Import isNot Inheritance
Why We Need Both: Modulesand Classes

Clemens A. Szyperski
szyperski @inf.ethz.ch

Institute for Computer Systems
Swiss Federal Institute of Technology (ETH Zurich)
Switzerland

Abstract. The design of many popular object-oriented languages like Smalltalk, Eiffel, or Sather
follows a certain trend: The class is the only structuring form. In this paper, the need for having
modules besides classes is claimed. Modules stem from a different language family and at first
glance it seems that they can easily be unified with classes. Among other things, unifying
modules and classes carries the danger of unifying the import and inheritance relationships.
Constructs in several languages are discussed that indicate that modules and classes should
indeed be kept separate.

1 Introduction and Clarification of Terms

Among otherthings, the quality of a programminglanguagemay be judgedby the number,
orthogonality, andcompleteness of its concepts. Thefirst measures assimpleascounting;the
secondand third are far more difficult to determine.Orthogonalityis importantto avoid
confusion; conceptoverlapsshould at least be kept small. In practice,completenesss a
relative measureilt is not expectedthat any single languagewill ever fulfill all possible
demands.Other important measureslike soundness (no contradictionsin the language
definition) or theoretical completeness (e.g. Turing completenessrebeyondthe scopeof this
paper.

It is a goodrule of thumbto keepthe numberof conceptsn alanguagesmall. Howeverit
is alwayspossibleto reduceeverythingto (almost)a single concept.For example,in some
functional languageseverything is expressedusing the single concept of higher-order
functions. This tends to make programs hard to grasp. Keeping orthogonality and
completenesen mind, it still is often preferableto provide separate concepts for separate
problems. This leads to more natural ways of expressing solutions in a given language.

This paper concentrate®n existing languagesjncluding the most popular object-oriented
ones.A singlepoint, thata languageshouldhavemodulesand classegandthatimportis not
inheritance)is claimedand supported.Before going into any details, a clarification of the
termsclassandmoduleis in order.To avoidearly preferencesor certainlanguagestheterms
will be defined the way they should be understood when reading this paper. Differencesto
conceptsfound in existing languageswill be discussedn subsequentections.To avoid
confusionwith the term object, asunderstoodvhentalking aboutobject-orientationthe term
item will be usedto denoteindividual thingsthat canbe declaredandoperatedn in a given
languageSuchanitem may be a variable,a type, a procedurea method,a class,or any other
entity available in that language.

The restof the paperis organizedasfollows. The following subsectiongoverinformal and
formal clarifications of the used terms. Section 2 gives two examplesrevealing certain
problemsin class-onlyapproachesSection3 illustrateshow suchproblemscanbe dealtwith
in different languagesalso showing the advantagesf solutions basedon modulesand
classes(Sections2 and 3 go into detailsandmay be skippedfor a first overview.)Section4
analyzesnodularizatioraspectsn avariety of languagesndSection5 reflectson advantages
that canbe gainedwhen addingmodulesto a languageFinally, a summaryand conclusions
are given.

1.1 Informal Clarification of Terms

A module is a capsulecontaining(definitionsof) items.The moduledrawsa strong(syntactic)
boundarybetweenitems defined inside it and items defined outsidein other modules.In
principle, items from one module,say B, are only visible in a anothermodule,say A, if A
imports B. Thus, consideringa setof modulesleadsto a directedimport graph.Often, it is
consideredyood engineeringpracticeto avoid cycles,thus having a directedacyclic graph
(DAG).

A modulemay restrictthe visibility of the itemsit contains.lt is saidthat sucha module
exports only a subsetof its items.Also, a modulemay imposeusagerestrictionson exported
items, e.g. by only allowing read-acces® an exportedvariable.However,a moduleshould
not restrictthe visibility betweenthe itemsit contains:This may be calledthe No Paranoia
Rule. It is very importantand its use will be explainedin more detail below. (The set of
module items exportedfrom a module is often called the module’s interface, while the
complete module is said to be ilmaplementation of that interface.)

As a moduledrawsa fencebetweeninsideand outside,it alsoservesasa naturalnaming
scope. Symbolicreferencego itemsimportedfrom othermodulescanbe qualified usingthe
name of the imported module. A more formal definition of modules is given below.

A class is atemplatefor objects:It bundlesthe (definitionsof) itemsthattogetherimplement
objectsof that class. Objectsare said to be instances of their class.A classmay inherit
featuresfrom one or more other classes,leading to an incorporation of the inherited
implementationsitems defined in an inherited classbecomeitems of the inheriting class.
Combining a set of classes using the inheritance relation leads to an inheritance DAG.

Like amodule,a classdrawsa syntacticboundarybetweennsideandoutside. However,it
shouldnot be usedto controlvisibility of classdetails,but to distinguishbetweerthoseitems
that do belongto an instanceof that class,and thosethat do not. Additionally, a classis
dynamicallyinstantiatedj.e. many objectsmay belongto the sameclass,while a moduleis
staticallyinstantiatedonly once).In this sensea module is a compile-time abstraction which
doesnot exist at run-time,while a class is a run-time abstraction asit definesthe structure
and behavior of objects at run-time.

Remark. In therecentliterature[CHC90], classesredistinguishedrom types.For this paper,
the differencebetweentypesandclassess of no importanceThe claim thatmodulesarenot
classesmay be translatedinto anotherone saying that modules are not types. Formal
definitionsof typesandclassesarenot givenin this paper.However,the formal definition of
modules given in the next section may serve as a pakfahition by exclusioh

1.2 Towards a Formal Definitions of Modules and Import Relations

A system(a program)is consideredo be composedf a setof itemsl, wherethe kinds and
semanticof itemsaredefinedby some(programming)anguagd.. In a typical programming
languagesuchitems are constantstypes,classesyariables functions,andthe like. Over the
setof itemsl variousrefers-to relationsref; aredefined,wherethe semantic®f theserelations
are definedby L. For example,a languagemight introducerelationsreads-from, writes-to,
has-type, extends, or calls. What does it mean toodularize such a system?

To begin with, a partitioning M over the set of items | is defined.In this papersuch
partitions are called modules. Hence,eachitem is defined within exactly one module. A
modulem € M definesvarioussubsetsexp;(m) ¢ m. A subsetexp;(m) exports partof theitems
containedn m for usein therefers-torelationref;. For examplejn alanguagea variablemay
be exportedread-only, a type may be exportedeaf (i.e. undertherestrictionthatit cannotbe
used to form new subtypes).

Overthesetof modulesM arelationimp is defined:For modulesm, m" € M thetermmimp
m' signifies that m imports m'. Intuitively this meansthat the export subsetsof m' are
accessiblavithin m. For example a modulem may call a functionexportedoy anothemodule
m' if mimp m holds. From this definition it doesnot follow that (M, imp) forms a DAG.
However, as mentioned before, this additional constraint is often considered good style.

The semanticsof the partitioning M is basedon the set of valid relationsref;. A refers-to
relationref; is calledvalid under M if for all itemsx, X €1 :

« xrefi X is valid inL
. forxemandx em' , wherem, m e M are modules:
m=m) v (X eexpi(M) A mimpn)

Thatis, the relationref; is valid underM if it is valid underthe trivial partitioning(i.e. if no
modulerestrictionsarein effect)andif all referencegrossingmoduleboundariearematched
by the import relation and allowed by the corresponding export subsets.

Foralanguagd.’ to be saidto explicitly support modularization, L’ shouldbe composedf a
languagd. (asusedabove)augmentedvith a moduleconstructusedto expresaM, (M, imp),
and for eacim e M the subsetsxp;(m).

Remark;. Somelanguageqe.g. Ada [Ada80], or Modula-2 [Wir82]) usetextually separate
sectionsto define moduleinterfaces and moduleimplementations: An interfacespecifiesall
the module’s exp; subsetsplus the involved items, while the rest is added in the
implementatiorpart. Other languagege.g. Oberon[Wir88b]) usea single textual sectionto
define a module, plus special markings to spesify subsets in-place.

Remarky. Modularization may be applied by convention.This is about what is done in
languagedike C [KR78], where modulesare (by convention)associatedwith files, and
interfacesare expressedy meansof headerfiles. However,the intentionof this paperis to
emphasizethe importance of having modules explicitly in the language.To exclude
modularizationby convention,the formal definition endsin augmentingdanguagel. with an
explicit module construct.

Remarks. A family of modulesmaybe describedy meansof a single(generic)parameterized
module. Examples are Ada’s generic packagesor OOZE’s generic modules [AG91].
Genericity is an interesting option for modules but is beyond the scope of this paper.
Remark,. Another interestingquestionregardsthe introductionof higher-levelmodules,i.e.
modulesof modules.Thereareno new problemsif higher-levelmodulesareusedto partition
M. A particular proposalmay be found in [Car89], where higher-levelmodulesare called

systems. Caremustbe takenif higher-levelmodulescontainotheritemsthanmoduleson the
next lower level (cf. section 4.1). This approach is not followed further in this paper.

2 Pathological Cases- Examples

By now -andignoring the formal definitions-it may seemthatthe termsof moduleandclass
are very closeif not identical. To work out the difference,the following two sub-sections
describetwo especiallysevereproblemsresulting if a languagehas only classesbut no
modules.Thefirst problemdealswith entitiesnot naturallyexpressiblen termsof classesand
the way such entities may be madeaccessibléo someclient implementation.The second
problem considersinvariantsspanningmultiple cooperatingclassesParticularsolutionsfor
both problems are discussed in Section 3.

2.1 Feature Import — Pseudo Inheritance versus Pseudo Forwarding.

Many itemsexistthatdo not naturallybelongto someclass.lt is artificial to bind globally used
constants or variables to a class.Likewise, thereexist functions and procedures difficult to
associatavith a class.For example, functionsacceptingseveralparametersf differenttypes
would need to emphasize one of them as message receiver.

Operationsprovidedby mathematicalibraries are anothertypical example:To what class
belongsa set of, say, statisticsfunctions?The functionsoperateon someargumentsay of
classReal. Consequentiallypne could addthe functionsto Real. In turn, this requiresadding
all functionseverto be appliedto realnumbersto Real! However,for thetime beingassume
that the math library has beenpackagednto separateclasses.Then, how is sucha library
used?

In a systemhavingonly classesherearetwo possibilities:Inheritthelibrary classor useit
by instantiatinga dummy objectof that class.The former may be called pseudo inheritance
and the latter pseudo forwarding. Table 1 illustrates both possibilities. (The used
pseudo-notatiois entirelyfictitious. Any resemblancéo languagesliving or dead.,is purely
accidental.)

CLASS StatisticsLib;
METHOD Gamma(x: REAL): REAL;

END StatisticsLib;

CLASS LibUser1; CLASS LibUser2;
INHERITS StatisticsLib; METHOD Calc;
stat: StatisticsLib; (xdummy variablex)
METHOD Calc; NEW(stat); y := stat. Gamma(x)

y := self.Gamma(x) .
END LibUser2;

END LibUser1;
Tablel. Feature Import - Pseudo Inheritance vs. Pseudo Forwarding.

Both approachesry to circumventthe missingimport constructby somehowaccessinghe
required feature via inheritance.Note that the pseudoinheritanceschemeis particularly
counter-intuitiveClassLibUser1 inheritsfrom classSatisticsLib, althoughLibUser1 is nota
specializationof SatisticsLib. Neitheris it expectedo explore polymorphismamongthese

two classes nor is it reasonable to expect overridirgatisticsLib methods irLibUser 1.

The pseudoforwarding mechanisnbuilds on a variableactually neverusedas such: The
variablestat in the exampleof LibUser2 is only usedasa meanf indirection;in theexample
asimpleprocedurevariablewould do. Theindirectionis actuallynot wantedin mostcasesi.e.
the "imported '"clas$ is always the same. Therefore, the conceptuallyinferior pseudo
inheritance scheme is sometimes preferred to avoid additional indirections.

2.2 System Invariants

Class-centerethnguagesvork well aslong asimportantinvariantsof the constructegystems
canbe associatedvith single classesSuchinvariantsare calledclass invariants. However,a
setof cooperatingclassesnayin combinationestablisandmaintainsomeco-invariants (also
calledsystem invariants). Suchco-invariantsareexpresseaver instancef differentclasses
and therefore cannot be established or maintained by a single class.

For example,considertwo classesLinkedList and Linkable. The idea s that LinkedList
maintaindinked lists of objects.Theseobjectsmustbe instance®f classeslerivedfrom class
Linkable. Table 2 shows the skeletons of both classes.

CLASS Linkable;
next: Linkable;

EI\i[I)ILinkabIe;

CLASS LinkedList;
head: Linkable; ¢fng with head*)

METHOD Prepend(x: Linkable);
ASSERT(x.next = NIL);
x.next := head.next; head.next := x

END LinkedList;
Table 2. ClassesLinkedList and Linkable.

A well-known problemarisesif alinkable objectis insertednto morethanonelinkedlist ata
time. To detectthis kind of problem,LinkedList cancodeinto alinkable objectwhetherit is in
alist or not. In theexamplethelist is implementedsaring. Hencethe next field canbe used
to codelist membershipof a linkable object,say z. (It is assumedhat next is initialized to
NIL.)

(Vz : NotInAnyList(z) = (z.next = NIL)) (P)

To be surethat no problemsarise,it shouldbe guaranteedhat a linkable objectis always
insertedinto at mostonelist. This is equivalentto the invariantthat thereare nevertwo list
heads,say x.head andy.head, from which the samelinkable object,say z, is reachablgby
traversing thenext fields).

(VX, Y, z:x+ Yy : Reachable(x.head, 2)-Reachable(y.head, z)) (H)

This is a co-invariantof classed.inkedList and Linkable as it is defined over the instance
variable next of Linkable and head of LinkedList. If NotInAnyList(x) is an established
preconditionof all list operationsthat insert a linkable object, then H is invariant.In the
example, method Prepend assertsx.next = NIL, since assuminginvariance of P, this

guarantees the precondition.

However,this assumeshatnext is not modifiedby any classotherthanLinkedList. In other
words, if next is modified outside of LinkedList, invariant H is no longer implied by
preconditionP. On the otherhand,if next is read-onlyoutsideof Linkable, LinkedList cannot
be implementedHence,a constructis requiredthat permitsfree accesswithin a classsystem
(maintaining co-invariants), while restricting accessfrom outside. Such constructsare
discussed in section 3.2.

3 Pathological Cases- Solutions
3.1 Importing Features — Inheritance Abuse versus Module Import

Section 2.1 indicated that traditional proceduresand functions as well as globally used
constantsand variablesdo not relatewell to classesHowever, one wantsto avoid having
proceduresor variablesexisting outsideof any structure.Thus many languagedorce their
declarationdo belongto the only structuringform available e.g.to someclass.This leadsto
complex or weird language constructs:

In C++ [Str86], featureimportis solvedby redefiningthe requireditemsin declarations. It
is the obligation of the linker to checkwhethersuch referencescan be resolvedby some
matchingdefinitions. As in C, modularizationis availableon the level of files. While this
mechanisms not quite alanguagdevel moduleconceptjt atleastavoidsinheritanceabusean
orderto implementimports.Globalvariablesandproperproceduresireavailable Visibility of
class and non-class entities is controlled using totally different constructs.

Smalltalk-80[GR83], Eiffel [Mey88] andits descendanfather[Omo91] haveno module
concept.The problemis attackedoy automaticallyimporting all otherclassescurrentlyin the
system.n otherwords, it is possibleto directly referto the namesof all otherclasseswvithin a
class.The only meansof accessingclassfeaturesare inheritanceand message-sends.or
example,n Eiffel the inheritanceconceptis routinely abusedo import standardnput/output
procedures Additionally, Satherallows for accessingarbitrary items of other classes.To
overcomethe lack of properproceduresSatherallows to call a methoddirectly (passinga
void receiverobjectfor self). In Smalltalk-80Meta Classes areusedmainly to compensatéor
missingglobalvariablesand procedureskEiffel incorporateghe notion of Once Procedures to
work aroundmissing global variables.Satherinsteadadds Shared Instance Variables (i.e.
classvariables)to solve this problem. Finally, Eiffel and Satherallow for declarationof
Private Features to support information hiding on the class level.

Having modulesin the repertoireof alanguaget is not necessaryo artificially bind items
like globalvariablesor procedureso classesHence the exampleof section2.1 canbe solved
by defining functionslike Gamma within somelibrary moduleandthereforeby usingimport
insteadof inheritance.(This doesnot solve the problemif one really wantsto add a new
featureto an existingclass.For this kind of incrementamodificationa differentconceptlike
the Capsules concept of Fresco [Wil91], is required. Cf. section 4.)

Modula-90[Ode90]mixesthe conceptof modulesandclassedy havinga singleconstruct
for both, but providing for two different relationsamongsuch class-modulestmport and
inheritance.While this solvesthe problemsmentionedabove,it addsa certainamountof
confusion by mixing two otherwise orthogonal concepts. More on this in section 4.

3.2 Guaranteeing System Invariants — Spaghetti Scoping versus Modular Scoping
In C++ cooperationamongclassess typically tackledusing friend functions, a mechanism

allowing accesgo inner partsof a class(calledprivate in C++) from within anotherclass.In
somesense the C++ friend mechanismis a "scopego-td’ asit interrelatesclassesdefined

somewherein the systemby adding ad-hoc privileges. On the other hand, to maintain
principlesof informationhiding, C++ expectsriend relationsto be explicitly (andstatically)
declaredn all affectedclassesTherefore the friend mechanismhasno principal advantages
over static bundling of classesinto modules.However, it does allow spaghetti scoping
between arbitrary classes.

Eiffel and Satherhave the samekind of problem due to their lack of modules.Here,
referringto the exampleof section2.2, onewould exportthe field next from classLinkable to
classLinkedList andits subclassesnly. This limited exportto namedclasseshasthe same
structural weaknessgaghetti scoping) that the friend mechanism of C++ has.

However,if modulesare partof alanguagethe solutionis simply to useread-onlyexportof
next. Within a modulethe directaccesgo the implementatiorof a classis accessibléo other
classesin the samemodule (No ParanoiaRule). Hence, next can be manipulatedwithin
LinkedList. SeeTable3; namesmarkedwith an asterisk(*) or a dash(_) areexportedby the
module,wherethe dashindicatesread-onlyexport. (Insteadof using read-onlyexport, next
could be kept private andNext method could be added ttonkable.)

MODULE Lists;
CLASS Linkable*;
next_: Linkable;

EI\iIf)ILinkabIe;

CLASS LinkedList*,
head: Linkable; (ing with head*)

METHOD Prepend*(x: Linkable);
ASSERT(x.next = NIL);
x.next := head.next; head.next := x

END LinkedList:
END Lists.

Table3. Bundling LinkedList and Linkable classesinto a module.

Remark. Apparently,modularscopingis morelimited thanspaghettscoping.For examplea
setof classe®\, B, andC maycooperaten away thatthe pairsA-B andA-C eachneedto be
in a commonmodule. Then, modularscopingforcesall threeclassesnto a single module,
althoughclassed andC mayhaveno directrelationsatall. Thisis considered featurerather
thanaweaknes®f the proposednoduleschemelt forcestightly relatedpartsof a systeminto
common modules, leading to a clean modular structure.

4 Discussion of Module and Class Constructsin Different Languages

In this sectiona closerlook at modulesand classesn existinglanguagess taken.An early
treatmentof the moduleconceptmay be found in [Par72].First implementation®f modules
may be foundin Mesa[MMS79] andUCSD Pasca[Bow80]. The classconceptoriginatedin
Simula-67 [DMNG68], was later usedin Smalltalk-80as the only structuring means,and
recentlyfound its way backto traditionallanguagesforming Object-PascdlTes85],C++, or
Eiffel.

The primaryfamily of modularlanguagestemsfrom Modula-2andhasdirectsuccessors
Modula-2+[RLW85], Modula-3[CDG*88], and Modula-90,of which the lattertwo alsoadd

object-orientecconcepts Ada hasa modularizationconceptcalled packages. Languagedike

C++, Eiffel, or Satherconcentraten the classconstruct.Finally, this paperconcentratesn

languagesvith staticchecking:Languagesike Self[US87] or CLOS[DG87] delegatechecks
to run-timeandarenot consideredHowever,evenfor Smalltalk,an untypedlanguagegeared
towards rapid prototyping, the attempthas beenmadeto add modules[WW88] or other
additionalstructuringmeans[Wil91]. Still, the messagehat modulesare an orthogonaland
quite usefulconstructin an object-orientedanguageapparentlyhasnot yet reachedsufficient
audience.

4.1 Modules

Modula-2 is perhapsthe most popular language(almostby name) with a fully developed
modularizationconcept.However, Modula-2 took the module concepttoo far by allowing
modulesto be nestedinside scopeswith dynamicextent,i.e. proceduresThis leadsto some
confusion,asthevariablesdefinedin suchmodulesbehavevery muchlike local variablesof a
procedureHence,one might arguethat the Modula-2kind of modulecontributedto blurring
the distinction of modulesand types or classes.For example,in [Car89] one can read
"[Modules] are very similar to abstract types, but add the notion of imported identifiers|[...]
thereby evading the strict block-structure of statically scoped languages.” This opinionleadto
generalizationsof the module conceptto a class conceptin Modula-90 by explicitly
introducinga notion of module types. This completesonfusion:A recordstructuredype can
be described using both, the RECORD or the MODULE TYPE constructor.

C++ hasa poor man’smodularizatiorconceptstemmingfrom its predecessaC. It is realized
by meansof files and partial redefinitionsof these(usually supportedusing so-calledinclude
files). This mechanismsimulatesmodulesby files which are not part of the languagatself.
Problemsof inconsistencieamong various versionsare not handledby the compiler but
delegated to the file system and various auxiliary tools ke or sccs.

Ada’s packageconcept gets very close to the module concept. However, Ada has a
complicated form of expressingthe import relation and export subsets,making it a
complicatedanguageto useandto read.For example,the use--clausdforming the import
relationamongpackagesyan performoverloadingof alreadyvisible namesthus combining
two separate concepts into one.

Oberon[Wir88b], a successoof Modula-2,0n the otherhandeliminatedocal modulesAs an
important result, the languagebecamecleanerand the notions of module and type well
separatedand orthogonal.In Oberon-2[MW91] a step hasbeentakenthat is closeto the
decisionstakenfor Object-Pascabr C++: Insteadof extendingthe module conceptto form
classesthe recordconstructhasbeenextendedo allow binding of proceduregmethods)to
recordtypes.Classinheritances thenbasedon the type extension conceptalreadypresenin
Oberon[Wir88a], andno new constructoltOBJECT (ala Object-Pascalpr CLASS (ala C++)
is required.

The Frescasystem[Wil91] definesaninterestingvariationof modulescalledcapsules. Fresco
capsulesrein a sensanoreorthogonato therestof thelanguagéin this caseSmalltalk)than
the modulesproposedn this paper:A classmay takeits definition from multiple capsules.
This hasthe advantagef simplifying modificationsof a systemperformedasanafterthought.
However,it is not clearhow capsulegelateto the partitioningof a system’sdesign.In fact,
Fresco encouragesthe incremental addition of capsulesspanning multiple levels of
abstractionsat a time. This is motivatedby the way Smalltalkis typically extendedj.e. by
meansof small additionsmadeto existing classes.In a certain sense,capsulesare even

orthogonalto modules,asthey proposea partitioninginto incremental history-drivendeltas
appliedto a system while modulesare mostusefulwhen partitioninga systeminto levelsof
abstraction or units of service.

4.2 Classes

Many pureobject-orientedanguagedike Smalltalk,Eiffel, and Satherdirectly useclassedor

modularizationTo allow for featureimport, inheritanceandmessage-sendseused.In Eiffel

inheritances frequentlyusedto simulateimports. To removeclutter again,Eiffel aswell as
Satheravefeaturedor undefining inheritedfeatures(in the Sathereportit is evenstatedthat
"elimination of a parent’s object or shared attributes can save space when they are not

needed" ...). Thisin turn addsthe problemsof havingfeaturesvisible in a superclasview of

an objectthat are actuallydeletedfrom the featurelist of the object’sclass.It seemghatthe
lack of a properimportrelationis partially compensatetbr by allowing to undefine unwanted
side-effects of the abused inheritance relation.

To achievethe structuringpowerof modules,Smalltalk,Eiffel and Satherwould neednested
classeswhere classesnestedinside the samehost classwould have cross-acces$o their
implementationsSucha nestingof classess ratherproblematicasit is no longerclearwhat
instantiationmeans:Are instancef a nestedclassmembersf the sameclass,evenif they
havebeeninstantiatedrom within differentinstance®of the hostclass¥Interestinglyenough,
C++ has nested classes but treats them as if they where declared in a non-nested fashion!)

Simulasupportsestedclassesandusesthis constructo mimic modulesby meansof classes.
A typical exampleis the SimulastandarcclassSmset [BDM * 73] which usesa doubly linked
ring to implementa setabstractionSmset definesthreenestedauxiliary classegLinkage, Link
and Head). Hence,classSmset servesasa kind of modulepackagingthe nestedclassesTo
useclasseglefinedin Smset within a statemenblock, the block needsto be "prefixed with
the nameof Smset. This is similar to animport constructand addsa certainconfusion:The
"imported class is more used as a module than as a class.

BETA [KMM *87] solvesthe problemby two apparentlyoverlappingconceptsHere, nested
classesarerealizedusing so calledpatterns, possiblywith exactlyoneinstancemay be used
to tackle the problem of cooperatingclasses.Also, fragments (close to modules, but
additionally supportingmultiple versionsundercontrol of the language)may be used.From
the languageeport[KMM *90] it is nottoo clearwhento usewhich conceptput theintention
apparently is to use patterns to model concepts and fragments to provide implementations.

5 Effectsof Modularization on System Structure

GeneralSoftware Engineeringaspectsof modularizationare well-known since Parnasfirst
pleadedfor introductionof a moduleconcept.This sectionreflectson someaspectghat may
be reconsidered when adding modules to a language.

A good motivationon the necessityof havingmodulesin a languageto be usedfor large
projects may be found in [Car89]. Cardelli statesexplicitly that "a surprisingly common
mistake consists in designing languages under the assumption that only small programs will
be written; for example languages without [...] modules or type systems. If widely used, such
languages eventual ly suffer conceptual collapses under the weight of ad hoc extensions.”

5.1 Information Hiding — Efficiency versus Encapsulation

Traditionally, adding full encapsulatiorito an implementatiomof someabstractionincreases
costs.The informationhiding paradigmdoesnot allow for directaccesgo implementatioror
representationletails,requestinghatall interactionsbeing performedvia abstracioperations
(methodsor procedures)While recentwork [HCU91] indicatesthat fully abstracinterfaces
neednot be a hurdle when aiming at efficiency, currentlanguageimplementationgperform
poorly whenabstractiongiretakentoo far: Nearly everysingleoperationis thenimplemented
as a procedureor methodinvocation.As a result, significantly more complex compilation
techniqueqlike compilationat run-time, or global programanalysis)are requiredto regain
efficiency. Often, such techniguesrequire simultaneousavailability of all source code,
colliding with practical requirements (and perhaps legal issues) in large projects.

Using modules this problemcanoften be solved.The No Paranoia Rule statedaboveallows
informationhiding from moduleclients,while atthe sametime imposingno restrictionsonthe
interrelationswithin a module.Hence,if it is possibleto implementcloselyinteractingparts
within a single module, efficiency problemsdue to information hiding are not an issue.In

practice,this strategyworks if object-orientatioris only takento mediumgranularity,i.e. if

objectsrepresentarger abstractionghan, say, integersor charactersThis is especiallythe
casef supportiveclassegor simply proceduresareusedto implementa class:Suchauxiliary
classes need not even be exported by a module.

5.2 Separate Compilation and Dynamic Loading

Modules are the natural unit of compilation. They are small enoughto allow for fast
recompilation,and in many casestheir interfacescan be kept stable enoughto reduce
cost-intensiverecompilationsof clients. If modulesare part of the language(as opposedto
being simulatedby files a la C), the compiler can maintain version information. Then,
recompilationof clientsof a modulewhich changedts interfacecanbe enforcedunnecessary
recompilationscan be avoided,and incompatibilitiescan be detectedat compile-, link-, or
load--time.

Also, amoduleis a usefulunit of dynamic loading. If thisis done,thetime of loadingis not
under control of the programmerand it becomeshard to establishinitial invariantsof a
module.To copewith this situation,an initialization body should be attachedto a module.
(Without dynamic loading of modulesthe module body can be seenas an option for the
languagedesigner:The programmercould as well call initialization procedures.A module
body containscode executedmmediatelyafter loading the correspondingnodule (and after
loading and initializing all imported modules).

5.3 Support for Hybrid Object-Oriented Language Concepts

In traditional procedurallanguagesmany different conceptsare present.Types, constants,
variablesand proceduresare the most importantones. Pure object-orientedanguagedike
Smalltalkhavea tendencyto getrid of suchconstructsan favor of a few new, moregeneral
ones,i.e. classesand objects.A lessradical approachis followed by hybrid languageghat
maintain the proven conceptsof older languagesand (more or less smoothly) add new
object-orientedconcepts.C++ doesthis for C, Oberon-2for Oberon,and Modula-90 for
Modula-2.

In a hybrid object-orientedanguaget is not expectedhateverythingis expressedh terms
of classesandobjects.Hence.,it is importantto havesomekind of bundlingconceptA clean
module constructis just perfectfor this. For example,it is possibleto implementa module
which exportsclassedor its extensibleabstractionswhile at the sametime detailswithin the

moduleareimplementedn a conventionafashionwhereverappropriateThis way, readability
and efficiency can be improved by using the most natural constructs for the problems at hand.

If modulesare not available but conventionakonstructdike staticallyboundproceduresre
still desiredratherweird conceptanay result. For examplejn Satherit is allowedto directly
accesgparts(calledfeatures) of anotherclassby simply namingthem:y := MATHCONSTS :pi
accesseghe constantpi defined in class MATHCONSTS, or OUT::s("Hello") calls the
"method s of classOUT to outputa string. In the latter casethe methodis calledwith a void
receiver(i.e. self = void), which is fatal for true methods.Hence,such "method$ needbe
written like proper procedures, and the additional self-parameter is superfluous.

Summary and Conclusions

Adding a moduleconcepto object-orientedanguageseemsainnecessarygsclassesareoften
thoughtof beingjust like modules plusinheritanceplus dynamicbinding, andplus multiple
instantiationIn this paper,the claim hasbeenmadethat a languageshouldprovidefor both,
modules and classes.

To shortly summarize, modules are compile-time abstractions that provide for

« syntactical structure in a large system

. orderly scoping of names and interrelations using the import graph

« natural units of information hiding, separate compilation, and dynamic loading

- orderly use of global variables and procedures

(comparable to class variables and class methods).

Modulesneednot be nestableand definitely shouldnot be nestedwithin otherstructuredike
classeslt shouldbe emphasizedhatmodulesareunderstoodasa purely syntacticakonstruct
usedto add structureand visibility bordersto a system.Moduleshave no specialrun-time
semantics (perhaps with the exception of module initialization bodies, cf. Section 5.2).

Classes on the other hand are run-time abstractions that provide for

« object templates defining object structure and behavior

« multiple instantiation (object construction)

« orderly inclusion and extension of superclass implementations

using the inheritance graph.

In a languagethat doesnot separateclassedrom types,classesnay also provide for typing
purposeslt is importantto notethatthe separateole of modulesremainsevenif alanguage
distinguishes between classes and types.

Havingonly classesthevariousrolesof modulesneedto be addedto the classconstructThis
leadsto solutionsthat are neither intuitive (e.g. inheritanceof an 1/O library class), nor
conceptuallyclean (e.g. spaghetti scoping). Such approachesare presentin many of the
current object-oriented languages like C++ or Eiffel.

Severallanguagesxist that provide for both constructsFor example Oberon-2definesa
combinationthat closely follows the suggestedmodule semantics;other languages like
Modula-3,comeclose.The potentialof informationhiding, separateompilationanddynamic
loading has beenfully utilized in the Oberonsystem[WG89]. Likewise, the BETA system
[KMM *90] uses fragments to support modularization and separate compilation.

The moduleconceptis particularlylightweight(e.g.[Gri91], [WG92]): Adding modulesto
a languagerequiresonly small syntacticalefforts and the implementatioroverheads small.
Furthermore,there are no run-time costs besidesthose possibly introduced by separate
compilation.

Modulesandclasseservedifferentpurposesvhenstructuringa system.n this paper several
indicationshave beengiven whereto put what. For module-onlyas well as for class-only
approachesguiding heuristicsexist (for example[Par72], [Mey88]). Future work may be
directedat giving good criteria for designingobject-orientedsystemsby decomposingnto
modulesand classes.

Adding a modularstructuringconceptto object-orientedanguagesasthe sameprincipal
problems as adding types has. In both cases,with types as well as with modules, the
programmeris forced to introducestructurethat doesnot directly solve any problem.This
could be a hindrance when prototyping rapidly in new application areas. For better
maintainability of larger systems(e.g. larger prototypes)it is strongly felt that structure
becomes more important than ad-hoc coding potential.

Remark. This paperconcentrate®n working out the characteristic®f modularizationin an
object-orientedsetting, and does not cover experienceson applicationof such a scheme.
However,it might be worth mentioningthatthe proposedschemehasbeenappliedusingthe
language Oberon-2 in actual projects of non-toy size (among them an object-oriented
operating system).

Acknowledgements

| would like to thankH. MéssenbdckR. GriesemerS. Lalis, C. Pfister,J. Templ,and W.
Weck for carefully reading earlier versions of this paper, as well as for many fruitful
discussionson the topic presentedFurther,| am grateful to the anonymousrefereesfor
providingmanyhelpful commentsRemainingaults, especiallyregardingdetailsof oneof the
many cited programming languages, are of course mine.

References

[Adaso]

[AGO1]

[BDM*73]
[Bow80]
[Car89]

[CDG*88]

[CHCY0]

[DG87]

[DMNG68]
[GR83]

[Gri91]

[HCU91]

ReferenceManual for the Ada ProgrammingLanguage—ProposedStandard
Document, United States Dep. of Defense. July 1980.

A.J. Alencar, J.A. Goguen.OOZE: An Object-OrientedZ Environment.Conf.
Proc.ECOOP’91, GenevaSwitzerlandLectureNotesin ComputerScienceb12,
Springer-Verlag, Berlin. July 1991.

G.M. Birtwistle, O.-J.Dahl, B. Myhrhaug,K. Nygaard. SSMULA BEGIN (second
edition). Van Nostrand Reinhold, New York, NY. 1979. First edition: 1973.

K.L. Bowles. Beginner's Guide for the UCSD Pascal System. Byte Books,
Peterborough, NH. 1980.

L. Cardelli. Typeful Programming(QuestLanguage)Research Report 45, DEC
Systems Research Center, Palo Alto, CA. May 1989.

L. Cardelli, J. Donahue,L. GlassmannM. Jordan,B. Kalsow, G. Nelson.
Modula-3Report.Research Report 31, DEC SystemResearciCenter,PaloAlto,
CA. August 1988.

W. Cook, W. Hill, P. Canning.Inheritanceis not subtyping.Proc. POPL ’90.
ACM Press,January1990. Also: ACM Trans. on Progr. Lang. and Systems.
125-135, 1990.

L.G. DeMichiel, R.P.Gabriel. The CommonLisp ObjectSystem:An Overview.
(CLOS).Conf. Proc. ECOOP ' 87, Paris.LectureNotesin ComputerScience276,
Springer-Verlag, Berlin. June 1987.

0.-J. Dahl, B. Myrhaug, K. Nygaard.SIMULA 67 CommonBase.Norwegian
Computing Center, Oslo. 1968.

A. Goldberg,D. Robson.Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, MA. 1983.

R. Griesemer.On the Linearization of Graphs and Writing Symbol Files.
Technical Report 156, Institutefor ComputerSystemsETH Zurich, Switzerland.
March 1991.

U. Holzle, C. Chambers, D. Ungar. Optimizing Dynamically-Typed
Object-Oriented.anguagesvith Polymorphiclnline CachesConf. Proc. ECOOP
'91, Geneva, Switzerland. Lecture Notes in Computer Science 512,
Springer-Verlag, Berlin. July 1991.

[KMM *87] B.B. Kristensen,O.L. Madsen,B. Mgller-PedersenK. Nygaard. The BETA

Programmind.anguageln: B.D. Shriver,P. Wegner(Eds.),Research Directions
in Object-Oriented Programming. MIT Press. 1987.

[KMM *90] B.B. KristensenQ.L. Madsen B. M¢ller-PedersenK. Nygaard.Object-Oriented

[KR78]

[Mey88]

Programming in the BETA Programming Language. Draft of an upcomingbook.
October 1990.

B.W. Kernighan,D.M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ. 1978.

B. Meyer. Object-Oriented Software Construction. (Eiffel Language).
Prentice-Hall, Englewood Cliffs, NJ. 1988.

[MMS79] J.C.Mitchell, W. Mayburry, R. Sweet.Mesalanguagemanual.Technical Report

[MWO1]
[Ode89]
[Omo91]
[Par72]

[RLWS85]

[Str8e]
[Tes8s5]
[US87]
[WG89]
[WG92]

[Wil91]

[Wir82]
[Wir88a]
[Wir88b]

[WW88]

CSL-79-3, Xerox PARC, Palo Alto, CA. April 1979.

H. Mdssenbdck,N. Wirth. The ProgrammingLanguageOberon-2. Sructured
Programming, 12:4, 1991.

M. Odersky.ExtendingModula-2for Object-OrientedProgramming(Modula-90
Language)Proc. First Int. Modula-2 Conf., Bled, Yugoslavia. October 1989.

S.M. Omohundro. The Sather Language. Technical Report TR-91-34,
International Computer Science Institute, Berkeley, CA. June 1991.

D.L. Parnas.On the criteriato be usedin decomposingystemsinto modules.
Comm. ACM, 15:12, 1053-1058. December 1972.

P. Rovner, R. Levin, J. Wick. On extending Modula-2 for building large,
integratedsystems.(Modula-2+ Language).Research Report 3, DEC Systems
Research Center, Palo Alto, CA. January 1985.

B. Stroustrup.The C++ Programming Language. Addison-Wesley,Reading,
MA. 1986.

L. Tesler. Object-PascalReport. Structured Programming (was: Structured
Language World), 9:3, 10-17. 1985.

D. Ungar,R.B. Smith. Self: The Powerof Simplicity. Conf. Proc. OOPS_A ' 87,
Orlando, FL. October 1987.

N. Wirth, J. Gutknecht.The OberonSystem.Software - Practice and Experience,
19:9. September 1989.

N. Wirth, J. Gutknecht.The Oberon System. Addison_Wesley Reading,MA.
1992.

A. Wills. Capsulesand Typesin Fresco_ ProgramVerification in Smalltalk.
Conf. Proc. ECOOP '91, Geneva,Switzerland. Lecture Notes in Computer
Science 512, Springer-Verlag, Berlin. July 1991.

N. Wirth. Programming in Modula-2 (fourth edition). Textsand Monographsn
Computer Science. Springer-Verlag, Berlin. 1988. First edition: 1982.

N. Wirth. Type ExtensionsACM Trans. Programming Languages and Systems,
10:2, 204-214. July 1988.

N. Wirth. The Programming Language Oberon. Software - Practice and
Experience, 18:7, 671-690. July 1988.

A. Wirfs-Brock, B. Wilkerson.An Overview of Modular Smalltalk.Conf. Proc.
OOPS_A 88, San Diego, CA. September 1988.

