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Abstract

The portability and runtime safety of programs which are executed on the Java Virtual
Machine (JVM) makes the JVM an attractive target for compilers of languages other than
Java. Unfortunately, the JVM was designed with language Java in mind, and lacks many of
the primitives required for a straighforward implementation of other languages.

Here, we discuss how the JVM may be used to implement other object-oriented languages.
As a practical example of the possibilities, we report on a comprehensive case study.

The open source Gardens Point Component Pascal compiler compiles the entire Component
Pascal language, a dialect of Oberon-2, to JVM bytecodes. This compiler achieves runtime
efficiencies which are comparable to native-code implementations of procedural languages.

1 Introduction

1.1 Java and the Java Virtual Machine

The runaway success of the Java programming language[1] in the last few years is a phenomenon
arguably without parallel in the short history of programming languages. One of the interesting
side-effects of this widespread popularity is the ubiquity of the execution engine of Java, the Java
Virtual Machine (JVM)[2]. Essentially all computing platforms have at least one JVM implemen-
tation available for them, and there are an increasing number of lightweight, small footprint JVM
implementations targetted at embedded devices.

The widespread adoption of Java as an implementation language for mainstream applications
has ensured that the typical Java execution environment is endowed with a rich supply of APIs.
Thus solutions to issues such as security, network programming, wide character support and so on
are suddenly available in a relatively uniform fashion across the spectrum of platforms.

A final factor favouring the availability of the Java execution environment is the elimination of
the major argument against the virtual machine approach, that is, the runtime inefficiency of the
virtual machine interpreter. As will be quantatatively demonstrated below, the use of the more
recent just-in-time compilation systems all but removes the runtime overhead of the traditional,
interpretative approach to virtual machine implementation.

After discounting the effects of fashion, it seems that the popularity of Java is based in two
promises: one is the write-once, run anywhere claim of universal portability, the other is the
runtime type-safety of Java programs. Although it may be observed that both of these claims are
subject to some minor quibbles, they hold true to a very large extent.

For many enthusiasts of Java, it may come as a surprise to learn that the two “key advantages”
of Java, are not properties of Java the programming language. Rather the key advantages are
properties of the JVM. A consequence of this observation is the claim that programs written is
any programming language would share all of the advantages of Java, once they were translated
into the machine code used by the JVM.
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1.2 Languages other than Java

A number of people, lured by the availability of the JVM have written compilers which compile
subsets of other languages to the Java bytecode form[3]. In most cases these efforts have been
restricted to language subsets, since there is no efficient way of encoding the type-unsafe features
of most of the other popular programming languages. This is an intrinsic limitation, since the
design philosophy of the JVM is based on type safety. Indeed, if an implementor was to find a way
of bypassing the type safety guarantees of some implementation of the JVM, it seems probable that
the exploit could form the basis of a security attack on Java programs. Thus the JVM vendor would
be obliged to remove the security hole in the next revision, invalidating any programs depending
on the flaw.

Leaving aside the issue of type-safety, the question remains as to the extent to which languages
of different design philosophy can be efficiently implemented on the JVM. In order to explore the
answer to this question, in 1998 a project was begun to provide a complete, efficient implementation
of another type-safe language.

The central difficulty standing in the path of languages other than java (LOTJs) is the fact
that the JVM was designed precisely with language Java in mind. The execution engine does not
provide the primitives that are required for the simple implementation of many LOTJs. Common
programming language features which require some inventiveness include —

o Reference parameters

e Uplevel addressing (access to non-local variables)
e Procedure variables (function pointers)

e Structural compatability of types

All of these issues admit to solutions with more or less difficulty, as is demonstrated by the compiler
which forms the main subject of this paper. However, there are other, practical issues which need
to be considered as well.

The standard Java runtime environment consist of the JVM, together with infrastructure that
loads classes as needed. An intrinsic part of this mechanism is the byte-code-verifier, which checks
the binary form of every class before loading it. JavaSoft describe this tool as a “theorem prover”
which refuses verification to any class for which it cannot establish the required properties. As
is usual, many of the properties which the verifier attempts to evaluate are incomputable. The
analysis is therefore necessarily conservative. This places a novel constraint on the compilers of
LOTJs since it is insufficient to generate semantically correct code, instead the code must be
generated in such a way that the verifier is able to establish that correctness.

Gardens Point Component Pascal (gpcp) is a compiler for the whole of the language Component
Pascal[4, 5]. All of the issues listed above needed to be resolved, in order to achieve this outcome.

1.3 Why Component Pascal?

Component Pascal is a dialect of Oberon-2[6, 7]. The language was designed by Clemens Szyperski
and others for Oberon Microsystems’ BlackBox Component Builder framework. Like Oberon-2 it
is a small, object oriented language supporting single inheritance based on extensible records. Its
ancestors are Oberon, Modula-2 and Pascal.

As a vehicle for the exploration of the issues involved in compiling LOTJs to the JVM, Com-
ponent Pascal seems an ideal choice. The language poses all of the significant issues that were
itemized in the introduction. Furthermore, since the language is completely statically type-safe
there was reason to believe that this is one of the few languages for which the complete language
could be efficiently implemented by the JVM.

1.4 Overview

It is the objective of this paper to review the main issues of compilation of LOTJs to the JVM, and
give some performance figures. A more extensive treatment of the detail of some of the required
techniques has been given elsewhere[8], and other papers in preparation.



Component Pascal Construct Java Virtual Machine Construct

module level scalars and pointers static fields of the class corresponding to
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dures JVM method, and allocated during the
procedure prolog

Figure 1: Mapping of data types

2 Gardens Point Component Pascal

2.1 The Compiler

Gardens Point Component Pascal (gpcp) is a compiler for the language Component Pascal, which
targets the JVM. It is able to produce either applications or applets, and is able to make use of
the Java API to access utilities such as network services and GUI support.

The compiler is written in Java currently, but a future project will rewrite the compiler in its
own language. Both the current and the future versions of the compiler will be released as open
source products. Thus the community may use the compiler directly, or as an example of the
techniques of compiling LOTJs to the JVM.

2.2 Data Representation and Module Structure

There are only two kinds of data known to the JVM. These are the local variables of methods,
and dynamically allocated instances of classes and arrays. Local variables are simple scalars or
references to objects, and can only be accessed from within their owning method. There is no
concept of data address, nor of address arithmetic. It is possible to store and pass references, but
these references can only originate from the allocation of objects of known type. In particular, it
is not possible to obtain a reference which points to the interior of an object, or points to a local
variable of a method.

It follows that all the program data of a LOTJ must be mapped onto the available types of the
JVM. Component Pascal has the usual scalars, arrays, records and has pointers to dynamically
allocated arrays and records. Data of all these types may be static, that is, allocated at load time,
or automatic, that is, allocated on procedure invocation.

The mapping of modules onto classes is performed as follows. Each module corresponds to a
single class in the JVM. Ordinary, that is, non-virtual procedures of the module become static
procedures of the class, and module data becomes static data of the class. Each record type of the
module becomes a class in the JVM, carrying with it all of the type-bound (virtual) procedures of
the module. Details are given in Figure 1.

2.3 Parameter Passing

Parameters are passed in the JVM only by value. Since there is no notion of data address, it is
not possible to obtain the effect of reference parameters by passing addresses using the language-C
idiom.

In this case, OUT and VAR (inout) parameters are passed by copying in and out. Since the JVM
allows only a single return value this effect is obtained by “boxing” the outgoing value in a unit
length, dynamically allocated array. The caller loads the value of the actual parameter variable
into the box, and saves a reference to the box through the call. The called procedure updates the
boxed value. After the return, the caller uses the saved reference to access the updated value in
the box. It finally copies the new value to the actual parameter location. Figure 2 illustrates this
concept.
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Figure 2: Passing a boxed value to a procedure

2.4 Dataflow Analysis

As pointed out in the introduction, it is necessary for any compiler of a LOTJ to ensure that the
class files which it produces are able to be verified. In particular, the verifier will insist on being
able to prove that every local variable is properly initialized before use. This requires conservative
dataflow analysis the details of which are implied by the Definite Assignment rules of the Java
Language Specification. This is a relatively standard backward-flow, all-paths dataflow analysis
problem.

There is no advantage in performing a more accurate analysis then the verifier, since the
verifier has the final say. However, as it turns out the computational framework which is required
to perform the analysis may be used for additional helpful compile-time diagnostics. Figure 3 is
an example where an interprocedural extension of the dataflow analysis allows gpcp to detect an
incorrect program construction.

PROCEDURE Bar();
VAR abc,xyz : INTEGER;

PROCEDURE Fee; BEGIN abc := 0 END Fee;
PROCEDURE Foo; BEGIN INC(xyz) END Foo;

BEGIN
Fee; (* this one is ok *)
Foo; (* but this is bad *)
*xx* ~ Non-locally accessed variable may be uninitialised

ko ok <xyz> not assigned before this call

END Bar;

Figure 3: Incorrect code requiring interprocedural analysis

2.5 Procedure Variables

Perhaps the most difficult aspect of the whole project turned out to be the implementation of
procedure variables (function pointers in language-C).

The problem is twofold. First, the JVM knows of no such construct. Second, procedure variables
in those languages which possess them typically are determined to be compatible according to
structural equivalence rules. Since the JVM knows only of equivalence according to name, the
problem follows.

The first issue is easily solved by representing a procedure value as an object with a single
“invoke” method. However, when such a value has to be assigned the compiler cannot guarantee



that the value is of the same named type as the destination value.

A number of complex schemes were prototyped in an attempt to resolve this issue. In the
current version, the solution is simple, but sometimes inefficient. Procedure types correspond to
JVM interface types, while procedure values are declared to be of some unique class type. The
trick is that the class corresponding to each value implements every conforming interface known
to the compiler. There is thus a high probability that any particular invocation of a procedure
value will find the value implements the expected interface type. The exceptional cases are trapped
at runtime, and the call made using the reflection mechanisms. The compile-time guarantee of
structural compatability guarantees the success of the reflection-mediated invocation.

2.6 Accessing the Java API

The attractiveness of any LOT/J is likely to depend critically on the ease with which the Java API
is able to be accessed. In particular, for a language such as Component Pascal, it is important that
components are able to interwork seamlessly with the Java component framework — Java Beans.

Following previous experience with Gardens Point compiler systems, we defined a foreign lan-
guage interface which allows declaration of Java API access. As it turned out, several problems
surfaced with constructs such as interface types, protected methods, and name overloading.

A fundamental issue is that languages such as Component Pascal enforce a strict partial order
on compilation order. Java has no such strictures.! Rather than write a new compiler especially
for interfaces we are now constructing a tool which directly produces binary symbol files from
corresponding Java .class files.

In response to the other issues, we have enriched the attribute evaluation of the compiler so that
it understands all necessary semantics of Java as well as Component Pascal. As an example, the
compiler understands what it means for a Component Pascal type to extend a Java API class. It
also permits Component Pascal types which are extensions of Java classes to contract to implement
interfaces. Such obligations are fully enforced.

These choices have certainly added some additional complexity to the compiler. However, they
are a necessary addition. Consider for example that the LOTJ classes cannot participate in the
Java 1.1+ event handling model unless there is a mechanism for declaring that they implement
the necessary event handling interfaces.

3 Performance

Some figures available from preliminary testing suggest that for procedural (i.e. mnon object-
oriented) code the performance of programs is comparable to native code Modula-2 on the same
platform.

Here, we present two rather different synthetic benchmarks, to illustrate the range of possi-
bilities. The first of these benchmarks is a program which discovers all solutions of the N-queens
problem for all board sizes from 8 to 13. The algorithm is recursive backtracking, so the procedure
call and return mechanism is worked extremely hard. Figure 4 shows normalised results for several
different platforms.

Platform Version Optimised M2 | Default M2 | CP with JIT | CP interpreted
SPARC/Solaris | JDK 1.2.1 100% 78% 91% 4%
SPARC/Solaris | JDK 1.1.6 100% 84% 2% 6%
Pentium/Win98 | JDK 1.2.0 100% 7% 106% 13%
Pentium/Linux | JDK 1.1.7 100% 82% — 13%

Figure 4: Relative speeds for NQueens program

In this figure the results have been normalised to factor away the relative speeds of the various
platforms, although these all fell withing a factor of two in absolute speed. Several factors are

IConsider java.lang.Object This class has methods which presume that the properties of java.lang.String
and java.lang.Class are known to the compiler of the interface. But both of these types are extensions of Object
and presume prior compilation of that class’ interface.




worthy of mention here. Firstly it may be seen that for the SPARC platform significant improve-
ments have been made to the just in time compiler (JIT) between version 1.1.6 and 1.2.1. Even
the interpreter is somewhat faster.

Notice also that Component Pascal, with the aid of the JIT, is faster than native code with
the default level of optimisation. Only with the highest level of optimisation turned on does the
native code run faster.

For the Intel architecture is is clear that the interpreters are more efficient than on SPARC. In
the case of verion 1.2 is appears that the JIT produces better code than the GPM compiler with
all optimisations turned on. This is a very significant achievment. We did not have access to a
JIT for the Linux platform.

The NQueens benchmark is a little unusual, since it involves no object creation at all. A rather
different impression is given by the (in)famous Dhrystone program. In this case, although this
is a purely procedural benchmark, the program requires some object creation for the passing of
parameters, as was shown diagramatically in Figure 2. Figure 5 shows the performance numbers
for the Dhrystone program, comparable to the previous table for NQueens.

Platform Version Optimised M2 | Default M2 | CP with JIT | CP interpreted
SPARC/Solaris | JDK 1.2.1 100% 82% 25% 4%
SPARC/Solaris | JDK 1.1.6 100% 87% 11% 4%
Pentium/Win98 | JDK 1.2.0 100% 82% 11% 3%
Pentium/Linux | JDK 1.1.7 100% 80% — 3%

Figure 5: Relative speeds for Dhrystone program

In this figure the results have been normalised to factor away the relative speeds of the various
platforms. Taken at face value, these figures are somewhat discouraging. However, further investi-
gation showed that a majority of the runtime of the program was spent in garbage collection of the
parameter boxes. We have reason to believe that most of this overhead can be optimised away by
static analysis in the compiler. If this is done, we see no theoretical reason that the comparative
figures for benchmarks such as this should not approach those for the NQueens program.

4 Conclusions

The compiler gpcp convincingly demonstrates that it is possible to execute at least suitable LOTJs
using the JVM as an execution platform. As indicated here, the whole of the language may be
successfully translated with reasonable efficiency. The advantages of the JVM as an execution
mechanism are thus available to a wider range of languages.

It is interesting to consider which other languages might be candidates for complete translation.
Certainly languages with a high degree of type safety are candidates, with perhaps Scheme, Sather
and Eiffel springing to mind. The situation with other languages is not so clear. There are certainly
useful subsets of many other languages which might be successfully translated. However, the chance
of capturing large quantities of legacy code by this mechanism seem dubious. The problem is that
many unnecessary but prevalent idioms in programming praxis use non type-safe mechanisms. For
example, almost all uses of union types are intractable to the JVM.

There is another language dimension which needs consideration, that of immediate transla-
tion languages. These languages occur, for example, whenever a command language is translated
on-the-fly to some intermediate form and then immediately executed. Given the amount of techno-
logical advancement in JIT compilation sparked by the Java revolution, the use of JVM byte-codes
as an intermediate form for such dynamic compilation systems seems without parallel. It may
transpire that the most important application of this research into compiling LOTJs is for such
dynamic compilation languages.
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