
Oberon vs. C++ by Josef Templ

Edited by Michael Griebling Page 1 07/14/98

Oberon vs. C++
by Josef Templ

Originally published in German by Heise Verlag, iX Sept. 94, Germany; translated to English by
Josef Templ. This article was first published in ModulaWare’s ModulaTor, No. 9, Oct-1994.

Copyright © 1994 by Josef Templ

While C++ is gaining acceptance in the software industry, Oberon is going to replace Pascal for
educational purposes. A comparison of both languages shows their concepts and differences.

When Niklaus Wirth, well known for the development of Pascal and Modula-2, and Juerg
Gutknecht in the mid-eighties started to develop a new operating system for personal computers,
the existing programming languages turned out to be insufficient for the development of
extensible software systems [1]. Even the monster languages such as PL/I or Ada could not be
used to construct robust and reliable programs that can be extended later on. Small languages
such as Pascal, Modula-2 or C also had—despite many successful concepts—deficiencies in their
type systems which were unable to stand the test of this new software engineering challenge.

Niklaus Wirth recognized this demand for ‘rightsizing’ and developed a new language which was
supposed to have greater expressivity and at the same time should be even easier to learn and use
than its predecessors. The result of this effort is the programming language Oberon [2]. A
comparison with the language C++ [3], which has been developed by Bjarne Stroustrup about the
same time for about the same reasons as a successor of C, should highlight the characteristics of
both languages. A comparison seems to be admittable because both claim to be general purpose,
strongly typed, object-oriented and efficiently implementable.

C++ is almost an industry standard now although the existing implementations deviate
significantly from each other. Oberon has become established—just like Pascal 20 years ago—in
the academic and educational environment first. This has been supported by freely available
language implementations for all major hardware and software platforms including DOS,
Windows 3.1, NT, OS-2, AIX, Solaris, Ultrix, Irix, HP-UX and Linux.

Data Abstraction by Means of Modules
Syntactic differences are not the criterion for this comparison. We try focus on the abstraction
mechanisms and the safety, a language provides. Abstraction means ‘omission of details’. It is
the most important means for mastering complexity. With respect to programming, it means to
ignore the implementation and to consider the specification or interface only. Oberon programs
consist of a set of modules which interact via an import/export-mechanism and allow to hide
their implementation from clients. Modules are in Oberon the means for expressing concepts
such as abstract data structures, abstract data types or simply to realize function libraries.
Modules also serve as compilation units and in the Oberon system as units of system extension,
i.e. a module can be loaded on demand during runtime and thereby extends the running program
by new functionality. Furthermore, a user may invoke exported parameterless procedures directly
as a command. A module may also contain a body, which is typically used to initialize global
variables.

http://www.modulaware.com/mdlt49.htm

Oberon vs. C++ by Josef Templ

Edited by Michael Griebling Page 2 07/14/98

Listing 1 shows an example. The import clause lists all imported and thus usable modules. A
client of M can only use those objects which are marked for export by a ‘*’ following the object's
name (e.g. T*). To distinguish objects with the same name imported from different modules,
Oberon requires to prefix imported names by the name of the exporting module (e.g. M.P). This
avoids ambiguities and helps in reading programs since it is always made explicit where an
object has been defined.

MODULE M;
IMPORT M1, M2 := MyModule;

TYPE
T* = RECORD

f1*: INTEGER;
f2: ARRAY OF CHAR

END;

PROCEDURE P*(VAR p: T);
BEGIN

M1.P(p.f1, p.f2)
END P;

END M.

Listing 1: Example of an Oberon module: The import clause lists all imported modules. The
exported objects are marked with ‘*’.

Imported modules may be renamed in the import clause in order to abbreviate long names or to
experiment with different variants of a module without too many changes in the client (e.g. M2
:= MyModule). Record fields may be exported selectively (e.g. f1*), i.e. it is possible to keep
some fields private while others are exported.

C++ Simulates Modules via the Preprocessor
C++ does not have a module concept in the language proper but simulates it in the well-known
way via the C-preprocessor (cpp) and appropriate programming conventions (header files). The
global name space that C++ inherited from C does not preclude name clashes during the linking
step. To avoid this problem, classes are sometimes used to simulate the name scope of modules.
In the case of interrelated classes or procedures which refer to more than one class, so-called
friends must be used, which are sort of a scope-goto—a construct that allows to circumvent the
usual scoping rules of the language. Friends make names visible where they would not be visible
otherwise. Since this mechanism is still unsatisfying for large software systems, extensions to the
scoping mechanisms—namespaces—are being discussed by the C++ standardization committee
[5]. However, namespaces still depend on the C-preprocessor, thus, they cannot be regarded as a
proper module concept in the language.

Another often cited criticism of C++, the missing initialization order, also solved by Oberon's
modules. In contrast of cpp's include mechanism, the import relationship forbids cycles. Thus,
the imported modules can always be initialized before their clients.

Oberon vs. C++ by Josef Templ

Edited by Michael Griebling Page 3 07/14/98

For system-level programming, Oberon offers the pseudo module SYSTEM, which provides
implementation and machine dependent operations. Modules which import SYSTEM are
inherently unportable and unsafe but easily identified by the word SYSTEM in their import list.
C++ allows the usage of system level operations without specially marking such programs. When
porting programs from one machine to another, this might lead to unpleasant surprises and long
debugging sessions.

Safety in Programming Languages
Nowadays nobody expects that an electric shaver can be plugged into a high-voltage socket.
Furthermore, for the case of a short circuit or similar malfunctioning of a correctly connected
appliance there are additional fuses. Surprisingly, these concepts of safety are not well-
established in most programming languages. Of course, not every programming error can be
precluded by the design of a programming language. Nevertheless, the avoidance of certain error
classes and the detection of runtime errors are important quality aspects [4, 5]. Both Oberon and
C++ rely on the notion of strong typing. The approach to that, however, is quite contrary. In
Oberon (as in Pascal) a variable is associated with an arbitrary complex type, in C++ (as in C) a
type is associated with an arbitrary complex designator (lvalue). This lvalue acts as a prototype
for the usage of the variable and defines the variable’s type implicitly. By inverting the
declaration and isolating the variable, the variable’s type can be reconstructed. A concrete
example is the definition of a pointer v to a structure x as in:

struct x *v;

This means that the lvalue *v is of type struct x. ‘*’ denotes dereferenciation, therefore the type
of v can be deduced as pointer to struct x. In Oberon one would write

VAR v: POINTER TO x;

The variable v in this declaration is already isolated. In case of more complex declarations,
Oberon's approach is definitely simpler and more regular. Eventually, in both languages a type is
associated with every variable, which defines the set of values and applicable operators. By that,
many erroneous usages of variables and procedures can be detected before program execution
and help to avoid mysterious program crashes.

Pointer Arithmetic in C++ is Dangerous
For those errors that cannot be detected before program execution, Oberon goes one step further
by guaranteeing type safety and memory consistency even at run time. The necessary fuses, for
example for array-bound checking, can be implemented with almost no overhead in execution
time and program size. C++ defines an array as identical with a pointer to the first element and
allows pointer arithmetic. This precludes index checking in practice. A further safety loophole in
C++ exists in the management of dynamic storage where Oberon still guarantees memory
consistency by means of automatic garbage collection.

In contrast to BASIC and most scripting or fourth generation languages both Oberon and C++
offer the possibility to construct dynamic data structures which are interrelated by means of
pointers. Such structures not only grow but also shrink. In the latter case, the C++ programmer
has to explicitly free the unused storage. To support this task, C++ offers the notion of
destructors, which are automatically activated whenever an object is deallocated.

Oberon vs. C++ by Josef Templ

Edited by Michael Griebling Page 4 07/14/98

Destructors, however, do not solve the problem that objects are deallocated too early or too late.
Many hours of debugging time have already been spent to detect and fix such errors. In vain for
extensible programming systems. It can easily be shown that the programmer cannot know the
correct time to free an object in this case. Therefore, and not only for convenience, Oberon relies
on a conceptually infinite heap storage, which only allows to allocate but not to deallocate
objects.

Oberon with Integrated Garbage Collection
In contrast to the programmer, the runtime system can easily decide, when an object is no longer
in use and deallocate the associated storage. This technique, also called automatic garbage
collection, implements the illusion of an infinite heap and leads to a significant gain in
productivity. Probably, it is garbage collection and not the syntax that attracted the users of
languages such as Smalltalk or Lisp. It is not surprising that introduction of garbage collection is
a hot topic within the C++ community. Due to pointer arithmetic, however, it is much more
difficult if not impossible to introduce it in C++.

OOP-Concept is Record Extension
Roughly speaking, both Oberon and C++ are object-oriented extensions of existing languages.
The approaches to this, however, are fairly different. C++ essentially supports object-oriented
programming (OOP) a la Simula-67, Oberon does not suggest a particular OOP-style but leaves it
to the programmer to select the appropriate technique for a given task. All these techniques are
based on the notion of record extension, which replaces the variant records (Unions in C) of its
predecessors. Record extension means that a new record type can be defined as an extension of
an existing one.

The base type and the extended type are upwardly compatible to each other, all operations which
can be applied to the base type can also be applied to the extended type but not vice versa. Two
fundamental OOP-styles can be identified in Oberon. They are distinguished by the fact that a
message is represented explicitly as an Oberon data structure or implicitly as a procedure call.

In the first case, messages are represented as records (message records) are passed explicitly to a
procedure (the message handler) as variable parameters. The handler is typically bound to the
receiving object by means of a procedure variable (c.f listing 2). Objects are usually allocated on
the heap and referenced via pointers.

TYPE
Object = POINTER TO ObjectDesc;
ObjectMsg = RECORD END ;
Handler = PROCEDURE (O: Object; VAR M: ObjectMsg);
ObjectDesc = RECORD

handle: Handler
END ;

Listing 2: Message records are explicitly passed to the handler procedure, which is bound to the
receiving object by a procedure variable.

Oberon vs. C++ by Josef Templ

Edited by Michael Griebling Page 5 07/14/98

Applying record extension to messages it is possible to create a hierarchy of message types. The
message type DisplayMsg, for example, is derived from the base type ObjectMsg (c.f. listing 3).
Further specialization of DisplayMsg is possible. The handler distinguishes different message
kinds by means of the type test operator IS and responds in an object-specific way to the
message.

Using message records and handlers seems to be rather inconvenient and inefficient at first
glance. However, they do have certain advantages as well, which explains why they are the
dominant OOP-style in the Oberon system.

The Advantages are:
• Messages can be introduced where they are needed. It is not necessary to declare them

together with the base type.
• Messages can be handled generically without knowing their type or interpreting their

contents. A container object, for example, can forward messages to its members without
knowing all these messages. Generic broadcast, forwarding and delegation is possible.

• The effect of extensible parameter lists can be achieved by extending message records.
• There is a clean separation between subtyping (record extension) and subclassing (code

inheritance). Code inheritance including multiple and even dynamic inheritance can be
achieved by programming an appropriate message dispatching mechanism in the handler (c.f.
ELSE branch in listing 3).

TYPE
CopyMsg = RECORD (ObjectMsg)

deep: BOOLEAN;
cpy: Object

END ;

DisplayMsg = RECORD (ObjectMsg)
F: Frame;
x, y: INTEGER

END ;

PROCEDURE HandleMyObject (O: Object; VAR M: ObjectMsg);
BEGIN

IF M IS CopyMsg THEN ...
ELSIF M IS DisplayMsg THEN ...
...
ELSE Objects.Handle(O, M)
END

END HandleMyObject;

Listing 3: Record extension can also be applied to message records leading to a hierarchy of
message types.

The dominant role of message records is also evident from systems such as MacOS, X11 or
Windows where they appear as event records. In these systems, however, message records are
expressed as non-extensible variant records (unions).

Oberon vs. C++ by Josef Templ

Edited by Michael Griebling Page 6 07/14/98

If efficiency rather than flexibility is crucial, there are further mechanisms available. In Oberon-
2, which is supported by all commercial vendors, they include also type-bound procedures, which
are similar to virtual functions in C++. A procedure Display, for example, can be bound to a type
Line in the following way:

PROCEDURE (L: Line) Display (F: Frame; x, y: INTEGER);

C++ introduces object-oriented programming via a special syntactic construct, the class, which is
a textual bracket around an extensible structure definition and functions bound to this structure.
Although message records and handlers would also be possible in principle, this technique is not
practical due to the missing type test operator.

In the typical C++ OOP-style with classes and virtual functions, code inheritance cannot be
expressed explicitly as with Oberon’s message handlers. Therefore, the language already contains
several important inheritance relations including multiple inheritance and virtual base classes.
These predefined mechanisms can, however, not compete with the flexibility of an explicitly
programmed message handler. Generic forwarding of messages is, for example, not possible.

Exception Handling
Most language designers now agree that I/O operations, processes, threads, semaphores and
similar things should not be defined within the language since there are too many different
concepts and none of them is appropriate for all applications. This does not mean that
programmers should not use these concepts but that they should be provided by means of
modules instead of language constructs. This idea is also applied to exception handling in
Oberon, whereas in C++ a particular exception handling mechanism is already defined within the
language.

Genericity
A program is called generic if it is not specific to a particular programming task. In a strongly
typed programming language, types are usually constant, i.e. specific. It is, however, also
possible to think of program components such as procedures or classes which are parameterized
with types. The most prominent examples of such generic programs are container classes (lists,
sets or trees), that consist of elements of a given type.

C++ allows the usage of ‘templates’, i.e. building blocks which can be parameterized even with
types in order to increase program reuse. Unfortunately, there is no better implementation
technique known than expanding templates for all different argument combinations. Templates
actually represent another kind of preprocessor, one that knows about the scoping rules of C++.
Maintenance of expanded templates across compilation units further complicates template
implementation and usage. In current implementations this problem is mostly unsolved and
frequent use of templates often leads to surprising code sizes due to unintended code duplication.

For these reasons, Oberon does not include a template mechanism within the language but
delegates the task of expanding code fragments to the programmer. In principle, a template
preprocessor would also be possible for Oberon, however, as a separate tool.

Oberon vs. C++ by Josef Templ

Edited by Michael Griebling Page 7 07/14/98

Overloading
One of the central design decisions of C++ was that it should be possible to define new data
types that look exactly like built-in types. Consequently, it is necessary to allow user-defined
operators such as + or -. It is straight forward to extend this idea to overloading of functions as
well.

In contrast to C++, one of Oberon’s central design decisions was that imported objects should
always be prefixed by the exporting module name in order to ease reading of programs. This is in
conflict with operator and function overloading. Therefore, Oberon uses overloaded operators
and functions only for language-defined types. This restriction also helps to guarantee that
overloaded operators are similar enough to justify overloading and helps to reduce unintended
introduction of inefficiencies. Please note also, that overloading, although an established
mathematical concept, has its pitfalls. The interested reader might want to find out which one of
the following two functions is called (if any) and what happens if one of them is removed.

void f(char*);
void f(int);
... f(0);

Summarizing, it can be stated that the exceptional shortness of Oberon's language definition—
less than 20 pages—does not originate in deficiencies of the expressivity of the language. Quite
to the contrary, Oberon already contains some features which C++ programmers can only dream
about. To mention just a few: modules, runtime type information and garbage collection. The
latter is a necessary prerequisite for robust and reliable extensible software systems that will
become more and more important in the future. It is hoped that the excellent educational Oberon
implementations will be accompanied soon by equally well-implemented industrial programming
tools to give also the practitioner a real alternative to C++.

Comparison between Oberon and C++
Criteria Oberon C++
type test yes no1

type BOOLEAN yes no1

modules yes no1

marking system-level programs yes no
defined initialization order yes no
garbage collection yes no
dynamic arrays yes no
runtime tests yes no
completely type safe yes no
preprocessor necessary no yes
exceptions no yes
templates no yes
overloading no yes
typing explicit implicit
precedence levels 4 17
language report (pages) 20 150

1 extensions are being discussed

Oberon vs. C++ by Josef Templ

Edited by Michael Griebling Page 8 07/14/98

Literature
[1] R. Gericke: Wider den Schnickschnack; Oberon-System Teil 1: Anwendersicht; c’t 2/94, p.

180 ff., Teil 2: Technische Einblicke; c’t 3/94; p 240 ff.
[2] M. Reiser, N. Wirth: Programming in Oberon; Addison Wesley 1994.
[3] B. Stroustrup: C++ Programming Language; Addison Wesley, 1992.
[4] Ch. Kirsch: Entwicklertrauma: Marktübersicht: Tools für die C-Entwicklung; iX 6/94; p 124

ff.
[5] B. Stroustrup: The Design and Evolution of C++; Addison Wesley 1994.

Remarks
Josef Templ received his Ph.D. in 1994 from ETH Zurich for his work on metaprogramming in
Oberon.
Oberon can be downloaded via anonymous internet file transfer from ftp.inf.ethz.ch:/pub/Oberon

