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Oberon microsystems  

The Evolution of Oberon-2 to Component 
Pascal
Except for some minor points, Component Pascal is a superset of Oberon-2. Compared to Oberon-2, it provides 
several clarifications and improvements. This text summarizes the differences. Some of the changes had already been 
realized in earlier releases of the BlackBox Component Builder, all of them are implemented for Release 1.3.

The language revision was driven by the experience with the BlackBox Component Framework, and the desire to 
further improve support for the specification, documentation, development, maintenance, and refactoring of 
component frameworks. The goal was to give a framework architect the means to better control the overall integrity of 
large component-based software systems. Control over a system's integrity is key to increased reliability, reduced 
maintenance costs, and to higher confidence in the system's correctness when it evolves over time.

Care was taken that the language remains small, easy to use, and easy to learn. The new features are most visible to 
framework designers, less visible to framework extenders, and least visible to mere framework clients. This ensures 
that these different categories of developers are burdened with the minimal amounts of complexity that their respective 
tasks require. The complete language report is available here.

 

More Expressive Type System

Covariant pointer function results

A type-bound function which returns a pointer may be redefined, such that it returns an extended type. For example, 
the function

PROCEDURE (v: View) ThisModel (): Model

could be extended in a subtype MyView, which is assumed to be a subtype of View, to the following function 
signature 

PROCEDURE (v: MyView) ThisModel (): MyModel

where MyModel is assumed to be a subtype of Model. Note that covariant function results are type safe; they simply 
strengthen the postcondition of a function, which is always legal. They allow to make interface declarations more 
precise.

Pointer compatibility 

The compatibility rules for pointers have been relaxed and simplified. Pointers are now compatible by structure; i.e., 
two pointer types that have the same base type are compatible. This can be useful mostly in procedure signatures, 
where it previously wasn't possible to use a function like the following:

PROCEDURE P (p: POINTER TO ARRAY OF INTEGER)

Pointer function results 
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A function's return type is now Type not Ident; e.g., 

PROCEDURE Bla (): POINTER TO Rec

is now legal, and due to simplified compatibility rules (see previous point) their use can actually make sense.

 

IN and OUT

These parameter modes are like the VAR mode, except that some restrictions apply. IN parameters cannot directly be 
modified inside a procedure, OUT parameters are considered undefined upon procedure entry (except for pointers and 
procedure variables, which are set to NIL upon procedure entry). OUT record parameters must have identical actual 
and formal parameter types.

These parameter modes are important for procedure signatures of distributed objects, and they can increase 
convenience and efficiency. Most importantly, they allow to make interface declarations more precise and more self-
documenting. In particular, where formerly VAR parameters have been used for efficiency reasons only, it is now 
possible to use IN parameters. Where efficiency is not critical, normal value parameters should be used instead of IN 
parameters.

Example:

PROCEDURE ShowModes (
   value: INTEGER; VAR inout: INTEGER; (* value and VAR parameters *)
   IN in: ARRAY OF SET; (* IN for efficiency *)
   OUT res: INTEGER): INTEGER; (* OUT parameter and function result *)

 

NEW methods

Component Pascal requires that the introduction of a new method is indicated explicitly. This is done by appending the 
identifier NEW to the method's signature. NEW may not be used for extending methods.

In the following example, method SomeMethod is newly introduced in T and inherited in T1, which is assumed to be 
an extension of T:

 

PROCEDURE (t: T) SomeMethod (x, y: INTEGER), NEW;
BEGIN
        ...
END SomeMethod;
 
PROCEDURE (t: T1) SomeMethod (x, y: INTEGER);
BEGIN
        ...
END SomeMethod;

 

NEW indicates that a method is new, not extending. The need to declare this fact explicitly is useful whenever changes 
to a framework are made, which often happens during the initial design iterations, and later when the software 
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architecture undergoes refactoring. NEW makes it possible for the compiler to detect for example if a base method's 
name has been changed, but extending methods have not been renamed accordingly. Also, the compiler detects if a 
method is newly introduced, although it already exists in a base type or in a subtype. These checks make it easier to 
achieve consistency again after a change to a framework's interfaces.

 

Default, EXTENSIBLE, ABSTRACT, and LIMITED record types

Component Pascal uses a single construct to denote both interfaces of objects and their implementations: record types. 
This unification allows to freeze some implementation aspects of an interface while leaving others open. This 
flexibility is often desirable in complex frameworks. But it is important to communicate such architectural decisions as 
precisely as possible, since they may affect a large number of clients.

For this reason, a Component Pascal record type can be attributed to allow an interface designer to formulate several 
fundamental architectural decisions explicitly. This has the advantage that the compiler can help to verify compliance 
with these decisions. The carefully chosen attributes are EXTENSIBLE, ABSTRACT, and LIMITED. They allow to 
distinguish four different combinations of extension and allocation possibilities:

 

modifier       extension    allocation    record assignment
none ("final") no           yes           yes
EXTENSIBLE     yes          yes           no
ABSTRACT       yes          no            no
LIMITED        no (1)       no (1)        no
 
(1) except in the defining module

 

Record types may either be extensible or non-extensible ("final"). By default, or if marked as LIMITED, a record type 
is final. Final types allow to "close" a type, such that an implementor can perform a complete analysis of the type's 
implementation, e.g. to find out how it could be improved without breaking clients.

Record types may either be allocatable (as static or dynamic variables), or allocation may be prevented (ABSTRACT) 
or limited to the defining module (LIMITED).

Final types typically are simple auxiliary data types, e.g.:

Point = RECORD
        x, y: INTEGER
END

Variables of such types can be copied using the assignment operator, e.g. pt := pt2. The compiler never needs to 
generate the hidden type guard that is sometimes necessary for such an assignment in Oberon.

On the other hand, extensible records can neither be copied, nor passed as value parameters (since value parameters 
imply a record assignment).

Final types, like extensible types, may be extensions of other record types and they may have methods.

Extensible types are declared in the following way:
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Frame = EXTENSIBLE RECORD
        l-, t-, r-, b-: INTEGER
END

Plain EXTENSIBLE types are rare, it is more typical to use ABSTRACT types instead, which are a special case of 
extensible types that cannot be instantiated. The following paragraph gives a more precise description of what this 
restriction means:

Types of values can never be abstract, but types of variables may be abstract. The type of a value can be different from 
the type of its holding variable only if the variable is referential; i.e., a pointer; or a VAR, IN, or OUT parameter. 
Thus, only those variables may be declared to be of an abstract type. In all other cases; i.e., static variables, record 
fields, array base types, and value parameters, non-abstract types or pointers (possibly to abstract types) must be used. 
Since the allocation operation NEW produces a value of the argument's type, NEW can only be used with variables of 
non-abstract type.

Example of an abstract type:

TextView = POINTER TO ABSTRACT RECORD (Views.View) END

Abstract types are design tools, they denote interfaces of objects. They are the primary means of Component Pascal to 
model component interfaces. Denoting records as abstract allows to indicate more precisely the use of a record: as an 
interfacing construct rather than an implementation construct.

Nevertheless, an abstract type may have all types of methods (see below), i.e., it is not forced to be fully abstract.

LIMITED types are a special case of final types. They are special in that they can be instantiated only within the 
defining module, and they cannot be copied. For example, a client may not perform a NEW on variables of limited 
types. Since allocation is under complete control of the defining module, the programmer of this module can guarantee 
that all newly allocated variables are correctly initialized before they are made accessible to client modules. This 
means that clients can only see variables that respect the type's invariants (which are established during initialization). 
An implementor is free to change the type's internal representation with less risk of breaking client code; there is no 
need for lazy initialization schemes; there cannot be delayed run-time errors due to missing initializations; and 
invariants (e.g., invariants over hidden record fields) cannot be violated through copying.

Typically, factory functions or factory objects are provided to create new instances of dynamic LIMITED types. 

Example:

TYPE
    Semaphore = POINTER TO LIMITED RECORD END;
 
PROCEDURE New (level: INTEGER): Semaphore;

In the BlackBox Component Framework, most abstractions are represented as abstract types, which are implemented 
by (non-exported) final types. This is another approach that allows to guarantee correct initialization, but it is too 
inconvenient for simple non-extensible abstractions. Moreover, LIMITED types cannot be substituted by client-side 
extensions. This is important, because it allows to protect non-extensible services, such as a real-time kernel, from 
being used with illegal types.

Record syntax

The record syntax looks as follows:

RecordType = [EXTENSIBLE | ABSTRACT | LIMITED]
             RECORD ["(" QualIdent ")"]
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             FieldList {";" FieldList} END.

Note that a pure client programmer never needs to write any of the above attributes. The same is true for an 
implementor of a framework extension. Even the framework designer may save some time using these attributes, 
because they are an important part of the documentation that can be extracted automatically from the source code.

The goal for the introduction of these attributes was to increase the static expressiveness of interfaces, such that 
important architectural decisions can be written down explicitly, in a way that a compiler can check conformance of an 
implementation or a client with the interface contract. A pure implementation language wouldn't need the new 
attributes, only a component-oriented implementation and design language needs to be able to express such design 
constraints. Control over such constraints enables a framework designer to establish important invariants over a whole 
software system (= system architecture), thus improving safety, maintainability, and evolvability.

Some of the new attributes also add convenience; e.g., abstract methods need no procedure body anymore. Such 
additional convenience is a welcome benefit, but it was by no means the reason for the introduction of the attributes. 

 

Default and EXTENSIBLE methods

Like record types, methods of a record type can also be attributed. The attributes available are the default (no 
attribute), EXTENSIBLE, ABSTRACT and EMPTY.

Like record types, methods are final by default:

PROCEDURE (t: T) StaticProcedure (x, y: INTEGER), NEW;
BEGIN
        ...
END StaticProcedure;

Methods that are both new and final can be treated by a compiler like normal procedures, since they don't require late 
binding. Nevertheless, their use can be appropriate if they clearly belong to a particular type.

Extensible methods on the other hand are marked as such, e.g.:

PROCEDURE (t: T) Method (x, y: INTEGER), NEW, EXTENSIBLE;
BEGIN
        ...
END Method;

It is much more common to use abstract or empty methods, which are special cases of extensible methods (see below). 

Declaring a method as final is achieved by simply leaving away the EXTENSIBLE attribute:

PROCEDURE (t: T) FinalInheritedMethod (x, y: INTEGER);
BEGIN
        ...
END FinalInheritedMethod;

If a black-box design style is used, most methods that need to be implemented for a framework extension are of the 
above kind, which requires no special attributes in the method signature. This is reasonable, because there are more 
framework extension programmers than there are framework designers, thus extensions should be as convenient as 
possible to write down.
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Final methods may be bound to any record types. Extensible methods may only be bound to extensible types (i.e., 
EXTENSIBLE or ABSTRACT).

Since final methods cannot be "overridden", the invariants that they guarantee and the postconditions that they 
establish cannot be violated. Note that correct "extension" of a method means that the extending method implements a 
refinement of the extended method. Semantically, this means that the extending method accepts a weaker precondition 
or establishes a stronger postcondition compared to the extended method.

 

ABSTRACT methods

An abstract method is declared in the following way:

PROCEDURE (t: T) SomeMethod (s: SET), NEW, ABSTRACT;
PROCEDURE (t: T) CovariantMethod2 (): NarrowedType, ABSTRACT;

Abstract methods are extensible. The compiler checks that a concrete type implements all abstract methods that it 
inherits. A concrete extension of an abstract method (or type) can be regarded as its implementation. Abstract methods 
may only be bound to abstract types, and they may not be called via super calls.

An abstract method has no corresponding procedure body, it only exists as a signature. There is no need anymore to 
write a procedure body with a HALT statement.

 

EMPTY methods

A method can be declared as empty. Empty methods are extensible. An empty method is very similar to an abstract 
method, in that it is a hook for functionality that can be provided in later extensions. However, empty methods are 
concrete and can be called. If they have not been extended (i.e., implemented), calling them has no effect.

Empty methods represent optional interfaces. For example, a BlackBox Component Framework View provides an 
empty method for handling user events (HandleCtrlMsg). This method is implemented in interactive views, passive 
views ignore it. 

It is not possible to introduce code in an empty procedure. For this reason, an empty method has no corresponding 
procedure body, and may not be called via super calls.

Empty procedures may not return function results and may not have OUT parameters.

Example:

PROCEDURE (t: T) Broadcast (msg: Message), NEW, EMPTY;

Method syntax

The method syntax looks as follows:

TBProc = PROCEDURE Receiver IdentDef [FormalPars] [Attribution].
Attribution = ["," NEW] ["," (EXTENSIBLE | ABSTRACT | EMPTY)].

Note that a pure client programmer never needs to write any of these attributes. The same is true for an implementor of 
a framework extension. Even the framework designer may save some time using these attributes, because they are an 
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important part of the documentation that can be extracted automatically from the source code.

 

Implement-only export of methods

A method may now also be exported as implement-only, using the "-" export mark instead of the "*". Implement-only 
export means that the method may be implemented outside the defining module, but may not be called from there.

Whether a method is exported normally or implement-only is decided when the method is first introduced (NEW 
method). Later extensions must use the same export mode.

Implement-only exported methods are called from within the module where a method is newly introduced; they go 
"upwards" in the module hierarchy (upcalls). For frameworks, the existence of such upcalls is typical. Implement-only 
export allows to prevent framework clients from violating the framework's invariants, while still making it possible to 
provide new implementations of the framework's types. 

Every framework has two "faces": an interface for clients, and an interface for implementors, the so-called 
specialization interface. These two interfaces may overlap. Implement-only export allows to clearly label those parts of 
an interface that belong to the specialization interface only.

 

Super calls

Because of the so-called semantic fragile base class problem, it is recommended to avoid super calls whenever 
possible. It is possible to design new software such that they are not needed, by relying on composition rather than on 
implementation inheritance. Super calls are considered to be an obsolete feature. For the time being, they are retained 
for backward compatibility. In the long run, support for super calls may be reduced.

 

Procedure types

Procedure types are less flexible than objects with methods. Even standard examples for procedure types in numerical 
software can benefit from modeling them as objects. Objects are extensible, procedure types are not. Procedure types 
can pose considerable implementation difficulties concerning the safe unloading of code. For these reasons, procedure 
types are considered as obsolete. For the time being, they are retained for backward compatibility and for 
implementation low-level interfacing code (callbacks). In the long run, support for super calls may be reduced.

 

ANYREC and ANYPTR

Each base record is implicitly regarded as an extension of the new abstract standard type ANYREC, even if it is 
declared without explicit base type. ANYREC is an empty record that forms the root of all record type hierarchies. 
ANYPTR is a new standard type that corresponds to a POINTER TO ANYREC.

These new types make it easier to achieve interoperability between independently developed frameworks, by allowing 
completely generic parameters.

The following pseudo definitions can be assumed:

�h�t�t�p�:�/�/�w�w�w�.�o�b�e�r�o�n�.�c�h�/�r�e�s�o�u�r�c�e�s�/�c�o�m�p�o�n�e�n�t�_�p�a�s�c�a�l�/�e�v�o�l�u�t�i�o�n�.�h�t�m�l� �(�7� �o�f� �1�1�)� �[�0�1�.�0�2�.�2�0�0�4� �1�7�:�5�7�:�0�5�]



�T�h�e� �e�v�o�l�u�t�i�o�n� �o�f� �O�b�e�r�o�n� �t�o� �C�o�m�p�o�n�e�n�t� �P�a�s�c�a�l

ANYREC = ABSTRACT RECORD END;
ANYPTR = POINTER TO ANYREC;
PROCEDURE (a: ANYPTR) FINALIZE-, NEW, EMPTY;

The FINALIZE procedure is empty. It can be implemented for a pointer type extension. The procedure is called at 
some unspecified time after the object has become unreachable via other pointers (not globally anchored anymore) and 
before the object is deallocated. Finalizers are needed to release resources that are not directly Component Pascal 
objects; e.g., file sectors, font handles, window pointers of the operating system, and so on.

The finalization order is not defined. An object is only finalized once.

 

String Support

Explicit string types 

We can distinguish a string value (the actual character values) from the variable in which it is contained (an array of 
character). Some operations in Component Pascal operate on the string value (e.g., comparison for equality), others 
operate on the container variable (e.g., assignment). A compiler can automatically derive which interpretation is 
needed in a given situation. Unfortunately, there are situations where both interpretations make sense. For example, 
passing an array of character to a value parameter (which is also an array of character) should be interpreted as an 
assignment. But often it is more efficient only to copy the string value in the actual parameter, rather than the whole 
array. Consider passing a Unix path name, declared as an array of character with 2048 elements, when it usually 
contains only a few dozen characters.

In Component Pascal, it can be made explicit that the programmer wants to work with the string value, rather than the 
character array variable. Selecting the string value in a variable is denoted with the $ operator; for example

OpenFile(pathname$)

where OpenFile is declared as

PROCEDURE OpenFile (name: ARRAY 2048 CHAR)

Note an additional benefit: it is now more attractive to declare character array parameters with a fixed number of 
elements, like in the above example. In Oberon, this is inconvenient since often the type of the actual parameter is not 
compatible with the formal parameter. Since string values are always compatible with character arrays, this problem 
vanishes in Component Pascal. This is important because it is more precise to specify a fixed size array when the array 
is known to be limited. Note that declaring an open array would be a contract to accept arrays of any length 
whatsoever (without ever leading to an out-of-range error at run-time!).

String concatenation

The + operator now allows to concatenate strings. The target variable must be of sufficient length to hold the resulting 
string.

Elimination of COPY

The auxiliary procedure COPY is not necessary anymore, since the $ operator makes it superfluous. For example,

COPY(a, varpar)

is replaced by
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varpar := a$

 

Specified Domains of Types 

To achieve fully portable code, it is necessary to fully specify the domains of all base types. The Component Pascal 
base types are a superset of the Java base types.

 

Type          Size      Domain
 
SHORTCHAR     1 byte    Latin-1 character set
                        (first Unicode page, and a
                        superset of ASCII)
CHAR          2 byte    Unicode
BYTE          1 byte    signed integer
SHORTINT      2 byte    signed integer
INTEGER       4 byte    signed integer
LONGINT       8 byte    signed integer
SHORTREAL     32 bit    IEEE
REAL          64 bit    IEEE
SET           4 byte    bitset
BOOLEAN       1 byte    FALSE or TRUE

 

Type LONGREAL has been eliminated. Longreal literals have been eliminated; i.e., use 1.0E2 instead of 1.0D2. The 
identifier LONGREAL is reserved for possible future use. Real constants are always REAL (64 bit) values.

Hexadecimal integer constants now can be specified either as 4 byte (e.g., 0FFFFFFFFH) or 8 byte constants (e.g., 
0FFFFFFFFFFFFFFFFL). This allows to distinguish negative INTEGER hex constants from positive LONGINT hex 
constants. For example, 0FFFFFFFF denotes -1 when interpreted as INTEGER, but 4294967295 when interpreted as a 
LONGINT.

Integer constants are always INTEGER (4 byte) values. Assignment of an integer constant to a smaller type (e.g., 
BYTE) is legal if the constant lies within the range of the target type. Integer constants of other types can only be 
constructed using SHORT or LONG.

Integer arithmetic is now always performed with 32-bit precision, except for expressions that contain LONGINT 
values. In the latter case, 64-bit precision is used. This rule makes it less likely to produce hard-to-find overflows of 
intermediate results that are calculated at insufficient precision.

Floating-point arithmetic is always perfomed at 64-bit precision.

 

Miscellaneous

The semantics of DIV is strengthened, by specifying the result of divisions by negative numbers.

The new real value INF for infinity has been introduced. This value may be generated e.g. through floating-point 
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division by zero. The meaning of infinity for floating-point numbers is defined by the IEEE standard for floating-point 
numbers.

It has been specified more comprehensively where pointer dereferencing is implicit. For example, it is now also 
available when passing a pointer variable to a record type formal parameter.

Record types can be declared as extensions of other record types by mentioning a pointer type as base type (instead of 
a record type). This makes the explicit naming of a record type superfluous, if the record variables are used via 
pointers only.

Within a scope, type names can be considered as forward-declared. This means that any type name can be used before 
it is declared. Old-style pointer forward declarations like T = POINTER TO TDesc are still allowed, since they are 
simply a special case of the new rule, but they are not necessary anymore.

BITS is a new standard function that converts an INTEGER value to a SET value, such that BITS(1) yields {0}. For 
example, this allows to write more portable device drivers, since it doesn't depend on the processor's bit ordering 
(which differs for 68k and PowerPC, for example).

ORD can now also be applied to SET values (inverse operation of BITS).

MIN and MAX now also accept two parameters; e.g. real0 := MAX(someInt, real1). They select the minimal/maximal 
values of the two inputs, which must be number types.

LEN can also be used on string values. LEN(chararray) returns the length of the chararray variable, while 
LEN(chararray$) returns the length of the string value. Note that a character array must have at least one more element 
than the string value contains characters, to hold the terminating 0X character.

Designators are generalized to allow dereferencing etc. on a function result. For example, the following is now legal:

length := view.ThisModel()(TextModels.Model).Length()

or

view.Context().GetSize(w, h)

The relaxation of the designator syntax makes it easier to use methods instead of record fields. Methods are more 
flexible and make it simpler to implement wrappers (forwarding of method calls) than record fields do.

Global variables, including heap variables allocated with NEW, now have a defined initial value (FALSE, 0X, 0, 0.0, 
{}, NIL, ""). Local (i.e., stack) variables are not initialized, except for pointers and procedure variables which are set to 
NIL for safety reasons.

An appendix of the language report specifies the minimal environment requirements that any Component Pascal 
implementation must fulfill. In particular, commands, dynamic loading, and garbage collection are fundamental 
requirements for component-oriented systems. Like for all dynamic languages, this appendix acknowledges that the 
language cannot be regarded completely independently from its environment. The object model, whether assumed in 
the language definition or accessed as an external service, is always part of the environment.

To simplify interfacing of existing C libraries, underscores in identifiers are allowed.

The rules for export marks have been simplified compared to Oberon: An extending method must have exactly the 
same export mark as the method that it extends. The only exception occurs if the method is part of a non-exported 
record; in this case it may not be exported.

�h�t�t�p�:�/�/�w�w�w�.�o�b�e�r�o�n�.�c�h�/�r�e�s�o�u�r�c�e�s�/�c�o�m�p�o�n�e�n�t�_�p�a�s�c�a�l�/�e�v�o�l�u�t�i�o�n�.�h�t�m�l� �(�1�0� �o�f� �1�1�)� �[�0�1�.�0�2�.�2�0�0�4� �1�7�:�5�7�:�0�5�]



�T�h�e� �e�v�o�l�u�t�i�o�n� �o�f� �O�b�e�r�o�n� �t�o� �C�o�m�p�o�n�e�n�t� �P�a�s�c�a�l

A module now has an optional CLOSE section, after the BEGIN section. The close section is called before a module is 
unloaded. A module's BEGIN section is called after all the imported modules' BEGIN sections have been called. A 
module's CLOSE section may only be called after all the importing modules' CLOSE sections have been called.

In summary, you'll note that this revised language definition contains one major extension: a more expressive interface 
definition language (IDL) subset (NEW; EXTENSIBLE; ABSTRACT; LIMITED; EMPTY; implement-only export of 
methods) that makes it easier to specify architectural properties of a component framework.

The other points are mostly detail improvements based on a decade of experience in using the language. Particularly 
noteworthy are the more general and systematic treatment of strings and the new specification of the base type sizes. 

 

Migration

In order to simplify migration from Oberon, Release 1.3 of the BlackBox Component Builder contains a tool that helps 
in converting old source code. The tool is not a simple textual pattern matcher; it uses several modules of the compiler 
to guarantee a precise transformation of the code. In particular, type lifting (e.g., LONGINT -> INTEGER), the 
conversion of mapper procedures (e.g., textwriter.WriteLInt -> textwriter.WriteInt), elimination of superfluous 
LONGs, and the elimination of COPY are supported. Furthermore, the tool eliminates calls to the now redundant 
procedures Strings.Concat, Strings.Append and Strings.Len. It correctly distinguishes between normal modules and 
interfacing modules, and it allows to set the color and font style in which the changed source code stretches are 
marked.
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