
The Oberon-2 Reflection Model and its
Applications

Hanspeter Mössenböck, Christoph Steindl

Johannes Kepler University Linz
Institute for Practical Computer Science

Altenbergerstraße 69, A-4040 Linz
{moessenboeck,steindl}@ssw.uni-linz.ac.at

Abstract. We describe the reflection model of Oberon-2, a language in the
tradition of Pascal and Modula-2. It provides run-time information about the
structure of variables, types and procedures and allows the programmer to
manipulate the values of variables. The special aspect of the Oberon-2
reflection model is that metainformation is not obtained via metaclasses. It
is rather organized as structured sequences of elements stored on a disk,
which can be enumerated by an iterator. This results in a simple and uniform
access mechanism and keeps the memory overhead to a minimum. We also
show a number of challenging applications that have been implemented
with this reflection model.

1. Introduction

Metaprogramming, i.e. the observation and manipulation of running programs, has
become an important instrument in the toolbox of today’s software engineer.
Pioneered by languages such as Lisp and Smalltalk, metaprogramming is now part of
many modern programming languages such as Java [ArG96], CLOS [Att89] or Beta
[LMN93]. If metaprogramming is not only applied to other programs, but also to the
program that uses it, it is called reflection. A reflective program can obtain and
manipulate information about itself.

In this paper we describe the reflection model of Oberon-2 [MöW91], a language in
the tradition of Pascal and Modula-2. Oberon-2 is a hybrid object-oriented language. It
provides classes with single inheritance that are declared within modules. Oberon
[WiG89] is not only a programming language but also a run time environment,
providing garbage collection, dynamic module loading, and so-called commands,
which are procedures that can be invoked interactively from the user interface, thus
providing multiple entry points into a system.

Commands and dynamic loading already constitute a kind of metaprogramming.
True reflection, however, was added to Oberon-2 by the work of Josef Templ [Tem94].
We adapted and refined his ideas into a reflection model that allows us to answer
questions like:

• What are the components of a record type T declared in a module M?
• What procedures are currently active? What are the names, types and values of their

local variables?
• Does the caller of the currently executing procedure have a variable named x, and if

so, what is its type and value?

Questions like these allow us to do a number of interesting things, which would not
be possible with an ordinary programming language. We will show examples of such
applications in Section 3 of this paper.

The rest of this paper is organized as follows. In Section 2 we describe the
reflection model of Oberon-2 and its general usage. Section 3 shows a number of
useful applications that we implemented on top of this reflection model, i.e. a generic
output function, an object inspector, an embedded SQL facility, and an exception
handling mechanism. In Section 4 we discuss security and performance issues. Section
5 summarizes the results.

2. The Oberon-2 Reflection Model

The reflection model of a programming language is characterized by two aspects:

• What metainformation is available about programs at run time?
• How can this information be accessed in order to observe and manipulate programs?

 We will describe these two aspects for Oberon-2. The special thing about our approach
is that all metainformation resides on disk instead rather than in main memory and
that it is accessed by so-called riders, which iterate over the structure and parse it as
required. This technique is space-efficient since no metaobjects have to be kept in
memory. All access to the metainformation follows the Iterator pattern [GHJV95],
which guarantees simple and uniform access.

Our reflection mechanism is encapsulated in a library module called Ref [StM96].
It defines a Rider type for iterating over the metainformation as well as procedures for
placing riders on various kinds of metainformation sequences.

In the following sections we will first describe the structure of the metainformation
and then explain how to navigate through it.

 2.1 Metainformation

 As a simple abstraction, a program can be organized as a set of hierarchical sequences.
For example, a program consists of a sequence of modules. Every module is a
sequence of variables, types and procedures. A procedure, in turn, is a sequence of
variables, and so on. Fig. 1 shows an example of such a decomposition.

MODULE M;

 PROCEDURE P(a, b: INTEGER);
 VAR rec: RECORD f1, f2: REAL END;
 BEGIN … END P;

 PROCEDURE Q(x: INTEGER);
 VAR y, z: CHAR;
 BEGIN … END Q;

END M.

module
 = seq. of proceduresP Q

a b rec procedure
 = seq. of variables

f1 f2 structured variable
 = seq. of components

 Fig. 1. Metainformation of module M in form of hierarchical sequences

 Information about such program sequences is called metainformation and can be
described by the following grammar in EBNF notation (curly brackets denote zero or
more repetitions):

 ProgramStruct = {Module}.
Module = {Variable} {RecordType} {Procedure}.
RecordType = {Variable} {Procedure}.
Procedure = {Variable}.
Variable = SimpleVar | RecordVar | ArrayVar.
RecordVar = {Variable}.
ArrayVar = {Variable}.

 ProgramData = GlobalVars | LocalVars | DynamicVars.
GlobalVars = {Variable}.
LocalVars = {Frame}.
Frame = {Variable}.
DynamicVars = {HeapObject}.
HeapObject = {Variable}.

 The information about the structure of a module is created by the compiler when the
module is compiled. It is appended to the module's object file so that it is always
copied and moved together with the object file. This avoids inconsistencies between a
module and its metainformation.

The structural information is also used to interpret the program's data, which would
otherwise be just a sequence of bytes without any interpretation.

 2.2 Navigation

 The metainformation is accessed by so-called riders, which are iterators that allow us
to traverse a sequence of elements and to zoom into structured elements. The class
Rider declared in module Ref looks as follows:

 TYPE
 Rider = RECORD
 name: ARRAY 32 OF CHAR;
 mode: SHORTINT; (*Var, Type, Proc, …, End*)
 form: SHORTINT; (*Int, Char, Bool, Record, …*)
 ...
 PROCEDURE (VAR r: Rider) Next;
 PROCEDURE (VAR r: Rider) Zoom (VAR r1: Rider);
 ...
 END;

 When a rider r is placed on an element of a sequence, r.name holds the name of this
element; r.mode tells if the element is a variable, a type, a procedure, etc.; r.form
encodes the type of the element (structured types are denoted by a special code; their
components can be inspected by zooming into the element; see below).

 Iterating. The following example shows how to traverse the global variables of a
module M and print their names:

 Ref.OpenVars("M", r);
WHILE r.mode # Ref.End DO
 Out.String(r.name);
 r.Next
END

 A rider r is opened on the global variables of module M . While it is not moved
beyond the last variable (r.mode = Ref.End) the name of the current variable is printed
and the rider is advanced to the next variable by the operation r.Next.

 Zooming. If a rider is placed on a structured element, it is possible to zoom into
this element and to iterate over its components. For example, to access the local
variables of the current procedure’s caller we can zoom into the second frame on the
activation stack, using the following statements:

 Ref.OpenStack(r);
r.Next;
r.Zoom(r1)

 Ref.OpenStack(r) opens a rider r on the frame of the currently active procedure. r.Next
moves it to the caller’s frame. r.Zoom(r1) zooms into that frame and sets a new rider
r1 to the first local variable in that frame. The variables of this frame can then be
traversed as above using r1.

 Placing a rider. Riders can be opened on various kinds of metainformation
sequences as shown by the following table:

 OpenVars(module, r) sets r to the first global variable of the specified module
 OpenStack(r) sets r to the topmost stack frame
 OpenPtr(p, r) sets r to the first component of the object pointed to by p
 OpenProcs(module, r) sets r to the first procedure of the specified module
 OpenTypes(module, r) sets r to the first record type of the specified module

 If a rider is opened on data (using OpenVars, OpenStack or OpenPtr), and if it is
positioned on a non-structured variable, the value of this variable can be read or
written using operations such as r.ReadInt(n) or r.WriteInt(n). In this case the rider
serves as a link between the data (e.g. a stack frame) and the metainformation that is
used to interpret that data (Fig.2).

description of a description of b description of c metainformation

value of a value of b value of c

rider

data

rider.Next()

…

…

Fig. 2. A rider as a link between data and its metainformation

 If a rider is opened on structural information (using OpenProcs or OpenTypes), there
is no data to be read or written. Such riders can only be used to explore the structure of
procedures and types.

 Details about the Rider class, its fields and its operations are described in [StM96].
The difference between our implementation and the one in [Tem94] is mainly that we
use a single rider type to iterate over all kinds of metainformation while [Tem94] uses
special rider types for variables, procedures, types, etc.

 2.3 Examples

 The following examples should give you a rough impression of what you can do with
the module Ref and its riders.

 Assume that we want to print the names of all currently active procedures together
with the names of their local variables. The following code fragment does the job:

 VAR r, r1: Ref.Rider;
...
Ref.OpenStack(r); (*r is on the most recent frame*)
WHILE r.mode # Ref.End DO
 Out.String(r.mod); (*name of this frame’s module*)
 Out.String(".");
 Out.String(r.name); (*name of this frame’s proc.*)
 Out.Ln;
 r.Zoom(r1); (*r1 is on first var. of frame*)
 WHILE r1.mode # Ref.End DO
 Out.String(r1.name); Out.Ln;
 r1.Next
 END;
 r.Next (*move to the caller's frame*)
END

 Of course we could do any processing with the traversed variables or procedures. For
example, we could print their values and types (this was actually used for the
implementation of the Oberon debugger). We could also look for all occurrences of a
certain value within the variable sequence and report them to a client.

 The next example looks for a global record variable named varName declared in a
module named modName. Note that the names of the variable and the module need not
be statically known. They could have been obtained at run time.

 VAR
 r: Ref.Rider;
 varName, modName: ARRAY 32 OF CHAR;
...
Ref.OpenVars(modName, r);
WHILE (r.mode # Ref.End) & (r.name # varName) DO
 r.Next
END;
IF r.form = Ref.Record THEN (*found*)
 ...
END

 3. Applications

 In this section we show how the Oberon-2 reflection model can be used to implement
a number of interesting system services. In other programming systems, such services
are often part of the programming language. Reflection, however, allows us to
implement them outside the language in separate library modules so that they don’t
increase the size and complexity of the compiler. If a user does not need a service, he
does not have to pay for it. Reflection also gives the system programmer a chance to
adapt these services to special needs.

 3 . 1 A Generic Output Function

 In most modern programming languages input/output is not part of the language but
is implemented in form of library functions. The problem with this approach is that it
requires a separate function for every data type that is to be read or written. A typical
output sequence could look as follows:

 Out.String("Point (");
Out.Int(p.x);
Out.String(", ");
Out.Int(p.y);
Out.String(") is inside the search area");

 Function overloading alleviates this problem, but still requires multiple function calls
to print the above message. It would be nice to have a single generic function which
is able to print any sequence of variables of a program with a single call. Reflection
allows us to do that.

 The following output function takes a string argument with the names of the
variables to be printed. For example, the call

 Put.S("Point (#p.x, #p.y) is inside the search area")

 prints the argument string, but before printing it, it replaces every variable that is
preceded by a # with the value of this variable.

 The function Put.S is implemented with module Ref. It looks up the marked
variables of the argument string in various scopes. For example, a variable rec.arr[i] is
looked up as follows:

• rec is first searched in the local scope of the currently active procedure (using
OpenStack) and—if not found—in the global scope of the current module (using
OpenVars).

• If rec is found and turns out to be a record variable, a rider r is positioned on rec.
Put.S zooms into rec (using r.Zoom(r)) and looks for a field arr. If it is found, the
rider r is positioned on it.

• Since arr turns out to be an array, Put.S zooms into this array. It starts a new
search for the variable i (using first OpenStack, then OpenVars as above). The
value of i is read, the rider is positioned on the i-th element of arr, and the value of
this element is read. This is the value of rec.arr[i]. It is inserted into the output
string.

3.2 An Object Inspector

An object inspector is a debugging tool that can be used to inspect the values of the
object fields. It can be conveniently implemented with Module Ref. To inspect an
object that is referenced by a pointer p, one opens a rider r on the object's fields using
Ref.OpenPtr(p, r) and iterates over them. Fields with a basic data type are simply
shown with their values, whereas structured variables (arrays and records) are first
represented in a collapsed form that that can be expanded on demand. When a collapsed
variable is expanded, a new rider is placed on the inner elements (using r.Zoom(r1))
and is used to traverse the inner sequence.

Fig. 3 shows an example of a variable head that points to a list of three nodes. The
middle part of the picture shows the list in collapsed state, the right part in expanded
state. The triangles are so-called active text elements [MöK96] that hide the inner
structure of an object. If the user clicks on a filled triangle, the object structure is
expanded and shown between hollow triangles. A click on the hollow triangles
collapses the structure again.

TYPE
 Node = POINTER TO
 RECORD
 value: INTEGER;
 next: Node
 END;
VAR head: Node;

head = ^ head = ^
 value = 6
 next = ^
 value = 5
 next = ^
 value = 4
 next = NIL

 Fig. 3. Object inspector view (collapsed and expanded)

A textual view like the one in Fig.3 is sufficient to represent data structures such as
linear lists or trees, but it is less suitable for circular lists or graphs. For such
purposes we have implemented a graphical tool that can also show circular data
structures. This tool uses the same reflection mechanism as explained above.

3.3 Embedded SQL

SQL (structured query language) is a widely used standard for a database query
language. It is normally used interactively from a dialog window. If a programmer
wants to issue an SQL query from within a programming language (e.g. C++),
however, he has to use an extended form of the language. For C++ there exists such
an extension which is called embedded SQL [ESQL89]. It adds database query
statements that are translated into library calls by a preprocessor.

We used a different implementation for embedded SQL that does not need any
language extensions but is based on reflection [Ste96]. SQL queries can be specified as
strings, which are passed to a function Prepare that analyzes and prepares them for
execution. For example, one could write

stat := conn.Prepare("CREATE TABLE Persons FOR Person")

A prepared SQL statement can be executed with stat.Execute. Thus the statement can
be executed several times without rebuilding internal data structures every time.

The SQL query can contain names of variables or types, which are then looked up
in the calling program and are converted to appropriate data structures of the SQL
libraries. For example, Person could be a type declared as follows:

TYPE
 Person = RECORD
 firstName, lastName: ARRAY 32 OF CHAR;
 age: INTEGER
 END ;

Its structure is used by the above SQL statement to create a table with the columns
firstName, lastName and age. To distinguish program variables from database names
(e.g. for tables and columns), variables are preceded by a colon in a query. In the
following code fragement

VAR
 minAge: INTEGER;
 name: ARRAY 32 OF CHAR;
...
stat := conn.Prepare("SELECT firstName FROM Persons
WHERE age > :minAge INTO :name");

minAge and name are Oberon variables. They are looked up by reflection. The value
of minAge is used to evaluate the WHERE clause. As a result, the database value
firstName is transferred to the Oberon variable name.

Variables can be either scalar or of a record type. When record variables are
specified, they are implicitly expanded to their fields. The statement

"SELECT * FROM Persons INTO :person"

is therefore equivalent to

"SELECT * FROM Persons INTO :person.firstName,
:person.lastName, :person.age".

3 . 4 An Exception Handling Mechanism

Exception handling is often part of a programming language, but it can also be
implemented outside of the language, i.e. in a library module [Mil88]. Library-based
exception handling is often implemented with the Unix functions setjmp and
longjmp, which save and restore the machine state. We have followed a different
approach based on reflection [HMP97]. Our technique has the advantage that it does
not slow down programs as long as they do not raise exceptions.

Our exception handling mechanism is based on three concepts: a guarded block of
statements which is protected against exceptions, one or more exception handlers, and
a mechanism to raise exceptions (Fig. 4).

statement;
statement;
foo();
statement;

Guarded Block
statement;
statement;

Exception Handler

proc foo();
 …
 raise(exception);
 …
end foo;

Fig. 4. Exception handling concepts

If an exception is raised in the guarded block or in one of the functions called from it,
a suitable exception handler is called. After executing the handler, the program con-

tinues with the first statement after the guarded block. Exceptions are classes derived
from a common exception class.

In our implementation, the concepts of Fig. 4 are mapped to the Oberon-2 lan-
guage as follows:

• The guarded block is represented by an arbitrary procedure P.
• An exception handler is represented by a local procedure of P. It must have a single

parameter whose type is a subclass of Exceptions.Exception.
• An exception is raised by the call of the library procedure Exceptions.Raise(e)

where e is an object of an exception class.

The following code fragment shows an example (The classes Overflow and Underflow
are subclasses of Exceptions.Exception).

PROCEDURE GuardedBlock;
 VAR ofl: Overflow; ufl: Underflow;

 PROCEDURE HandleOfl (VAR e: Overflow); …
 END HandleOfl;

 PROCEDURE HandleUfl (VAR e: Underflow); …
 END HandleUfl;

BEGIN
 …
 IF … overflow … THEN
 … fill the ofl object with error information …
 Exceptions.Raise(ofl)
 END;
 …
END GuardedBlock;

In this example, GuardedBlock raises an exception by calling Exceptions.Raise(ofl).
Procedure Raise is implemented with reflection. It determines the type of ofl and
searches through the local procedures of GuardedBlock to find a procedure with a
matching parameter type. This is the exception handler (in this example HandleOfl). If
such a handler is found, it is called. Finally, the activation stack is unrolled so that the
control is returned to the caller of GuardedBlock.

If no matching exception handler is found in GuardedBlock, the lookup continues
in the caller of GuardedBlock. If this caller P contains a local procedure H with a
matching parameter type, H is called as an exception handler, and then the program
continues with the first statement after P.

If no exception handler is found in any of the currently active procedures, the
program is aborted with a standard error message. The following pseudocode fragment
shows the implementation of Raise:

PROCEDURE Raise (VAR e: Exceptions.Exception);
 E := dynamic type of e;
 FOR all stack frames in reverse order DO
 P := procedure of this frame;
 FOR all local procedures H of P DO
 IF H has a parameter of type E or a subtype THEN
 Invoke H(e) ;
 Return to the caller of P
 END
 END
 END
END Raise;

Except of the underlined parts, all actions of Raise are implemented with the reflection
model described in Section 2. In particular, riders are used to traverse the stack frames,
the procedures and the parameters to perform the handler lookup. The underlined
actions involve stack manipulation. They are implemented using low-level facilities
of Oberon-2 and are not show here (see [HMP97]). The dynamic type of an object can
be obtained with an Oberon system function.

The exception handling mechanism is encapsulated in a library module with the
following simple interface:

DEFINITION Exceptions;
 TYPE Exception = RECORD END; (*abstract base class*)
 PROCEDURE Raise (VAR e: Exception);
END Exceptions.

4. Discussion

In this section we discuss some consequences and tradeoffs of the Oberon reflection
model, namely security and performance issues as well as the interference of reflection
with optimizing compilers.

4.1 Security

The Oberon reflection model gives the systems programmer full access to all
variables, types and procedures in a program, even to the private objects that are not
exported from a module. This of course raises the question of security. The visibility
rules of the language can be circumvented by reflection, however, this is necessary to
implement system software such as debuggers or inspectors.

Although the whole structure of a program is visible to reflection, it is not
possible to access it in an undisciplined way. The Oberon reflection model is strongly

typed. All metainformation is read and written according to their types. It is never
possible, for example, to access a pointer as an integer or vice versa.

The most critical fact about the Oberon reflection model is that data can not only
be read but also written. This is sometimes necessary as for example in the Embedded
SQL facility described in Section 3.3. One should use this feature very carefully.
According to our experience most reflective applications don't make use of it.

Clearly, reflection allows a programmer to do more than what he could do with an
ordinary programming language. But this is exactly its advantage. System
programmers need sharper tools than application programmers.

4.2 Interference with Optimizing Compilers

An optimizing compiler may decide to keep variables in registers rather than in
memory, to eliminate variables at all, or to introduce auxiliary variables, which are
not in the source program. Some of these optimizations are easy to cope with in the
reflection model, others are more difficult to handle. The Oberon-2 compiler does not
perform aggressive optimizations. In addition to some code modifications (which do
not affect the metainformation) the compiler keeps certain variables in registers. For
such variables, their register numbers are stored in the metainformation, so that riders
can find them. The Oberon-2 compiler does not eliminate, introduce or reorder
variables. But even such cases could be handled if the metainformation carried enough
information about the optimizations that the compiler performed.

4.3 Performance

The Oberon reflection model leads to small memory overhead at the cost of run time
efficiency. The layout of our metainformation is sequential. For example, in order to
access the information of the third local variable in the fourth procedure of a module,
one has to skip three procedures, zoom into the fourth one and search for the third
variable. Table 1 shows the approximate costs for reading (i.e. skipping) various kinds
of elements in the metainformation sequence. Of course, the time to skip a procedure
or a record type depends on its size.

Table 1. Access times for specific program elements (on a Pentium II with 300 MHz)

Element to be skipped Cost
Local variable 2 µs
Global variable 2 µs
Record field 2 µs
Record type 9 µs
Procedure 15 µs

The sequential layout of the metainformation as described in Section 2.1 requires us to
skip all record types before we get to the first procedure. Furthermore, in our current

implementation, the global variables of a module are treated like local variables of the
module body, which is considered to be a special procedure. Accessing them requires
us to skip to this procedure first. Constraints like these make random access of meta-
information elements somewhat inefficient. In practice, however, a typical access
pattern involves both random access and sequential access so that the run time was
never a serious problem in all the applications described in Section 3. As a task for
further research one could try to redesign the metainformation so that it is indexed and
random access becomes more efficient.

Our current implementation has the advantage that the metainformation is stored in
a very compact form. For example, the metainformation of the whole Oberon
compiler (9 modules, 413 procedures, 14 types, 1690 variables and 86 record fields)
consumes only 23706 bytes on the disk. When it is accessed it is cached in memory
so that it is not necessary to go to the disk for every access. Reading the meta-
information of the whole compiler sequentially takes 30 milliseconds.

5. Summary

The fundamental difference between the Oberon-2 reflection model and other models is
that the metainformation is not accessed via metaobjects. It is rather parsed on demand
from a file (which is usually cached in main memory to avoid file operations). One
advantage of this approach is the reduced number of objects needed to represent the
metainformation and the reduced memory consumption. For example, when meta-
information is used in a post-mortem debugger to produce a readable stack dump, it is
important not to waste memory since the reason for the trap might be the lack of
memory. A disadvantage of our approach is that the information is parsed again and
again. But this is not time-critical as the measurements show.

The Oberon-2 reflection model is currently designed for convenient access to the
structure and values of program objects. In the future, we plan to extend it with
mechanisms for calling and intercepting methods.

Acknowledgements

The Oberon-2 reflection model was originally designed by Josef Templ [Tem94] in his
PhD thesis. We refined his model and adapted it for our purposes. Our colleagues
Markus Knasmüller [Kna97], Markus Hof [Hof97], Martin Rammerstorfer and Günter
Obiltschnig [Obi98] used the model to implement various applications on top of it.
We wish to thank the anonymous referees for their comments that helped us to make
the paper more focussed.

References

[ArG96] Arnold K., Gosling J.: The Java Programming Language. Addison-Wesley,
1996

[Att89] Attardi G., et al.: Metalevel Programming in CLOS. Proceedings of the
ECOOP’89 Conference. Cambridge University Press, 1989

[ESQL89] Database Language – Embedded SQL (X3.168-1989). American National
Standards Institute, Technical Committee X3H2

[GHJV95] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns—Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995

[HMP97] Hof M., Mössenböck H., Pirkelbauer P.: Zero-Overhead Exception Handling
Using Metaprogramming. Proceeding of SOFSEM’97, Lecture Notes in
Computer Science 1338, 1997

[Hof97] Hof M.: Just-In-Time Stub Generation, Proc. Joint Modular Languages
Conference '97, Hagenberg, Lecture Notes in Computer Science 1204, Springer-
Verlag, 1997

[Kna97] Knasmüller M.: Oberon-D, On Adding Database Functionality to an Object-
Oriented Development Environment, Dissertation, University of Linz, 1997

[LMN93] Lehrmann-Madsen O., Moller-Pedersen B., Nygaard K.: Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley, 1993

[Mil88] Miller W.M.: Exception Handling without Language Extensions. Proceedings
of the USENIX C++ conference, Denver CO, October 1988

[MöK96] Mössenböck H., Koskimies K.: Active Text for Structuring and Understanding
Source Code SOFTWARE - Practice and Experience, 26(7): 833-850, July 1996

[MöW91] Mössenböck H., Wirth N.: The Programming Language Oberon-2. Structured
Programming, 12(4):179-195, 1991

[Obi98] Obiltschnig G.: An Object-Oriented Interpreter Framework for the Oberon-2
Programming Language, Diploma Thesis, University Linz, 1998

[Ste96] Steindl Ch.: Accesing ODBC Databases from Oberon Programs. Report 9 ,
University of Linz, Institute for Practical Computer Science, 1996

[StM96] Steindl Ch., Mössenböck H.: Metaprogramming facilities in Oberon for
Windows and Power Macintosh. Report 8, University of Linz, Institute for
Practical Computer Science, 1996

[Tem94] Templ J.: Metaprogramming in Oberon. Dissertation, ETH Zurich, 1994
[WiG89] Wirth N., Gutknecht J.: The Oberon System. Software—Practice and

Experience, 19(9):857-893, 1989

