Reflection in Oberon

Christoph Steindl

Department of Computer Science (System Software)
Johannes Kepler University Linz, Austria
steindl@ssw.uni-linz.ac.at

Abstract. We introduce metaprogramming facilities into the Oberon
V4 system. Metaprogramming means that a module can access the struc-
ture of other modules (i.e., procedures, types, run-time data) at run time.
We discuss how type safety can be enforced in an environment with
strong typing. Finally we show how metaprogramming can be used to
implement an easy-to-use database interface and conclude with a com-
parison with other metaprogramming systems for statically-typed pro-
gramming languages.

1 Introduction

In programs we distinguish between the data level and the program level. Vari-
ables are at the data level and can be accessed by the statements of a program.
Modules, types and procedures are at the program level. They serve to structure
a program but they are usually not viewed as data. Sometimes, however, pro-
grams want to inspect the components of other programs at the program level,
for example, in order to answer the following questions:

1. What are the field names of a record type T declared in module M?

2. Which procedures are currently active (e.g., when a run-time trap occurs)?
What are the names, types and values of their variables?

3. Does the caller of the currently executing procedure have a variable named
”x” and if so, what is its type and value?

Questions like these are considered to be on a meta level. They treat modules,
types, and procedures as data. They have to know the structure of this ”data”
in order to access (or modify) their contents. If a programming system supports
questions of this kind we call it a metaprogramming system. If programs can ask
these question also about themselves we call such a system reflective.

The notions of metaprogramming and reflection are common and widely
used in programming languages like Lisp ([McCar60], [Smi82]) and Smalltalk
([GR83]). In Lisp all programs are treated as data. It is possible to inspect their
structure and even to dynamically build new programs (higher order functions)
that can be executed. In Smalltalk types are represented as classes and pro-
cedures as methods of these classes. The structure of a class is described in a
metaclass of which the class is an instance. The metaclass information can again

be accessed and even modified. Many other languages allow metaprogramming
in a similar way (e.g., Self [US87], CLOS [Att89], or BETA [MMNO93]).

The original Oberon system [WiGu89] is a modular operating system based
on the general-purpose programming language Oberon. It offered only a limited
degree of metaprogramming. It provided a module Modules which allowed pro-
grammers - among other things - to inspect information about all loaded mod-
ules. Later a module Types was added, which provided basic information about
record types. However, Types was not documented in the books about Oberon
([Rei91], [WiGu92]). In his dissertation ([Tem94]), J. Templ implemented an
experimental version of Oberon for Sun workstations, which treated modules,
procedures, and record types as data allowing full access to their components.

Metaprogramming and reflection are not widely used in statically typed pro-
gramming languages, although their use might be beneficial, too. One reason
is the need for special language constructs to express the access to meta-level
information. The code accessing meta-level information must be type-checked at
compile time although it will have to work with arbitrary (yet unknown) types
and modules.

We introduce support for metaprogramming and reflection into the Oberon
system not via new language constructs, but via a new library. Together with
the compiler and the dynamic loading facility of the Oberon system it is possible
to construct program fragments at run time, to dynamically load and execute
them.

In the next section, we provide background about metaprogramming and
reflection. In section 3 we introduce our support for metaprogramming and re-
flection. In section 4 we present applications that make use of the new facilities.
In section 5 we compare our approach with other systems, and present our con-
clusions in section 6.

2 Background

In this section we explain the controversy between a rigid, but safe type system
and a system that allows for metaprogramming. We explain what we understand
under introspective, invocational, and intercepting capabilities of a metapro-
gramming system. Furthermore we show to which amount meta-information is
produced by standard Oberon compilers ([Cre90]).

2.1 Roles of the Type System

There is a controversy between a rigid type system and a system that allows for
metaprogramming. The first sacrifices flexibility for increased safety, the latter
increases flexibility.

The type system of a language plays three roles ([Ste+93]):

— it shall facilitate data modelling,
— it shall help detect and avoid errors in programs at compile time, and

— it shall allow efficiency in code generation.

Static type checking verifies type assertions prior to a program’s execution.
Strong typing is a little weaker in that it only requires that all programming
entities be typed before use and that all use be consistent with the type system.
Strong typing ensures that a certain class of errors is cleanly detected and static
typing improves efficiency by removing type checks from run-time code. The
goal of most type systems is to make checking as static and thus as efficient as
possible. However, some type checking cannot be performed statically (especially
with object-oriented programming languages). Some programs will be rejected
by the type checker as being unsafe although they might execute without errors.

Oberon is a general-purpose programming language in the tradition of Pascal
and Modula-2. Its most important features are block structure, modularity, sep-
arate compilation, static typing with strong type checking (also across module
boundaries), and type extension with type-bound procedures.

Metaprogramming introduces much flexibility into a system: problems that
have previously been unsolvable or hard to solve can now be easily solved (e.g.,
automatic persistence of objects). It allows programs that are more interpretative
in their nature, programs that act on arbitrary other programs. Compiling such
programs with static type-checking is apparently difficult, if not impossible.

Within a strongly-typed environment, code accessing meta-level information
must pass type-checking. Nevertheless meta-programs may have to work with
arbitrary types and programs. A generic mechanism must be at hand to access
all possible kinds of types and programs (even those that will be created some
time in the future).

2.2 Introspective, Invocational, and Intercepting Capabilities

The metaprogramming system should provide introspective, invocational, and
intercepting capabilities ([Bra95]).

Introspection allows a program to look into itself, to inspect other programs,
and to obtain information about the current run-time state. It does not allow
the program to perform any changes.

Invocational capabilities allow a program to explicitly call functionality that
is normally hidden in the run-time system, e.g. creation of new objects, dynamic
loading, linking, and unloading of compiled code.

Intercepting capabilities allow a running program to change the behaviour of
language primitives at run time, e.g., object creation and destruction, method
dispatch, and access to simple attributes.

2.3 Reference Information

To implement these capabilities, information that is contained in the symbol ta-
ble during compilation must be accessible at run time. It must be possible to get
information about the type of an object, about its fields, and it must be possible
to get information about the parameters and local variables of procedures.

The compiler ([Cre90]) used in many Oberon environments generates an ob-
ject file and a symbol file out of an Oberon source file using the symbol files of
imported modules in order to get type information about imported items and to
detect changes to the interface of the imported modules. Furthermore a reference
file is generated containing information about the types and procedures defined
in the module. The reference file does not exist as an own file but is appended
to the object file, which reduces the overall number of files. When a module is
loaded, its data and code are loaded into memory, the type descriptors for the
types defined in the module are built and the reference information contained in
the reference section of the object file is loaded into memory as well.

The structure and contents of the reference section can be considered as a
simplified or linearized symbol table. Therefore it contains information about
the fields of record types, information about local variables and parameters of
procedures, and information about global data. An EBNF grammar describing
the contents of the reference section can be found in [StM96].

3 Module Ref

We opted not to extend the programming language Oberon to facilitate metapro-
gramming but to extend the Oberon system by a new module which supports
metaprogramming.

Module Ref can be used to obtain information about the procedures, record
types, and variables of a module. For example, it is possible to access the names,
types and components of these items at run time. For variables it is also possible
to read and write their values.

3.1 Riders

All information is accessible via riders. A rider is a cursor that iterates over
sequences of variables, procedures, types, or other items. The general pattern
for using a rider ris

Ref.Open ... (..., r);
WHILE r.mode # Ref.End DO
r.Next
END
At any time the rider contains information about the item on which it is posi-

tioned. A rider can be opened on data (global variables, local variables, heap)
or on a module’s list of its procedures or record types (see Table 1).

Program data is organised hierarchically, e.g., the stack is a sequence of stack
frames, which are sequences of variables, which may be sequences of record fields
and so on. Table 2 shows the organisation of data.

Table 1.

Opening Riders

global variables|OpenVars(module, r)

sets r to the first global variable of the
module module

local variables |OpenStack(info, r)

sets r to the topmost stack frame

heap OpenPtr(p, r) sets 7 to the first record field or array
element to which p refers
procedures OpenProcs(module, 1) [sets r to the first procedure of the module

OpenProc(pc, 1)

module, or to the procedure containing pc

sets r to the first record type
of the module

record types |OpenTypes(module, r)

Table 2. Organisation of Data

Stack = {Frame}. accessible via OpenStack
Frame = {Variable}.

Variable = simpleVar | RecordVar | ArrayVar.

RecordVar = {Field}.

ArrayVar = {Elem}.

Field = Variable.

Elem = Variable.

Globals = {Variable}. accessible via OpenVars
PointerBase = RecordVar | ArrayVar. accessible via OpenPtr
Procedure = {Proc}. accessible via OpenProcs
Proc = {Variable}. and via OpenProc
Types = {RecordType}. accessible via OpenTypes
RecordType = {Field}.

When a rider is positioned on a composite item it is possible to zoom into this
item and iterate over its elements. For example, to iterate over the variables of
the second frame on the stack (i.e., the variables of the caller of the currently
active procedure) one does the following:

Ref.OpenStack(NIL, 1);
r.Next;
r.Zoom(r)

(* r is on the frame of currently active procedure *)
(* r is on the caller’s frame *)
(* r is on the first variable of the caller’s frame *)

DEFINITION Ref;
IMPORT SYSTEM, Types;

CONST
(* item forms *)
None = 0; Byte = 1; Bool = 2; Char = 3; SInt = 4; Int = 5; LInt = 6;
Real = 7; LReal = §8; Set = 9; String = 10; NilTyp = 11; NoTyp = 12;
Pointer = 13; Procedure = 14; Array = 15; Record = 16; DynArr = 17,
(* item modes *)
End = 0; Var = 1; VarPar = 2; Elem = 3; Fld = 4; Frame = 5;
Proc = 6; Type = T;

TYPE
ProcVar = PROCEDURE;

Rider = RECORD
name: ARRAY 32 OF CHAR;
mode: SHORTINT; (* End .. Type *)
form: SHORTINT;
idx, off, len: LONGINT;
mod: ARRAY 32 OF CHAR;
level: SHORTINT;

PROCEDURE (VAR r: Rider) Next;

PROCEDURE (VAR r: Rider) Zoom (VAR sub: Rider);
PROCEDURE (VAR r: Rider) Adr (): LONGINT;
PROCEDURE (VAR r: Rider) Type (): Types.Type;
PROCEDURE (VAR 1: Rider) SetTo (idx: LONGINT);

PROCEDURE (VAR r: Rider) Read (VAR ch: CHAR);

PROCEDURE (VAR r: Rider) ReadInt (VAR i: INTEGER);
PROCEDURE (VAR r: Rider) ReadProc (VAR p: ProcVar);
PROCEDURE (VAR r: Rider) ReadPtr (VAR p: SYSTEM.PTR);
PROCEDURE (VAR r: Rider) ReadString (VAR str: ARRAY OF CHAR);

PROCEDURE (VAR r: Rider) Write (ch: CHAR);

PROCEDURE (VAR r: Rider) WriteInt (i: INTEGER);
PROCEDURE (VAR r: Rider) WriteProc (p: ProcVar);
PROCEDURE (VAR r: Rider) WritePtr (p: SYSTEM.PTR);
PROCEDURE (VAR r: Rider) WriteString (str: ARRAY OF CHAR);

END ;
ExceptionInfo = ...; (* machine state: system dependent *)

PROCEDURE OpenVars (mod: ARRAY OF CHAR; VAR r: Rider);
PROCEDURE OpenStack (inf: ExceptionInfo; VAR r: Rider);
PROCEDURE OpenPtr (p: SYSTEM.PTR; VAR r: Rider);
PROCEDURE OpenProcs (mod: ARRAY OF CHAR; VAR r: Rider);
PROCEDURE OpenTypes (mod: ARRAY OF CHAR; VAR r: Rider);
PROCEDURE PC (mod, name: ARRAY OF CHAR): LONGINT;
PROCEDURE OpenProc (pc: LONGINT; VAR r: Rider);

END Ref.

Operations

— OpenVars(mod, 1) sets the rider r to the first global variable of module mod.
— OpenStack(inf, r). If inf = NIL the rider r is set to the stack frame of the
procedure that called OpenStack. If inf # NIL, it describes the machine state
at the time of a run-time exception (trap); the rider r is set to the stack

frame of the procedure in which the trap occurred.

— OpenPtr(p, r) sets the rider r to the first field of the record pointed to by p.

— OpenProcs(mod, r) sets the rider r to the first procedure of module mod.

— OpenTypes(mod,) sets the rider r to the first record type of module mod.

— pc := PC(mod, name) returns the absolute start address of the procedure
name declared in module mod.

— OpenProc(pc, 1) sets the rider r to the procedure that contains the (absolute)
program counter value pc.

— r.Next advances the rider r to the next item (variable, array element, record
field, stack frame, procedure, or record type). If r was already positioned on
the last item, r.mode is set to End.

— a := 1. Adr() returns the address of the current item (variable, parameter,
record field, or array element).

— ¢ := r.Type() returns the type of the current item if this item is of a record
type, otherwise the result is undefined.

— r.Zoom(sub). If ris positioned on a composite item, a new rider sub is set to
the first component of the composite according to Table 3.

— r.SetTo(i). If ris positioned on an element of an array (r.mode = Elem), it
is set to the ith element of that array. If it is positioned on the fields of a
record type T (r.mode = Fld), it is set to the first field of the i-th extension
level of T.

— r.ReadX. If r.mode IN {Var, VarPar, Fld, Elem} and if r (or the rider from
which it was zoomed) was opened with OpenVars, OpenStack or OpenPtr,
the value of the current item can be read with the ReadX procedure that
matches the form of the item (i.e., r.ReadInt if r.form = Int).

— 1. WriteX. If r.mode IN {Var, VarPar, Fld, Elem} and if r (or the rider from
which it was zoomed) was opened with OpenVars, OpenStack or OpenPtr,
the value of the current item can be written with the WriteX procedure that
matches the form of the item.

Table 3. Zooming into Riders

r.mode r.form sub.mode

Var, VarPar, Elem, Fld|Record, Pointer to Record Fld

Var, VarPar, Elem, Fld|Array, DynArr, Pointer to Array or DynArr|Elem

Type — Fld

Proc, Frame — Var or VarPar

4 Applications

We have implemented the following tools using module Ref:

— a post-mortem debugger that is invoked when another program terminates
with a trap. Its responsibility is to show the machine state in a human-
readable form. We show all variables in the same window and expand struc-
tured variables ”in place”. A mechanism for ”zooming” into structures was

already available in the Oberon system in the form of fold elements [M6K096].
We extended the fold elements so that they now include also relevant refer-
ence information.

— showing the global variables of a module: As in the original Oberon system,
the command System.State opens a viewer displaying the global variables of
the specified module with the possibility to zoom into structured variables.

— a heap inspector which displays a bitmap that represents the heap. All blocks
of a desired type are coloured red. By clicking on a block, the information
contained in the block is displayed. Furthermore information about the num-
ber and sizes of objects, the memory space occupied by objects of a specified
type, etc. is displayed.

— a general output module which can be used to facilitate simple output.

— a database interface.

In the following we will explain the usage of the database interface in more detail
(see also [Ste96b]).

4.1 A Database Interface

Databases allow users to perform queries on the stored data. Some databases
even allow queries to be executed from within a program. That means that
the programming language has to be extended so that query statements can
be expressed or that a preprocessor must be used to specify the query in a
preprocessor language.

Using module Ref, one can specify such queries as strings and pass them to
a procedure that analyses the strings and executes the statements described by
them. For example, one can write

conn.Prepare(” CREATE TABLE Persons FOR Person”)
without needing a language extension nor a preprocessor. We implemented a
module ESQL [Ste96a] that provides access to ODBC databases [ODBC94].

DEFINITION ESQL;

CONST
(* return codes *)
InvHandle = -2; Error = -1; Success = (;

SuccessWithInfo = 1; NoDataFound = 100;

TYPE
Connection = POINTER TO ConnectionD;
ConnectionD = RECORD
ret: INTEGER; (* return code of last operation *)
PROCEDURE (c: Connection) Prepare (sqlStr: ARRAY OF CHAR): Statement;
END ;
Statement = POINTER TO StatementD;
StatementD = RECORD
ret: INTEGER; (* return code of last operation *)
conn-: Connection; (* the connection on which the statement is ececuted *)

PROCEDURE (s: Statement
PROCEDURE (s: Statement

(s Execute;
(s

PROCEDURE (s: Statement
(s

Fetch (): BOOLEAN;
IsNull (name: ARRAY OF CHAR): BOOLEAN;

PROCEDURE (s: Statement) SetNull (name: ARRAY OF CHAR);

— — — —

END ;

PROCEDURE Open (source, user, passwd: ARRAY OF CHAR): Connection;

END ESQL.

Types

Connection represents a communication channel between the application and
the database. Requests are issued and responses are returned via this con-
nection. ret indicates the success of the last operation.

Statement represents an SQL statement that has been prepared for execution
via connection conn. ret indicates the success of the last operation.

Operations

conn := Open(source, user, password) opens a connection to the database
with the given user identification and password.

stat := conn.Prepare(s) prepares an SQL statement (specified by the string
s) for execution.

stat. Execute executes the previously prepared SQL statement.

done := stat.Fetch(). If the execution of an SQL statement results in a table
(i-e., a sequence of records), Fetch retrieves one row of the table (i.e., one
record of this sequence) at a time and stores it in the variable(s) specified in
the statement. If there are no more rows to retrieve, done becomes FALSE.
b := stat.IsNull(n) returns TRUE if the variable specified by the name n con-
tains a null value. Null values are special values which indicate that the value
is not valid or present. As this cannot be expressed by a legal value in pro-
gramming languages (e.g., 0 for integer variables, or ”” for string variables),
IsNull is necessary to check for the validity of a value.

stat.SetNull(n) makes the variable specified by the name n contain a null
value.

4.2 Embedded SQL and Oberon

For data transfer between the database and the application, SQL statements use
ordinary Oberon variables. In order to distinguish these variables from names
that are used within the database (e.g. names of tables and columns), they are
preceded by a colon. In the SQL statement

"SELECT firstName FROM Persons WHERE age > :minAge INTO :name”

minAge and name are Oberon variables. minAge is an input variable, and name
is an output variable.

Variables can be either scalar or of a record type. When record variables are
specified, they are implicitly expanded to their fields. The statement

"SELECT * FROM Persons INTO :person”
is therefore equivalent to

"SELECT * FROM Persons INTO :person.firstName, :person.lastName, :person.age”.

We declare the type Person that will be used to represent persons. After opening
the connection, we create a table for the persons that we will insert later on. The
table will consist of as many columns (with appropriate types) as there are fields
in the record type Person. The record type can be qualified with the module in
which the type is declared.

TYPE
Person = RECORD
firstName, lastName: ARRAY 32 OF CHAR; age: INTEGER
END ;
VAR
conn: ESQL.Connection; stat: ESQL.Statement;

BEGIN
conn := ESQL.Open(source, user, password);
stat := conn.Prepare(” CREATE TABLE Persons FOR Person”);
stat.Execute

END

In order to insert data into the table, we prepare an INSERT statement in
which we specify the variables containing the values to be inserted (firstName,
lastName, age). These variables are preceded by a colon (which distinguishes
them from database identifiers for tables and columns). Then we assign values to
the variables and consider null values (i.e., values that should remain undefined).
When we finally execute the statement the values from the variables are taken
and transferred into the database. Note that the statement - once it has been
prepared - can be executed several times with different values.

PROCEDURE Insert;
VAR firstName, lastName: ARRAY 32 OF CHAR,; age: INTEGER;
BEGIN
In.Open;
stat :=
conn.Prepare(”INSERT INTO Persons VALUES (:firstName, :lastName, :age)”);
REPEAT
In.Name(firstName); In.Name(lastName); In.Int(age);
IF firstName = "NULL” THEN stat.SetNull(”firstName”) END ;
IF lastName = "NULL” THEN stat.SetNull(”lastName”) END ;
IF In.Done THEN stat.Execute END
UNTIL ~In.Done
END Insert;

In order to retrieve all persons older than minAge we can use the following
procedure Select. After preparing the SELECT statement and assigning values to
the input variables (in this case minAge), we execute the statement and fetch the
resulting data row by row. As the table is defined for the type Person, every row
is a record of type Person. If we were only interested in the columns firstName
and lastName, we could use a SELECT statement like ?SELECT firstName,
lastName FROM Persons WHERE age >= :minAge INTO :person.firstName,
:person.lastName”.

PROCEDURE Select;
VAR person: Person; minAge: INTEGER;
BEGIN
stat := conn.Prepare
(”SELECT * FROM Persons WHERE age >= :minAge INTO :person”);
In.Open; In.Int(minAge);
stat.Execute;
WHILE stat.Fetch() DO
Out.Ln; Out.String(person.firstName); Out.Char(” 7);
Out.String(person.lastName); Out.String(”, ”);
IF stat.IsNull(” person.age”) THEN Out.String(”NULL”)
ELSE Out.Int(person.age, 0)
END
END
END SelectAll;

Implementation. The analysis of the SQL commands is implemented using
module Ref. Any variable preceded by a colon is looked up in the local scope of
the procedure that issued the SQL statement (the local scope contains the local
variables, as well as the parameters of the procedure). The addresses of such
variables are then passed to the database driver. When processing a ”CREATE
TABLE” statement, the variables’ types are used to generate the expanded SQL
statement with a column for each scalar variable (with type and name).

A minor restriction is that the variables specified in an SQL statement must
exist when the statement is actually executed. Local variables go out of scope
when the procedure returns. Therefore it is not possible to use local variables in
an SQL statement and execute the statement at a moment where these variables
do no longer exist.

5 Comparison

We support introspective capabilities to a high degree. Via the standard modules
Modules and Types, information about loaded modules and their type descriptors
is available. For a description of these modules see [StM96]. We also provide
access to global variables of modules, to variables and parameters of procedures,
to the currently active procedures, and to the fields of record types. When a

rider is positioned and the value over which the rider is positioned shall be read,
run-time checks are performed. Therefore we do not lose type safety, but ensure
type safety at run time. Up to now, we do not restrict access to the exported
interface of the modules but we provide access to all available items, e.g. we
allow access to non-exported global variables, likewise we allow access to local
variables of procedures. The motivation behind this was to extend the scope
of applications (e.g., also to post-mortem debuggers, etc.) which need access to
more than only exported variables.

Invocational capabilities are supported by the standard Oberon system to
a large degree. New objects can be created via module Types, modules can be
loaded on demand via module Modules (they are automatically linked to the
already loaded modules), and modules that are not needed any more can be
freed explicitly. A running program can also invoke the compiler to generate
new object code, which can then be loaded. The linking loader checks whether
the version of the module that shall be loaded is consistent with the versions
of the modules that are already loaded. We do not provide a generic mecha-
nism for the invocation of procedures, i.e. it is not possible to call arbitrary
procedures. Nevertheless it is possible to read procedure variables via a rider
(e.g., r.ReadProc(p)). If the parameter list of the procedure is known at com-
pile time, this procedure variable p can be type-cast to a procedure variable of
the proper type (e.g., handler := SYSTEM.VAL(Display.Handler, p)) and the
procedure can then be invoked via this procedure variable where the compiler
handles the parameter passing (e.g., handler(f, msg)). We admit that this is a
major restriction, but accept it for the sake of simplicity.

Intercepting capabilities are not fully supported up to now. It is possible to
position a rider over data and update the values of the data. Scalar variables,
as well as procedure variables and pointer variables can be updated. Run-time
checks enforce type compatibility of the value and the memory location that
shall be updated. It is not possible to install callback procedures that are called
if an object of a given type is created. Up to now patching the method table is
also not supported, as this is considered dangerous. It is also not possible, to be
notified of access to simple attributes of a record.

There is no run-time overhead if metaprogramming and reflection are not
used. Only when meta-information is needed, it is looked up. But even this
lookup is very efficient, since the reference information is kept in memory and
there is no disk access.

The main source of inspiration for our support for metaprogramming was the
dissertation of J. Templ [Tem94]. He implemented a version of the Oberon Sys-
tem with better support for metaprogramming than our extension to the Oberon
System. In his metaprogramming protocol he provides generic access to objects
in a way similar to ours (actually we provide access to objects in a way similar
to his approach). His work inspired us to use iterators to access arbitrary data
structures. We unified the iterators to one type (Rider) which serves as a Rider,
ArrayRider, RecordRider, or ActivationRider in his terminology. We also unified
the way how the iterators are opened by the Zoom operation. Therefore we think

to provide a more orthogonal approach but with some restrictions that did not
exist in his system. In particular he provides a mechanism to control procedure
activations. Arbitrary procedure objects can be evaluated with arbitrary param-
eters (PROCEDURE Euval (proc: Procedure; VAR par: Parameters)). Therefore
it is necessary to tag procedures (like ordinary objects in Oberon are tagged, i.e.,
each object has a reference to its type descriptor). Every procedure has its own
parameter record with the procedure specific parameters. Access to these param-
eters is available via GetParams(p, params). OpenParams(paramRider, params)
can then be used to iterate over the parameters and set the input parameters
accordingly. Finally Call(proc, params) calls the procedure proc with the param-
eters params. He also introduces the notion of active procedures, i.e. procedures
which have a message handler installed in order to react to messages sent to
them. A generic message handler would simply evaluate the procedure object
with the parameters of the message, but more specific message handlers can fil-
ter messages, can access and modify parameters before and after the evaluation.

The metaprogramming support in Oberon/F [Pou95] apparently also stems
from the dissertation of J. Templ. In contrast to our approach, Oberon/F re-
stricts access to public information, i.e. it does not allow access to non-exported
items of a module. They guarantee safety because their metaprogramming sup-
port does not allow to change data which is not exported as modifiable. It only
allows to do with a module what could also be done by a normal client module
- but in a more dynamic way. It allows inspection and modification of data de-
pending on run-time decisions, without static import of the inspected or modified
module. In Oberon/F it is not possible to implement a post-mortem debugger
building on the metaprogramming support as it is not possible to access the pro-
cedure activation stack. Furthermore it is not possible to inspect the variables
of procedures or the types defined by a module. As far as we know, Oberon/F
only provides access to global data with the possibility to zoom into the data
structures at run time.

The meta-level architecture for the BETA language ([Bra95], [MMN93]) uses
language extensions so that the compiler can type-check code that exploits the
meta-information. But in order to perform the really interesting tasks like au-
tomatic persistence of objects, unconstrained attribute references are necessary
which cannot be type-checked at compile time. The introspective capabilities
seem to be quite powerful and comparable to the capabilities provided by our
system. The invocational capabilities include replacement of code objects. We
did not support this (which could be done by patching the method table of
type descriptors), as we consider this to be dangerous. All the other aspects of
invocational capabilities of the BETA meta-level architecture are equally cov-
ered by our system. The intercepting capabilities are more powerful than in our
system. It is possible to register a callback procedure to trace instantiation of
objects of a given type. Tracing of garbage collected objects is also possible.
This is supported in our system by the mechanism of finalization (see [Tem94]
for more details), where an object can register a procedure that will be called
if the object is about to being garbage collected. Furthermore method dispatch

and simple attribute access can be intercepted. We did not include this into our
metaprogramming system as we consider patching the method table dangerous
and because intercepting access to simple attributes can only be done at a high
cost. Nevertheless work is going on in the area of safe and transparent remote
method invocation (see [Hof96] for details).

CLOS [Kiz+91] includes a comprehensive meta-level interface, which allows
the meta-level programmer to inspect and change several primitives of the basic
programming language, including redefinition of slot access, multiple inheritance
semantics, and replacement of meta-classes. We do not reach the same expres-
sive power as CLOS, but we found many applications where our support for
metaprogramming was sufficient.

C++ [Str94] has the concept of pointers to members which are basically
offsets of attributes within objects. These pointers to members can be applied
to objects to get the value of the member they are declared to point to. How-
ever, access to run-time type information is only rudimentary supported via the
dynamic_cast and typeid; garbage collection is only rarely used in C++ envi-
ronments. Therefore we do not consider C++ to encourage reflection.

6 Conclusions

We designed and implemented support for metaprogramming and reflection for
the interactive environment of the Oberon system. We made use of dynamic
linking and loading, of run-time invocation of the compiler and of the reference
information that is generated by the compiler. Our system does not incur any
run-time overhead, but still provides for powerful metaprogramming. As there
are already tools for profiling, the need for additional intercepting capabilities
(interception of method invocation) is not as big as in other systems. Other prob-
lems like type-orthogonal persistence ([Kna96]) and distributed object systems
([Hof96]) are currently solved at the department, partly based on the metapro-
gramming system.

As metaprogramming systems are still rare for strongly-typed systems, we
believe that we can contribute that the concepts of metaprogramming are spread
among the undergraduate students that have to use our version of the Oberon
system in programming courses. We hope that some of them will recognise and
exploit the possibilities of metaprogramming and reflection.

Acknowledgements

We wish to thank J. Templ and H. M6ssenbdck and all other members of the de-
partment for fruitful discussions and hints. Further thanks go to the anonymous
referees that supplied interesting comments.

References

[Att89] G. Attardi et al.: Metalevel Programming in CLOS. Proceedings of the
ECOOP’89 conference. Cambridge University Press, 1989.

[Bra95] S. Brandt, R.W. Schmidt: The Design of a Meta-Level Architecture for the
BETA Language.

[Cre90] R. Crelier: OP2 - A portable Oberon compiler. Computer Science Report 125,
ETH Zurich, 1990.

[GR83] A. Goldberg, D. Robson: Smalltalk-80, the language and its implementation.
Addison-Wesley, 1983.

[Hof96] M. Hof: Connecting Oberon. Johannes Kepler University Linz, System Soft-
ware, Technical Report 7, April 1996.

[Kiz+91] G. Kiczales, J. Rivieres, D. Bobrow: The Art of the Metaobject Protocol.
MIT Press, 1991.

[Kna96] M. Knasmiiller: Adding Persistence to the Oberon System. Johannes Kepler
University Linz, System Software, Technical Report 6, January 1996.

[McCar60] J. McCarthy: Recursive functions of symbolic expressions and their com-
putation by a machine. Communications of the ACM 3 (4), 1960, 184-195.

[MMN93] O. Lehrmann-Madsen, B. Moller-Pedersen, K. Nygaard: Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley, 1993.

[M6Ko96] H. Méssenbock, K. Koskimies: Active Text for Structuring and Understand-
ing Source Code. To appear in Software - Practice and Experience, 1996.

[ODBC94] Microsoft Open Database Connectivity Software Development Kit Version
2.0, Microsoft Press, 1994.

[Pou95] D. Pountain. The Oberon/F System, Byte, January 1995.

[Rei91] M. Reiser: The Oberon System. User Guide and Programmer’s Manual.
Addison-Wesley, 1991.

[Smi82] B. C. Smith: Reflection and Semantics in a Procedural Language. PhD thesis,
M.IT., 1982.

[Ste96a] C. Steindl: Entwurf und Implementierung einer Stiicklistenverwaltung mittels
einer Client/Server-Datenbank. Diploma thesis, University Linz, 1996.

[Ste96b] C. Steindl: Accessing ODBC Databases from Oberon Programs. Johannes
Kepler University Linz, System Software, Technical Report 9, Dezember 1996.
[StM96] C. Steindl, H. Méssenbock: Metaprogramming Facilities in Oberon for Win-
dows and Power Macintosh. Johannes Kepler University Linz, System Software,

Technical Report 8, July 1996.

[Ste+93] D. Stemple, R. Morrison, G.N.C. Kirby, R.C.H. Connor: Integrating Reflec-
tion, Strong Typing and Static Checking Proc. 16th Australian Computer Science
Conference, Brisbane, Australia (1993), pp. 83-92.

[Str94] M.A. Ellis, B. Stroustrup: The Annotated C++ Reference Manual. AT&T Bell
Laboratories, Murray Hill, New Jersey, 1994.

[Tem94] J. Templ: Metaprogramming in Oberon. Dissertation, ETH Zurich, 1994.

[US87] D. Ungar, R. B. Smith: SELF: The Power of Simplicity. Proceedings of the
OOPSLA’87 conference, Orlando, SIGPLAN Notices 22 (12), 1987.

[WiGu89] N. Wirth, J. Gutknecht: The Oberon System. Software-Practice and Expe-
rience, 19(9), 1989, 857-893.

[WiGu92] N. Wirth, J. Gutknecht: Project Oberon - The design of an operating system
and compiler. Addison-Wesley, 1992.

This article was processed using the BTEX macro package with LLNCS style

