Zero-Overhead Exception Handling Using Metaprogramming

Markus Hof, Hanspeter Mdssenbdck, Peter Pirkelbauer
Johannes Kepler University Linz, A-4040 Linz

{hof, moessenboeck}@ssw.uni-linz.ac.at

We present a novel approach to exception handling which is based on metaprogramming.
Our mechanism does not require language support, imposes no run time overhead to error-
free programs, and is easy to implement. Exception handlers are implemented as ordinary
procedures. When an exception occurs, the corresponding handler is searched dynamically
using the type of the exception as a search criterion. Our implementation was done in the
Oberon System but it could be ported to most other systems that support metaprogramming.

1. Motivation

Exception handling is the ability to separate the reaction to a program failure (i.e., to an exception)
from the place where the failure occured. This has two advantages:

= It keeps algorithms free of error handling code.
= It allows a programmer to implement the reaction to different occurrences of the same exception in
a single place.

Exception handling was suggested in the seventies ([Good75]) and is part of many modern languages
such as Java [ArGo96] , C++ [Stro86], Eiffel [Meye92], Modula-3 [Nels91] or Smalltalk [GoR083]. The
exception handling facilities of these languages differ from each other in the syntactical notation
they use, in the way how they allow a program to continue after an exception, how they check that
all possible exceptions will be handled, and how exception handling is implemented.

Besides supporting exception handling in a programming language it can also be supported by
library functions (e.g., [Mill88]). This has the advantage of keeping the language small although it
might not be as readable as with language support.

In this paper we present a novel approach to exception handling which is based on
metaprogramming. Our mechanism does not require language support, imposes no run time overhead
to error free programs, and is easy to implement. We implemented exception handling for the Oberon
System [WiGu92] but it could have been done for most other systems that support metaprogramming.

The rest of the paper is organized as follows: In Section 2 we give an overview of existing
exception handling notations and implementations. In Section 3 we shortly explain the
metaprogramming facilities of Oberon, which are then used in Section 4 to introduce our approach to
exception handling. In Section 5 we finally compare our technique with mechanisms used in other
languages.

2. Common Exception Handling Mechanisms
Exception handling is part of many modern programming languages. In this section we give an
overview of the notations that are used in these languages and sketch some common implementation

techniques. In Section 4 we introduce our own notation and implementation.

General principles. Exception handling is built around three concepts: a block of statements that is
protected against exceptions; one or more exception handlers that are specified for the protected

block; and a mechanism to raise exceptions. If an exception is raised during the excution of the
protected block, the corresponding handler is executed. Some exceptions can also be raised by the
system because of illegal operations (e.g. division by zero). After the exception was handled the
program can be continued in one of three ways:

= Terminate semantics: The protected block is terminated and the program continues with the first
statement after the block.

= Resume semantics: The execution of the protected block is resumed after the point where the
exception was raised.

= Retry semantics: The protected block is re-executed from the beginning (after the exception
handler has repaired some conditions which caused the block to fail in the first try).

Many languages support only terminate semantics. For a discussion of the pros and contras of the
various semantics see [Stro94].

C++ and Java. The programmer can protect a statement sequence against exceptions by enclosing them
in a try statement (Fig. 1). If the execution of such a statement sequence raises an exception by means
of a throw statement an appropriate handler takes control. Handlers are appended to the try
statement as catch clauses. After the execution of the catch clause the program continues with the
first statement after the try statement. Exceptions are objects which are thrown (i.e. raised) in a
throw statement and caught in a catch statement. The catch clause specifies the class of the
exception object that is to be caught. Both C++ and Java support only terminate semantics. For
details see [EISt90] and [ArGo96].

try {
... some calculations ...

if (...) throw Overflow();
Foo(); // may also throw exceptions

}

catch (Overflow& ovfl) {... handle overflow ...}
catch (Underflow& ufl) {... handle underflow...}

Fig. 1 Exception handling notation in C++ and Java

Eiffel. The Eiffel exception handling mechanism is essentially based on the principle of contracts.
Classes and methods establish contracts with their clients by specifying preconditions,
postconditions and class invariants. If one of these conditions fail, an exception is raised which can
be handled in a rescue clause of some currently executing method (Fig. 2). In addition, the user may
also raise user-defined exceptions. Exceptions are denoted by integer codes, and the rescue clause
has to analyze these codes with an if statement. A rescue clause usually repairs the failure (if
possible) and then retries the method. If no retry is specified the method fails, propagating the
exception to the rescue clause of its caller. Thus Eiffel supports just retry semantics. For details see
[Meye92].

Foo (...)is
require ... precondition ...
do
Fool(); -- may raise exceptions
Foo2();
ensure ... postcondition ...
rescue
if exception = ... then
... repair the failure ...
retry;
end
end;

Fig. 2 Exception handling notation in Eiffel

Smalltalk. Smalltalk provides the most powerful mechanism. Exception handling is applied to
blocks; exceptions are represented by classes. An exception is raised by sending a signal message to
an exception class. The corresponding handler is itself specified as a block (Fig. 3). After the
exception has been handled, the program can terminate the block that raised the exception, retry it
or resume its execution after the point where the exception was raised. The user may specify an
ensure block which is always executed after the protected block, no matter if an exception occurred
or not. For details see [GOR083].

[... some action ... MyException signal. ... some action...]

on: MyException do: [:theException | ... handle exception ... theException return]
on: MyException2 do: [:theException | ... handle exception ... theException resume]
on: MyException3 do: [:theException | ... handle exception ... theException retry]

ensure: [... local cleanup ...]
Fig. 3 Exception handling notation in Smalltalk

Implementations. Current implementations are either based on C's setjmp/longjmp mechanism or on
tables generated by the compiler. We will shortly sketch both variants. A more extensive
description can be found in [K8St90].

Setjmp/longjmp. The function setjmp(s) saves the current machine state in a buffer s and returns 0.
The function longjmp(s) restores the machine state from the buffer s (including the program
counter). As a result, the execution will continue in the setjmp routine where this state was saved.
After a longjmp, however, setjmp will return 1. This makes the following implementation of

try {... block ...} catch {... handler ...}
possible:

IF setjmp(s) = 0 THEN
Push(s); ... block ... Pop(s)

ELSE (*execution continues here after a longjmp*)
... handler ...

END

If an exception is raised in block, the following code is executed:

Pop(s);
longjmp(s);

If the handler cannot handle the exception, it re-raises it, so that a longjmp to the previous setjmp
is executed, and so on. This implementation is straightforward but it leads to some run-time
overhead (setjmp, Push, Pop) even in the case of error-free programs.

Range tables. The compiler generates a table in which the range of every try block (start address,
end address) as well as the addresses of the corresponding handlers are recorded. If an exception
occurs, the current program counter is looked up in the table (if it does not fall into any of the ranges,
the program counter of the caller is tried). When the appropriate range is found, the stack is
unwound and the corresponding handler is called. This imposes no run-time overhead in the case of
error-free programs but requires the compiler and loader to set up the table.

3. Metaprogramming

Our exception handling technique makes use of metaprogramming, so we will shortly explain this
term and show how it can be used in the Oberon System.

Metaprogramming means the ability to treat programs as data, for example to get information
about the names and the structure of their variables, types and procedures. If a program can acquire
information also about itself, this is called reflection.

Metaprogramming and reflection were pioneered by Lisp [McCa60] and Smalltalk [GoR083].
Today this feature is available in many modern languages such as Java [ArGo96], CLOS [Atta89] or
Beta [MMN93]. An implementation for Oberon is described in [Temp94] and [StM&96].

In Oberon, information about programs is organized in sequences and can be accessed with iterators,
which are called Riders. A Rider can enumerate the procedures, types or global variables of a
module as well as the activation frames of the currently active procedures on the stack. When a
Rider is positioned on an element of such a sequence (e.g., on a variable), its fields contain
information about this element, for example its name and its data type. If an element is itself
structured (e.g., a record variable), one can "zoom in" and enumerate the elements of the inner
structure.

The following example shows how to iterate over the currently active procedures and print their
names as well as the names of the modules in which the procedures are declared.

VAR r: Ref.Rider;

Ref.OpenStack(NIL, r); (*a rider is placed on the topmost frame of the procedure stack*)
WHILE r.mode # Ref.End DO
Out.String(r.name); Out.Ln; (*print the name of the corresponding procedure*)
Out.String(r.mod); Out.Ln; (*print the name of the module declaring this procedure*)
r.Next (*proceed to the next frame*)
END

A second example shows how to iterate over the procedures of a module "M" and look for a procedure
that has a reference parameter of type "T" as its first parameter. The list of parameters is obtained
by zooming into the procedure.

VAR r, rl: Ref.Rider; type: Types.Type;

Ref.OpenProcs("M", r); (*r is placed on the first procedure of module M*)
WHILE r.mode # Ref.End DO
r.Zoom(rl); (*rl is placed on the first parameter of the procedure*)
IF r1.mode = Ref.VarPar THEN (*if it is a reference parameter*)
type = rl1.Type(); (*get its type*)
IF type.name ="T" THEN ...found...; RETURN END;
END;
r.Next (*proceed to the next procedure*)
END

4. Exception Handling with Metaprogramming

In this section we introduce an exception handling technique based on metaprogramming. It needs no
special language constructs and does not require compiler support. Error free programs are not slowed
down. Overhead occurs only in the case of exceptions. We describe our implementation for the Oberon
system, but the same technique could also be applied in any other system that supports
metaprogramming.

Exception objects. Exceptions are objects of an exception class, which is a subclass of Exception (Fig.
4). There are system exceptions and user exceptions. System exceptions (e.g., division by zero) are
triggered automatically while user exceptions are raised by the user program using the library call
Exceptions.Raise(exception).

Exception
errMsg
‘ ZeroDivide‘ ‘ NilTrap ‘ User Excl User Exc2
userDatal userData2
system exceptions user exceptions

Fig. 4 Hierarchy of exception classes

Exception handlers. Exceptions are caught (i.e. handled) by an exception handler which is an
ordinary procedure H with the following characteristics:

= H is declared local to some currently executing procedure P, i.e., to one with an activation frame
on the procedure stack.

< H has a single reference parameter of type E, which is the type of the exception to be caught or a
superclass thereof.

= Both H and P have the same return type or none.

The following example shows a procedure Foo that calls a procedure Read in order to read from a
file. If the end of the file is reached, Read raises an exception of type EofException (a subclass of
Exception), which is caught by the handler HandleEof in Foo:

PROCEDURE Foo (): INTEGER;
VAR f: File; ch: CHAR;

PROCEDURE HandleEof (VAR eof: EofException): INTEGER; (*the handler*)
BEGIN

Close(f);

RETURN 1 (*error code for eof*)
END H;

BEGIN (*Foo*)
Open(f, "...");
REPEAT Read(f, ch); ... UNTIL ...;
Close(f);
RETURN O (*no error*)
END Foo;

PROCEDURE Read (f: File; VAR ch: CHAR);

VAR eof: EofException
BEGIN

IF ...end of file ... THEN Exceptions.Raise(eof) ELSE ... END
END Read;

Raising an exception (e.g. Exceptions.Raise(eof)) leads to a call of the appropriate handler (e.g.
HandleEof). When the handler returns, execution continues after the call of the procedure to which
the handler is local. In the above example control returns to the caller of Foo.

A procedure like Foo may contain multiple handlers for different kinds of exceptions (i.e.,
multiple local procedures with parameters of different exception types). If a handler for

EofException is not found in Foo, the search continues in the caller of Foo, then in its caller and so
on, until a matching handler is found or the topmost procedure in the call chain is reached. If no
matching handler is found, a standard error message is produced and the program terminates.

A handler may again raise an exception, in particular, it may re-raise the same exception that it
is currently handling. In this case the search for a new handler starts in the caller of the procedure
that contains the current handler (in the above example, the search starts in the caller of Foo).

Note that a handler has access to the local variables of the enclosing procedure. HandleEof can,
for example, close the file f declared in Foo .

Exception handling semantics. The above example makes use of terminate semantics: After the
handler was executed, the containing procedure P is terminated and the program continues after the
call of P. Instead, we can also make use of resume semantics. That means, that the handler returns
to the point where the exception was raised, and execution continues with the instruction after the
Raise. Resume semantics can be requested for user-raised exceptions with the library call
Exceptions.Resume like in the following example:

PROCEDURE Handler (VAR e: SomeException);
BEGIN
IF ... the failure can be repaired ... THEN
...Repair it...;
Exceptions.Resume (*return using resume semantics*)
END;
(*return using terminate semantics*)
END Handler;

Implementation. When an exception occurs, the system has to look for an appropriate handler. It
uses metaprogramming facilities to search the procedure stack for a procedure with a local procedure
that can be used as a handler. The following pseudo code shows an outline of this algorithm.

PROCEDURE Raise (VAR e: Exception);
E := dynamic type of €;
FOR all frames on the stack in reverse order DO
P := procedure that created this frame;
FOR all local procedures H of P DO
IF (H has a single reference parameter of type E or a supertype of E)
& (H has the same return type as P) THEN
Execute H;
Return to the caller of P or to the point where the exception was raised,
depending on the chosen exception handling semantics
END
END
END;
Terminate the program with a standard error message
END Raise;

The metaprogramming facilities necessary for this implementation are described in the examples of
Section 3. Raise uses a rider to iterate over all stack frames. For every frame it gets the procedure P
and the module M to which the frame belongs. It then uses another rider to iterate over all
procedures of module M looking for a procedure P.H (a procedure H local to procedure P) that has
the required characteristics.

Assume that we found the handler H. What remains to be shown is how the handler is called
and how it returns depending on the chosen exception handling semantics. When an exception is
raised, the procedure stack looks as in Fig. 5.

C caller of P
P procedure in which the handler is declared
Q procedure in which the exception was raised
FP-—~
. Raise FP ... frame pointer
e SP ... stack pointer

Fig. 5 Stack of procedure frames at the time when an exception occurs in procedure Q

For system exceptions, which are triggered automatically, the system will generate a call to the
procedure Raise as if they were user exceptions. This will lead to the same picture as in Fig. 5. In
both cases Raise will search for the handler H and its enclosing procedure P as described above
and then execute the following code:

Push e; (*exception parameter*)
Push frame pointer of P; (*static link*)
Call H;

(*this point is only reached under terminate semantics*)

FP := beginning of C's frame;

SP := end of C's frame;

PC :=return address of P (*return to the caller of P*)

When the handler H is executing, the stack looks as in Fig. 6a. The static link of H allows
accessing the local variables of P. When H returns, Raise modifies the registers FP (frame
pointer), SP (stack pointer) and PC (program counter) so that the stack is cleaned up and execution
continues after the call of P (Fig. 6b).

FP

SP

Q

Raise

Fp_.| static link
H

SP~

@ (b)
Fig. 6 Procedure stack: (a) during the execution of the handler H and (b) after the control
was transferred back to the caller of P

If H calls Resume (which is possible only for user-raised exceptions), this procedure returns control
in the following way:

PROCEDURE Resume;

FP := beginning of Q's frame; (*Q is the procedure that raised the exception*)
SP :=end of Q's frame;
PC :=return address of Raise (*return to Q%)

END Resume;

If an exception handler H raises an exception itself the same mechanism starts again: The end of
the stack will contain another frame of Raise as well as a frame of some new handler H1. Note,
that the search for H1 must start with the frame of C (the caller of P in Fig. 5) in order to avoid
cycles. Therefore, every invocation of Raise must remember where to continue the search if an
exception is raised in the handler. This information is stored in some global exception context before
the handler is invoked. Since in a multi-threaded environment Raise must be reentrant, the
exception context is part of the thread's environment.

5. Comparison

In the following section we compare our exception handling notation and implementation with the
other techniques described in Section 2. A summary is shown in Table 1.

Table 1 Exception handling mechanisms in various programming languages

C++ / Java Eiffel Smalltalk Oberon
Notation language based language based library based library based
Exceptions objects numbers objects objects
Granularity block level procedure level block level procedure level
Resumption terminate retry terminate terminate
semantics resume resume
retry (retry)

Notation. Our exception handling technique does not require special language support. Protected
blocks are procedure bodies, handlers are local procedures with special parameters, and exceptions
are raised with a library call. The main advantage of this approach is that we did not have to
change an existing language (in our case Oberon). Our technique can be combined with any language
as long as the environment supports metaprogramming.

A possible disadvantage of our notation is that exception handling does not stand out as clearly as
with special keywords for protected blocks and handlers. It is also not easy to check statically
which exceptions a procedure may raise, since we do not require the unhandled exceptions to be
specified in the signature of a procedure, as it is the case for example in Java.

In our approach, as in most other implementations, exceptions are objects. This has the advantage
that exceptions can be subclassed to carry arbitrary information from the exception point to the
handler. In Eiffel this is not possible because exceptions are just numbers.

Granularity. We support exception handling on the procedure level and not on the block level. Due to
our experience this is sufficient. If a finer granularity is needed, any statement sequence can be turned
into a procedure.

Program resumption. Our implementation currently supports terminate semantics and resume
semantics. In principle we could also support retry semantics but this was not implemented so far
because it was not considered necessary. Java and C++ support only terminate semantics and Eiffel
supports just retry semantics. Only Smalltalk is as flexible as our approach, supporting all three
variants of program resumption.

Efficiency. Our implementation does not impose any run time overhead on error free programs. Only
in the case of an exception, the system has to search for a handler, which takes about 1 ms in a
typical case (measured on a Power Macintosh with 66 MHZz). In contrast to that, the setjmp/longjmp

mechanism described in Section 2 leads to run time costs for every protected block, even if no
exception is raised. The range table technique (also described in Section 2) does not slow down error
free programs, but it requires storage overhead (the range tables) and compiler support, because the
tables have to be generated by the compiler. This is not the case with our implementation. The
meta-information that we need is already there in the Oberon system so that it does not impose any
additional overhead.

Heap cleanup. If blocks are terminated due to an exception, there may be data on the heap for which
the deallocate statements or destructor invocations were skipped. This is not a problem in most of
the mentioned languages (including Oberon) since they rely on automatic garbage collection. In C++,
however, proper deallocation of objects is an issue and complicates exception handling considerably
[K6Sto0].

5. Conclusions

We suggested a zero-overhead exception handling technique based on metaprogramming. It was
implemented without extending the programming language or the compiler. Exception free programs
are not slowed down at all. A slight run time penalty has to be paid only if an exception occurs. Our
implementation does not need special data structures at run time, except for meta information about
programs, which is available anyway in many languages (e.g. in Java or Smalltalk). Our technique
supports various program resumption semantics and allows the programmer to declare custom
exception classes with exception-specific information. We implemented our technique for Oberon but
it could have been done for any other language that supports metaprogramming.

We found that our technique is powerful, efficient and easy to implement. It can be the method of
choice if one does not want to change the programming language or the compiler.

Refereces

[ArGo96] Arnold K., Gosling J.: The Java Programming Language. Addison Wesley 1996.

[Atta89] Attardi G. et al.: Metalevel Programming in CLOS. Proc. European Conference on Object-Oriented
Programming (ECOOP'89). Cambridge University Press, 1989.

[EISt90] Ellis M.A., Stroustrup B.: The Annotated C++ Reference Manual. Addison-Wesley 1990.

[Good75] Goodenough J. B.: Exception Handling: Issues and a Proposed Notation. Communications of the ACM,
vol.18, no.12, December 1975.

[GoRo083] Goldberg A., Robson D.: Smalltalk-80, the Language and its Implementation. Addison Wesley 1983.

[McCa60] McCarthy J.: Recursive Functions of Symbolic Expressions and their Computation by a Machine.
Communications of the ACM, vol.3, no.4, 1960.

[K6St90] Konig A., Stroustrup B.: Exception Handling for C++ (revised), Proc. USENIX C++ Conference, 149-
176, (1990)

[Meye92] Meyer B.: Eiffel — The Language. Prentice Hall 1992.

[Mill88] Miller W. M.: Exception Handling without Language Extensions. Proc. USENIX C++ Conference.
Denver CO., October 1988.

[MMNG93] Lehrmann-Madsen O., Moller-Pedersen B., Nygaard K.: Object-Oriented Programming in the BETA
Programming Language. Addison Wesley 1993.

[Nels91] Nelson G. (ed.): Systems Programming with Modula-3. Addison-Wesley 1991.

[StM696] Steindl C., Mdssenbdck H.: Metaprogramming Facilities in Oberon for Windows and Power
Macintosh. Technical Report 4, Institute of Computer Science, University of Linz, 1996.

[Stro86] Stroustrup B.: The C++Programming Language. Addison Wesley 1986.

[Stro94] Stroustrup B.: The Design and Evolution of C++. Addison Wesley 1994.

[Temp94] Templ J.: Metaprogramming in Oberon. Dissertation, ETH Zurich, 1994.

[WiGu92] Wirth N., Gutknecht J.: Project Oberon—TheDesign of an Operating System and Compiler. Addison-
Wesley 1992.

