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1. INTRODUCTION

This paper describes the Active Oberon language extensions to the Oberon language
and the first experiences done with it. The extension introduces concurrency in the
language by the mean of active objects, and an improved component modeling; it
is the base for further language extensions introduced in the Oberon.Net project
by Gutknecht [Gutknecht 2001a; 2001b]. The Active Oberon language was first
presented by Gutknecht [Gutknecht 1997].

A compiler for Active Oberon is available [Reali 2000; 2003]. It is used to build
the Aos system [Muller 2002], and all the software running on top of it; the compiler
is obviously part of the Aos system. The Active Oberon Language is currently used
for teaching programming for undergraduates at ETH-Zurich, and for developing
software for research purposes.

This paper is organized as follows: Section 2 introduces the language extensions
by presenting the concepts they are based on; Section 3 explains the extensions to
complete Oberon’s object oriented model; 4 explains the extensions for concurrency;
5 explains other additions made to round up the language; Appendix A shows a few
classical synchronization algorithms implemented using Active Oberon; Appendix B
shows some examples of active objects.
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Fig. 1. The Pascal Language Family Evolution

2. CONCEPTS

2.1 History and Related Work

Programming language development at ETH Zurich has a long reaching tradition.
The Oberon language is the latest descendant of the Algol, Pascal, and Modula
family. Pascal [Jensen and Wirth 1974] was conceived as a language to express
small programs; its simplicity and leanness made it particularly well-suited for
teaching programming. Modula [Wirth 1977] evolved from Pascal as a language for
system programming, and benefited from the practical experience gained during
the development of the Lilith workstation [Ohran 1984] and of the Medos oper-
ating system [Knudsen 1983]. The need to support the programming-in-the-large
paradigm was the motivation for Oberon [Wirth 1988]. The Ceres [Eberle 1987]
and Chameleon [Heeb and Pfister 1992] platforms, and the Oberon operating sys-
tem [Gutknecht and Wirth 1992] projects were developed in parallel with the lan-
guage, and allowed to test and evaluate the language improvements.

Many experimental language extensions have been proposed for Oberon at, and
outside of the ETH. Object Oberon [Mössenböck et al. 1989], Oberon-2 [Mössenböck
and Wirth 1991], and Froderon [Fröhlich 1997] explored adding further object-
oriented features to the language; Oberon-V [Griesemer 1993] proposed additions
for parallel operations on vector computers; Oberon-XSC [Januschke 1998] added
mathematical features to support scientific computation; module embedding [Raden-
ski 1998] was also proposed. Concurrency was first added to the operating system
through a specialized system API in Concurrent Oberon [Sanders and Lalis 1994]
and XOberon [Brega 1995]; attempts to model concurrency in the language itself
were also done by Radenski [Radenski 1995].

Active Oberon is the first exponent of a new generation of languages in this
family. Our motivation is to support concurrency and component modeling in the
language in a clean, seamless way.

2.2 The Active Object Model

Active Oberon concurrency’s model is based on active objects. Active Objects are
objects that include an own thread of control. In other words, each object carries
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an own independent activity, which is executed concurrently to the other objects
activities. The new concepts are integrated into the language by generalizing the
class construct to include concurrency. Passive classes, as used in Oberon, are a
special case of Active Oberon classes.

The support for concurrency requires the language to address atomicity, syn-
chronization and activity. Atomicity ensures that several operations are executed
without interruption, as if they were only a single instruction. Synchronization
forces the activity to wait for a condition to be established. Activity is the code
concurrently executed by a thread.

The question a language designer usually faces is, shall concurrency be added
through a library (thus providing an optional implementation) or embedded into
the language? A library is a collection of useful abstractions built using the language
itself, and is at first sight a comfortable place to add things that don’t belong to
the language, but can be constructed using it. Many language designers made this
choice, including [Sanders and Lalis 1994] for Oberon. This can be an approach for
experimenting with concurrency, but on the long run is a dead end: concurrency
is a metaphor that cannot be mapped well to an existing non-concurrent model,
but rather requires a new model that can be provided only changing the language
model.

Providing atomicity through a library (usually with a lock and unlock call) is not
satisfactory: atomicity is to be used in a structured way, by wrapping a block of
instructions, as for every lock there must be an unlock; a library call will never be
able to enforce this property. The library approach provides an imperative view,
possibly wrapped in object-oriented cloths, but with insufficient abstraction. This
is obviously not desirable.

As an example, Java tries to partially solve this problem by embedding atomic-
ity in the language with synchronized methods and synchronized statement blocks
(here synchronized in fact means a critical section, i.e. atomicity), but leaving syn-
chronization and activity in the libraries. Libraries are supposed to be a collection
of useful additions to the language, but the language should be independent of the
libraries, and even able to exist with a different set of libraries. This choice makes
matters even worse: why should the language provide atomiticy, if it doesn’t define
(know about) concurrency? For the sake of consistency, concurrency should be
addressed either in the language or in the libraries, but not in both. C# instead
is completely concurrency agnostic; atomicity, synchronization, and activities are
provided by the libraries.

Believing now that the language model must support concurrency, we think that
the active object model is the most suitable for our language.

The model must have the following properties:

(1) simple to understand (concurrency is already hard enough)

(2) atomicity must be a structured construct.

(3) objects define the atomicity’s scope, because objects are the unit of reasoning.

(4) synchronization must be structured.

(5) the condition for synchronization must be explicit.

(6) activities must be bound to objects.
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2.2.1 Atomicity. A statement block can require atomic execution, thus atom-
icity must encompass a statement block. This enforces the structured property of
atomicity. The granularity can range from one single statement to a whole proce-
dure.

Because every atomic region in an object will modify the state of the object
it is in, it makes sense to group all the atomic regions in the same instance in
monitor-like way.

2.2.2 Synchronization. Objects are our first-class citizens, and since the whole
model deals with their state, it makes sense to model synchronization on the object
state itself. In this way, both above properties are fulfilled: the program specifies
on which object state it is waiting for; using a single statement (instead of a pair
like wait and notify), the construct is automatically structured, and the condition
explicit.

2.2.3 Activity. Every object class can define its own activity in the class body.
When an object is instantiated, the body is automatically executed in a concurrent
thread.

2.3 Language Design

The design of Active Oberon was influenced by the experiences made with Object
Oberon and Oberon-2. We follow the Object Oberon notation for declaring classes
and methods, because we think it is more expressive than the one in Oberon-2:
methods belong to the class scope and therefore they must be declared there; this
way, other methods and fields belonging to the record scope can be accessed without
explicit qualifier. Protection against concurrent access through the EXCLUSIVE
modifier is easier to read if the methods are declared in the same scope. Active
Oberon departs from the Object Oberon design, in that records are generalized to
be both classes and records, instead of letting classes and records co-exist in the
same system. Another important difference is the decision to let the compiler handle
forward references. The syntax of Object Oberon and Oberon-2 was designed to
simplify the compiler construction, whereas we chose to simplify the programmer’s
task by avoiding the needless redundancy of forward declarations and declarations,
leaving it to the compiler to handle them.

Java [Gosling et al. 1996] and C# [Microsoft 2001] share some similarities with
Active Oberon. They are both object-oriented languages stemming from the im-
perative language world, and the concurrency protection mechanism with object
instance bound monitors is the same. On the other hand, they both put the accent
on the object-orientation in such an extreme manner, that class methods and class
fields seem just special cases of the instance fields and methods, because they be-
long to a class namespace. Furthermore, Java has no support at all for statically
allocated structures: everything is dynamic, even user-defined constant arrays; for
this reason, to perform at an acceptable speed, Java programs must rely on com-
plicated and expensive compiler optimizations. All languages in the Oberon family
treat modules and classes as orthogonal concepts, each has its own scope; the mod-
ule semantics is different from a class’ semantics as shown in [Szyperski 1992] 1:

1as a comparison, B. Meyer advocates exactly the opposite [Meyer 1997]
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modules group static components and related implementations, and provide a de-
ployment and structuring primitive. In fact, Java and C# had to introduce concepts
like packages, namespaces and assemblies, that de facto reintroduce modules with
just another name. We think that static structures and modules still have a very
valid reason to be part of a programming language.

The AWAIT statement was proposed and investigated in [Brinch Hansen 1972]
who showed its conceptual simplicity and elegance, but also thought it would be
impossible to implement it efficiently. We repropose it in Active Oberon, with the
conviction that it is a real improvement compared with signals and semaphores, be-
cause of the unification and clarity it brings; it becomes particularly obvious in an
object-oriented programming style, where signals and semaphores are completely
inappropriate because of their unstructured use, as they can be inserted arbitrarily
in a program. Pieter Muller’s thesis [Muller 2002] proves, that with the appro-
priate restrictions, AWAIT can be implemented efficiently. The language Ada 95
[International Organization for Standardization 1995] has also a construct called
barriers, which is semantically very similar to Active Oberon’s AWAIT, although
with a coarser procedure-width granularity.

Concurrent Oberon was a first attempt to provide concurrency in an Oberon
system. It was done through a specialized API defining a Thread type and functions
to create, stop and resume execution. Protection was achieved through a single
global system lock. There was no provision for a synchronization primitive. This
model is too weak to support Active Oberon, because locks and synchronization
are tightly bound (when synchronization is performed, locks are released), and the
locking mechanism is too coarse; a single lock would make a multiprocessor-based
system—where many threads run at the same time—useless.

2.4 General Remarks

Components are the a technique for coping with programming-in-the-large problems
that reach across subsystems boundaries. Programming languages have undergone
many changes to address the evolution in the scope of the problem to be solved.
Structured programming tried to make the implementation of algorithms easier;
Abstract Data Structures addressed the combination of data structures in a first
step toward programming-in-the-large; then came object orientation, which im-
proved the way to model systems; now we have component frameworks to combine
software systems together.

This shows that, where components are used, the implementation of the internals
can be done using object orientation, and the implementation of the single objects
and deployment units is done using the concepts of structured programming and
typing. Since each paradigm comes with additional costs for the augmented flexi-
bility, the choice of the implementation technique is driven by the trade-off between
efficiency and generality. In theory, nothing speaks against the use of components
everywhere and this would make sense because it is the most generic approach and
can be considered a generalization of the other paradigms; only the practical impact
on program efficiency can be used as an argument for using the other techniques.

For this reason, we think that all these paradigms have their place and should co-
exist in a multi-purpose language, as the language may be used to address problems
of different size and scope.
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The step taken in Oberon.Net [Gutknecht 2001a] to completely discard sub-
classing and to offer only definitions is very courageous because it only relies on the
most general concept in the language, and all others are shown to derive from it
(although by removing them, a comparison is not possible anymore). The cost of
using only interface calls instead of method calls should be investigated; we think
this will not limit the applications written with Oberon.Net in any way, as the
language will not be used for low-level time-critical system implementation (the
.Net platform is already implemented). On the other hand, Active Oberon has to
address this problem, as the whole Aos kernel is implemented using it, and efficiency
is an issue there.

The design objectives of the Active Oberon’s extension were to generalize the
language in a way that a) the new concepts would fit into the language, and b) the
old concepts would become special cases of the new ones. Generalization is a very
useful tool, because the language is enriched with more expressive tools, whereas
the complexity of the language does not grow much: an old concept is substituted
by a new one that is richer and more powerful. The same process is well known in
other sciences like physics, where sometimes a new law unifies a couple of old ones.
The new, unique law precisely describes the physical world and removes the old
ones, now superseded. Even if the new law is more complex than the old laws, the
simplification due to the use of only one law instead of many has a beneficial effect.
Computer science often is confronted with the desire to add as many features as
possible without trying to generalize the currently available ones, which raises the
complexity of many systems to an intolerable level. Generalization permits to add
features without increasing complexity and thus allows to create bigger and more
powerful systems.

3. OBJECT ORIENTED EXTENSIONS

3.1 Pointer to Anonymous Record Types

TYPE
(* examples of pointer to record types *)

(* pointer to named record type *)
Tree = POINTER TO TreeDesc;
TreeDesc = RECORD key: INTEGER; l, r: Node END;

(* pointer to anonymous record types *)
Node = POINTER TO RECORD key: INTEGER; next: Node END;
DataNode = POINTER TO RECORD (Node) data: Data END;
DataTree = POINTER TO RECORD (Tree) data: Data END;

The types Node and DataNode are pointers to anonymous record types; Tree is
a pointer to named record type.

These types can only be dynamically instantiated (with NEW), no static instance
is possible; this is enforced by the fact that the record type is anonymous and it is
not possible to declare a variable having that type.

Both RECORD and POINTER TO RECORD types are allowed as base types of pointer
to anonymous record type; a record type cannot extend a pointer to an anonymous
record, thus preserving the property of allowing only dynamic instances.

3.2 Object Types

TYPE
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(* object types *)
DataObj = OBJECT VAR data: Data; l, r: DataObj END DataObj;

The type DataObj is an object type.
The type OBJECT has a syntax different from the POINTER TO RECORD type; it

must match the [ DeclSeq ] Body production instead of the FieldList produc-
tion. This implies that procedures can be declared inside an object type. We call
them methods or type-bound procedures.

Only an object type can extend another object type. Object types must be
dynamically instantiated with NEW, subject to the rules imposed by initializers
(Section 3.4).

3.3 Type-bound Procedures

TYPE
Coordinate = RECORD x, y: LONGINT END;
VisualObject = OBJECT

VAR next: VisualObject;

PROCEDURE Draw*; (*draw this object*)
BEGIN HALT(99); (*force extensions to override this method*)
END Draw;

END VisualObject;

Point = OBJECT (VisualObject)
VAR pos: Coordinate;

PROCEDURE Draw*; (*override Draw method declared in VisualObject*)
BEGIN MyGraph.Dot(pos.x, pos.y)
END Draw;

END Point;

Line = OBJECT (VisualObject)
VAR pos1, pos2: Coordinate;

PROCEDURE Draw*;
BEGIN MyGraph.Line(pos1.x, pos1.y, pos2.x, pos2.y)
END Draw;

END Line;

VAR
objectRoot: VisualObject;

PROCEDURE DrawObjects*;
VAR p: GraphObject;
BEGIN

(* draw all the objects in the list *)
p := objectRoot;
WHILE p # NIL DO p.Draw; p := p.next END;

END DrawObjects;

Procedures declared inside an object are called type-bound procedures or methods.
Methods are associated with an instance of the type and operate on it; inside a
method implementation, if another method is visible using the Oberon scope rules,
it can be accessed without qualification.

A method can overwrite another method of the same name inherited from the
base type of the record, but it must have the same signature. The visibility flag is
part of the signature.

Note: We decided to declare the methods in a object scope, because they

belong to the record scope and can only be accessed through record instances.

This simplifies the method declaration (no receiver, as in Oberon-2 [Mössenböck
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and Wirth 1991]) and the access to the fields and methods following the well-

known Oberon scoping rules. We were aware that cyclic references would be

a problem (i.e. whenever two object types mutually refer to each other), but

considered the conceptual elegance of the language more important. The so-

lution to the problem is a relaxation of the visibility rules that allows forward

references of symbols declared later in the source text (section 5.1). An alter-

native would have been to extend the forward declarations to describe whole

types (as in Object Oberon [Mössenböck et al. 1989]). We discarded this so-

lution because of the unnecessary redundancy it introduces in the code, and

we delegate the problem to the compiler instead.

Given an object instance o of type T with type-bound procedures P and Q, o.P

is the call to the method P in the context of o. Inside any method of T, another
method can be called with Q (no specification of the self object is required). A
method P can call the method it overrides in its superclass with the notation P↑.
Supercalls are legal only inside a method.

3.4 Initializers

A method tagged with & is an object initializer. This method is automatically
called when an instance of the object is created. An object type may have at most
one initializer. If present, it is always public, and can be called explicitly, like a
method; if absent, the initializer of the base type is inherited. An initializer can
have a signature differing from the inherited initializer from the base object type,
in which case it must have a different name too.

If an object type T has or inherits an initializer P with signature (p0: T0; .... pn:
Tn), then the instantiation of a variable o:T by NEW requires the parameters needed
by the initializer: NEW(o, p0, ..., pn). The initializer is executed atomically
with NEW.

Note: The optional initializer allows the parameterization of a type. In par-

ticular, it is very useful when working with active objects, because the instance

parameterization must be done before the activity is started. To be honest,

we don’t really like this notation, but it is the only one we could imagine that

would fit into the language without changing it.

TYPE
Point = OBJECT (VisualObject)

VAR pos: Coordinate;

PROCEDURE & InitPoint(x, y: LONGINT);
BEGIN pos.x := x; pos.y := y
END InitPoint;

END Point;

PROCEDURE NewPoint(): Point;
VAR p: Point;
BEGIN NEW(p, x, y); (*calls NEW(p) and p.InitPoint(x, y) *)

RETURN p
END NewPoint;

3.5 SELF

The keyword SELF can be used in any method or any procedure local to a method
of an object. It has the object type and the value of the current object instance
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the method is bound to. It is used to access the object whenever a reference to it
is needed or to access a record field or method when shadowed by other symbols,
i.e. fields that are hidden by a local variable with the same name.

TYPE
ListNode = OBJECT

VAR data: Data; next: ListNode;

PROCEDURE & InitNode (data: Data);
BEGIN

SELF.data := data; (* initialize object data *)
next := root; root := SELF (* prepend node to list *)

END InitNode;
END ListNode;

VAR
root: ListNode;

3.6 Delegate Procedure Types

TYPE
MediaPlayer = OBJECT

PROCEDURE Play; .... play a movie .... END Play;
PROCEDURE Stop; .... stop movie .... END Stop;

END MediaPlayer;

ClickProc = PROCEDURE {DELEGATE};
Button = OBJECT

VAR
onClick: ClickProc;
caption: ARRAY 32 OF CHAR;

PROCEDURE OnClick;
BEGIN onClick END OnClick;

PROCEDURE & Init(caption: ARRAY OF CHAR; onClick: ClickProc);
BEGIN SELF.onClick := onClick; COPY(caption, SELF.caption)
END Init;

END Button;

PROCEDURE Init(p: MediaPlayer);
VAR b0, b1, b2: Button;
BEGIN

(* Reboot -> call system reboot function *)
NEW(b0, "Reboot", System.Reboot);

(* MediaPlayer UI: bind buttons with player instance *)
NEW(b1, "Play", p.Play);
NEW(b2, "Stop", p.Stop);

END Init;

Delegate types are similar to procedure types; they are compatible to both meth-
ods and procedures, while procedure types are only compatible with procedures.

Delegate procedure types are annotated with the DELEGATE modifier. Both meth-
ods and procedures can be assigned to a delegate. Given a variable d with delegate
type t , o an object instance, and M a method bound to o, it is allowed to assign
o.M to d if the method M and t have the same signature. The object self-reference
is omitted from the procedure type signature. Whenever d is called, the assigned
object o is implicitly passed as self-reference. Assignment and call of procedures
remains compatible with the Oberon definition.
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3.7 Definitions

A Definition is a syntactic contract2 defining a set of method signatures. A def-
inition D0 can be refined by a new definition D1, which will inherit all methods
declared in D0. Definitions and their methods are globally visible. An object
can implement one or more definitions, in which case it commits itself to give an
implementation to all the methods declared in the definitions.

DEFINITION Runnable;
PROCEDURE Start;
PROCEDURE Stop;

END Runnable;

DEFINITION Preemptable REFINES Runnable;
PROCEDURE Resume;
PROCEDURE Suspend;

END Preemptable;

TYPE
MyThread = OBJECT IMPLEMENTS Runnable;

PROCEDURE Start;
BEGIN .... END Start;

PROCEDURE Stop;
BEGIN .... END Stop;

END MyThread;

The keyword IMPLEMENTS is used to specify the definitions implemented by
an object type. An object type can implement multiple definitions.

Definitions can be thought to be additional properties that a class must have,
but that are orthogonal to the object type hierarchy. A object’s method can be
invoked through the definition, in which case the run-time checks if the object
instance implements the definition and then invokes the method; if a definition is
not implemented by the object instance, a run-time exception occurs.

PROCEDURE Execute(o: OBJECT; timeout: LONGINT);
BEGIN

Runnable(o).Start;
Delay(timeout);
Runnable(o).Stop;

END Execute;

4. CONCURRENCY SUPPORT

4.1 Active Objects

The declaration of an object type may include a StatBlock, called the object body.
The body is the object’s activity, to be executed whenever an object instance is
allocated after the initializer (if any) completed execution; the object body is anno-
tated with the ACTIVE modifier. At allocation, a new process is allocated to execute
the body concurrently; the object is called an active object.

If the ACTIVE modifier is not present, the body is executed synchronously; NEW
returns only after the body has terminated execution.

2[Beugnard et al. 1999] describes four levels of contracts: 1. syntactic contracts (type systems),

2. behavioral contracts (invariants, pre- and post-conditions), 3. synchronization contracts, 4.

quality of service contracts
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The system holds an implicit reference to an active object as long as the activity
has not terminated to prevent garbage collection of the object. The object can live
longer than its activity.

TYPE
(*define the object and its intended behavior*)
Object = OBJECT

BEGIN {ACTIVE} (*object body*)
... do something ...

END Object;

PROCEDURE CreateAndStartObject;
VAR o: Object;
BEGIN

... NEW(o); ...
END CreateAndStartObject;

The active object activity terminates whenever the body execution terminates.
As long as the body executes, the object is kept alive (i.e. cannot be garbage
collected). After that, the object becomes a passive one, and will be collected
according to the usual rules.

4.2 Protection

A Statement Block is a sequence of statements delimited by BEGIN and END. It can
be used anywhere like a simple statement. It is most useful when used with the
EXCLUSIVE modifier to create a critical region to protect the statements against
concurrent execution.

PROCEDURE P;
VAR x, y, z: LONGINT;
BEGIN

x := 0;
BEGIN

y := 1
END;
z := 3

END P;

An object can be viewed as a resource and various activities may potentially
compete for using the object or for exclusive access to the facilities it provides; in
such cases some kind of access protection is essential. Our protection model is an
instance-based monitor.

(* Procedures Set and Reset are mutually exclusive*)
TYPE

MyContainer = OBJECT
VAR x, y: LONGINT; (* Invariant: y = f(x) *)

PROCEDURE Set(x: LONGINT);
BEGIN {EXCLUSIVE} (* changes to both x and y are atomic *)

SELF.x := x; y := f(x)
END Set;

PROCEDURE Reset;
BEGIN

...
BEGIN {EXCLUSIVE} (* changes to both x and y are atomic *)

x := x0; y := y0;
END;
....

END Reset;
END MyContainer;
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Every object instance is protected and the protection granularity is any state-
ment block inside the object’s method, ranging from a single statement to a whole
method. A statement block can be protected against concurrent access by annotat-
ing it with the modifier EXCLUSIVE. Upon entering an exclusive block, an activity
is preempted as long as another activity stands in an exclusive block of the same
object instance.

An activity cannot take an object’s lock more than once, re-entrancy is not
allowed.

Every module is a special singleton instance object, thus its procedures can also
be protected. The scope of protection is the whole module, like in a monitor [Hoare
1974].

Note: Only the EXCLUSIVE locks are implemented: SHARED locks (as in

[Gutknecht 1997]) can be implemented using EXCLUSIVE locks and are thus

not a basic concept. They are very seldom used and don’t justify the added

complexity in the language and its implementation. See Appendix A.1 for an

implementation of SHARED locks.

Note: Lock re-entrancy is not supported because it is conceptually unclear

(see [Szyperski 1998, section 5.9]) and expensive to handle correctly; it is

not really needed, since it is possible to design the program to work without

using it. Re-entrant locks can be implemented using non re-entrant locks (see

Appendix A.3)

4.3 Synchronization

TYPE
Synchronizer = OBJECT

awake: BOOLEAN

PROCEDURE Wait;
BEGIN {EXCLUSIVE} AWAIT(awake); awake := FALSE
END Wait;

PROCEDURE WakeUp;
BEGIN {EXCLUSIVE} awake := TRUE
END WakeUp;

END Synchronizer;

The built-in procedure AWAIT is used to synchronize an activity with a state of the
system. AWAIT can take any boolean condition; the activity is allowed to continue
execution only when condition is true. While the condition is not established, the
activity remains suspended ; if inside a protected block, the lock on the protected
object is released, as long as the activity remains suspended (to allow other activities
to change the state of the object and thus establish the condition); the activity is
restarted only if the lock can be taken.

The system is responsible for evaluating the conditions and for resuming sus-
pended activities. The conditions inside an object instance are re-evaluated when-
ever some activity leaves a protected block inside the same object instance. This
implies that changing the state of an object outside a protected block won’t have
the conditions re-evaluated.

When several activities compete for the same object lock, the activities whose
conditions are true are scheduled before those that only want to enter a protected
region.
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Name Argument Type Result Type Function

SHORT(x) HUGEINT LONGINT identity (truncation possible)

LONG(x) LONGINT HUGEINT identity

ENTIERH(x) real type HUGEINT largest integer not greater than x

Table I. New Type Conversion Procedures

Appendix A.6 shows the synchronization inside a shared buffer.

Note: Synchronization depends on the object state, e.g waiting for some

data to be available or the state to change. The object is used as container

for the data and every access is done through protected methods or blocks.

We assume that every time a protected block is accessed, the state of the

object has changed; thus the condition is only re-evaluated at that time. This

implies that changing the state of an object without protecting it won’t have

the condition re-evaluated. To force re-evaluation of the conditions in one

object, an empty protected method can be called or protected block entered.

5. OTHER LANGUAGE EXTENSIONS

This section describes a few minor changes made to better integrate the extensions
into the language.

5.1 Declaration sequence and forward references

In Active Oberon, the definition scope of a symbol ranges over the whole block
containing it. This implies that a symbol can be used before being declared, and
that names are unique inside a scope.

5.2 HUGEINT

The 64-bit signed integer type HUGEINT has been added to the language. It fits
into the numeric type hierarchy as follows:

LONGREAL ⊇ REAL ⊇ HUGEINT ⊇ LONGINT ⊇ INTEGER ⊇ SHORTINT

Table I shows the new conversion functions added for HUGEINT.
No new constant definition is needed; constants are typed according to their

value.

5.3 Untraced Pointers

Untraced pointers are pointers that are not traversed by the garbage collector. A
structure or object referenced only through an untraced pointer may be collected
at any time.

Untraced pointers are defined using the UNTRACED modifier.

TYPE Untraced = POINTER {UNTRACED} TO T;

5.4 IA32 Specific Additions

The functions in Table II have been added to the Intel IA32 version of the compiler.
The PUTx and GETx have been added for security sake, to cope with untyped

constants.
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Name Function

PUT8(adr: LONGINT; x: SHORTINT) Mem[adr] := x

PUT16(adr: LONGINT; x: INTEGER)

PUT32(adr: LONGINT; x: LONGINT)

PUT64(adr: LONGINT; x: HUGEINT)

GET8(adr: LONGINT): SHORTINT RETURN Mem[adr]

GET16(adr: LONGINT): INTEGER
GET32(adr: LONGINT): LONGINT

GET64(adr: LONGINT): HUGEINT

PORTIN(port: LONGINT; x: AnyType) x := IOPort(port)

PORTOUT(port: LONGINT; x: AnyType) IOPort(port) := x

CLI disable interrupts

STI enable interrupts

PUTREG/GETREG constants
EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP 32-bit register

AX, BX, CX, DX, SI, DI 16-bit register

AL, AH, BL, BH, CL, CH, DL, DH 8-bit register

Table II. IA32 Version Additions to SYSTEM

5.5 Miscellaneous

A few Oberon-2 extensions have been adopted in Active Oberon:

—ASSERT

—FOR

—read-only export

—dynamic arrays

Pointer variables are automatically initialized to NIL.

6. INTEROPERABILITY ADDITIONS

Supporting interoperability with other languages requires the ability to access and
use their features in Oberon. These extensions are not defined in the language,
but are implemented in the compiler ad-hoc. We use the modifier syntax to enable
these features in the compiler whenever needed.

The OVERLOADING modifier enables overloading in a module. Procedures with
the same name can be declared in a block, as long as their respective signatures
differs. Procedure calls are resolved according to the parameters3.

3This concession does not imply that we agree with overloading. We consider overloading a bad
feature to avoid, and are considering an alternative implementation avoiding overloading along

the lines of [Meyer 1999]
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A. SYNCHRONIZATION EXAMPLES

A.1 Readers and Writers

MODULE ReaderWriter;

TYPE

RW = OBJECT

(* n = 0, empty *)

(* n < 0, n Writers *)

(* n > 0, n Readers *)

VAR n: LONGINT;

PROCEDURE EnterReader*;

BEGIN {EXCLUSIVE}

AWAIT(n >= 0); INC(n)

END EnterReader;

PROCEDURE ExitReader*;

BEGIN {EXCLUSIVE}

DEC(n)

END ExitReader;

PROCEDURE EnterWriter*;

BEGIN {EXCLUSIVE}

AWAIT(n = 0); DEC(n)

END EnterWriter;

PROCEDURE ExitWriter*;

BEGIN {EXCLUSIVE}

INC(n)

END ExitWriter;

PROCEDURE & Init;

BEGIN n := 0

END Init;

END RW;

END ReaderWriter.

The Readers - Writers paradigm regulates the data access in a critical section.
Either a single Writer (activity changing the state of the object) or many Readers
(activities that don’t change the state of the object) are allowed to enter the critical
section at a given time.
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A.2 Signals

TYPE

Signal* = OBJECT

VAR

in: LONGINT; (*next ticket to assign*)

out: LONGINT; (*next ticket to service*)

(* entries with (out <= ticket < in) must wait *)

PROCEDURE Wait*;

VAR ticket: LONGINT;

BEGIN {EXCLUSIVE}

ticket := in; INC(in); AWAIT(ticket - out < 0)

END Wait;

PROCEDURE Notify*;

BEGIN {EXCLUSIVE}

IF out # in THEN INC(out) END

END Notify;

PROCEDURE NotifyAll*;

BEGIN {EXCLUSIVE}

out := in

END NotifyAll;

PROCEDURE & Init;

BEGIN in := 0; out := 0

END Init;

END Signal;

Signal implements signaling primitives in Active Oberon, similar to those of
Java and Modula-2. It uses a slightly modified ticket-algorithm. Like in some
stores, every customer receives a numbered ticket, to ensure that the customers are
serviced in order of arrival. This algorithm handles the wrap-around of in and out

indexes too.
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A.3 Re-entrant Locks

ReentrantLock* = OBJECT

VAR

lockedBy: PTR;

depth: LONGINT;

PROCEDURE Lock*;

VAR me: PTR;

BEGIN {EXCLUSIVE}

me := AosActive.CurrentThread();

AWAIT((lockedBy = NIL) OR (lockedBy = me));

lockedBy := me;

INC(depth)

END Lock;

PROCEDURE Unlock*;

BEGIN {EXCLUSIVE}

DEC(depth);

IF depth = 0 THEN lockedBy := NIL END

END Unlock;

END ReentrantLock;

The ReentrantLock Object allows to re-lock an object by its owner more than
once. Clients of this object must explicitly use Lock and Unlock instead of tagging
their protected regions with EXCLUSIVE.

Care must be taken, whenever such an object also contains a synchonization
primitive (e.g. wait) whose semantic requires to automatically release the lock,
and to take it again when the thread is resumed. Because another thread may be
resumed prior to the current one, and thus take the lock, the reentrancy counter
must be saved in the current thread state. This is easily achieved using a variable
local to the procedure causing the synchronization (the stack is private to each
thread).

PROCEDURE Wait*;

VAR count: LONGINT;

BEGIN

count := SELF.count;

.. release lock ..

.. suspend thread ..

.. acquire lock ..

SELF.count := count;

END Wait;
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A.4 Binary and Generic Semaphores

MODULE Semaphores;

TYPE

Sem* = OBJECT (* Binary Semaphore *)

VAR taken: BOOLEAN

PROCEDURE P*; (*enter semaphore*)

BEGIN {EXCLUSIVE}

AWAIT(~taken); taken := TRUE

END P;

PROCEDURE V*; (*leave semaphore*)

BEGIN {EXCLUSIVE}

taken := FALSE

END V;

PROCEDURE & Init;

BEGIN taken := FALSE

END Init;

END Sem;

GSem* = OBJECT (* Generic Semaphore *)

VAR slots: LONGINT;

PROCEDURE P*;

BEGIN {EXCLUSIVE}

AWAIT(slots > 0); DEC(slots)

END P;

PROCEDURE V*;

BEGIN {EXCLUSIVE}

INC(slots)

END V;

PROCEDURE & Init(n: LONGINT);

BEGIN slots := n

END Init;

END GSem;

END Semaphores.

The well-known synchronization primitive by Dijkstra [Dijkstra 1968]. Note that
the ability to implement semaphores shows that the Active Oberon model is also
a synchronization primitive and is powerful enough to support protection and syn-
chronization of concurrent processes.
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A.5 Barrier

MODULE Barriers; (** prk/pjm 12.6.97 **)

(*

A barrier is used to synchronize N activities together.

*)

TYPE

Barrier = OBJECT

VAR n, N: LONGINT;

PROCEDURE Enter*;

VAR i: LONGINT;

BEGIN {EXCLUSIVE}

i := n DIV N;

INC(n);

AWAIT (i < n DIV N)

END Enter;

PROCEDURE & Init (nofProcs: LONGINT);

BEGIN

N := nofProcs; n := 0

END Init;

END Barrier;

END Barriers.

Barriers are used to synchronize activities together. If activities are defined as

Pi = Phasei,0;Phasei,1; .....Phasei,n

then the barrier is used to ensure that all activities will complete Phase−i, j before
starting Phasei,j+1. One thread of execution would look like this:

FOR j := 0 TO N DO

Phase(i, j); barrier.Enter

END;
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A.6 Bounded Buffer

MODULE Buffers;

CONST

BufLen = 256;

TYPE

(* Buffer- First-in first-out buffer *)

Buffer* = OBJECT

VAR

data: ARRAY BufLen OF INTEGER;

in, out: LONGINT;

(* Put - insert element into the buffer *)

PROCEDURE Put* (i: INTEGER);

BEGIN {EXCLUSIVE}

AWAIT ((in + 1) MOD BufLen # out); (*AWAIT ~full *)

data[in] := i;

in := (in + 1) MOD BufLen

END Put;

(* Get - get element from the buffer *)

PROCEDURE Get* (VAR i: INTEGER);

BEGIN {EXCLUSIVE}

AWAIT (in # out); (*AWAIT ~empty *)

i := data[out];

out := (out + 1) MOD BufLen

END Get;

PROCEDURE & Init;

BEGIN

in := 0; out := 0;

END Init;

END Buffer;

END Buffers.

Buffer implements a bounded circular buffer. The methods Put and Get are
protected against concurrent access; they also check that a buffer slot , resp. data,
is available, otherwise the activity is suspended until the until the slot or data
become available.
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B. ACTIVE OBJECT EXAMPLES

B.1 Dining Philosophers

MODULE Philo;

IMPORT Semaphores;

CONST

NofPhilo = 5; (* number of philosophers *)

VAR

fork: ARRAY NofPhilo OF Semaphores.Sem;

i: LONGINT;

TYPE

Philosopher = OBJECT

VAR

first, second: LONGINT;

(* forks used by this philosopher *)

PROCEDURE & Init(id: LONGINT);

BEGIN

IF id # NofPhilo-1 THEN

first := id; second := (id+1)

ELSE

first := 0; second := NofPhilo-1

END

END Init;

BEGIN {ACTIVE}

LOOP

.... Think....

fork[first].P; fork[second].P;

.... Eat ....

fork[first.V; fork[second].V

END

END Philosopher;

VAR

philo: ARRAY NofPhilo OF Philosopher;

BEGIN

FOR i := 0 TO NofPhilo DO

NEW(fork[i]);

NEW(philo[i]);

END;

END Philo.
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B.2 Sieve of Eratosthenes

MODULE Eratosthenes; (* prk 13.09.00 *)

IMPORT Out, Buffers;

CONST

N = 2000;

Terminate = -1; (* sentinel *)

TYPE

Sieve = OBJECT (Buffers.Buffer)

VAR prime, n: INTEGER; next: Sieve;

PROCEDURE & Init;

BEGIN

Init^; (*call Buffer’s (superclass) initializer *)

prime := 0; next := NIL

END Init;

BEGIN {ACTIVE}

LOOP

Get(n);

IF n = Terminate THEN

(* terminate execution *)

IF next # NIL THEN next.Put (n) END;

EXIT

ELSIF prime = 0 THEN

(* first number is always a prime number *)

Out.Int(n, 0); Out.String(" is prime"); Out.Ln;

prime := n;

NEW (next)

ELSIF (n MOD prime) # 0 THEN

(* pass to the next sieve if not a multiple of prime *)

next.Put (n)

END

END

END Sieve;

PROCEDURE Start*;

VAR s: Sieve; i: INTEGER;

BEGIN

NEW(s);

FOR i := 2 TO N-1 DO s.Put (i) END;

s.Put(Terminate) (* use sentinel to indicate completion*)

END Start;

END Eratosthenes.

Eratosthenes implements the sieve algorithm for finding prime numbers. Every
sieve is an active object that passes the all the received values that are not a multiple
of the first received value to the next sieve. The synchronization between sieves is
encapsulated in the buffer.
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C. ACTIVE OBERON SYNTAX

Module = MODULE ident ‘;’ [ImportList] {Definition} {DeclSeq} Body ident ‘.’.

ImportList = IMPORT ident [‘:=’ ident] {‘,’ ident [‘:=’ ident ]} ‘;’.

Definition = DEFINITION ident [REFINES Qualident] {PROCEDURE ident [FormalPars] ‘;’} END ident.

DeclSeq = CONST {ConstDecl ‘;’} | TYPE {TypeDecl ‘;’} | VAR {VarDecl ‘;’} | {ProcDecl ‘;’}.

ConstDecl = IdentDef ‘=’ ConstExpr.

TypeDecl = IdentDef ‘=’ Type.

VarDecl = IdentList ‘:’ Type.

ProcDecl = PROCEDURE ProcHead ‘;’ {DeclSeq} Body ident.

ProcHead = [SysFlag] [‘*’ | ‘&’] IdentDef [FormalPars].

SysFlag = ‘[’ ident ‘]’.

FormalPars = ‘(’ [FPSection {‘;’ FPSection}] ‘)’ [‘:’ Qualident].

FPSection = [VAR] ident {‘,’ ident} ‘:’ Type.

Type = Qualident

| ARRAY [SysFlag] [ConstExpr {‘,’ ConstExpr}] OF Type

| RECORD [SysFlag] [‘(’ Qualident ‘)’] [FieldList] END

| POINTER [SysFlag] TO Type

| OBJECT [[SysFlag] [‘(’ Qualident ‘)’] [IMPLEMENTS Qualident] {DeclSec} Body]

| PROCEDURE [SysFlag] [FormalPars].

FieldDecl = [IdentList ‘:’ Type].

FieldList = FieldDecl {‘;’ FieldDecl}.

Body = StatBlock | END.

StatBlock = BEGIN [‘{’IdentList‘}’] [StatSeq] END.

StatSeq = Statement {‘;’ Statement}.
Statement = [Designator ‘:=’ Expr

| Designator [‘(’ ExprList‘)’]

| IF Expr THEN StatSeq {ELSIF Expr THEN StatSeq}[ELSE StatSeq] END

| CASE Expr DO Case {‘|’ Case} [ELSE StatSeq] END

| WHILE Expr DO StatSeq END

| REPEAT StatSeq UNTIL Expr

| FOR ident ‘:=’ Expr TO Expr [BY ConstExpr] DO StatSeq END

| LOOP StatSeq END

| WITH Qualident ‘:’ Qualident DO StatSeq END

| EXIT

| RETURN [Expr]

| AWAIT ‘(’ Expr ‘)’

| StatBlock

].

Case = [CaseLabels { ‘,’ CaseLabels } ‘:’ StatSeq].

CaseLabels = ConstExpr [‘..’ ConstExpr].

ConstExpr = Expr.

Expr = SimpleExpr [Relation SimpleExpr].

SimpleExpr = Term {MulOp Term}.
Term = [‘+‘|’-’] Factor {AddOp Factor}.

Factor = Designator[‘(’ ExprList‘)’] | number | character | string

| NIL | Set | ‘(’Expr‘)‘|’ ’Factor.

Set = ‘{’ [Element {‘,’ Element}] ‘}’.

Element = Expr [‘..’ Expr].

Relation = ‘=’ | ‘#’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | IN | IS.

MulOp = ‘*’ | DIV | MOD | ‘/’ | ‘&’ .

AddOp = ‘+’ | ‘-’ | OR .

Designator = Qualident { ‘.’ ident | ‘[’ExprList‘]’ | ‘’̂ | ‘(’ Qualident ‘)’ }.

ExprList = Expr {‘,’ Expr}.
IdentList = IdentDef {‘,’ IdentDef}.

Qualident = [ident ‘.’] ident.

IdentDef = ident [‘*‘|’-’].
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