
Re�ection in Oberon

Christoph Steindl

Department of Computer Science �System Software�
Johannes Kepler University Linz� Austria

steindl�ssw�uni�linz�ac�at

Abstract� We introduce metaprogramming facilities into the Oberon
V� system� Metaprogramming means that a module can access the struc�
ture of other modules �i�e�� procedures� types� run�time data� at run time�
We discuss how type safety can be enforced in an environment with
strong typing� Finally we show how metaprogramming can be used to
implement an easy�to�use database interface and conclude with a com�
parison with other metaprogramming systems for statically�typed pro�
gramming languages�

� Introduction

In programs we distinguish between the data level and the program level� Vari�
ables are at the data level and can be accessed by the statements of a program�
Modules� types and procedures are at the program level� They serve to structure
a program but they are usually not viewed as data� Sometimes� however� pro�
grams want to inspect the components of other programs at the program level�
for example� in order to answer the following questions�

�� What are the �eld names of a record type T declared in module M �

�� Which procedures are currently active �e�g�� when a run�time trap occurs	�
What are the names� types and values of their variables�

� Does the caller of the currently executing procedure have a variable named
�x�� and if so� what is its type and value�

Questions like these are considered to be on a meta level� They treat modules�
types� and procedures as data� They have to know the structure of this �data�
in order to access �or modify	 their contents� If a programming system supports
questions of this kind we call it a metaprogramming system� If programs can ask
these question also about themselves we call such a system re�ective�

The notions of metaprogramming and re�ection are common and widely
used in programming languages like Lisp �McCar���� Smi���	 and Smalltalk
�GR�
�	� In Lisp all programs are treated as data� It is possible to inspect their
structure and even to dynamically build new programs �higher order functions	
that can be executed� In Smalltalk types are represented as classes and pro�
cedures as methods of these classes� The structure of a class is described in a
metaclass of which the class is an instance� The metaclass information can again

be accessed and even modi�ed� Many other languages allow metaprogramming
in a similar way �e�g�� Self US���� CLOS Att���� or BETA MMN�
�	�

The original Oberon system WiGu��� is a modular operating system based
on the general�purpose programming language Oberon� It o�ered only a limited
degree of metaprogramming� It provided a module Modules which allowed pro�
grammers � among other things � to inspect information about all loaded mod�
ules� Later a module Types was added� which provided basic information about
record types� However� Types was not documented in the books about Oberon
�Rei���� WiGu���	� In his dissertation �Tem���	� J� Templ implemented an
experimental version of Oberon for Sun workstations� which treated modules�
procedures� and record types as data allowing full access to their components�

Metaprogramming and re�ection are not widely used in statically typed pro�
gramming languages� although their use might be bene�cial� too� One reason
is the need for special language constructs to express the access to meta�level
information� The code accessing meta�level information must be type�checked at
compile time although it will have to work with arbitrary �yet unknown	 types
and modules�

We introduce support for metaprogramming and re�ection into the Oberon
system not via new language constructs� but via a new library� Together with
the compiler and the dynamic loading facility of the Oberon system it is possible
to construct program fragments at run time� to dynamically load and execute
them�

In the next section� we provide background about metaprogramming and
re�ection� In section
 we introduce our support for metaprogramming and re�
�ection� In section � we present applications that make use of the new facilities�
In section � we compare our approach with other systems� and present our con�
clusions in section ��

� Background

In this section we explain the controversy between a rigid� but safe type system
and a system that allows for metaprogramming� We explain what we understand
under introspective� invocational� and intercepting capabilities of a metapro�
gramming system� Furthermore we show to which amount meta�information is
produced by standard Oberon compilers �Cre���	�

��� Roles of the Type System

There is a controversy between a rigid type system and a system that allows for
metaprogramming� The �rst sacri�ces �exibility for increased safety� the latter
increases �exibility�

The type system of a language plays three roles �Ste��
�	�

� it shall facilitate data modelling�
� it shall help detect and avoid errors in programs at compile time� and

� it shall allow e�ciency in code generation�

Static type checking veri�es type assertions prior to a program�s execution�
Strong typing is a little weaker in that it only requires that all programming
entities be typed before use and that all use be consistent with the type system�
Strong typing ensures that a certain class of errors is cleanly detected and static
typing improves e�ciency by removing type checks from run�time code� The
goal of most type systems is to make checking as static and thus as e�cient as
possible� However� some type checking cannot be performed statically �especially
with object�oriented programming languages	� Some programs will be rejected
by the type checker as being unsafe although they might execute without errors�

Oberon is a general�purpose programming language in the tradition of Pascal
and Modula��� Its most important features are block structure� modularity� sep�
arate compilation� static typing with strong type checking �also across module
boundaries	� and type extension with type�bound procedures�

Metaprogramming introduces much �exibility into a system� problems that
have previously been unsolvable or hard to solve can now be easily solved �e�g��
automatic persistence of objects	� It allows programs that are more interpretative
in their nature� programs that act on arbitrary other programs� Compiling such
programs with static type�checking is apparently di�cult� if not impossible�

Within a strongly�typed environment� code accessing meta�level information
must pass type�checking� Nevertheless meta�programs may have to work with
arbitrary types and programs� A generic mechanism must be at hand to access
all possible kinds of types and programs �even those that will be created some
time in the future	�

��� Introspective� Invocational� and Intercepting Capabilities

The metaprogramming system should provide introspective� invocational� and
intercepting capabilities �Bra���	�

Introspection allows a program to look into itself� to inspect other programs�
and to obtain information about the current run�time state� It does not allow
the program to perform any changes�

Invocational capabilities allow a program to explicitly call functionality that
is normally hidden in the run�time system� e�g� creation of new objects� dynamic
loading� linking� and unloading of compiled code�

Intercepting capabilities allow a running program to change the behaviour of
language primitives at run time� e�g�� object creation and destruction� method
dispatch� and access to simple attributes�

��� Reference Information

To implement these capabilities� information that is contained in the symbol ta�
ble during compilation must be accessible at run time� It must be possible to get
information about the type of an object� about its �elds� and it must be possible
to get information about the parameters and local variables of procedures�

The compiler �Cre���	 used in many Oberon environments generates an ob�
ject �le and a symbol �le out of an Oberon source �le using the symbol �les of
imported modules in order to get type information about imported items and to
detect changes to the interface of the imported modules� Furthermore a reference
�le is generated containing information about the types and procedures de�ned
in the module� The reference �le does not exist as an own �le but is appended
to the object �le� which reduces the overall number of �les� When a module is
loaded� its data and code are loaded into memory� the type descriptors for the
types de�ned in the module are built and the reference information contained in
the reference section of the object �le is loaded into memory as well�

The structure and contents of the reference section can be considered as a
simpli�ed or linearized symbol table� Therefore it contains information about
the �elds of record types� information about local variables and parameters of
procedures� and information about global data� An EBNF grammar describing
the contents of the reference section can be found in StM����

� Module Ref

We opted not to extend the programming language Oberon to facilitate metapro�
gramming but to extend the Oberon system by a new module which supports
metaprogramming�

Module Ref can be used to obtain information about the procedures� record
types� and variables of a module� For example� it is possible to access the names�
types and components of these items at run time� For variables it is also possible
to read and write their values�

��� Riders

All information is accessible via riders� A rider is a cursor that iterates over
sequences of variables� procedures� types� or other items� The general pattern
for using a rider r is

Ref�Open � � � �� � � � r��
WHILE r�mode � Ref�End DO
� � �
r�Next

END

At any time the rider contains information about the item on which it is posi�
tioned� A rider can be opened on data �global variables� local variables� heap	
or on a module�s list of its procedures or record types �see Table �	�

Program data is organised hierarchically� e�g�� the stack is a sequence of stack
frames� which are sequences of variables� which may be sequences of record �elds
and so on� Table � shows the organisation of data�

Table �� Opening Riders

global variables OpenVars�module� r� sets r to the �rst global variable of the
module module

local variables OpenStack�info� r� sets r to the topmost stack frame

heap OpenPtr�p� r� sets r to the �rst record �eld or array
element to which p refers

procedures OpenProcs�module� r� sets r to the �rst procedure of the module
OpenProc�pc� r� module� or to the procedure containing pc

record types OpenTypes�module� r� sets r to the �rst record type
of the module

Table �� Organisation of Data

Stack 	 �Frame�� accessible via OpenStack
Frame 	 �Variable��
Variable 	 simpleVar j RecordVar j ArrayVar�
RecordVar 	 �Field��
ArrayVar 	 �Elem��
Field 	 Variable�
Elem 	 Variable�

Globals 	 �Variable�� accessible via OpenVars

PointerBase 	 RecordVar j ArrayVar� accessible via OpenPtr

Procedure 	 �Proc�� accessible via OpenProcs
Proc 	 �Variable�� and via OpenProc

Types 	 �RecordType�� accessible via OpenTypes
RecordType 	 �Field��

When a rider is positioned on a composite item it is possible to zoom into this
item and iterate over its elements� For example� to iterate over the variables of
the second frame on the stack �i�e�� the variables of the caller of the currently
active procedure	 one does the following�

Ref�OpenStack�NIL� r�� �
 r is on the frame of currently active procedure
�
r�Next� �
 r is on the caller�s frame
�
r�Zoom�r� �
 r is on the �rst variable of the caller�s frame
�

DEFINITION Ref�

IMPORT SYSTEM� Types�

CONST
�
 item forms
�
None 	 �� Byte 	 �� Bool 	 � Char 	 �� SInt 	 �� Int 	 �� LInt 	 ��
Real 	 �� LReal 	 �� Set 	 �� String 	 ��� NilTyp 	 ��� NoTyp 	 ��
Pointer 	 ��� Procedure 	 ��� Array 	 ��� Record 	 ��� DynArr 	 ���
�
 item modes
�
End 	 �� Var 	 �� VarPar 	 � Elem 	 �� Fld 	 �� Frame 	 ��
Proc 	 �� Type 	 ��

TYPE
ProcVar 	 PROCEDURE�

Rider 	 RECORD
name� ARRAY � OF CHAR�
mode� SHORTINT� �
 End �� Type
�
form� SHORTINT�
idx� o�� len� LONGINT�
mod� ARRAY � OF CHAR�
level� SHORTINT�

PROCEDURE �VAR r� Rider� Next�
PROCEDURE �VAR r� Rider� Zoom �VAR sub� Rider��
PROCEDURE �VAR r� Rider� Adr ��� LONGINT�
PROCEDURE �VAR r� Rider� Type ��� Types�Type�
PROCEDURE �VAR r� Rider� SetTo �idx� LONGINT��

PROCEDURE �VAR r� Rider� Read �VAR ch� CHAR��
PROCEDURE �VAR r� Rider� ReadInt �VAR i� INTEGER��
PROCEDURE �VAR r� Rider� ReadProc �VAR p� ProcVar��
PROCEDURE �VAR r� Rider� ReadPtr �VAR p� SYSTEM�PTR��
PROCEDURE �VAR r� Rider� ReadString �VAR str� ARRAY OF CHAR��
� � �
PROCEDURE �VAR r� Rider� Write �ch� CHAR��
PROCEDURE �VAR r� Rider� WriteInt �i� INTEGER��
PROCEDURE �VAR r� Rider� WriteProc �p� ProcVar��
PROCEDURE �VAR r� Rider� WritePtr �p� SYSTEM�PTR��
PROCEDURE �VAR r� Rider� WriteString �str� ARRAY OF CHAR��
� � �

END �

ExceptionInfo 	 ���� �
 machine state� system dependent
�

PROCEDURE OpenVars �mod� ARRAY OF CHAR� VAR r� Rider��
PROCEDURE OpenStack �inf� ExceptionInfo� VAR r� Rider��
PROCEDURE OpenPtr �p� SYSTEM�PTR� VAR r� Rider��
PROCEDURE OpenProcs �mod� ARRAY OF CHAR� VAR r� Rider��
PROCEDURE OpenTypes �mod� ARRAY OF CHAR� VAR r� Rider��
PROCEDURE PC �mod� name� ARRAY OF CHAR�� LONGINT�
PROCEDURE OpenProc �pc� LONGINT� VAR r� Rider��

END Ref�

Operations

� OpenVars�mod� r� sets the rider r to the �rst global variable of module mod�
� OpenStack�inf� r�� If inf � NIL the rider r is set to the stack frame of the
procedure that called OpenStack� If inf � NIL� it describes the machine state
at the time of a run�time exception �trap	� the rider r is set to the stack

frame of the procedure in which the trap occurred�
� OpenPtr�p� r� sets the rider r to the �rst �eld of the record pointed to by p�
� OpenProcs�mod� r� sets the rider r to the �rst procedure of module mod�
� OpenTypes�mod� r� sets the rider r to the �rst record type of module mod�
� pc �� PC�mod� name� returns the absolute start address of the procedure
name declared in module mod�

� OpenProc�pc� r� sets the rider r to the procedure that contains the �absolute	
program counter value pc�

� r�Next advances the rider r to the next item �variable� array element� record
�eld� stack frame� procedure� or record type	� If r was already positioned on
the last item� r�mode is set to End�

� a �� r�Adr�� returns the address of the current item �variable� parameter�
record �eld� or array element	�

� t �� r�Type�� returns the type of the current item if this item is of a record
type� otherwise the result is unde�ned�

� r�Zoom�sub�� If r is positioned on a composite item� a new rider sub is set to
the �rst component of the composite according to Table
�

� r�SetTo�i�� If r is positioned on an element of an array �r�mode � Elem	� it
is set to the i�th element of that array� If it is positioned on the �elds of a
record type T �r�mode � Fld	� it is set to the �rst �eld of the i�th extension
level of T�

� r�ReadX� If r�mode IN �Var� VarPar� Fld� Elem� and if r �or the rider from
which it was zoomed	 was opened with OpenVars� OpenStack or OpenPtr�
the value of the current item can be read with the ReadX procedure that
matches the form of the item �i�e�� r�ReadInt if r�form � Int	�

� r�WriteX� If r�mode IN �Var� VarPar� Fld� Elem� and if r �or the rider from
which it was zoomed	 was opened with OpenVars� OpenStack or OpenPtr�
the value of the current item can be written with the WriteX procedure that
matches the form of the item�

Table �� Zooming into Riders

r�mode r�form sub�mode

Var� VarPar� Elem� Fld Record� Pointer to Record Fld
Var� VarPar� Elem� Fld Array� DynArr� Pointer to Array or DynArr Elem
Type � Fld
Proc� Frame � Var or VarPar

� Applications

We have implemented the following tools using module Ref�

� a post�mortem debugger that is invoked when another program terminates
with a trap� Its responsibility is to show the machine state in a human�
readable form� We show all variables in the same window and expand struc�
tured variables �in place�� A mechanism for �zooming� into structures was

already available in the Oberon system in the form of fold elements M�oKo����
We extended the fold elements so that they now include also relevant refer�
ence information�

� showing the global variables of a module� As in the original Oberon system�
the command System�State opens a viewer displaying the global variables of
the speci�ed module with the possibility to zoom into structured variables�

� a heap inspector which displays a bitmap that represents the heap� All blocks
of a desired type are coloured red� By clicking on a block� the information
contained in the block is displayed� Furthermore information about the num�
ber and sizes of objects� the memory space occupied by objects of a speci�ed
type� etc� is displayed�

� a general output module which can be used to facilitate simple output�
� a database interface�

In the following we will explain the usage of the database interface in more detail
�see also Ste��b�	�

��� A Database Interface

Databases allow users to perform queries on the stored data� Some databases
even allow queries to be executed from within a program� That means that
the programming language has to be extended so that query statements can
be expressed or that a preprocessor must be used to specify the query in a
preprocessor language�

Using module Ref� one can specify such queries as strings and pass them to
a procedure that analyses the strings and executes the statements described by
them� For example� one can write

conn�Prepare��CREATE TABLE Persons FOR Person��

without needing a language extension nor a preprocessor� We implemented a
module ESQL Ste��a� that provides access to ODBC databases ODBC����

DEFINITION ESQL�

CONST
�
 return codes
�
InvHandle 	 �� Error 	 ��� Success 	 ��
SuccessWithInfo 	 �� NoDataFound 	 ����

TYPE
Connection 	 POINTER TO ConnectionD�
ConnectionD 	 RECORD
ret� INTEGER� �
 return code of last operation
�
PROCEDURE �c� Connection� Prepare �sqlStr� ARRAY OF CHAR�� Statement�

END �
Statement 	 POINTER TO StatementD�
StatementD 	 RECORD
ret� INTEGER� �
 return code of last operation
�
conn�� Connection� �
 the connection on which the statement is executed
�

PROCEDURE �s� Statement� Execute�
PROCEDURE �s� Statement� Fetch ��� BOOLEAN�
PROCEDURE �s� Statement� IsNull �name� ARRAY OF CHAR�� BOOLEAN�
PROCEDURE �s� Statement� SetNull �name� ARRAY OF CHAR��

END �

PROCEDURE Open �source� user� passwd� ARRAY OF CHAR�� Connection�

END ESQL�

Types

� Connection represents a communication channel between the application and
the database� Requests are issued and responses are returned via this con�
nection� ret indicates the success of the last operation�

� Statement represents an SQL statement that has been prepared for execution
via connection conn� ret indicates the success of the last operation�

Operations

� conn �� Open�source� user� password� opens a connection to the database
with the given user identi�cation and password�

� stat �� conn�Prepare�s� prepares an SQL statement �speci�ed by the string
s	 for execution�

� stat�Execute executes the previously prepared SQL statement�
� done �� stat�Fetch��� If the execution of an SQL statement results in a table
�i�e�� a sequence of records	� Fetch retrieves one row of the table �i�e�� one
record of this sequence	 at a time and stores it in the variable�s	 speci�ed in
the statement� If there are no more rows to retrieve� done becomes FALSE�

� b �� stat�IsNull�n� returns TRUE if the variable speci�ed by the name n con�
tains a null value� Null values are special values which indicate that the value
is not valid or present� As this cannot be expressed by a legal value in pro�
gramming languages �e�g�� � for integer variables� or �� for string variables	�
IsNull is necessary to check for the validity of a value�

� stat�SetNull�n� makes the variable speci�ed by the name n contain a null
value�

��� Embedded SQL and Oberon

For data transfer between the database and the application� SQL statements use
ordinary Oberon variables� In order to distinguish these variables from names
that are used within the database �e�g� names of tables and columns	� they are
preceded by a colon� In the SQL statement

�SELECT �rstName FROM Persons WHERE age � �minAge INTO �name�

minAge and name are Oberon variables� minAge is an input variable� and name
is an output variable�

Variables can be either scalar or of a record type� When record variables are
speci�ed� they are implicitly expanded to their �elds� The statement

�SELECT
 FROM Persons INTO �person�

is therefore equivalent to
�SELECT
 FROMPersons INTO �person��rstName� �person�lastName� �person�age��

We declare the type Person that will be used to represent persons� After opening
the connection� we create a table for the persons that we will insert later on� The
table will consist of as many columns �with appropriate types	 as there are �elds
in the record type Person� The record type can be quali�ed with the module in
which the type is declared�

TYPE
Person 	 RECORD
�rstName� lastName� ARRAY � OF CHAR� age� INTEGER

END �

VAR
conn� ESQL�Connection� stat� ESQL�Statement�

BEGIN
conn �	 ESQL�Open�source� user� password��
stat �	 conn�Prepare��CREATE TABLE Persons FOR Person���
stat�Execute

END

In order to insert data into the table� we prepare an INSERT statement in
which we specify the variables containing the values to be inserted ��rstName�
lastName� age	� These variables are preceded by a colon �which distinguishes
them from database identi�ers for tables and columns	� Then we assign values to
the variables and consider null values �i�e�� values that should remain unde�ned	�
When we �nally execute the statement the values from the variables are taken
and transferred into the database� Note that the statement � once it has been
prepared � can be executed several times with di�erent values�

PROCEDURE Insert�
VAR �rstName� lastName� ARRAY � OF CHAR� age� INTEGER�

BEGIN
In�Open�
stat �	
conn�Prepare��INSERT INTO Persons VALUES ���rstName� �lastName� �age����

REPEAT
In�Name��rstName�� In�Name�lastName�� In�Int�age��
IF �rstName 	 �NULL� THEN stat�SetNull���rstName�� END �
IF lastName 	 �NULL� THEN stat�SetNull��lastName�� END �
IF In�Done THEN stat�Execute END

UNTIL �In�Done
END Insert�

In order to retrieve all persons older than minAge we can use the following
procedure Select� After preparing the SELECT statement and assigning values to
the input variables �in this case minAge	� we execute the statement and fetch the
resulting data row by row� As the table is de�ned for the type Person� every row
is a record of type Person� If we were only interested in the columns �rstName
and lastName� we could use a SELECT statement like �SELECT �rstName�
lastName FROM Persons WHERE age �� �minAge INTO �person��rstName�
�person�lastName��

PROCEDURE Select�
VAR person� Person� minAge� INTEGER�

BEGIN
stat �	 conn�Prepare
��SELECT
 FROM Persons WHERE age �� �minAge INTO �person���

In�Open� In�Int�minAge��
stat�Execute�
WHILE stat�Fetch�� DO
Out�Ln� Out�String�person��rstName�� Out�Char�� ���
Out�String�person�lastName�� Out�String��� ���
IF stat�IsNull��person�age�� THEN Out�String��NULL��
ELSE Out�Int�person�age� ��
END

END
END SelectAll�

Implementation� The analysis of the SQL commands is implemented using
module Ref� Any variable preceded by a colon is looked up in the local scope of
the procedure that issued the SQL statement �the local scope contains the local
variables� as well as the parameters of the procedure	� The addresses of such
variables are then passed to the database driver� When processing a �CREATE
TABLE� statement� the variables� types are used to generate the expanded SQL
statement with a column for each scalar variable �with type and name	�

A minor restriction is that the variables speci�ed in an SQL statement must
exist when the statement is actually executed� Local variables go out of scope
when the procedure returns� Therefore it is not possible to use local variables in
an SQL statement and execute the statement at a moment where these variables
do no longer exist�

� Comparison

We support introspective capabilities to a high degree� Via the standard modules
Modules and Types� information about loaded modules and their type descriptors
is available� For a description of these modules see StM���� We also provide
access to global variables of modules� to variables and parameters of procedures�
to the currently active procedures� and to the �elds of record types� When a

rider is positioned and the value over which the rider is positioned shall be read�
run�time checks are performed� Therefore we do not lose type safety� but ensure
type safety at run time� Up to now� we do not restrict access to the exported
interface of the modules but we provide access to all available items� e�g� we
allow access to non�exported global variables� likewise we allow access to local
variables of procedures� The motivation behind this was to extend the scope
of applications �e�g�� also to post�mortem debuggers� etc�	 which need access to
more than only exported variables�

Invocational capabilities are supported by the standard Oberon system to
a large degree� New objects can be created via module Types� modules can be
loaded on demand via module Modules �they are automatically linked to the
already loaded modules	� and modules that are not needed any more can be
freed explicitly� A running program can also invoke the compiler to generate
new object code� which can then be loaded� The linking loader checks whether
the version of the module that shall be loaded is consistent with the versions
of the modules that are already loaded� We do not provide a generic mecha�
nism for the invocation of procedures� i�e� it is not possible to call arbitrary
procedures� Nevertheless it is possible to read procedure variables via a rider
�e�g�� r�ReadProc�p�	� If the parameter list of the procedure is known at com�
pile time� this procedure variable p can be type�cast to a procedure variable of
the proper type �e�g�� handler �� SYSTEM�VAL�Display�Handler� p�	 and the
procedure can then be invoked via this procedure variable where the compiler
handles the parameter passing �e�g�� handler�f� msg�	� We admit that this is a
major restriction� but accept it for the sake of simplicity�

Intercepting capabilities are not fully supported up to now� It is possible to
position a rider over data and update the values of the data� Scalar variables�
as well as procedure variables and pointer variables can be updated� Run�time
checks enforce type compatibility of the value and the memory location that
shall be updated� It is not possible to install callback procedures that are called
if an object of a given type is created� Up to now patching the method table is
also not supported� as this is considered dangerous� It is also not possible� to be
noti�ed of access to simple attributes of a record�

There is no run�time overhead if metaprogramming and re�ection are not
used� Only when meta�information is needed� it is looked up� But even this
lookup is very e�cient� since the reference information is kept in memory and
there is no disk access�

The main source of inspiration for our support for metaprogramming was the
dissertation of J� Templ Tem���� He implemented a version of the Oberon Sys�
tem with better support for metaprogramming than our extension to the Oberon
System� In his metaprogramming protocol he provides generic access to objects
in a way similar to ours �actually we provide access to objects in a way similar
to his approach	� His work inspired us to use iterators to access arbitrary data
structures� We uni�ed the iterators to one type �Rider	 which serves as a Rider�
ArrayRider� RecordRider� or ActivationRider in his terminology� We also uni�ed
the way how the iterators are opened by the Zoom operation� Therefore we think

to provide a more orthogonal approach but with some restrictions that did not
exist in his system� In particular he provides a mechanism to control procedure
activations� Arbitrary procedure objects can be evaluated with arbitrary param�
eters �PROCEDURE Eval �proc� Procedure� VAR par� Parameters�	� Therefore
it is necessary to tag procedures �like ordinary objects in Oberon are tagged� i�e��
each object has a reference to its type descriptor	� Every procedure has its own
parameter record with the procedure speci�c parameters� Access to these param�
eters is available via GetParams�p� params�� OpenParams�paramRider� params�
can then be used to iterate over the parameters and set the input parameters
accordingly� Finally Call�proc� params� calls the procedure proc with the param�
eters params� He also introduces the notion of active procedures� i�e� procedures
which have a message handler installed in order to react to messages sent to
them� A generic message handler would simply evaluate the procedure object
with the parameters of the message� but more speci�c message handlers can �l�
ter messages� can access and modify parameters before and after the evaluation�

The metaprogramming support in Oberon�F Pou��� apparently also stems
from the dissertation of J� Templ� In contrast to our approach� Oberon�F re�
stricts access to public information� i�e� it does not allow access to non�exported
items of a module� They guarantee safety because their metaprogramming sup�
port does not allow to change data which is not exported as modi�able� It only
allows to do with a module what could also be done by a normal client module
� but in a more dynamic way� It allows inspection and modi�cation of data de�
pending on run�time decisions� without static import of the inspected or modi�ed
module� In Oberon�F it is not possible to implement a post�mortem debugger
building on the metaprogramming support as it is not possible to access the pro�
cedure activation stack� Furthermore it is not possible to inspect the variables
of procedures or the types de�ned by a module� As far as we know� Oberon�F
only provides access to global data with the possibility to zoom into the data
structures at run time�

The meta�level architecture for the BETA language �Bra���� MMN�
�	 uses
language extensions so that the compiler can type�check code that exploits the
meta�information� But in order to perform the really interesting tasks like au�
tomatic persistence of objects� unconstrained attribute references are necessary
which cannot be type�checked at compile time� The introspective capabilities
seem to be quite powerful and comparable to the capabilities provided by our
system� The invocational capabilities include replacement of code objects� We
did not support this �which could be done by patching the method table of
type descriptors	� as we consider this to be dangerous� All the other aspects of
invocational capabilities of the BETA meta�level architecture are equally cov�
ered by our system� The intercepting capabilities are more powerful than in our
system� It is possible to register a callback procedure to trace instantiation of
objects of a given type� Tracing of garbage collected objects is also possible�
This is supported in our system by the mechanism of �nalization �see Tem���
for more details	� where an object can register a procedure that will be called
if the object is about to being garbage collected� Furthermore method dispatch

and simple attribute access can be intercepted� We did not include this into our
metaprogramming system as we consider patching the method table dangerous
and because intercepting access to simple attributes can only be done at a high
cost� Nevertheless work is going on in the area of safe and transparent remote
method invocation �see Hof��� for details	�

CLOS Kiz���� includes a comprehensive meta�level interface� which allows
the meta�level programmer to inspect and change several primitives of the basic
programming language� including rede�nition of slot access� multiple inheritance
semantics� and replacement of meta�classes� We do not reach the same expres�
sive power as CLOS� but we found many applications where our support for
metaprogramming was su�cient�

C�� Str��� has the concept of pointers to members which are basically
o�sets of attributes within objects� These pointers to members can be applied
to objects to get the value of the member they are declared to point to� How�
ever� access to run�time type information is only rudimentary supported via the
dynamic�cast and typeid� garbage collection is only rarely used in C�� envi�
ronments� Therefore we do not consider C�� to encourage re�ection�

� Conclusions

We designed and implemented support for metaprogramming and re�ection for
the interactive environment of the Oberon system� We made use of dynamic
linking and loading� of run�time invocation of the compiler and of the reference
information that is generated by the compiler� Our system does not incur any
run�time overhead� but still provides for powerful metaprogramming� As there
are already tools for pro�ling� the need for additional intercepting capabilities
�interception of method invocation	 is not as big as in other systems� Other prob�
lems like type�orthogonal persistence �Kna���	 and distributed object systems
�Hof���	 are currently solved at the department� partly based on the metapro�
gramming system�

As metaprogramming systems are still rare for strongly�typed systems� we
believe that we can contribute that the concepts of metaprogramming are spread
among the undergraduate students that have to use our version of the Oberon
system in programming courses� We hope that some of them will recognise and
exploit the possibilities of metaprogramming and re�ection�

Acknowledgements

We wish to thank J� Templ and H� M�ossenb�ock and all other members of the de�
partment for fruitful discussions and hints� Further thanks go to the anonymous
referees that supplied interesting comments�

References

�Att��� G� Attardi et al�� Metalevel Programming in CLOS� Proceedings of the
ECOOP��� conference� Cambridge University Press� �����

�Bra��� S� Brandt� R�W� Schmidt� The Design of a Meta�Level Architecture for the
BETA Language�

�Cre��� R� Crelier� OP � A portable Oberon compiler� Computer Science Report ���
ETH Zurich� �����

�GR��� A� Goldberg� D� Robson� Smalltalk���� the language and its implementation�
Addison�Wesley� �����

�Hof��� M� Hof� Connecting Oberon� Johannes Kepler University Linz� System Soft�
ware� Technical Report �� April �����

�Kiz���� G� Kiczales� J� Rivieres� D� Bobrow� The Art of the Metaobject Protocol�
MIT Press� �����

�Kna��� M� Knasm�uller� Adding Persistence to the Oberon System� Johannes Kepler
University Linz� System Software� Technical Report �� January �����

�McCar��� J� McCarthy� Recursive functions of symbolic expressions and their com�
putation by a machine� Communications of the ACM � ���� ����� ��������

�MMN��� O� Lehrmann�Madsen� B� Moller�Pedersen� K� Nygaard� Object�Oriented
Programming in the BETA Programming Language� Addison�Wesley� �����

�M�oKo��� H� M�ossenb�ock� K� Koskimies� Active Text for Structuring and Understand�
ing Source Code� To appear in Software � Practice and Experience� �����

�ODBC��� Microsoft Open Database Connectivity Software Development Kit Version
��� Microsoft Press� �����

�Pou��� D� Pountain� The Oberon�F System� Byte� January �����
�Rei��� M� Reiser� The Oberon System� User Guide and Programmer�s Manual�

Addison�Wesley� �����
�Smi�� B� C� Smith� Re�ection and Semantics in a Procedural Language� PhD thesis�

M�I�T�� ����
�Ste��a� C� Steindl� Entwurf und Implementierung einer St�ucklistenverwaltung mittels

einer Client�Server�Datenbank� Diploma thesis� University Linz� �����
�Ste��b� C� Steindl� Accessing ODBC Databases from Oberon Programs� Johannes

Kepler University Linz� System Software� Technical Report �� Dezember �����
�StM��� C� Steindl� H� M�ossenb�ock� Metaprogramming Facilities in Oberon for Win�

dows and Power Macintosh� Johannes Kepler University Linz� System Software�
Technical Report �� July �����

�Ste���� D� Stemple� R� Morrison� G�N�C� Kirby� R�C�H� Connor� Integrating Re�ec�
tion� Strong Typing and Static Checking Proc� ��th Australian Computer Science
Conference� Brisbane� Australia ������� pp� �����

�Str��� M�A� Ellis� B� Stroustrup� The Annotated C�� Reference Manual� AT�T Bell
Laboratories� Murray Hill� New Jersey� �����

�Tem��� J� Templ� Metaprogramming in Oberon� Dissertation� ETH Zurich� �����
�US��� D� Ungar� R� B� Smith� SELF� The Power of Simplicity� Proceedings of the

OOPSLA��� conference� Orlando� SIGPLAN Notices ���� �����
�WiGu��� N� Wirth� J� Gutknecht� The Oberon System� Software�Practice and Expe�

rience� ������ ����� ��������
�WiGu�� N� Wirth� J� Gutknecht� Project Oberon � The design of an operating system

and compiler� Addison�Wesley� ����

This article was processed using the LATEX macro package with LLNCS style

