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Abstract

The portability and runtime safety of programs which are
executed on the Java Virtual Machine (JVM) makes the JVM
an attractive target for compilers of languages other than
Java. Unfortunately, the JVM was designed with language
Java in mind, and lacks many of the primitives required for
a straighforward implementation of other languages. Most
fundamental of these obstacles in the limited range of pa-
rameter passing modes offerred by the JVM.

Here, we discuss possible ways of using the JVM to pro-
vide parameter passing modes with alternative semantics,
and explore one particular architecture in practice. The
interaction between these mechanisms and the Java ”byte
code verifier” is considered also.

The open source Gardens Point Component Pascal com-
piler compiles the entire Component Pascal language, a
dialect of Oberon-2, to JVM bytecodes. This compiler
achieves runtime efficiencies which are comparable to
native-code implementations of procedural languages.

Keywords Compilers, Java Virtual Machine, languages
other than Java, parameter passing mechanisms.

1 Introduction

1.1 Languages other than Java

The runaway popularity of the Java programming
language[1] is one of the more notable phenomena of the
last few years. The very wide adoption of language Java as
an implementation language for systems, and even as a lan-
guage of instruction in education, seems to be chiefly based
on two claims —

� Programs written in Java are immune from certain
classes of runtime errors

� Programs written in Java are portable (the compile
once, run anywhere property)

Each of these properties is indeed important, but it turns
out that neither of them is actually a property of Java the
language1. Both are actually properties of the execution
engine: the Java Virtual Machine[4] (JVM). Any program
written in any programming language capable of being
translated into the bytecode format used by the JVM will
share all of the portability and safety properties of programs
written in language Java. Indeed, the execution engine has
no way of telling in which source language the program was
written.

A number of people, making the same observation, have
written compilers which compile subsets of other languages
to the Java bytecode form[8]. In most cases these efforts
have been restricted to language subsets, since there is no
efficient way of encoding the type-unsafe features of typical
programming languages.

A further difficulty standing in the path of languages
other than java (LOTJs) is due to the fact that the JVM was
designed precisely with language Java in mind. The execu-
tion engine does not provide the primitives that are required
for the simple implementation of many LOTJs. Common
programming language features which require some inven-
tiveness include —

� Reference parameters

� Uplevel addressing (access to non-local variables)

� Procedure variables (function pointers)

� Structural compatability of types

There are other issues that arise in the case of non-
procedural languages, although the JVM seems well suited
to languages such as the Scheme dialect of LISP. Some of
the intrinsic limitations of the JVM as a compiler target are
discussed in Section 5.

All of the issues raised above admit to solutions with
more or less difficulty, as is demonstrated by the compiler

1And indeed neither of them are fully achieved with Java. Every writer
of a substantial GUI program written in Java is aware that there are still
annoying differences between the behaviour of the graphics libraries on
various platforms. In addition, there is a rather obscure failure of type
safety in the case of aliassed arrays.



which forms the subject of this paper. However, there are
other, practical issues which need to be considered as well.

The standard Java runtime environment consists of the
JVM, together with infrastructure that loads classes as
needed. An intrinsic part of this mechanism is the byte-
code-verifier, which checks the binary form of every class
before loading it. JavaSoft describe this tool as a “theorem
prover” which refuses verification to any class for which it
cannot establish the required properties. As is usual, many
of the properties which the verifier attempts to evaluate are
incomputable. The analysis is therefore necessarily conser-
vative. This places a novel constraint on the compilers of
LOTJs since it is insufficient to generate semantically cor-
rect code, instead the code must be generated in such a way
that the verifier is able to establish that correctness.

Gardens Point Component Pascal (gpcp) is a compiler
for the whole of the language Component Pascal. All of
issues listed above needed to be resolved, in order to achieve
this outcome.

1.2 Why Component Pascal?

Component Pascal[7, 6] is a dialect of Oberon-2[9, 5].
The language was designed by Clemens Szyperski and
others for Oberon Microsystems’ BlackBox Component
Builder framework. Like Oberon-2 it is a small, object ori-
ented language supporting single inheritance based on ex-
tensible records.

Compared to Oberon-2, Component Pascal has a num-
ber of new features which support programming in the large
and component-based programming. The most important
change is the use of declarative attributes to control the vis-
ibility and heritability of types and methods. Thus, types
and methods which are intended to be extended or overid-
den must be declared EXTENSIBLE. Unlike Java, the default
behaviour corresponds to Java’s final. Methods must
also declare whether they are intended to override inherited
methods, or are intended to be NEW.

Apart from this richer declarative framework, the base
semantics of the language follows that of its predecessors
Pascal, Modula-2 and Oberon-2. Thus the language sup-
ports nested procedures with block scope, reference param-
eters, and procedure types and values. Although this is a
relatively small language, it has all of the needed function-
ality to be used as a systems implementation language.

The parameter passing mechanisms of the language are
more general than its predecessors. Formal parameters may
be declared as being of IN, OUT, or VAR (i.e. inout) modes.
The default, as with Pascal is value mode. The tighter spec-
ification of intended use of parameters allows for stronger
static checking by the compiler, but also significantly frees
up the use of actual parameters. Recall that for type-safety
an inout mode formal parameter may have neither a su-

pertype nor a subtype variable passed to it as actual value.
As a vehicle for the exploration of the issues involved

in compiling LOTJs to the JVM, Component Pascal seems
an ideal choice. The language poses all of the significant
issues that were itemized in the introduction. Furthermore,
since the language is completely statically type-safe there
was reason to believe that this is one of the few languages
for which the complete language could be efficiently imple-
mented by the JVM.

1.3 Road map

This paper concentrates on just one of the issues, that of
achieving the effects of reference parameters. The solutions
to the other major issues will be treated elsewhere[2].

In the next section, relevant aspects of the Java runtime
environment are briefly described. Following that, in Sec-
tion 3 a number of different attacks on the problem are eval-
uated. The chosen solution is described in more detail in
Section 4, and some implementation subtleties explored. Fi-
nally, Section 5 gives some tentative conclusions.

2 The Java Runtime Environment

At runtime, a JVM program may be abstracted as a set
of dynamically loaded class “byte-code” files, a stack of
method activation records, and an evaluation stack associ-
ated with the currently executing method. The class files
contain symbolic information in a constant pool, and the
executable statements of the methods, encoded as byte-code
instructions for the target-independent virtual machine. The
virtual machine is an abstract stack machine, with a rich
instruction set. The semantics of method invocation and
parameter passing are determined by the detailed seman-
tics of the method invocation instructions. These seman-
tics are informally defined in the Java Virtual Machine
Specification[4].

Much of the underlying semantics of the Java language
are visible in the JVM at runtime. For example, the notions
of single implementation inheritance, and the implementa-
tion of multiple interfaces, are reflected in the operational
semantics of the invokevirtual and invokeinterface instruc-
tions.

At runtime, program data consists of primitive data and
references to dynamically allocated objects. Primitive data
includes various sizes of integers and floating point num-
bers, unicode characters, and booleans. Every such da-
tum occupies either one or two 32-bit slots in the activation
record or evaluation stack. References provide access to
instances of class objects and dynamically sized array ob-
jects. It is axiomatic that these references provide the only
path of access to objects. In particular, there is no notion of
“address”, and no address arithmetic.
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Figure 1. Method call: parameters are taken
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Figure 2. Function value return: stack value
is copied onto the stack of the caller

Note that there are no structured data other than the dy-
namically allocated objects that are accessed by reference.

Language Java passes parameters by value, as illustrated
by Figure 1. In the general case if a method requires, say,
� parameters, these actual parameters are pushed, in order,
onto the evaluation stack. At the call, the � parameter val-
ues are transferred into the first � local variable slots of the
activation record of the called method.

The only way in which a method can send a value back to
its caller is by using the function return-value mechanism.
Value returning functions push their return value onto the
evaluation stack. The return instruction, as shown in Fig-
ure 2, takes the value on the stack and copies it onto the
otherwise empty evaluation stack of the calling method to
which control returns.

Since these are the only mechanisms whereby values can
be passed into and out of method activations, the implemen-
tation of alternative parameter passing mechanisms poses
an immediate problem. In particular, the implementation
of Ada-style out and inout parameters is problematical,
and the realisation of reference semantics even more diffi-

cult.
It might be thought, at first sight, that the value-passing

semantics of the JVM are a perfect match for ANSI C,
which also specifies only value semantics. However, this
is not the case. Recollect that C idioms rely on the use of
the address operator “&” to construct true reference seman-
tics as required. Since the JVM does not support the notion
of datum address, the attempt fails.

Parenthetically, it might be noted that the nowadays un-
fashionable call-by-name mechanism is readily supported
by the JVM. In essence, an object is constructed that reveals
get() and set() methods that modify the actual param-
eter. A reference to this object is passed by value to the
callee.

3 Reference Parameters: Various Attempts

It is helpful to consider the apparently simplest case of
a formal parameter of simple, scalar type. Let us consider
a simple integer formal parameter, and an actual parameter
which is an integer variable. In order to pass such a param-
eter by value, the value of the variable is pushed onto the
evaluation stack, and the invoke* instruction does the rest.
However, for any parameter semantic which allows for the
called procedure to modify the value of the associated actual
variable, some other trick is required. In conventional set-
tings, one might consider either passing the address of the
actual variable to the called procedure, (passing by refer-
ence), or copying the returned value from the called proce-
dure back to the actual variable after the return (passing by
copying). The difference between these two mechanisms
can only be seen in the case of aliassing, where the same
variable is accessible along more than one path. Certain
languages (in effect) specify that programs which depend
on one or other mechanism are non-conforming.

3.1 Boxing and unboxing

A first attempt at allowing for inout semantics consists
of placing values in boxes, references to which are then
passed by value to the callee. For this mechanism, every
type used as a formal parameter has a corresponding wrap-
per, “box” class defined. This class encapsulates a single
single instance field which holds the value. Figure 3 illus-
trates this concept.

In this attempt the actual value might be loaded into the
box immediately before the call, and copied out to its desti-
nation variable immediately following the return. Alterna-
tively, all values which are ever passed as inout parame-
ters might be boxed throughout their lifetimes.

Note that the called procedure does not return the refer-
ence to the box. (If it could do that, it could pass the modi-
fied value back directly.) Instead, the caller must duplicate
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Figure 3. Passing a boxed value to a proce-
dure

the reference to the box, save one copy in a local variable,
and pass the other to the called procedure. When control re-
turns to the caller, the saved reference is used to access and
retrieve the boxed value.

The considerations involved here are —

� Copying in and out involves extra overhead for the call

� Copying in and out gives copying rather than reference
semantics

� Transient boxing usually involves object creation at
call sites

� Permanent boxing creates overheads for every access
to datum

� Boxing usually involves the generation of junk classes

“Junk classes” are classes which are defined for some spe-
cial purpose. Typically, they are used in one place only, and
may only ever have one instance. In the JVM, such classes,
no matter how simple, require the creation of an additional
class file, thus cluttering up the filename space.

It might be noticed that the RECORD and ARRAY types of
Component Pascal are necessarily already boxed in the JVM
implementation, and thus consume no additional overhead
when passed by reference. They also require no additional
classes to be defined.

By contrast, POINTER types passed to in-
out formals do require to be boxed. The junk
wrapper class corresponding to the pointer type —

TYPE Foo = POINTER TO RECORD ... END;

behaves as though it originated from the type declaration —
TYPE FooBoxJunkClass = RECORD fld:Foo END;

3.2 Boxing with refinement

There are possible variations on the copying theme. One
such variation would be to pass the value and an empty,
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Figure 4. Returning a reference to an aggre-
gate containing all return data

aliassed box. In this case, the called procedure has direct
access to the value, and has to copy the value into the return
box immediately prior to the return. This method entails
lower performance overheads whenever formal parameters
are accessed more than once, on average.

Yet another refinement would entail passing values into
the called procedure, and have that procedure construct an
aggregate for return. The aggregate would contain all return
data, including the conventional “function return value”.
Figure 4 illustrates the concept.

Before the return, the called procedure creates the return
object, and loads the final values of the local formal parame-
ters into the corresponding instance fields. After the return,
the caller has the reference to the return object on the top of
stack. It must then unpack the instance fields, copying them
to their corresponding actual parameter variables. The ob-
ject is then discarded.

This strategy minimizes the number of boxes which need
to be constructed, and allows direct access to the formal
parameter values in the called procedure. However, it typ-
ically generates massive numbers of junk classes, since it
requires a separate class for every separate procedure signa-
ture. For simple boxing, we only need a separate wrapper
class for every formal type. Aggregate return potentially
requires as many classes as there are procedures.

There are further refinements possible. For example ev-
ery aggregate junk class might define a static field refer-
encing a singleton instance which is repeatedly reused, thus
avoiding the overhead of repeated instance creation.

3.3 Using “Thunks”

If providing precise reference semantics is an implemen-
tation objective, then it is sufficient to ensure that all ef-
fects on aliassed formal parameters modify the same da-
tum. One way of achieving this end is to not pass the ac-
tual datum (either boxed or unboxed), but to pass an object



with get() and set() methods that access the real da-
tum. All read and write operations on the formal parameter
within the called procedure are translated into calls of the
put and get procedures of the formal parameter object. Be-
cause of the correspondence to the usual implementation of
call-by-name in ALGOL-60 we call such access functions
“thunks”[3].

Considering first the case of an actual parameter which is
a static integer variable, named cls.var say. The access
object would correspond to the following Java class —
class cls_var_access {

public int get() {return cls.var;}

public void put(int val) {cls.var = val;}

}

Note that in the case of parameters which are aliassed,
passing multiple copies of the object reference does no
harm. In this should happen the calls of put() made on
different formal parameters will all modify the same under-
lying datum.

Since variables of inactive activation records are inac-
cessible in the JVM, the above code does not work for lo-
cal variables. In such cases, the actual parameter must be
copied to a box in the heap. The thunks then access the
boxed datum. Clearly, it is important to ensure that each da-
tum is boxed only once, in the case of aliasses. Fortuitously,
this property is statically computable.

As noted, a careful implementation of this mechanism
can have precise reference semantics. However, this comes
at a steep cost. The cost of method call is high compared to
either direct or indirect access to a local variable. Equally
serious is the extreme proliferation of junk classes. The
methods of the previous Subsection created one junk class
per distinct formal type, or one junk class per distinct proce-
dure signature. The method of this section requires one junk
class per actual parameter occurrence, in the worst case.

4 Implementation Issues

4.1 GPCP Implementation strategy

The Gardens Point Component Pascal compiler has
opted for efficiency in its solution to the inout parame-
ter issue. Parameters are copied in, and if necessary out as
well. There is some refinement here, beyond the concept
illustrated in Figure 3.

As a first step, the boxes which are used to return values
are length-1 arrays, rather than instances of some special
junk class. The JVM does not require a new class file to de-
fine how to create an array of a class that is already defined.
Thus the problem of junk class creation is averted. Data are
placed into the box by inserting the value as the zero-th el-
ement of the array, and the value is retrieved from the zero
index position.

PROCEDURE Foo(VAR i : INTEGER);

BEGIN i := 0 END Foo;

PROCEDURE Bar();

VAR x : INTEGER;

BEGIN

Foo(x);

**** � variable may not be initialized
� � �

END Bar;

Figure 5. Correct code which fails verification

The additional declarative information of Component
Pascal formal parameters leads to a useful efficiency here.
In the case of IN formals just the value is passed. In the case
of OUT formals an empty, unit-length array is passed to hold
the return value. However, in this case the called procedure
has an additional local variable defined which acts as a lo-
cal proxy for the value. Just prior to executing the return,
the code of the procedure loads the current value of the lo-
cal proxy into the zero-th position of the formal parameter
return box.

In the case of VAR-mode formals the value is passed first,
and the return box reference is passed as an additional pa-
rameter. The value is used throughout the body of the called
procedure, thus avoiding the overheads of indirect access.
The final value is copied into the box immediately prior to
the return, just as in the case of OUT mode.

4.2 Interaction with class verification

The class verifier of the JVM, among other checks, en-
sures that local variables of methods are provably initialized
prior to use. Passing a value as a parameter constitutes a vis-
ible use. Equally, the copying of a value from a return-box
into a local variable location constitues a visible, provable
initialization. The class verifier would thus reject a straight-
forward encoding of the code fragment in Figure 5

The JVM will reject the code in the figure, because the
code visibly copies the uninitialised local variable � as an
argument to the call of Foo. It does not help to insist that
interprocedural analysis would show that Foo does not use
the value until after it has been assigned to. The verifier
does not perform interprocedural analysis.

As discussed in Section 1.1, since the JVM will reject
the resulting bytecodes, our compiler must reject the source
code, as it has done in the figure.

As it turns out, the enhanced semantics of Component
Pascal provide exactly the right amount of declarative sup-
port to enable sensible error reporting in those cases where



programming errors involve incorrect initialization of pa-
rameters. Thus gpcp detects cases where variables are not
initialized along all paths leading to use as an actual param-
eter passed to an input mode formal. Equally, the compiler
rejects programs which fail to fulfill their obligation to as-
sign a value to OUT-mode formals along every path which
reaches a procedure return. The onus is on the program-
mer to declare the correct mode for each formal parameter,
as part of the declarative contract of that procedure. The
compiler will then verify that the obligations of the contract
have been provably fulfilled.

In Component Pascal, the example procedure Foo should
have been declared with OUT mode.

For earlier Pascal dialects, which only have value and
VARmodes, we might avoid verification failure by the brute-
force strategy of inserting a dummy initialization for every
local variable for which dataflow analysis detected an ini-
tialization “error”. We would thereby avoid spurious error
reports in the case of correct code, but would forego the
chance of catching genuine program errors. Within a single
compilation unit, we might restore some error detection ca-
pability by implementing interprocedural analysis, and give
a friendly warning to the programmer in the uncheckable
case of intermodule calls.

4.3 Uplevel addressing

Providing access to non-local data in languages with
nested procedure scopes poses further challenges for JVM
implementation. A future FIT report will describe the
somewhat arcane details. Nevertheless, it suffices here to
note that one possible solution is to pass the non-local vari-
ables as additional, hidden “quasi-parameters”. This is the
approach that gpcp adopts. In this case, of course, there is
no declarative framework to define the mode of such quasi-
parameters. In gpcp the problem is resolved by using the
same dataflow analysis which checks for errors in variable
initialization. The analysis discovers the required formal
mode for each quasi-parameter. The resulting “mode” in-
formation is propagated interprocedurally, so that enclosing
procedures will use the correct parameter modes. In this
way incorrect initialization of non-locally accessed data is
detected, while avoiding spurious error messages.

5 Conclusions

The current version of the compiler uses the modified
parameter passing mechanisms described here. From one
point of view it seems a pity to accept imprecise semantics
in this way. An alternative point of view is that the speci-
fication of precise reference semantics is a design flaw. In
many ways the issues involved in parameter passing to re-
motely invoked procedures mirror those of the JVM. In both

cases any actual parameter variables are inaccessible during
the execution of the called function. Thus any distributed
extension of Component Pascal would necessarily need to
loosen the strictness of the specification of parameter pass-
ing mechanisms.

The compiler, in its current form, has achieved all of its
initial goals. The whole of the language is compiled, and
the compiler is capable of generating either applications or
“applets”. Early benchmarking shows that the runtime ef-
ficiency of programs is equivalent to that achieved with the
Java language. Furthermore, if programs are run in an en-
vironment which uses a just-in-time compiler, the runtime
efficiency is very close to that of the same programs directly
compiled to native code.

For the future, it is intended to use the compiler as a plat-
form for investigation of those optimizations that are un-
likely to be discovered by a just-in-time compiler. It is also
intended, in time, to produce compilers for other languages
using the technology developed for this project.

Finally, we return to the question of the intrinsic limi-
tations of the JVM as a compiler target. Some popular pro-
gramming language features are inherently type-unsafe, and
do not admit of simple translation for the JVM. For example,
undistinguished unions of the kind that occur in ANSI C, or
in the tagless variant types of Pascal seem particularly in-
tractable. Tagged variants admit to an elegant and type-safe
implementation in the JVM, although most programs using
this construct use type-unsafe idioms which just happen to
be tolerated by most compilers2 using the caveat emptor
principle. Pointer type-casts are similarly intractable.

In all such cases, if one is to be absolutely correct, it is
possible to achieve the desired semantics by mapping the
program memory space to a large array of untyped values,
and use another level of interpretation. This “solution” is
unattractive for efficiency reasons, although it has some ap-
plication in reverse engineering.
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