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Abstract. The design of many popular object-oriented languages like Smalltalk, Eiffel, or Sather
follows a certain trend: The class is the only structuring form. In this paper, the need for having
modules besides classes is claimed. Modules stem from a different language family and at first
glance it seems that they can easily be unified with classes. Among other things, unifying
modules and classes carries the danger of unifying the import and inheritance relationships.
Constructs in several languages are discussed that indicate that modules and classes should
indeed be kept separate.

1    Introduction and Clarification of Terms

Among other things, the quality of a programminglanguagemay be judgedby the number,
orthogonality, andcompleteness of its concepts. Thefirst measureis assimpleascounting;the
secondand third are far more difficult to determine.Orthogonality is important to avoid
confusion; conceptoverlapsshould at least be kept small. In practice,completenessis a
relative measure:It is not expectedthat any single languagewill ever fulfill all possible
demands.Other important measureslike soundness (no contradictionsin the language
definition)or theoretical completeness (e.g.Turing completeness)arebeyondthescopeof this
paper.

It is a goodrule of thumbto keepthenumberof conceptsin a languagesmall.However,it
is alwayspossibleto reduceeverythingto (almost)a singleconcept.For example,in some
functional languageseverything is expressedusing the single concept of higher-order
functions. This tends to make programs hard to grasp. Keeping orthogonality and
completenessin mind, it still is often preferableto provide separate concepts for separate
problems. This leads to more natural ways of expressing solutions in a given language.

This paperconcentrateson existing languages,including the most popular object-oriented
ones.A singlepoint, thata languageshouldhavemodulesand classes(andthat import is not
inheritance)is claimedand supported.Before going into any details,a clarification of the
termsclassandmoduleis in order.To avoidearlypreferencesfor certainlanguages,the terms
will be defined the way they should be understood when reading this paper. Differencesto
conceptsfound in existing languageswill be discussedin subsequentsections.To avoid
confusionwith the termobject, asunderstoodwhentalking aboutobject-orientation,the term
item will be usedto denoteindividual thingsthat canbe declaredandoperatedon in a given
language.Suchan item maybea variable,a type,a procedure,a method,a class,or anyother
entity available in that language.



The restof the paperis organizedas follows. The following subsectionscoverinformal and
formal clarifications of the used terms. Section 2 gives two examplesrevealing certain
problemsin class-onlyapproaches.Section3 illustrateshow suchproblemscanbedealtwith
in different languages,also showing the advantagesof solutions basedon modulesand
classes.(Sections2 and3 go into detailsandmaybeskippedfor a first overview.)Section4
analyzesmodularizationaspectsin a varietyof languagesandSection5 reflectson advantages
that canbe gainedwhenaddingmodulesto a language.Finally, a summaryandconclusions
are given.

1.1    Informal Clarification of Terms

A module is a capsulecontaining(definitionsof) items.Themoduledrawsastrong(syntactic)
boundarybetweenitems defined inside it and items defined outside in other modules.In
principle, items from one module,say B, are only visible in a anothermodule,say A, if A
imports B. Thus,consideringa set of modulesleadsto a directedimport graph.Often, it is
consideredgood engineeringpracticeto avoid cycles,thus having a directedacyclic graph
(DAG).

A modulemay restrict the visibility of the itemsit contains.It is said that sucha module
exports only a subsetof its items.Also, a modulemay imposeusagerestrictionson exported
items,e.g.by only allowing read-accessto an exportedvariable.However,a moduleshould
not restrict the visibility betweenthe itemsit contains:This may be calledthe No Paranoia
Rule. It is very importantand its use will be explainedin more detail below. (The set of
module items exportedfrom a module is often called the module’s interface, while the
complete module is said to be the implementation of that interface.)

As a moduledrawsa fencebetweeninsideandoutside,it alsoservesasa naturalnaming
scope. Symbolicreferencesto itemsimportedfrom othermodulescanbe qualifiedusingthe
name of the imported module. A more formal definition of modules is given below.

A class is a templatefor objects:It bundlesthe (definitionsof) itemsthat togetherimplement
objectsof that class.Objectsare said to be instances of their class.A classmay inherit
features from one or more other classes,leading to an incorporation of the inherited
implementations:Items defined in an inheritedclassbecomeitems of the inheriting class.
Combining a set of classes using the inheritance relation leads to an inheritance DAG.

Like a module,a classdrawsa syntacticboundarybetweeninsideandoutside.However,it
shouldnot beusedto controlvisibility of classdetails,but to distinguishbetweenthoseitems
that do belong to an instanceof that class,and thosethat do not. Additionally, a classis
dynamicallyinstantiated,i.e. manyobjectsmay belongto the sameclass,while a moduleis
staticallyinstantiated(only once).In this sense,a module is a compile-time abstraction which
doesnot exist at run-time,while a class is a run-time abstraction as it definesthe structure
and behavior of objects at run-time.

Remark. In therecentliterature[CHC90], classesaredistinguishedfrom types.For this paper,
the differencebetweentypesandclassesis of no importance:Theclaim thatmodulesarenot
classesmay be translatedinto another one saying that modules are not types. Formal
definitionsof typesandclassesarenot given in this paper.However,the formal definition of
modules given in the next section may serve as a partial 

�

definition by exclusion
�

.



1.2    Towards a Formal Definitions of Modules and Import Relations

A system(a program)is consideredto be composedof a setof itemsI, wherethe kinds and
semanticsof itemsaredefinedby some(programming)languageL. In a typical programming
languagesuchitemsareconstants,types,classes,variables,functions,andthe like. Over the
setof itemsI variousrefers-to relationsrefi aredefined,wherethesemanticsof theserelations
are definedby L. For example,a languagemight introducerelationsreads-from, writes-to,
has-type, extends, or calls. What does it mean to modularize such a system?

To begin with, a partitioning M over the set of items I is defined. In this papersuch
partitions are called modules. Hence,each item is defined within exactly one module.A
modulem � M definesvarioussubsetsexpi(m) � m. A subsetexpi(m) exports partof theitems
containedin m for usein therefers-torelationrefi. For example,in a languagea variablemay
beexportedread-only, a typemaybeexportedleaf (i.e. underthe restrictionthat it cannotbe
used to form new subtypes).

Overthesetof modulesM a relationimp is defined:For modulesm, m’ � M thetermm imp
m’ signifies that m imports m’. Intuitively this meansthat the export subsetsof m’ are
accessiblewithin m. For example,a modulem maycall a functionexportedby anothermodule
m’ if m imp m’ holds.From this definition it doesnot follow that (M, imp) forms a DAG.
However, as mentioned before, this additional constraint is often considered good style.

The semanticsof the partitioning M is basedon the set of valid relationsrefi. A refers-to
relation refi is called valid under M if for all items x, x’ �  I :

�   x refi x’ is valid in L
�   for x �  m and x’ �  m’ , where m, m’ �  M are modules:
    (m = m’)  �   (x’ �  expi(m’)  �   m imp m’)

That is, the relationrefi is valid underM if it is valid underthe trivial partitioning(i.e. if no
modulerestrictionsarein effect)andif all referencescrossingmoduleboundariesarematched
by the import relation and allowed by the corresponding export subsets.

For a languageL’ to besaidto explicitly support modularization, L’ shouldbecomposedof a
languageL (asusedabove)augmentedwith a moduleconstructusedto expressM, (M, imp),
and for each m �  M the subsets expi(m).

Remark1. Somelanguages(e.g. Ada [Ada80], or Modula-2 [Wir82]) usetextually separate
sectionsto definemoduleinterfaces and moduleimplementations: An interfacespecifiesall
the module’s expi subsets plus the involved items, while the rest is added in the
implementationpart. Other languages(e.g. Oberon[Wir88b]) usea single textualsectionto
define a module, plus special markings to specify expi subsets in-place.
Remark2. Modularization may be applied by convention.This is about what is done in
languageslike C [KR78], where modulesare (by convention)associatedwith files, and
interfacesareexpressedby meansof headerfiles. However,the intentionof this paperis to
emphasizethe importance of having modules explicitly in the language.To exclude
modularizationby convention,the formal definition endsin augmentinglanguageL with an
explicit module construct.
Remark3. A family of modulesmaybedescribedby meansof a single(generic)parameterized
module. Examples are Ada’s generic packagesor OOZE’s generic modules [AG91].
Genericity is an interesting option for modules but is beyond the scope of this paper.
Remark4. Another interestingquestionregardsthe introductionof higher-levelmodules,i.e.
modulesof modules.Thereareno newproblemsif higher-levelmodulesareusedto partition
M. A particularproposalmay be found in [Car89], wherehigher-levelmodulesare called



systems. Caremustbe takenif higher-levelmodulescontainotheritemsthanmoduleson the
next lower level (cf. section 4.1). This approach is not followed further in this paper.

2    Pathological Cases - Examples

By now –andignoring the formal definitions–it mayseemthat the termsof moduleandclass
are very close if not identical.To work out the difference,the following two sub-sections
describetwo especiallysevereproblemsresulting if a languagehas only classesbut no
modules.Thefirst problemdealswith entitiesnot naturallyexpressiblein termsof classesand
the way such entitiesmay be madeaccessibleto someclient implementation.The second
problemconsidersinvariantsspanningmultiple cooperatingclasses.Particularsolutionsfor
both problems are discussed in Section 3.

2.1    Feature Import  –  Pseudo Inheritance versus Pseudo Forwarding.

Many itemsexistthatdonotnaturallybelongto someclass.It is artificial to bindglobally used
constants or variables to a class.Likewise, thereexist functions andprocedures difficult to
associatewith a class.For example, functionsacceptingseveralparametersof differenttypes
would need to emphasize one of them as message receiver.

Operationsprovidedby mathematicallibrariesareanothertypical example:To what class
belongsa set of, say, statisticsfunctions?The functionsoperateon someargument,say of
classReal. Consequentially,onecouldaddthe functionsto Real. In turn, this requiresadding
all functionseverto beappliedto realnumbersto Real! However,for the time beingassume
that the math library hasbeenpackagedinto separateclasses.Then, how is sucha library
used?

In a systemhavingonly classestherearetwo possibilities:Inherit the library classor useit
by instantiatinga dummyobjectof that class.The former may be calledpseudo inheritance
and the latter pseudo forwarding. Table 1 illustrates both possibilities. (The used
pseudo-notationis entirely fictitious. Any resemblanceto languages,living or dead,is purely
accidental.)
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Table 1.    Feature Import - Pseudo Inheritance vs. Pseudo Forwarding.

Both approachestry to circumventthe missing import constructby somehowaccessingthe
required feature via inheritance.Note that the pseudoinheritanceschemeis particularly
counter-intuitive:ClassLibUser1 inheritsfrom classStatisticsLib, althoughLibUser1 is not a
specializationof StatisticsLib. Neither is it expectedto explorepolymorphismamongthese



two classes nor is it reasonable to expect overriding of StatisticsLib methods in LibUser1.
The pseudoforwarding mechanismbuilds on a variableactuallyneverusedas such:The

variablestat in theexampleof LibUser2 is only usedasameansof indirection;in theexample
a simpleprocedurevariablewoulddo.Theindirectionis actuallynotwantedin mostcases,i.e.
the

�

imported
� �

class
�

is always the same. Therefore, the conceptually inferior pseudo
inheritance scheme is sometimes preferred to avoid additional indirections.

2.2    System Invariants

Class-centeredlanguageswork well aslong asimportantinvariantsof theconstructedsystems
canbe associatedwith singleclasses.Suchinvariantsarecalledclass invariants. However,a
setof cooperatingclassesmayin combinationestablishandmaintainsomeco-invariants (also
calledsystem invariants). Suchco-invariantsareexpressedover instancesof differentclasses
and therefore cannot be established or maintained by a single class.

For example,considertwo classesLinkedList and Linkable. The idea is that LinkedList
maintainslinked lists of objects.Theseobjectsmustbeinstancesof classesderivedfrom class
Linkable. Table 2 shows the skeletons of both classes.

END LinkedList;
    . . .
        x.next := head.next; head.next := x
        ASSERT(x.next = NIL);
    METHOD Prepend(x: Linkable);

    head: Linkable;    (*ring with head*)
CLASS LinkedList;

END Linkable;
    . . .
    next: Linkable;
CLASS Linkable;

Table 2.  Classes LinkedList and Linkable.

A well-knownproblemarisesif a linkableobjectis insertedinto morethanonelinked list at a
time.To detectthis kind of problem,LinkedList cancodeinto a linkableobjectwhetherit is in
a list or not. In theexample,thelist is implementedasa ring. Hencethenext field canbeused
to codelist membershipof a linkable object,say z. (It is assumedthat next is initialized to
NIL.)

( 
�
z : NotInAnyList(z) = (z.next = NIL) ) (P)

To be sure that no problemsarise,it shouldbe guaranteedthat a linkable object is always
insertedinto at mostone list. This is equivalentto the invariantthat therearenevertwo list
heads,say x.head and y.head, from which the samelinkable object,say z, is reachable(by
traversing the next fields).

( 
�
x, y, z : x �  y : Reachable(x.head, z) �  � Reachable(y.head, z) ) (H)

This is a co-invariantof classesLinkedList and Linkable as it is definedover the instance
variable next of Linkable and head of LinkedList. If NotInAnyList(x) is an established
preconditionof all list operationsthat insert a linkable object, then H is invariant. In the
example, method Prepend assertsx.next = NIL, since assuming invariance of P, this



guarantees the precondition.
However,this assumesthatnext is not modifiedby anyclassotherthanLinkedList. In other

words, if next is modified outside of LinkedList, invariant H is no longer implied by
preconditionP. On theotherhand,if next is read-onlyoutsideof Linkable, LinkedList cannot
be implemented.Hence,a constructis requiredthatpermitsfreeaccesswithin a classsystem
(maintaining co-invariants), while restricting accessfrom outside. Such constructsare
discussed in section 3.2.

3    Pathological Cases - Solutions

3.1    Importing Features – Inheritance Abuse versus Module Import

Section 2.1 indicated that traditional proceduresand functions as well as globally used
constantsand variablesdo not relatewell to classes.However,one wants to avoid having
proceduresor variablesexisting outsideof any structure.Thus many languagesforce their
declarationsto belongto theonly structuringform available,e.g.to someclass.This leadsto
complex or weird language constructs:

In C++ [Str86], featureimport is solvedby redefiningtherequireditemsin declarations. It
is the obligation of the linker to checkwhethersuch referencescan be resolvedby some
matchingdefinitions. As in C, modularizationis availableon the level of files. While this
mechanismis not quitea languagelevelmoduleconcept,it at leastavoidsinheritanceabusein
orderto implementimports.Globalvariablesandproperproceduresareavailable.Visibility of
class and non-class entities is controlled using totally different constructs.

Smalltalk-80[GR83], Eiffel [Mey88] and its descendantSather[Omo91] haveno module
concept.Theproblemis attackedby automaticallyimportingall otherclassescurrentlyin the
system.In otherwords,it is possibleto directly referto thenamesof all otherclasseswithin a
class.The only meansof accessingclass featuresare inheritanceand message-sends.For
example,in Eiffel the inheritanceconceptis routinelyabusedto import standardinput/output
procedures.Additionally, Satherallows for accessingarbitrary items of other classes.To
overcomethe lack of properprocedures,Satherallows to call a methoddirectly (passinga
void receiverobjectfor self). In Smalltalk-80Meta Classes areusedmainly to compensatefor
missingglobalvariablesandprocedures.Eiffel incorporatesthenotionof Once Procedures to
work aroundmissing global variables.SatherinsteadaddsShared Instance Variables (i.e.
class variables)to solve this problem. Finally, Eiffel and Satherallow for declarationof
Private Features to support information hiding on the class level.

Having modulesin the repertoireof a languageit is not necessaryto artificially bind items
like globalvariablesor proceduresto classes.Hence,theexampleof section2.1canbesolved
by defining functionslike Gamma within somelibrary moduleandthereforeby usingimport
insteadof inheritance.(This doesnot solve the problemif one really wants to add a new
featureto anexistingclass.For this kind of incrementalmodificationa differentconcept,like
the Capsules concept of Fresco [Wil91], is required. Cf. section 4.)

Modula-90[Ode90]mixestheconceptsof modulesandclassesby havingasingleconstruct
for both, but providing for two different relationsamongsuch class-modules:Import and
inheritance.While this solves the problemsmentionedabove,it addsa certainamountof
confusion by mixing two otherwise orthogonal concepts. More on this in section 4.

3.2    Guaranteeing System Invariants – Spaghetti Scoping versus Modular Scoping

In C++ cooperationamongclassesis typically tackledusing friend functions, a mechanism
allowing accessto innerpartsof a class(calledprivate in C++) from within anotherclass.In
somesense,the C++ friend mechanismis a

�

scopego-to
�

as it interrelatesclassesdefined



somewherein the system by adding ad-hoc privileges. On the other hand, to maintain
principlesof informationhiding, C++ expectsfriend relationsto be explicitly (andstatically)
declaredin all affectedclasses.Therefore,the friend mechanismhasno principaladvantages
over static bundling of classesinto modules.However, it does allow spaghetti scoping
between arbitrary classes.

Eiffel and Satherhave the samekind of problem due to their lack of modules.Here,
referringto theexampleof section2.2,onewould exportthefield next from classLinkable to
classLinkedList and its subclasses,only. This limited export to namedclasseshasthe same
structural weakness (spaghetti scoping) that the friend mechanism of C++ has.

However,if modulesarepartof a language,thesolutionis simply to useread-onlyexportof
next. Within a modulethedirectaccessto the implementationof a classis accessibleto other
classesin the samemodule (No ParanoiaRule). Hence,next can be manipulatedwithin
LinkedList. SeeTable3; namesmarkedwith anasterisk(*) or a dash(_) areexportedby the
module,wherethe dashindicatesread-onlyexport. (Insteadof using read-onlyexport,next
could be kept private and a Next method could be added to Linkable.)

END Lists.
    END LinkedList;
        . . .
            x.next := head.next; head.next := x
            ASSERT(x.next = NIL);
        METHOD Prepend*(x: Linkable);

        head: Linkable;    (*ring with head*)
    CLASS LinkedList*;

    END Linkable;
        . . .
        next_: Linkable;
    CLASS Linkable*;
MODULE Lists;

Table 3.    Bundling LinkedList and Linkable classes into a module.

Remark. Apparently,modularscopingis morelimited thanspaghettiscoping.For example,a
setof classesA, B, andC maycooperatein a way thatthepairsA-B andA-C eachneedto be
in a commonmodule.Then,modularscopingforcesall threeclassesinto a singlemodule,
althoughclassesB andC mayhaveno directrelationsatall. This is considereda featurerather
thana weaknessof theproposedmodulescheme:It forcestightly relatedpartsof asysteminto
common modules, leading to a clean modular structure.

4    Discussion of Module and Class Constructs in Different Languages

In this sectiona closerlook at modulesandclassesin existing languagesis taken.An early
treatmentof the moduleconceptmay be found in [Par72].First implementationsof modules
maybefound in Mesa[MMS79] andUCSD Pascal[Bow80]. Theclassconceptoriginatedin
Simula-67 [DMN68], was later used in Smalltalk-80as the only structuring means,and
recentlyfound its way backto traditionallanguages,forming Object-Pascal[Tes85],C++, or
Eiffel.

Theprimaryfamily of modularlanguagesstemsfrom Modula-2andhasdirectsuccessorsin
Modula-2+[RLW85], Modula-3[CDG*88], andModula-90,of which the lattertwo alsoadd



object-orientedconcepts.Ada hasa modularizationconceptcalledpackages. Languageslike
C++, Eiffel, or Satherconcentrateon the classconstruct.Finally, this paperconcentrateson
languageswith staticchecking:Languageslike Self [US87] or CLOS[DG87] delegatechecks
to run-timeandarenot considered.However,evenfor Smalltalk,anuntypedlanguagegeared
towards rapid prototyping, the attempthas beenmadeto add modules[WW88] or other
additionalstructuringmeans[Wil91]. Still, the messagethat modulesarean orthogonaland
quiteusefulconstructin anobject-orientedlanguageapparentlyhasnot yet reachedsufficient
audience.

4.1    Modules

Modula-2 is perhapsthe most popular language(almost by name) with a fully developed
modularizationconcept.However,Modula-2 took the moduleconcepttoo far by allowing
modulesto be nestedinsidescopeswith dynamicextent,i.e. procedures.This leadsto some
confusion,asthevariablesdefinedin suchmodulesbehavevery muchlike local variablesof a
procedure.Hence,onemight arguethat theModula-2kind of modulecontributedto blurring
the distinction of modulesand types or classes.For example,in [Car89] one can read

�

[Modules] are very similar to abstract types, but add the notion of imported identifiers [...]
thereby evading the strict block-structure of statically scoped languages.

�

This opinionleadto
generalizationsof the module concept to a class concept in Modula-90 by explicitly
introducinga notionof module types. This completesconfusion:A recordstructuredtypecan
be described using both, the RECORD or the MODULE TYPE constructor.

C++ hasa poorman’smodularizationconceptstemmingfrom its predecessorC. It is realized
by meansof files andpartial redefinitionsof these(usuallysupportedusingso-calledinclude
files). This mechanismsimulatesmodulesby files which arenot part of the languageitself.
Problemsof inconsistenciesamongvarious versionsare not handledby the compiler but
delegated to the file system and various auxiliary tools, e.g. make or sccs.

Ada’s packageconcept gets very close to the module concept. However, Ada has a
complicated form of expressingthe import relation and export subsets,making it a
complicatedlanguageto useand to read.For example,the use--clause(forming the import
relationamongpackages)canperformoverloadingof alreadyvisible names,thuscombining
two separate concepts into one.

Oberon[Wir88b], a successorof Modula-2,on theotherhandeliminatedlocalmodules.As an
important result, the languagebecamecleanerand the notions of module and type well
separatedand orthogonal.In Oberon-2[MW91] a stephasbeentakenthat is close to the
decisionstakenfor Object-Pascalor C++: Insteadof extendingthe moduleconceptto form
classes,the recordconstructhasbeenextendedto allow binding of procedures(methods)to
recordtypes.Classinheritanceis thenbasedon the type extension conceptalreadypresentin
Oberon[Wir88a], andno newconstructorOBJECT(à la Object-Pascal)or CLASS(à la C++)
is required.

TheFrescosystem[Wil91] definesaninterestingvariationof modules,calledcapsules. Fresco
capsulesarein a sensemoreorthogonalto therestof thelanguage(in thiscaseSmalltalk)than
the modulesproposedin this paper:A classmay take its definition from multiple capsules.
This hastheadvantageof simplifying modificationsof a systemperformedasanafterthought.
However,it is not clearhow capsulesrelateto the partitioningof a system’sdesign.In fact,
Fresco encouragesthe incremental addition of capsules spanning multiple levels of
abstractionsat a time. This is motivatedby the way Smalltalk is typically extended,i.e. by
meansof small additions madeto existing classes.In a certain sense,capsulesare even



orthogonalto modules,as they proposea partitioninginto incremental,history-drivendeltas
appliedto a system,while modulesaremostusefulwhenpartitioninga systeminto levelsof
abstraction or units of service.

4.2    Classes

Many pureobject-orientedlanguageslike Smalltalk,Eiffel, andSatherdirectly useclassesfor
modularization.To allow for featureimport, inheritanceandmessage-sendsareused.In Eiffel
inheritanceis frequentlyusedto simulateimports.To removeclutteragain,Eiffel aswell as
Satherhavefeaturesfor undefining inheritedfeatures.(In theSatherreportit is evenstatedthat

�

elimination of a parent’s object or shared attributes can save space when they are not
needed

�

...). This in turn addstheproblemsof havingfeaturesvisible in a superclassview of
an objectthat areactuallydeletedfrom the featurelist of the object’sclass.It seemsthat the
lack of a properimport relationis partiallycompensatedfor by allowing to undefine unwanted
side-effects of the abused inheritance relation.

To achievethestructuringpowerof modules,Smalltalk,Eiffel andSatherwould neednested
classes,where classesnestedinside the samehost classwould have cross-accessto their
implementations.Sucha nestingof classesis ratherproblematic,asit is no longerclearwhat
instantiationmeans:Are instancesof a nestedclassmembersof the sameclass,evenif they
havebeeninstantiatedfrom within different instancesof thehostclass?(Interestinglyenough,
C++ has nested classes but treats them as if they where declared in a non-nested fashion!)

Simulasupportsnestedclasses,andusesthis constructto mimic modulesby meansof classes.
A typical exampleis theSimulastandardclassSimset [BDM *73] which usesa doubly linked
ring to implementasetabstraction.Simset definesthreenestedauxiliaryclasses(Linkage, Link
andHead). Hence,classSimset servesasa kind of modulepackagingthe nestedclasses.To
useclassesdefinedin Simset within a statementblock, the block needsto be

�

prefixed
�

with
the nameof Simset. This is similar to an import constructandaddsa certainconfusion:The

�

imported
�

 class is more used as a module than as a class.

BETA [KMM *87] solvesthe problemby two apparentlyoverlappingconcepts.Here,nested
classesarerealizedusingso calledpatterns, possiblywith exactlyoneinstance,maybeused
to tackle the problem of cooperatingclasses.Also, fragments (close to modules, but
additionallysupportingmultiple versionsundercontrol of the language),may be used.From
thelanguagereport[KMM *90] it is not too clearwhento usewhich concept,but theintention
apparently is to use patterns to model concepts and fragments to provide implementations.

5    Effects of Modularization on System Structure

GeneralSoftwareEngineeringaspectsof modularizationare well-known sinceParnasfirst
pleadedfor introductionof a moduleconcept.This sectionreflectson someaspectsthatmay
be reconsidered when adding modules to a language.

A goodmotivationon the necessityof havingmodulesin a languageto be usedfor large
projects may be found in [Car89]. Cardelli statesexplicitly that

�

a surprisingly common
mistake consists in designing languages under the assumption that only small programs will
be written; for example languages without [...] modules or type systems. If widely used, such
languages eventually suffer conceptual collapses under the weight of ad hoc extensions.

�



5.1    Information Hiding – Efficiency versus Encapsulation

Traditionally, adding full encapsulationto an implementationof someabstractionincreases
costs.The informationhiding paradigmdoesnot allow for directaccessto implementationor
representationdetails,requestingthat all interactionsbeingperformedvia abstractoperations
(methodsor procedures).While recentwork [HCU91] indicatesthat fully abstractinterfaces
neednot be a hurdle when aiming at efficiency, current languageimplementationsperform
poorly whenabstractionsaretakentoo far: Nearlyeverysingleoperationis thenimplemented
as a procedureor methodinvocation.As a result, significantly more complexcompilation
techniques(like compilationat run-time,or global programanalysis)are requiredto regain
efficiency. Often, such techniquesrequire simultaneousavailability of all source code,
colliding with practical requirements (and perhaps legal issues) in large projects.

Using modules,this problemcanoftenbesolved.TheNo Paranoia Rule statedaboveallows
informationhiding from moduleclients,while at thesametimeimposingno restrictionson the
interrelationswithin a module.Hence,if it is possibleto implementclosely interactingparts
within a single module,efficiency problemsdue to informationhiding are not an issue.In
practice,this strategyworks if object-orientationis only takento mediumgranularity,i.e. if
objectsrepresentlarger abstractionsthan, say, integersor characters.This is especiallythe
caseif supportiveclasses(or simply procedures)areusedto implementa class:Suchauxiliary
classes need not even be exported by a module.

5.2    Separate Compilation and Dynamic Loading

Modules are the natural unit of compilation. They are small enough to allow for fast
recompilation,and in many casestheir interfacescan be kept stable enough to reduce
cost-intensiverecompilationsof clients. If modulesare part of the language(as opposedto
being simulatedby files à la C), the compiler can maintain version information. Then,
recompilationof clientsof a modulewhich changedits interfacecanbeenforced,unnecessary
recompilationscan be avoided,and incompatibilitiescan be detectedat compile-, link-, or
load--time.

Also, a moduleis a usefulunit of dynamic loading. If this is done,thetimeof loadingis not
under control of the programmerand it becomeshard to establishinitial invariantsof a
module.To copewith this situation,an initialization body shouldbe attachedto a module.
(Without dynamic loading of modulesthe module body can be seenas an option for the
languagedesigner:The programmercould as well call initialization procedures.)A module
body containscodeexecutedimmediatelyafter loadingthe correspondingmodule(andafter
loading and initializing all imported modules).

5.3    Support for Hybrid Object-Oriented Language Concepts

In traditional procedurallanguagesmany different conceptsare present.Types, constants,
variablesand proceduresare the most importantones.Pure object-orientedlanguageslike
Smalltalkhavea tendencyto get rid of suchconstructsin favor of a few new,moregeneral
ones,i.e. classesand objects.A lessradical approachis followed by hybrid languagesthat
maintain the proven conceptsof older languagesand (more or less smoothly) add new
object-orientedconcepts.C++ does this for C, Oberon-2for Oberon,and Modula-90 for
Modula-2.

In a hybrid object-orientedlanguageit is not expectedthateverythingis expressedin terms
of classesandobjects.Hence,it is importantto havesomekind of bundlingconcept:A clean
moduleconstructis just perfectfor this. For example,it is possibleto implementa module
which exportsclassesfor its extensibleabstractions,while at thesametime detailswithin the



moduleareimplementedin a conventionalfashionwhereverappropriate.Thisway,readability
and efficiency can be improved by using the most natural constructs for the problems at hand.

If modulesarenot available,but conventionalconstructslike staticallyboundproceduresare
still desired,ratherweird conceptsmayresult.For example,in Satherit is allowedto directly
accessparts(calledfeatures) of anotherclassby simplynamingthem:y := MATHCONSTS::pi
accessesthe constant pi defined in class MATHCONSTS, or OUT::s(

�

Hello
�

) calls the
�

method
�

s of classOUT to outputa string. In the lattercasethemethodis calledwith a void
receiver(i.e. self = void), which is fatal for true methods.Hence,such

�

methods
�

needbe
written like proper procedures, and the additional self-parameter is superfluous.

Summary and Conclusions

Adding a moduleconceptto object-orientedlanguagesseemsunnecessary,asclassesareoften
thoughtof beingjust like modules,plus inheritance,plus dynamicbinding,andplus multiple
instantiation.In this paper,the claim hasbeenmadethata languageshouldprovidefor both,
modules and classes.

To shortly summarize, modules are compile-time abstractions that provide for
  �   syntactical structure in a large system
  �   orderly scoping of names and interrelations using the import graph
  �   natural units of information hiding, separate compilation, and dynamic loading
  �   orderly use of global variables and procedures 
      (comparable to class variables and class methods).
Modulesneednot be nestableanddefinitely shouldnot benestedwithin otherstructureslike
classes.It shouldbeemphasizedthatmodulesareunderstoodasa purelysyntacticalconstruct
usedto add structureand visibility bordersto a system.Moduleshaveno specialrun-time
semantics (perhaps with the exception of module initialization bodies, cf. Section 5.2).

Classes on the other hand are run-time abstractions that provide for
  �   object templates defining object structure and behavior
  �   multiple instantiation (object construction)
  �   orderly inclusion and extension of superclass implementations
      using the inheritance graph.
In a languagethat doesnot separateclassesfrom types,classesmay alsoprovidefor typing
purposes.It is importantto notethat theseparaterole of modulesremainsevenif a language
distinguishes between classes and types.

Havingonly classes,thevariousrolesof modulesneedto beaddedto theclassconstruct.This
leads to solutions that are neither intuitive (e.g. inheritanceof an I/O library class),nor
conceptuallyclean (e.g. spaghetti scoping). Such approachesare presentin many of the
current object-oriented languages like C++ or Eiffel.

Severallanguagesexist that providefor both constructs.For example,Oberon-2definesa
combination that closely follows the suggestedmodule semantics;other languages,like
Modula-3,comeclose.Thepotentialof informationhiding,separatecompilation,anddynamic
loading hasbeenfully utilized in the Oberonsystem[WG89]. Likewise, the BETA system
[KMM *90] uses fragments to support modularization and separate compilation.

Themoduleconceptis particularlylightweight(e.g.[Gri91], [WG92]): Adding modulesto
a languagerequiresonly small syntacticalefforts and the implementationoverheadis small.
Furthermore,there are no run-time costs besidesthose possibly introduced by separate
compilation.



Modulesandclassesservedifferentpurposeswhenstructuringa system.In this paper,several
indicationshavebeengiven where to put what. For module-onlyas well as for class-only
approaches,guiding heuristicsexist (for example[Par72], [Mey88]). Future work may be
directedat giving good criteria for designingobject-orientedsystemsby decomposinginto
modules and classes.

Adding a modularstructuringconceptto object-orientedlanguageshasthe sameprincipal
problemsas adding types has. In both cases,with types as well as with modules, the
programmeris forced to introducestructurethat doesnot directly solve any problem.This
could be a hindrance when prototyping rapidly in new application areas. For better
maintainability of larger systems(e.g. larger prototypes)it is strongly felt that structure
becomes more important than ad-hoc coding potential.

Remark. This paperconcentrateson working out the characteristicsof modularizationin an
object-orientedsetting, and does not cover experienceson applicationof such a scheme.
However,it might be worth mentioningthat theproposedschemehasbeenappliedusingthe
languageOberon-2 in actual projects of non-toy size (among them an object-oriented
operating system).
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