables, or the offsets of record fields. It then traverses the
syntax tree and calls procedures of OPC, the code generator, which in turn synthesizes
machine instructions using procedures of OPL, the low-level code emitter.

This module structure results in a fully portable front-end, as well as a host-
machine independent back-end.

Symbol table

The symbol table contains information about declared constants, variables, types,
and procedures. It is built by the front-end. The front-end uses it to check the
context conditions of the language and the back-end retrieves type information from
it. The symbol table is a dynamically allocated data structure with three different
component types:Object, Struct, and Const.

An Object is a record (more precisely a pointer to a record), which represents a
declared, named entity, such as a constant, a type, a variable, or a procedure. The
name of the object, stored in the object itself, is used as a key to retrieve the object
in its scope. Each scope is organized as an ordered binary tree of objects and is
anchored in the owner procedure, which in turn belongs as an object to the enclosing
scope. Parameters of the same procedure, fields of the same record, and variables
of the same scope are additionally linked together sequentially in order to preserve
the declaration order. Procedures which do not call any further procedures (leaf
procedures) are marked by the front-end, as are variables whose addresses are never
needed, and which therefore can be allocated in registers. The back-end may use
this information for improving code quality. Note that this information would not
be available in a single-pass compiler without an intermediate representation of
the program.

An object always has a type, described by aStruct record pointed to by a field
in the object. There are several classes of types: basic types such as character,
integer, or set, and composite types such as array, open array, or record.

The third element type of the symbol table isConst. This record contains numeric
attributes of objects, such as values of declared or anonymous constants.

An example of a symbol table is shown inFigure 2.

Syntax tree

The front-end builds an abstract syntax tree representing all statements of the
program. The Oberon syntax is mapped onto a tree of elements calledNodes. Each
Oberon construct can be decomposed into a root element identifying the construct
and a maximum of two subtrees representing its components: an assignment has a
left and a right side, aWhile statement has a condition and a sequence of statements,
and so on. Some Oberon constructs are organized sequentially, e.g. lists of actual
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Figure 2. Declarations and corresponding symbol table

parameters in procedure calls and sequences of statements in structured statements.
Auxiliary nodes might have been inserted to link these subtrees, but an additional
link field in the node is more space-efficient.

Each node has a class, and sometimes a subclass, identifying the Oberon construct
represented. It also has a type, which is a pointer to aStruct of the symbol table.
Similarly, a leaf node representing a declared object contains a pointer to the
correspondingObject of the symbol table. AConst may be attached to a node to
describe a numeric attribute, such as the value of an anonymous constant. The
position in the source text is stored in the root node of each statement. This
facilitates locating compilation errors reported by the back-end.Figure 3 shows the
representation of two statements manipulating variables declared inFigure 2.

The intermediate representation might have been a stream of instructions for a
virtual machine, but we preferred to use an abstract syntax tree for various reasons.
A virtual machine instruction set would have been defined without any knowledge
of future target machines. Perhaps the mapping of this instruction set to a real
instruction set would not be easy, the virtual and real machines being very different
(RISC vs. CISC for example). Furthermore, generating these pseudo-instructions
requires a code generator already, whereas building the syntax tree is a trivial
recursive task easily embedded in a recursive-descent parser.

Since the tree is a natural mapping of the Oberon syntax, each procedure of the
parser returns as parameter the root of the subtree corresponding to the construct
just parsed. Furthermore, a tree keeps the program structure intact, so that control-
flow dependent optimizations can be integrated easily. Without a tree, an expensive
control-flow analysis would be required, since basic blocks would have been dissolved
into linear code. The reordering of program pieces is easier to perform in a tree
than in an instruction stream. For example, by first generating the statement sequence
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Figure 3. Statements and the corresponding syntax tree

of a While statement (right subtree) and then evaluating the condition (left subtree),
one branch can be removed from the loop.

RETARGETING THE COMPILER

Writing a new compiler back-end for a particular target architecture is certainly the
main effort in porting Oberon to another machine. Although all back-ends have a
similar structure and deal with similar problems, the impact of a target processor’s
architecture is visible throughout the back-end. For us, it was an interesting experience
to investigate the impact of RISC architectures in regard to the complexity of
code generation.

The inputs to the back-end are two dynamically allocated data structures, namely
the symbol table and the syntax tree. The output of the back-end is the decorated
symbol table and the object code stored as a linear array of machine instructions.
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Table I. Target specific attributes

Kind of object Added attributes

type size, type descriptor address
variable address or register number
record field offset
procedure frame size

exported procedure entry number
type-bound procedure dispatch table index

Decorating the symbol table

The first task of the back-end is to add target-machine specific attributes to the
objects of the symbol table. These attributes depend on the kind of each object, as
shown in Table I.

In the following, we will discuss the attributes mentioned inTable I.
For type objects, the size has to be calculated. As Oberon programs may perform

run-time type tests, a type-descriptor object has to be allocated and its address (or
some kind of reference number) has to be associated with the type object.

Variable objects may either exist in memory or in registers. In the case of small
register sets (NS32000, MC68020), all variables reside in memory. Otherwise
(SPARC, MIPS, RS/6000) variables may reside either in memory or in registers.
We decided to use a simple register allocation strategy based on the textual occurrence
of a variable. The firstn unstructured local variables (including the firstp parameters)
of a procedure are kept within registers. SeeTable II for the target specific constants
n and p. Only variables which are never referenced by their memory address are
allocated in registers. This information is provided by the front-end. Variables of a
structured type (Records, Arrays) always reside in memory. It turned out that this
simple strategy allocates almost all time-critical local variables in registers and leads
to reasonably efficient code without extra optimizations.

Record fields receive an offset specifying their position in the enclosing record
object. For procedures, a frame size sufficient to keep all locally defined variables
is calculated. Exported procedures additionally need an identifying number so that
they can be referenced from a client module. Oberon-2 type-bound procedures
(methods) get a number which is used as an index into a method table.

In order to provide for an interface of Oberon programs and data structures to
the underlying operating system, it is preferable to adopt the conventions of the

Table II. Conventions used for storage allocation

Target SHORTINT INTEGER LONGINT SET REAL LONGREAL n(p)

NS32000 1/1 2/2 4/4 4/4 4/4 8/4 0 (0)
MC68020 1/1 2/2 4/2 4/2 4/2 8/2 0 (0)
SPARC 1/1 2/2 4/4 4/4 4/4 8/8 14 (6)
MIPS 1/1 2/2 4/4 4/4 4/4 8/8 12 (4)
RS/6000 1/1 2/2 4/4 4/4 4/4 8/8 18 (8)
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target machine, for register usage, parameter passing, stack organization, and data
alignment. However, these conventions are not always designed for maximum run-
time efficiency, as can be seen especially on the Macintosh (see Reference19 for
a more detailed discussion).

Table II shows the chosen size and alignment of standard types in the various
Oberon implementations wherex/y means that variables of that type are represented
in memory byx bytes and their addresses are aligned to a multiple ofy. The last
column shows the above mentioned constantn for the maximum number of variables
(including p parameters) allocated within the general purpose register set.

Code generation overview

The second task of the back-end is to transform the syntax tree into a linearized
sequence of machine instructions. This process can be thought of as mapping every
node of the syntax tree into a semantically equivalent code sequence, and storing
these code pieces linearly into an array. Every code piece consists of zero or more
machine instructions and, in general, depends on code generated for other nodes.
These dependencies should be kept as small as possible, in order to allow for an
efficient and systematic code generation process. A simple rule to enforce a high
degree of locality in the code generator is to require that dependencies exist between
adjacent nodes only. In this case we can model dependencies as attributes flowing
along the edges of the syntax tree. Depending on the target machine’s architecture,
attribute flow varies significantly, as shown inFigure 4.

Given a zero-address machine (a stack architecture), code can be generated for
an operator node without knowing about its operand nodes, since all operands are
pushed onto the stack. There are no attributes passed between nodes. This strictly
context-free schema cannot be preserved on non-stack architectures. On two-address
machines (such as the NS32000 and MC68020), on which operators have two explicit

Figure 4. Syntax tree and attribute flow for ‘a := b + c↑.d’
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source operands, one of which is implicitly taken as the destination, the generated
code depends on the locations of the source operands. Therefore, in this case, source
operand attributes (such as memory address or register number) are passed from the
operand to the operator nodes (bottom-up attributes). Three-address machines (such
as the SPARC, MIPS, or RS/6000) have instructions that evaluate two source
operands into an explicitly specified destination. In this case additional attributes
flow from operator nodes to operand nodes (top-down attributes). The number of
operands directly corresponds to the complexity of the attribute flow and inversely
corresponds to the number of generated machine instructions.

The code generator has to visit operand nodes before operator nodes (post-order)
and destination operands before source operands (left to right) in order to generate
attributes before they are used. The generated code pieces may be linearized by
simply appending them into the linear code array as they are generated, i.e. a single
tree traversal suffices for the code generation process. Since the attribute flow
corresponds to the call order in the recursive tree traversal, attributes can be passed
as parameters on the stack instead of being stored in the syntax tree. The attribute
records are commonly calleditems. For efficiency reasons all items are passed by
reference. An item may be thought of as a variant record tagged with the operand’s
mode and additional mode-specific fields. Possible modes include those introduced
by the Oberon language (Var, VarPar, Field, Proc, Const, etc.) and those introduced
by the addressing modes of the target machine (e.g.Register, Indirect, Absolute,
Immediate, etc.). For the purpose of demonstrating how the overall code generation
works, we outline inFigures 5–7 the involved procedures for a three-address machine
and show a trace for compiling the simple statement ofFigure 4. Procedure skeletons
are presented in a top-down order starting with tree traversal on the statement
sequence level.

These three procedures constitute the tree traversal process. In order to separate
tree traversal and code generation clearly and to keep procedure sizes moderate,
code generation is performed in separate routines sketched below. As the destination
attributes can only be used in certain cases (e.g. on load/store architectures if and
only if the destination is a register), the destination attributes are interpreted as hints.
They are ignored if the destination operand cannot be used in the generated instruction
(e.g. if mode = Undef). Therefore code generation for an assignment finishes with an
explicit call of Assign, which is supposed to generate code for an assignment to any
destination operand. As a local optimization,Assign(x,y) does not generate code ifx
and y are the same register. Note that for evaluating expressions, the destination
item can be propagated to sub-expressions for unary operators only. Operands of
binary operators must, in general, be evaluated into a temporary variable because
the destination operand may occur in other sub-expressions as well.

Emit is expected to generate code for a given three-address operator. On load/store
architectures, the operands must be registers or small literals. ThereforeEmit first
synthesizes code to load the second operand (mode= register indirect) into a register
and then code to perform the addition. Code generation for two-address machines
is similar, except that there is no hint parameter (see ‘Expression evaluation’ below).

The trace inFigure 7for compiling the statement ‘a := b + c↑.d’ represents procedure
calls by indentation and value and reference parameter passing by assignments and
equal signs respectively. It is assumed that variablesa, b, and c reside within
registers (which is the typical case for RISC machines).
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Figure 5. Syntax tree traversal

The procedures outlined above are associated with different levels of abstraction.
Those with Node parameters are responsible for tree traversal, those withItem
parameters are responsible for code selection, and the remaining operations are used
for emitting machine instructions. We have a layered architecture of the code
generator consisting of thetree traversalat the top, thecode selectionprocedures
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Figure 6. Code generation

in the middle, and the abstract data structurecode array at the bottom. This
architecture is reflected by a hierarchy of three modules, which is common to all
of our Oberon compiler back-ends (seeTable III).

All of the Oberon compiler back-ends have been implemented initially as cross
compilers running on a host computer (Ceres) but producing code for a particular
target machine. This well-known technique leads to back-ends running on the target
machine after a self-compilation step on the host machine. The result of the first
self-compilation has to be the same as the result of further self-compilations on the
target machine (fixed-point test). If this test fails, there is at least one remaining
compiler error.

Byte and bit ordering turned out to be the only problem in implementing portable
cross compilers (and later on in implementing portable system-level programs). The
encountered formats are shown inTable IV.

The next sections describe special aspects of the code generator in more detail.
These include access to global and local variables, procedure activation, handling of
temporary values, procedure entry and exit code, expression evaluation, interlocks,
run-time checks, type bound procedures, and target-specific optimizations. Some
measurements conclude the section on back-ends.

Global variables
In the Oberon programming language, one can distinguish between global and

local variables. Global variables are declared outside of any procedure and may be
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Figure 7. Call trace

Table III. Layered architecture of the code generator

Module Abstraction Examples

OPV tree traversal statseq, design, expr
OPC code selection Assign, Add, Field, DeRef
OPL code array Emit, GetReg

Table IV. Byte and bit ordering

Target Byte ordering Binary value of {0}

NS32000 little endian 00%01
MC68020 big endian 00%01
SPARC big endian 00%01
MIPS little endian 00%01
RS/6000 big endian 10%00

accessed as long as the enclosing module is present in the system. The obvious way
to allocate memory for them is to assign to each global variable in a module a
fixed position in a memory block, which is allocated at the time the module is
loaded into the system. This is the method used in all implementations of Oberon.

One distinction between different systems is whether they keep a special pointer
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to this global memory block or not. If there is a register reserved for a pointer to
the global data area, a global variable can be accessed by addressing it relative to
this pointer. This generally results in short addresses, but also has the disadvantage
that a new pointer has to be loaded into the respective register whenever a procedure
in another module is called. The alternative is to address all global variables using
their absolute addresses, which have to be inserted by the linker at load time. Hence,
no pointers have to be loaded when crossing module boundaries, but addresses
become longer, which may also add to the run-time of a program. While either
method could have been implemented on each system in principle, the availability
of special hardware support or compatibility to existing calling conventions had a
large impact on our decision about which model to use, as shown inTable V.

Local variables and procedure activation

Local variables and formal parameters are declared inside procedures. They live
as long as the enclosing procedure executes. Their allocation is therefore connected
to procedure activation which naturally leads to a stack of activation records. An
activation record contains the local variables and parameters of an activated procedure,
a reference to the previous record, and the address at which execution should
continue when the procedure terminates.

These activation records are allocated within a stack delimited by a dedicated
register, a stack pointer. Variables can be accessed relative to a second register, the
frame pointer. Activation records have a dynamic size if the formal parameter list
contains one or more open array parameters passed by value.

The stack frames of the various target machines differ in many details. However,
their structure is always similar toFigure 8. Actually, the boundary between adjacent
frames is not as clear as shown inFigure 8because the parameter block is accessed
from both the caller (for parameter passing) and the callee, and therefore constitutes
an overlapping area between two adjacent frames. If registers are used to hold
variables or parameters, the register set has to be maintained in a stack-like fashion,
too. This means that the register set has to be divided into a number of banks
(windows) and that every procedure activation is associated with one of these banks.
As procedure calls happen in a last-in/first-out order, the register set acts as a stack
of register banks. In order to provide for the passing of parameters in registers,
adjacent register banks must overlap to a certain degree. Maintenance of the stack
may be either done in software by inter-procedural register allocation or in hardware
as implemented on the SPARC. In any case, however, since every register set has

Table V. Addressing of global
variables

Target Addressing

NS32000 relative
MC68020 absolute
SPARC absolute
MIPS absolute
RS/6000 relative
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Figure 8. Activation records

a limited size, registers have to be spilled if a stack overflow or underflow occurs.
On machines with register-window hardware, this spilling happens implicitly when
switching from one window to another (by a software trap handler on SPARC). On
other machines, code has to be generated for it.

A common framework to discuss register usage in different architectures is the
subdivision of the register set into caller-saved and callee-saved registers. Callee-
saved registers may be used by the caller as if they were local variables, i.e. they
are invariant across procedure calls. Caller-saved registers may be changed by the
callee; therefore they must be saved (if needed) by the caller. Callee-saved registers
are used for allocating local variables. If the variables belong to a procedure that
does not call further procedures (a so-called leaf procedure), one can even spare the
effort of saving and restoring registers by allocating them in caller-saved registers
(see ‘Target specific optimizations’ below).

Procedure activation involves both the caller and the callee. The former saves
caller-saved registers, assigns the actual parameters to the callee’s formal parameters,
provides a return address and finally transfers control to the latter. After the callee
returns, the caller has to restore caller-saved registers. The callee’s actions are
described below (see ‘Procedure entry and exit’).

Temporary variables

Evaluating complex expressions requires saving intermediate results in free regis-
ters. Such temporary values are placed into caller-saved registers except for the
SPARC back-end, where unused callee-saved registers (windowed registers) are
preferred (seeTable VI).

There are different methods to maintain the set of temporarily used registers. One
can use a reference counting scheme to decide when a register becomes free, or
one can free registers whenever they are used as source operands in a subsequent
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Table VI. Strategies for allocation of temporaries

Target Prefers Allocation Deallocation

NS32000 caller saved stacked reference counting
MC68020 caller saved stacked reference counting
SPARC callee saved stacked after first use or unlocking
MIPS caller saved stacked after first use or unlocking
RS/6000 caller saved round-robin after first use or unlocking

operation (unless they are locked). When a value in a register is required several
times (e.g. on method calls, open array index checks), it has to be locked and
unlocked explicitly. Counting the number of simultaneous uses of a register is more
expensive to implement, but it is worthwhile for architectures with few registers,
because registers are freed as soon as possible.

On machines for which it is beneficial to reschedule instructions in order to increase
performance (typically deeply pipelined or superscalar machines, e.g. RS/6000), one
should not introduce new dependencies between instructions by reusing the same
register unless necessary. This can be achieved by allocating temporary registers in
a round-robin fashion which guarantees a maximal distance between two uses of the
same register. Note that instruction rescheduling is not performed by any of our
code generators, but can be done by a separate peephole-optimizer.

Procedure entry and exit (seeTable VII )

The complexity of the code necessary to maintain the stack of activation records
on procedure entry and exit varies strongly, depending on the processor architecture
and on the degree of optimization. CISC processors usually provide a special
instruction for procedure entry that saves registers, allocates space for local variables,
saves the old frame pointer, and sets the new one. Another instruction, symmetric
to the first one, is provided for procedure exit. On RISC processors, entry and exit
protocols have to be coded with several instructions. An advantage lies in the fact
that the code can be optimized and tuned to each procedure. If a procedure does
not use callee-saved registers, for example, then the code for saving them need not
be present, or if a procedure does not have local variables, then the stack pointer
may remain untouched. There is a lot of room here for optimizations that are not
possible when using special and complex instructions that perform often-unnecess-
ary operations.

However, since the way parameters are passed is part of the machine-dependent
calling conventions, there is little freedom left to compiler writers. Indeed, if
procedures created by other compilers on the same machine have to be called, then
the identical calling conventions must be observed. On CISC machines, all the
parameters are usually passed on the stack. The caller pushes each argument
separately and copies larger blocks (records and arrays) if necessary.

On RISC machines, the first few parameters are passed in registers. The calling
conventions define which registers are used. Floating-point and integer values are
often treated differently. Blocks are not copied by the caller but by the callee, so
that code need not be duplicated. The address of the block to be copied is passed
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instead of the block itself. The remaining parameters are passed on the stack.
Although this method increases performance, it may further complicate the register
allocation process. Typically, parameter registers are allocated in the caller-saved
area. This reduces the number of available registers for the evaluation of the actual
parameter expressions. On the SPARC, register windows are used to pass
parameters.20

Decrementing the stack pointer between each parameter push would be a waste
of code and time. One should decrement it only once for all parameters at each
procedure call point, but a better solution is to do it once on entry of the caller
procedure for all parameters of all its callees. The activation record of the caller
procedure is thus extended by a call area where the arguments of callee procedures
will be stored. The size of this area is the maximum needed over all callees. Hence,
the size of the frame is not known before all calls inside the procedure have been
compiled. The entry code can be patched after the compilation of the entire procedure.
Using this technique, only one decrement of the stack pointer suffices for allocating
local variables, reserving space for saved registers, and reserving a call area. But in
one case, the frame size cannot be predicted at compile-time, i.e. when an open
array is passed as a value parameter. One has to create a frame excluding the size
of the open array first, and later expand the frame when the array is copied.

Another possible optimization is to eliminate the frame pointer. Where the acti-
vation frame is statically known at compile-time, the offset between the frame
pointer and the stack pointer is a constant. Hence, all variables can be addressed
relative to the stack pointer, except for the rare case in which open arrays are passed
as value parameters.

Expression evaluation

The general structure of expression evaluation is the same for all back-ends. The
differences lie in the mapping of the syntax-tree nodes to code patterns of the target
machine. Some architectures use two-address operations, i.e. an operation takes two
source arguments, one of which is implicitly taken as the destination, whereas others
use three-address operations, in which an operation takes two source arguments and
one explicit destination argument. Besides their number, there is an even more
important difference in the addressing modes allowed for the arguments. Some
machines restrict the operands to be registers or immediate values (so-called load/store
architectures), where as others allow arbitrary addressing modes to be used for each
operand. As a rule of thumb, modern RISC architectures use a load/store approach
and three-operand instructions, whereas the common CISC machines use arbitrary
addressing modes and two-operand instructions.

It turned out that the RISC approach simplifies code generation in general, as it
is more regular and there are fewer addressing modes to observe. It is also easier
to generate the binary instruction patterns for these machines.

As explained in ‘Code generation overview’ above, the various back-ends differ
in the treatment of the destination argument, as shown inTable VIII. The SPARC-
Oberon approach was to pass a third item to the OPC procedures that defines the
destination argument. In the case of a register item this register is taken as the
destination, otherwise a new register is assigned. Therefore, the third item is
interpreted merely as a hint for the code generation procedures. The other variant
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Table VIII. Treatment of destination

Target Architecture Operands Destination Example Explanation

NS32000 CISC 2 implicit Add(x, y) result into x
MC68020 CISC 2 implicit Add(x, y) result into x
SPARC RISC 3 item Add(x, y, z) result into z, hint z
MIPS RISC 3 register no. Add(x, y, n) result into x, hint n
RS/6000 RISC 3 register no. Add(x, y, n) result into x, hint n

taken for MIPS and RS/6000 is to pass a register number as a hint and to return
the result in one of the other items. The three-item approach actually passes more
information and allows for the optimization of some (rare) patterns, whereas the
latter approach is somewhat more efficient. The example (Add) contained in
Table VIII refers to an OPC procedure that emits the code patterns for addition of
two operands.

When looking at the code generated for the Oberon statementA := b + c, one
notices that if all operands are in registers, for three-operand RISC machines only
one instruction is generated, which typically executes within one machine cycle.
This compensates for the additional load and store instructions sometimes necessary
in a load/store architecture and leads to reasonable code density. For the two-operand
CISC machines three instructions are generated executing in several cycles. In
Table IX, operands are accessed frame-pointer-relatively for NS32000 and MC68020
and inside registers on the RISC machines. Note that even if operands are registers
and optimizations are performed, two-address machines need at least two instructions
in this particular example.

Interlocks

All three RISCs considered here have an instruction pipeline and a load/store
architecture. An operand loaded from memory is not immediately available in a
subsequent instruction (load delay). Pipeline interlocking is detected by the SPARC

Table IX. Code generated for ‘a := b + c’

Target Bytes Instructions

NS32000 9 MOVD b(FP), R7
ADDD c(FP), R7
MOVD R7, a(FP)

MC68020 12 MOVE.L b(FP), D7
ADD.L c(FP), D7

MOVE.L D7, a(FP)

SPARC 4 add b, c, a

MIPS 4 ADD a, b, c

RS/6000 4 a a, b, c
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and RS/6000 processors, but not by the MIPS. This introduces additional complexity
in the MIPS code generator, which has to detect data dependencies and to insert NOPs
when necessary. Note that this is not an optional optimization, but a requirement to
generate correct code.

The SPARC and MIPS have delayed branches, i.e. the branch instruction comes
into effect only after the subsequent instruction has been executed. Our back-ends
do not fill delay slots with useful code because this introduces dependencies between
non-adjacent nodes in the syntax tree. The MIPS and SPARC back-ends simply
insert NOPs, except for pre-coded patterns, e.g. block moves. A separate peephole
optimizer can later reorder the instructions and remove NOPs.

Other so-called ‘reorganization constraints’ of instructions referring to the
multiply/divide unit introduce some more complexity in the MIPS code generator:
these constraints prevent the use of instructions in an order for which the hardware
cannot guarantee correct results. Basically, the code generator has to insert enough
(sometimes dummy) execution cycles between two critical instructions. Furthermore,
floating-point compare and subsequent floating-point conditional branch instructions
on SPARC and MIPS must be separated by at least one dummy cycle.

Run-time checks

In order to provide referential integrity of programs, checks are sometimes neces-
sary at run-time. These includetype guards, index checks, and NIL checks. Testing
for integer overflow or recognizing divisions by zero are a different class of run-
time checks that are either provided by hardware or not, but they have no influence
on referential integrity. Therefore, the various Oberon implementations do not pay
much attention to them. A crucial architectural feature for efficient run-time checks
is conditional instructions which activate an exception handler if a certain con-
dition holds.

The way checks are implemented depends strongly on the features the target
architecture provides. Some machines just provide unconditional trap instructions,
making it necessary to implement the check by a conditional branch and a trap
instruction. Others provide a conditional trap which makes it possible to raise an
exception depending on the values of condition code registers. The most sophisticated
support for run-time checks are check instructions that combine a compare and the
conditional trap into one instruction, making checks fast without affecting the control-
flow of the program.Table X lists the code patterns that our compilers emit for the
various architectures.

Moreover, testing for NIL-access can be performed by a memory-management
unit, if available. Most machines protect certain memory areas against accesses,
which can be exploited for NIL-checks by selecting the address of this area as the
value NIL. This is almost always the value 0.

Without going into details of type guards it should be noted that they essentially
consist of a comparison of two pointers to type-descriptors (t0, t1, loading not
shown). Activating procedure variables closely corresponds to dereferencing pointers,
and is therefore not shown explicitly.
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Table X. Run-time checks

Run-time checks p(T) a[i] p↑.f

NS32000 CMPD t0, t1 CHECKW R7, bounds, i —
BEQ ok FLAG
BPT guard
ok %

MC68020 CMP.L t0, t1 CHK.[W/L] #bound, D7 TST.L A4
TRAPNE #guard TRAPEQ #niltrap

SPARC subcc t0, t1, g0 subcc i, len, g0 —
tne guard tcc index

MIPS BEQ t0, t1, ok SLTIU r1, i, len —
NOP BNE r1, r0, ok
BREAK guard NOP
ok % BREAK index

RS/6000 t neq, t0, t1, guard t ugte, i, len, index —

Oberon-2 type-bound procedures

Implementing the activation of type-bound procedures (method calls) turned out
to be only a small extension to the original Oberon compilers. This simply involves
an indirection via a method table that defines the procedures bound to the type of
the receiving object. The already existing type-descriptors of Oberon objects can be
extended to contain the method table. Two load operations are necessary to obtain
a method address, followed by a call of a procedure variable. The method table is
allocated with negative offsets within the type descriptor. The receiver is passed
exactly like any other parameter. There is no distinction between methods and
procedures during the compilation of their body. Only the calls are different.Table XI
shows how this is implemented. Calls of overridden methods (super calls) are bound
statically and can be treated like ordinary procedure calls. Oberon-2 has not been
implemented for the MC68020.

Back-end particularities and target specific optimizations

The general strategy throughout all back-ends was to use context-free code
generation. However, some target-specific optimizations are possible with little
additional effort. Note that generating reasonable code such as using arithmetic shifts
for multiplication and division by powers of 2 is not considered an optimization,
but standard practice.

The only optimization performed by the SPARC back-end is a cache for global
variable access. Whenever the first global data address (static base) of a module is
loaded into a callee-saved register within the first basic block of a procedure, this
register is used as static base until the end of the procedure. It turned out that this
optimization actually reduced the code size of the compiler itself, in spite of a
longer source program. A simple peephole optimizer running as a separate tool has
been implemented to use delay slots, eliminate load interlocks, and eliminate loads
immediately following stores at the same address. Although nearly all delay slots
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can be filled with useful instructions, the average execution-time improvement is
below 5 per cent. It is therefore hardly justified to complicate the compiler by
these optimizations.

If the number of callee-saved registers used in a procedure cannot be predicted
at the time the procedure prologue is compiled, one has to fix up the entry code at
the time it is known. This can happen when callee-saved registers are used for
temporary values after the allocator ran out of caller-saved registers, or when inter-
procedural register allocation is performed, as implemented in the MIPS back-end.
If saving a set of registers can be accomplished by a single instruction, then the
fix-up is simple. If individual store operations for each register have to be emitted,
then the size of the entry code changes, making it necessary to move code at fix-
up time.

Figure 9shows two procedure activation frames on the MIPS in more detail. The
size of the left frame is known at compile-time, allowing all local variables to be
addressed relative to the stack pointer. By this, the cost of setting up a new frame
pointer and saving and restoring the previous one can be spared. The stack pointer
is simply decremented by the frame size in the prologue and incremented by the
same amount in the epilogue. On the right, a callee-saved register is allocated for
the frame pointer, the previous value being saved and restored like other callee-
saved registers.

The size of each area of the activation frame is minimized. In the extreme case
of a leaf procedure without parameters and without local variables, the frame size
is zero, there is no entry code and only one instruction (JR ra) constitutes the
exit code.

The caller-savedarea is the location where temporary registers that live across

Figure 9. Activation records on the MIPS
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procedure calls must be saved. This occurs when function calls are parts of
expressions or when actual parameters are themselves results of function calls. The
MIPS back-end reduces the number of such save/restore operations by modifying
the evaluation order of actual parameters.

A sophisticated register allocation strategy, as described in Reference21, has been
implemented in the MIPS back-end. The idea is to use information about inter-
procedural register usage in the register allocator, making it possible to neglect the
register saving conventions and to make all registers work in the caller-saved mode.
The allocator tries to avoid re-use of registers already used in called procedures,
hence sparing the cost of save/restore at the call point.

Let us take an example: procedurePO calls proceduresP1 and P2. All three
procedures are not exported.P1 and P2 have been compiled already; hence, the sets
of registersR1 and R2 modified by P1 and P2, respectively, are known.P1 and P2
do not save these registers on entry, since all registers work in the caller-saved
mode. WhenP0 is to be compiled, the allocator will not use registers ofR1 or R2
for variables ofP0. In this example, no register saving is necessary.

In order to allow for these optimizations, procedures need to be processed in
depth-first traversal of the call graph. Before compiling each procedure, the abstract
tree of its body is traversed to collect all the calls and corresponding register usage
information. In the case of recursion or external calls, the information is not present
and the default register saving conventions are applied. This inter-procedural register
allocation is not always performed, but controlled by a compiler-option. The effect
of this optimization is to move the register saves and restores upwards in the call
graph. The average number of callee-saved registers to be saved on entry of a
procedure (return address, stack pointer and frame pointer included) is reduced from
3·63 to 3·11, but the average number of saves at call points is increased from 0·06
to 0·5. The resulting speed-up is strongly dependent on the call graph of the module.
It can range from−2 per cent (slower!) to+15 per cent. The results could be
improved if the register allocator had more information about the use of variables
(e.g. live range of variables), allowing the use of the same register for different
variables (e.g. with graph colouring techniques).22

On the MIPS, intermediate-level variables are not accessed via a conventional
static link or a display, but a different scheme using a global display as described
in Reference23 has been implemented.

The RS/6000 back-end reduces the amount of state saved in procedure prologues,
particularly the link register and the global data pointer in leaf procedures. It also
reorders the sequence of operations in the prologue and the epilogue in order to
reduce pipeline interlocks.

Since the RS/6000 does not provide instructions to load bytes with sign-extension,
a sequence of an ordinary byte load followed by two shifts has to be generated
when aSHORTINT is read from memory. The back-end delays the generation of the
shifts until the sign-extended value is required, avoiding the shifts altogether in
many common cases like assignments ofSHORTINT variables.

The NS32000 and MC68020 back-ends can also allocate variables in registers.
Since there are no callee-saved registers but only eight caller-saved registers, the
programmer defines (with a compiler-option) the maximal number of registers to be
used for local variables. Some benchmarks have shown that the benefit of allocating
local variables of non-leaf procedures in registers is lost when these registers have
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to be saved across procedure calls. This might be improved by separating the eight
registers into two non-empty sets of caller and callee-saved registers, but the code
generator would probably run out of registers. Consequently, the optimization is
performed for leaf procedures only.

We do not optimize the code for the NS32000 and the MC68020 with the
exception of register allocation for variables as discussed above. This does not mean
that the code is bad. Special attention has been given to using the many addressing
modes of the processor as well as possible. This implies delayed code emission and,
hence, complex ‘items’ truly reflecting the processor architecture.

The MIPS, RS/6000 and NS32000 back-ends also recognize and optimize patterns
of the form ‘designator := designator op operand’, in which the two designators are
the same. This is actually a target independent optimization. Note that a target
independent optimization phase may be applied to the tree directly. This phase
improves the generated code for all target machines without changes in any back-end.

Unfortunately, there are different classes of registers on our machines, which
complicates the task of writing a compiler.Table XII shows the number of registers
in each class (general purpose, data, address, floating-point, special purpose) and the
subdivision into caller-saved and callee-saved sets which is a software convention
(except in the presence of register windows such as on the SPARC).

The MC68020 differentiates between data (arithmetic) registers and address regis-
ters. Most operations and addressing modes are applicable to only one of these
register types, which complicates the code generator considerably. With the exception
of the NS32000, the other processors use general purpose registers as frame pointer
and stack pointer, instead of dedicated ones. The RISCs have special registers for
multiplication and division (Y / LO, HI / MQ). The MIPS is the only one using
general purpose registers as condition code registers.

Measurements

Table XIII presents some measurements to allow a quantitative comparison of
different architectures and different programming systems. It shows the compiler
sizes of the various Oberon implementations to give some feeling of the relative
back-end complexities, code density, and overall system performance. Source code
size is measured in number of statements rather than in number of lines, because
this reflects the complexity more accurately. The statement count for the front-end
differs because the module OPM defining the target machine characteristics has been
included, and because on the MC68020 the Oberon-2 extensions have not been

Table XII. Number of registers in each class (caller-saved/callee-saved)

Target General purpose Data Address Floating point Others

NS32000 8 (8/0) — — 8 (8/0) FP, SP, SB, MOD, CC
MC68020 — 8 (8/0) 8 (8/0) 8 (8/0) CC, FPCC
SPARC 32 (16/16) — — 32 (32/0) Y, CC, FPCC
MIPS 32 (17/11) — — 32 (20/12) LO, HI
RS/6000 32 (10/19) — — 32 (13/19) 8 CC, MQ, CTR
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Table XIII. Oberon compiler details

NS32000 MC68020 SPARC MIPS RS/6000

Front-end source (statements) 3670 3287 3647 3689 3705
Front-end code (bytes) 38,108 49,984 70,820 93,912 74,440
Back-end source (statements) 2337 2198 2339 3066 4234
Back-end code (bytes) 26,824 40,364 44,408 79,856 69,820
Self-compilation time (seconds) 33·0 8·9 9·0 7·0 7·9

implemented. Code size is given in bytes and self-compilation time is measured in
the effective number of seconds a user has to wait for the task to complete.

The following machines have been used for timings:

NS32000: 25 MHz 32532 based Ceres-2 computer.
MC68020: 40 MHz 68030 based Macintosh IIfx.
SPARC: 20 Mhz SPARCstation 1.
MIPS: 25 MHz R3000 based DECstation 5000.
RS/6000: 25 MHz RIOS based Model 530.

Table XIV shows a comparison of Oberon compilation and execution times with
C, based on the Dhrystone benchmark.cc means the standard C compiler (without
optimizations) available on a machine (MPW C on the MC68020),cc -O means the
C compiler with maximal optimization level allowing generation of separate object
files. All optimizations available in the Oberon compiler have been turned on.
Compilation times are given in seconds, and Dhrystones in s−1 (the more the better).
C compilation has not been measured for NS32000 because there is no C compiler
for the Ceres computer. When comparing compilation times, one should note that
for C an additional linking step is required which has not been included here.

THE SYSTEM INTERFACE

In retrospect, it seems logical that the various Oberon systems were implemented
on top of existing operating systems on the target machines, with the exception of
the original Oberon System on Ceres and on Chameleon, both machines having been
developed at ETH. During the early stages of our project, however, it was by no

Table XIV. Dhrystone measurements

NS32000 MC68020 SPARC MIPS RS/6000

Dhrystones Oberon 6677 11,338 18,300 33,829 34,768
Dhrystones cc — 11,111 8950 26,087 30,293
Dhrystones cc -O — 10,526 18,500 37,037 76,306
Compilation time Oberon 1·69 0·33 0·44 0·21 0·23
Compilation time cc — 4·9 2·2 0·8 1·6
Compilation time cc -O — 5·1 9·0 1·7 7·7
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means so obvious that this approach would yield workable systems offering satisfac-
tory performance. The alternative would have been to implement Oberon on the
bare hardware of the target machines, based on the Ceres implementation, most of
which is written in Oberon and therefore portable.

Although raw performance and a convenient user interface seem like the ultimate
goal of any operating system implementation effort, most users are in fact willing
to sacrifice raw performance in favour of compatibility. Nobody would want to use
the Oberon system on their machine if as a trade-off they had to discard all software
already running there. The only solution that pleases end-users is to offer Oberon
as a single process running concurrently with other applications under the host
operating system, and sharing resources with these other applications. Consequently,
our implementations are all based on the native operating system and display driver
of their respective target machine.Table XV gives an overview.

The parts of the Oberon system that had to be rewritten for the new target
architectures include the module loader, memory management, device drivers, and
the file system. These modules constitute the inner core of Oberon. All of the
remaining modules can be ported to new systems by recompiling the original Ceres
sources for the new target machine. This includes the modules for text management
and all user interface modules.

It was easier to port Oberon to Chameleon than to other machines. Since the
processor implements the MIPS architecture, it was not necessary to write a new
code generator. Hence, the same module loader, memory management and boot-
linker as on the DECstation could be used. The file system is the same as on Ceres;
only the device drivers had to be rewritten (in Oberon!). A software emulator for
floating-point instructions was written in Oberon, since the LR33000 does not
implement them in hardware.

Interfacing to host system libraries

Our implementations of the Oberon system all offer the same, standardized
programming interface to application programs.24 In addition, they also offer mech-
anisms for interfacing with the operating system of the host machine (seeTable XVI).

These mechanisms include access to supervisor calls of the host operating system,
and on some machines also access to shared object libraries. Libraries that cannot
be loaded dynamically are statically linked to the Oberon Kernel and accessed
through a single Oberon Kernel procedure. This facilitates changes in the set of
exported library objects by rebuilding the Oberon Kernel without invalidating its

Table XV. Overview of the target machines’ processors, operating systems and display drivers

Target machine Processor Operating system Display driver

Ceres NS32000 Oberon (native) Assembly language (native)
Macintosh II MC68020 Macintosh (proprietary) QuickDraw (proprietary)
SPARCstation SPARC UNIX (SunOS) PixRect (proprietary) or X
DECstation MIPS R2000 UNIX (Ultrix) X Window System
RISC System/6000 RIOS UNIX (AIX) X Window System
Chameleon LSI LR33000 Oberon (native) Oberon (native)
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interface. None of the Kernel’s clients need therefore be recompiled when library
functions are added.

The module loader

The purpose of the module loader is to load Oberon modules into memory and
to resolve references to other modules. In Oberon, modules may be loaded at any
time, from which point onwards they may be referenced. It is possible to load
modules and activate procedures by their name, without statically linking to them.
Since no similar feature was present in any of our target systems, we had to
construct our own module loaders and use private object file formats. These differ
slightly among the various target machines, but all contain in some form the
information listed inTable XVII, which is more than is usually contained in object
files on systems that do not support dynamic linking and procedure activation
by name.

Loading a module is a recursive process: after reading the object file into memory,
all imported modules are looked up in the global list of loaded modules and if they
are not found, they are loaded into the system as well. At this stage, key checks
are performed that allow the detection of modules compiled against older versions
of the modules they import. The key of a module serves as a version stamp of the
interface the module provides. At compilation time, a new key is selected for the
compiled module whenever the interface has been changed. Moreover, the key of
the module as well as the keys of all imported modules are written to the object
file. If the interface of an imported module changes later, the loader will be able to
detect this by comparing the keys.

If a module cannot be loaded or if one of the key checks between modules fails,
the loader returns and all partly loaded modules are discarded. If all imported
modules can be loaded successfully, open references to them are resolved by fixing
up the object code in the client module, type-descriptors are allocated and initialized,
a module descriptor is inserted into the global module list, and the body of the
module is called.

Not only can modules in Oberon be added dynamically at run-time, they can also
be removed from the system. This is necessary whenever the compiler has generated
a new version of a module that is already loaded and the user would like to use
the new version. Modules may only be unloaded when they are not imported by

Table XVII. Components of an Oberon object file

Header Module identification and miscellaneous information
Entries Entry points of exported procedures
Commands Names and entry points of commands
Pointers Offsets of global pointers (for garbage collection)
Imports Names and keys of imported modules
Links External references that have to be fixed by the loader
Constants Raw constant data
Code Raw object code
Types Data to build type descriptors
References Reference information (for symbolic debugging)
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other modules. A reference-counting scheme is used to verify this; cyclic imports
are illegal in Oberon.

Obviously, the Oberon loader cannot load itself. Furthermore, the normal loader
of the native operating system does not support all of the services required by
Oberon. One solution to the resulting bootstrapping problem is to compile the loader
into the executable format of the target machine. The easiest way of doing this is
to write the loader in one of the languages available on the target machine, and the
corresponding compiler will do the rest. One can also write a minimal boot-loader
that loads a memory image of the Oberon loader, hence avoiding the task of
translating the Oberon loader into another language. Such a memory image file is
produced by an Oberon tool, the boot-linker, also written in Oberon. On Ceres and
on Chameleon, the boot-loader is burned into a ROM and activated after a cold
start. On Chameleon, even the boot-loader is written in Oberon, thanks to a tool
linking Oberon object files for MIPS into a binary image to be burned into a ROM.

The loader (or the boot-loader where one exists) constitutes an executable program
that is called from the native operating system when starting Oberon.Table XVIII
lists the implementation language for the various Oberon loaders.

Memory management

The main issue in memory management for Oberon is the automatic garbage
collector.25 The method used in all implementations is mark-and-sweep collection.
For performance reasons, the garbage collector and the memory allocator have been
written in assembly language for the machines on the low end of the performance
spectrum. On the faster machines, this could be done in a high-level language. It is
worth noting that it was possible to write this service which is at the very bottom
of the Oberon system in Oberon itself and, furthermore, in a portable way. Indeed,
the same garbage collector is running on the DECstation, on the IBM RISC
System/6000 and on Chameleon.

Some enhancements to the Ceres implementation were made. Some of our
implementations support running the garbage collector at any time, not just between
the execution of commands (seeTable XIX). The compiler generates a list of global
root pointers but no information about local pointers. The stack is examined to find
potential pointers, which are then verified by examining the heap.

The original garbage collector employs type-descriptors containing a list of all
pointer offsets within an object. This is not sufficient for a complete implementation
of Oberon-2, which allows the declaration of arrays with a variable number of

Table XVIII. Implementation language of the loader

Target machine Boot-loader implementation Loader implementation

Ceres NS32000 assembly language Oberon
Macintosh II MC68020 assembly language Oberon
SPARCstation — Modula-2
DECstation C Oberon
RISC System/6000 — C
Chameleon Oberon Oberon
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elements. One either has to restrict the base types of these arrays to non-pointer
types or support the traversal of blocks containing a variable number of objects of
some base type in the garbage collector. The garbage collector then iterates across
all elements in the array.

Device drivers

The devices supported by the standard Oberon system on Ceres are a bitmap
display, a three-button mouse, a keyboard, an RS-232 serial line, and a network
interface. The latter is used for accessing file, mail, and print services. In our
implementations running under different host operating systems, these device drivers
had to be implemented so that other processes running concurrently on those systems
were not disturbed by the emulated Oberon system.

On some of the target systems, mouse and keyboard input are received as events
and deposited into so-called event queues, whereas on others direct polling of the
hardware is possible. On the Macintosh the mouse must be polled even though the
Macintosh Operating System supports mouse events in principle, because two Oberon
mouse buttons need to be simulated by keyboard keys that do not generate events.
This is necessary since a standard Macintosh mouse unfortunately has a single button
only. The Ceres uses a proprietary network protocol and a proprietary page description
language for describing images to be printed at a remote server across the network.
These were implemented for the Macintosh which uses the same network hardware
as the Ceres. Additionally, PostScript output is offered on almost all implementations.
The Macintosh also supports QuickDraw as a third imaging standard.

The display interface could be mapped in a straightforward way onto calls to the
underlying display systems (seeTable XX). When Oberon is started, a window is
opened that corresponds to the Oberon screen. Oberon sees this window as its
display and does not open any other window nor does it use any of the windowing
services of the underlying operating system. Calls to services that set dots, fill areas
or copy patterns into the Oberon window are used to simulate the bitmap display
present on the Ceres workstation.

Oberon uses a single abstract data type ‘Pattern’ to describe raster images (see
Table XXI). For example, the caret image is represented in this way. On Ceres,
fonts are implemented as a collection of patterns, which are copied to the screen
when a character in this font has to be drawn. In some of our implementations, this
method turned out to be too slow for general usage, because the corresponding
display drivers can draw characters much faster when string drawing operations are
used. For this reason, we differentiate between character patterns and non-character
patterns. The Oberon fonts have been translated to the format native to the target
operating systems, and caching mechanisms allow us to take advantage of the string
drawing routines. This optimization has increased the speed of screen updates by at
least a decimal order of magnitude. A more detailed description of the mechanisms
involved can be found in Reference26.

File system

Surprisingly, it turned out that the simple Oberon file system could not be mapped
easily to the seemingly more powerful systems of the target machines (see
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Table XXI. Representation of Oberon patterns

Target machine Fonts Non-character images String caching

Ceres Collection of patterns Patterns no
Macintosh II Macintosh font BitMaps yes
SPARCstation Collection of PixRect PixRects no
DECstation Single pixmap+ X font Pixmaps yes
RISC System/6000 Single pixmap+ X font Pixmaps yes
Chameleon Collection of patterns Patterns no

Table XXII). In Oberon, there is a clear distinction between file services and directory
services, whereas on all of our target systems these two very different concepts are
not well-separated at the level of system calls. When a new file is created in Oberon,
no entry is made into the directory, making the file anonymous. A name can be
entered into the directory at any time, which makes the file permanent on the disk
and possibly shadows an existing file with the same name. This behaviour is not
directly supported by any of the target systems and had to be implemented by using
temporary names for anonymous files, which are renamed when a name is registered
in the directory.

Moreover, Oberon distinguishes between the abstract data type ‘file’ and the access
mechanism that is used to read or modify it, which maintains a file position. This
facilitates reading and writing of the same file at several different positions with
full synchronization. All of our target systems, on the other hand, associate a position
with each open file and do not synchronize accesses to multiply opened files. This
problem could be circumvented by not opening a file more than once, by maintaining
a table of open files and by implementing the buffering and synchronization mech-
anism in Oberon. In order to avoid unnecessary system calls, newly created files
are opened lazily, i.e. they exist in main memory until they reach either a certain
size limit or are explicitly registered. As the Oberon system has no concept of
physically closing files, the garbage collector had to be extended to return file
descriptors of unused files to the host file system, due to stringent restrictions on
the total number of open files. All these problems significantly contributed to the
complexity of the interface module.

Table XXII. File system

Target machine File system Number of open files

Ceres Oberon (native) unlimited
Macintosh II Macintosh (proprietary) small
SPARCstation UNIX (SunOS) configurable
DECstation UNIX (Ultrix) configurable at Kernel generation
RISC System/6000 UNIX (AIX) configurable
Chameleon Oberon (native) unlimited
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SUMMARY AND CONCLUSION

In spite of being conceived as the native operating system for one specific work-
station, Oberon has proved itself to be truly portable. Owing to its simplicity and
orthogonality, each of the implementations described here could be completed in a
single man-year or less. Oberon has also demonstrated that it is an ideal environment
for software creation, as all implementations were cross-developed under an existing
implementation of Oberon. We also achieved the goal of genuine portability of
programs; Oberon programs developed on one system can be compiled and executed
on any of the others without modification.

Looking back, we are pleased with the outcome of our project, and very grateful
that we were given the opportunity to participate in it. Few engineers ever get a
chance in their lives to delve into the deeper mysteries of an operating system, as
we have in the course of our enterprise. Surprisingly, however, there were no real
mysteries to be found in Oberon, but a lot of good and solid engineering.
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ftp.inf.ethz.ch. Full documentation is included in machine-readable form.
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15. H. Mössenbo¨ck and N. Wirth, ‘The programming language Oberon-2’,Structured Programming, 12,

179–195 (1991).
16. B. Heeb and C. Pfister, ‘Chameleon: a workstation of a different colour’, in H. Gru¨nbacher and R. W.

Hartenstein (eds),Field Programmable Gate Arrays: Architectures and Tools for Rapid Prototyping,
Springer Lecture Notes in Computer Science, No. 705, 1993.

17. LSI Logic Corporation,LR33000 MIPS Embedded Processor User’s Manual, 1990.
18. J. Gutknecht, ‘Separate compilation in Modula-2: an approach to efficient symbol files’,IEEE Software,

3, (6), 29–38 (1986).
19. M. Franz, ‘The rewards of generating true 32-bit code’,Sigplan Notices,26, (1), 121–123 (1991).
20. J. Templ, ‘Design and implementation of SPARC-Oberon’,Structured Programming, 12, 197–205 (1991).
21. F. C. Chow, ‘Minimizing register usage penalty at procedure calls’,Proc. SIGPLAN ’88 Conference on

Programming Language Design and Implementation, 1988, pp. 85–94.
22. F. C. Chow and J. L. Hennessy, ‘The priority-based coloring approach to register allocation’,ACM

Trans. Programming Languages and Systems, 12, (4), 501–536 (1990).
23. B. Heeb and C. Pfister, ‘On intermediate variables and local procedures as parameters’,Structured

Programming, 12, 39–42 (1991).
24. M. Reiser,The Oberon System, User Guide and Programmer’s Manual, Addison-Wesley, 1991.
25. C. Pfister (ed.), ‘Oberon technical notes’,Report No. 156, Departement Informatik, ETH Zu¨rich, 1991.
26. M. Franz, ‘Emulating an operating system on top of another’,Software—Practice and Experience, 23,

677–692 (1993).


	SUMMARY
	INTRODUCTION
	ARCHITECTURE OF THE COMPILER
	Module structure
	Symbol table
	Syntax tree

	RETARGETING THE COMPILER
	Decorating the symbol table
	Code generation overview
	Global variables
	Local variables and procedure activation
	Temporary variables
	Procedure entry and exit
	Expression evaluation
	Interlocks
	Run-time checks
	Oberon-2 type-bound procedures
	Back-end particularities and target specific optimizations
	Measurements

	THE SYSTEM INTERFACE
	Interfacing to host system libraries
	The module loader
	Memory management
	Device drivers
	File system

	SUMMARY AND CONCLUSION
	NOTICE



