
The Institute for Computer Systems of

the ETH Zürich and the Oberon User

Group of Switzerland are pleased to

announce that the Oberon newsletter

is now the official information source

about Oberon and related events. The

newsletter is published on a semi−

regular basis four times a year, to

announce newOberon versions, report

about Oberon events, and to give

information about the latest research

and dissertations of the Institute for

Computer Systems. We do our best to

present in each newsletter topics that

we think might be interesting for

Oberon users. In this issue we have

diverse topics like using Oberon in art

and in education, in addition to many

announcements.

We hope that you enjoy this issue.

Happy reading!

DOS−OberonSystem3Version
1.5 Release

Recently, after many months of hard

work, thenewDOS−OberonSystem 3

version has been released. Although

no conceptual changes have been

made since the last version, a

considerable part of the work invol_

ved incorporating suggestions from

users and making smaller improve_

ments (and of course, many bugs

have been fixed!). Most important,

themain change in the new version is

not only the release contents, but a

new, more open, attitude towards

Oberon. As Oberon is our main

vehicle of research and the principal

programming language taught at

ETH, we have many active Oberon

programmers. Oberon is used exten_

sively in student works, resulting in

many new Oberon tools and

packages per year. Most of the

programs are thrown away and never

used again, although many are of

such a high quality that Oberon users

start using them for private purposes.

Most of these programs never leave

the domains of ETH, often giving an

impression of closedness to the

Institute. However, in the last few

years, many of the projects have

shifted their emphasis from more

technical and specific research to

more end−user oriented applica_

tions, making them much more

suitable for general use by the

Oberon community. This can be

partially attributed toOberon System

3,where theGadgets toolkit increases

programmer productivity by provi_

ding large sets of program compo_

nents or gadgets for reuse, and in this

way enables us to give studentsmore

ambitious projects to be completed

in the same time frame.

Some of the more useful appli_

cations are now provided in an appli_

cation package collection with each

DOS−Oberon release. Most impor_

tant,moreexampleprogramsand the

source code of some of the appli_

cation packages give more realistic

examples of typical Oberon pro_

grams. In our opinion we should not

only teach how to build better

software, but also provide examples

of how to do so, and this is exactly

why so much is now donated to the

public domain.

The largest improvement is the

new System 3 online tutorial system

with a set of tutorials ranging from

using the class Oberon system to

programming new gadgets (more

details can be found in another

article). A further improvement is in

the handling of diskettes. The old

version could only read and write

double density diskettes; the new

version reads andwrites both double

and high density diskettes, and

provides transparent support for

MSDOS diskettes in addition to our

ownbackup format. Further improve_

ments include better support for the

Oberondesktop, an improved gadget

locking model, print support for all

standard gadgets, and a new gadget

to make fixing program syntax errors

a little less tedious. In addition, the

new notebook gadgets are provided

in source form, giving a stable basis

for the development of container

gadgets.

In conclusion, the Oberon System

3 distribution now includes the base

system, the Gadgets user interface

toolkit, the tutorial system, an

assembler toolkit, the source of the

display drivers, sample programs, the

event simulation package, an enhan_

ced text editor, a file archiving tool, a

game, the demo Leda page layout

version and an offline text formatter.

−Johannes Marais, Institute for Computer

Systems

The Oberon Tutorial System of
Oberon System 3

Each DOS−Oberon System 3 version

includes an electronic tutorial sys_

tem. The idea is to provide the system

documentation in an electronic book

form that not only allows you to

jump from topic to topic in the well−

known hypertext fashion, but also to

make the book active by having

working examples integrated inside

it. So it is nothing strange to find com_

pletely working user interfaces float_

ing in the book, or to include in the

book a working panel that explains

how to use that very panel. To

promote the use of electronic books

in Oberon, we also provide a tutorial

development kit with each System 3

release in the hope that application

developers will document their work

in this way. We also request our

students and other application

developers to document in the same

way (some of the packages provided

with DOS−Oberon already have

electronic book descriptions).

Each electronic book is structured

as a normal book: you have a table of

contents, the contents as paragraphs

with footnotes, and an indexof terms.

Inside the book, in addition to

buttons and other gadgets you click

on, you will find highlighted words

that act as hyperlinks to other places

Oberon News

Number 2, July 1994

Institute for Computersystems

Swiss Federal Institute of Technology

Zürich, Switzerland

The Oberon User Group

Bergstrasse 5

CH−8044 Zürich

Switzerland

Oberon News July 1994 1



in the book, to other books, to

footnotes, or as executors of Oberon

commands. Although books are

fundamentally text based, you can

also add panels and other gadgets

inside the text. Buttons allow you to

navigate backwards and forwards

through the book or to backtrack

your steps. A history facility ensures

that you don't get lost in hyperspace.

Behind the scenes, each book is

generated from a text file containing

markup symbols and embedded

elements. A book compiler compiles

the book by reading the text file,

linking thehypertext jumpswith each

other, collecting the index terms and

building the table of contents. The

compiled book is thus ensured to be

consistent and can be used imme_

diately. The editing of the book is

done with a standard text editor; in

this way larger changes can be made

without toomuch trouble. Of course,

to get you started with building your

own books, a meta−tutorial will give

you the needed instruction.

The System 3 release contains a

number of tutorials including topics

on how to use the textual user

interface of Oberon, an introduction

to theGadgets system, how touse the

Gadgets system and how to program

new gadgets. −Johannes Marais, Institute

for Computer Systems

The Backdrop Generator

The Backdrop generator is one of the

fun Oberon System 3 applications

included in each DOS−Oberon

release. Backdrops or wallpapers, as

they are known from other systems,

are texture bitmaps that we use to

beautify our desktop backgrounds.

The main problem with these back_

drops is finding some you like and

the time you waste trying out the

ones you have found! As our contri_

bution toyour lackof productivity, we

now have a backdrop generator for

Oberon that allows you to create and

then modify backdrops on the fly.

Each backdrop is generated by a user

parameterized algorithm for a certain

backdrop style. The student who

created this tool let his fantasy free

and came up with a whole set of

interesting texture algorithms inclu_

ding fractals, surfaces, marble, tex_

tiles, spirals, bows, trees, cells, bricks,

threads, clouds,molecules, coins and

plasma. Each algorithm can be

parameterizedwitha fewnumbers, or

even be combined with others. There

are countless combinations that you

can try out. Afterwards, should the

colors or contrast not suit your taste,

a color manipulation feature allows

you to remap colors, make the image

darker or lighter etc. And finally you

can install your new backdrop imme_

diately. How the backdrops are gene_

rated can be read in the corres_

ponding electronic book. We hope

you have lots of fun! −Johannes Marais,

Institute for Computer Systems

The Offline Text Formatter

The rule−based offline text format_

ter of Oberon System 3 allows you to

create high quality documents with

little effort. In the samemanner as the

well known TeX typesetting program,

the formatter interprets markup

symbols in a conventional text file to

control the typesetting. A user−

defined stylesheet controls the text

formatting and can be used for

creating uniform documents be_

tween several people. The guiding

principle is to keep things as simple

as possible for a person unexpe_

rienced in electronic typesetting. This

has been made possible through the

efforts of our own font designer and

typesetting expert, who hasmade the

rules of typesetting and good taste

explicit in several dozen typografic

rules. These rules control how the text

and embedded figures are poured

into the columns on the page. More

demanding users can override these

intelligent defaults, although this is

seldom necessary. Users who have

used offline text formatters might

remember some of the set of cryptic

markup sequences that have to be

inserted into the text stream; the

Oberon formatter though, many will

be glad to know, uses amuch simpler

and intuitive strategy. The formatter

tries to determine the semantic of the

text contents by analyzing the fonts

used (what size and style for

example) and a few symbols like

parenthesis and braces. This means

that the source text remains easily

readable and easier to edit. For

example, footnotes are simply writ_

ten in square brackets and titles are

written in a slightly larger font.

Furthermore, gadgets and pictures

can be included and placed

automatically on the page. As

examples, a few demanding page

layouts are provided with the

formatter, such as a dictionary and

newspaper article. The documention

of the formatter is an example in

itself. The offline formatter is provi_

dedwith source codewith eachDOS−

Oberon System 3 release. −Johannes

Marais, Institute for Computer Systems

Leda Demo Version Available

Leda, the page layout system

developed at the Institute for

Computer Systems as a Ph.D. study

and lately sold as a commercial pro_

duct, is now provided in a demo ver_

sion with each DOS−Oberon System

3 version.

Leda, an advanced, fully integrated

and easy−to−use document editor

for Oberon System 3, allows the

simple and efficient creation of docu_

ments of different types and com_

plexity. No distinction is made be_

tween short letters, long reports or

complicated page−layouts. Leda pro_

vides enough functionality to solve

sophisticateddocument layouts (this

document was created using Leda). It

distinguishes itself from other mo_

dern document editors in two ways.

The Leda−System respects basic

typographical rules of documents.

The typography influences sizes and

attributes that can be inserted into a

document. Not only are fonts, but

also the formattingof the text and the

layout of the pages influenced by

typographical rules. The consequent

use of the typographical rules simpli_

fies document editing. A good−look_

ing document can be created in a

short time with little effort by using

defaults provided by the system.

Additional functionality allows the

expert further control over the

attributes of a document.

Additionally Ledaprovides a seam_

less transition between simple text

formatting and page−layout. In the

base functionality Leda supports

block adjusted formatting of text.

Multiple columns and a marginal

form are also available. A more

flexible layout can be obtained by

placing diagrams and pictures in a

Oberon News July 1994 2



layout raster on the page.

Gadgets can be integrated into

Leda documents, either flowing in_

side the text streamor as freely place−

able boxes. In addition, Leda sup_

ports the direct in−place editing of

mathematical formulas.

Thedemonstration version of Leda

allows you to create complete

documents but to print only the first

page of the document. The full

version of Leda can be ordered from

A+L AG, Däderiz 61, CH−2540

Grenchen, Switzerland, Tel. +41/65_

/52 03 11, Fax +41/65/52 03 79.

−Johannes Marais, Institute for Computer

Systems

New Dissertations

Four dissertations have recently been

completedat the Institute for Compu_

ter Systems, ETH Zürich.

Separate Compilation and Module Ex_

tension, Régis Bernard Crelier

As continuous evolution in hardware

results in more powerful computers,

new programming techniques and

concepts must be developed to

master the consequently increasing

software complexity. Separate com_

pilation of modules is such a

technique that has proven valuable in

Modula−2 and in Oberon, among

other strongly−typed languages.

The module is both the structural

unit and the compilation unit of

programs. Replacing a module by a

newonedoesnot affect the rest of the

system, providing that the module

interface has not changed. Otherwise,

client modules of the modified

interface have to be recompiled to

maintainsystemconsistency. The last

opportunity to detect an incon_

sistency is when modules are linked

to form an executable unit. The check

usually consists in comparing, for

each imported interface, the expected

keyof that interface, as knownat com_

pilation time of the client, with the

key of the effectively supplied inter_

face. A mismatch indicates an incon_

sistency. The model is simple and

efficient, but not very flexible. Indeed,

a minor modification of an interface,

such as the insertion of a new proce_

dure, can trigger many unnecessary

recompilations.

This thesis presents two new

models for fine−grained consistency

checking and their implementation.

These models allow the interface of

separately compiled modules to be

extended without requiring a

recompilation of clientmodules. This

is particularly valuable in systems

with dynamic loading, where the

clients of a library are not known

when the library is revised or

extended. Interface editing that does

not require client recompilation is

not restricted to extensions, since the

modification of an existing item does

not invalidate clients not using this

particular item. Even if they use it in a

way that is upward−compatible with

the modification, they still do not

need a recompilation.

These techniques have been

implemented in the Oberon system,

but they are neither specific to the

Oberon Language nor to the Oberon

System. They can be applied to any

modular programming system in

order to improve its safety, its flexi_

bility or both. Furthemore, these tech_

niques are not available to the

programmer as a separate tool who_

se use remains optional, but have

been fully and transparently integra_

ted into the compiler and module

loader. Safety must not be optional.

Hermes − Supporting Distributed Pro_

gramming in a Network of Personal

Workstations, Spyridon Gerassimos

Lalis

With distributed programming it is

possible to support cooperation am_

ong users in a network, and to

develop programs that use resources

of remote machines to enhance their

availability and performance. This

potential is even more important

nowadays where networks of work_

stations become an increasingly

attractive alternative to big main_

frames for organizing bussinesses

and computing environments. In this

work, a system that promotes distri_

buted programming in a network of

personalworkstations is presented. It

is implemented on top of an existing

operating system as a collection of

modules that introduce new func_

tionality in an incremental fashion.

The key idea of our approach is to

view data items as abstract objects

coupled to abstract descriptions

indicating how their content can be

written and read. This allows generic

data transfer programs to be built

without a priori knowing the type of

the data items that are to be

transfered. As an extension of this

model, an asynchronousmechanism

is developed for exchanging arbitra_

rily complex messages over the

network. At the application level, sen_

ding and receiving of messages occur

asynchronously to each other so that

a decoupling between the commu_

nicating processes is achieved.

Finally, using the provided primi_

tives a component is built which sup_

ports programming of extensible

application objects that can be

dynamically installed, referenced,

and collected over a network. Such

objects are automatically notified

about incoming messages, thus they

operate like special state machines

whose transitions are triggered by

message events; this technique is

appropriate for capturing a wide

range of distributed programs.

Due to its clean internal structure,

the system presents itself as a set of

well separated, yet cooperating parts

which can also be individually acces_

sed by the programmer. This allows

for great flexibility in application

development. Furthermore, the sys_

tem encourages a disciplined pro_

gramming style and guarantees type

safety which we consider to be an

important property of development

environments. Our implementation

also demonstrates that the proposed

approach leads to acceptable

performance at only a modest

software cost.

Metaprogramming in Oberon, Josef

Templ

The termmetaprogramming refers to

programming at the level of program

interpretation, or in other words, to

extending the interpreter of a given

programming language in an appli_

cation specific way. Traditionally, this

concept is available only in dynamic

typed and interpreted languages as

Smalltalk or Lisp. This thesis inves_

tigates the possibilities of metapro_

gramming in a statically typed and

efficiently compiled programming

language. In the course of a case

study, we introduce metaprogram_

ming facilities for the Oberon

Oberon News July 1994 3



programming language and system.

The result is a variant of theOberon

operating environment which allows

a seamless integration of usefulmet−

level facilities. The key to this inte_

gration is a generalized notion of

persistent objects and object libraries

and its application to components of

Oberon programs. Types and proce_

dures are considered to be persistent

objects collected in a special kind of

library, namely module. We intro_

duce a metaprogramming protocol

which allows to manipulate arbitrary

data structures based on the notion

of object riders. An object rider is an

iteratorwhich can be used to scan the

components down to an arbitrary

nesting level. We introduce also faci_

lities for controlling procedure activa_

tions based on the notion of active

procedures. An active procedure is a

procedure object which has its own

instance specific behaviour expres_

sed by a message handler. Active

procedures can individually respond

to invocation messages and perform

any computation as response.

We investigate the implications of

this approach with respect to the

overall system structure and to the

implementation of critical compo_

nents of the run−time system, such as

the library loader and the garbage

collector. A new approach to safe

library loading and unloading is

introduced as well as a simple finali_

zation technique and a way for

optimizing libraries with a large

number of objects. We show that the

integration of meta−programming

facilities does not introduce undue

static or dynamic complexity into the

Oberon system. A number of realistic

applicationsserveasproof−by−exam_

ple of the feasibility of the metapro_

gramming approach.

Code_Generation On_the_Fly: A Key to

Portable Software, Michael Franz,

Verlag der Fachvereine, Zurich. ISBN 3−

7281−2115−0

A technique for representing pro_

grams abstractly and independently

of the eventual target architecture is

presented that yields a file repre_

sentation twice as compact as mac_

hine code for a CISC processor. It

forms the basis of an implementa_

tion, in which the process of code

generation is deferred until the time

of loading. At that point, native code

is createdon_the_fly by a code_genera_

ting loader.

Theprocess of loadingwith dynamic

code_generation is so fast that it

requires little more time than the

inputofequivalentnative code froma

diskstoragemedium.This ispredomi_

nantly due to the compactness of the

abstract program representation,

which allows to counterbalance the

additional effort of code_generation

by shorter input times. Since proces_

sor power is currently rising more

rapidly than disk_access times and

transfer rates are falling, the pro_

posed technique is likely to become

even more competitive as hardware

technology evolves.

Tousers of the implemented system,

working withmodules in the abstract

representation is as convenient as

working with native object_files. Both

kinds of file_representation coexist in

the implemented system; they are

completely interchangeable and

modules in either representation can

import from the other kind. Separate

compilation of program modules

with type_safe interfaces, and

dynamic loading on a per_module

basis are both fully supported.

Deferring code_generation until

loading time can provide several new

capabilities, especiallywhen the inter_

mediate program representation is

machine_independent and thereby

portable. It is argued that the com_

bination of portability with practica_

lity denotes an important step

towardasoftware_ component indus_

try. Further benefits include a poten_

tial for reducing the number of

recompilations after changes in

source text, and a mechanism to

decide at load time whether or not

run_time integrity checks should be

generated for a library module,

eliminating the need to distinguish

between development and produc_

tion library configurations. All of

these new possibilities have the

potential of lowering the cost of

software development and mainte_

nance.

In the long run, fast on_the_fly code_

generation may even replace binary

compatibility for achieving software

portability among processors imple_

menting the same architecture.

Already today, different models of a

processor family are diverging more

and more and it is becoming

increasingly difficult to serve all of

them equally well with just one

version of native code. If code is

generated only at the time of loading,

however, it can always be custom_

tailored toward the specific processor

that it will eventually run on.

−Compiled by Johannes Marais, Institute for

Computer Systems

Oberon for Windows

Oberon for Windows is available for

almost a year now. The statistics on

our ftp server neptune.inf.ethz.ch

reveal that it has become one of the

most popular implementation of the

Oberon family, in terms of number of

downloads. While even version 1.0

was running quite stable, the current

version 1.31 contains some refine_

ments and bug fixes. A nice point−

and−click installation program has

been added, making the installation

of Oberon foolproof. You just specify

the target directory and click ok, and

the rest will be done automatically.

Editing of autoexec.bat is no longer

necessary.

A telnet client application provides

a terminal emulation viewer class

that allows to connect to remote

systems. The terminal viewer is fully

integrated into the Oberon system,

i.e. text may be copied over from and

to the terminal viewers. The telnet

client makes use of any Windows−

compliant sockets implementaion

installed on a system.

The Kernel has been overhauled

and at that time object finalization

has been made safe. Any Oberon

applicationmay now register objects

for finalization, together with a

finalization procedure. When the

garbage collector reclaimsmemory, it

calls the registered finalization

procedurewhich in turnmay perform

cleanupoperations. The file system is

a client of this finalization service.

Finalization handlers for file objects

delete temporary files on disk if they

are no longer needed [Editors note:

The object finalization implementation

is based on the dissertation of Josef

Templ, Metaprogramming in Oberon].

Oberon for Windows has the

futurebuilt in already: early tests have

shown that it runs flawlessly on Beta

versions of Microsoft's upcoming

Oberon News July 1994 4



Chicago as well as on Daytona

(Windows NT version 3.5). Some

restrictions that are present now on

Windows 3.1 systems will vanish

when using Chicago. A port of

Oberon System 3 is nearly finished,

and will be advertised when

complete. Stay tuned! −Matthias

Hausner, Institute for Computer Systems

ArtworkCode 86 or how to
visualize 1296 pictures

Visualization is undoubtedly one of

the most attractive application of

modern computers. In the run−up to

Kicking Boxes Billiard− a current

exhibition at the Graphische Samm_

lung of ETH Zuerich that is devoted to

contemporary geometric art− we

were approached by the artist Peter

Schweri with the idea of visualizing

his ArtworkCode 86(TM).

The basic concept of ArtworkCode

86 is customizableart in the sense that

each individual may select his or her

specimen from a complete collection

of pictures. In its simplest form,

ArtworkCode 86 is a set of pictures

consisting of 4 x 4 colored double−

squares. If (as in the examples below)

two colors are used (e.g. black and

white, redandgreen, cyanandmagen_

ta) and if the columns are required to

be balanced in color (2 double−squa_

res of each color), the complete set

consists of 6 to the 4th = 1296

pictures.

Essentially, we developed two

(trivial) Oberon programs for Art_

workCode 86, one that generates a

complete catalogue on a single page

in the form of an array of 36 x 36

pictures, and one that displays form−

filling any arbitrary picture of the

collection (given by its ordinal num_

ber). In both cases, the Oberon pro_

gram produces a portable Post_

Script(TM) file thatmay be fed to any

PostScript printer or photo exposure

device of any size and quality. Thanks

to this technique we were able

without additional effort to produce

MODULE ArtworkCode;

IMPORT Files, Texts, Display, Oberon;

CONST D = 12; H = 8; W = 2*H; dX = 4*W + D; dY = 4*H + D; (*in units of 0.1 mm*)

VAR WT: Texts.Writer; col: ARRAY 6, 4 OF BOOLEAN;

PROCEDURE WriteLn (s: ARRAY OF CHAR);
BEGIN Texts.WriteString(WT, s); Texts.WriteLn(WT)
END WriteLn;

PROCEDURE WriteInt (i: LONGINT);
BEGIN Texts.WriteInt(WT, i, 1); Texts.Write(WT, " ")
END WriteInt;

PROCEDURE PrintColumn (i: INTEGER; X, Y: LONGINT);
VAR j: INTEGER;

BEGIN j := 0;
REPEAT
IF col[i, j] THEN
WriteInt(X); WriteInt(Y); WriteInt(W); WriteInt(H); WriteLn("rect")

END;
Y := Y + H; INC(j)

UNTIL j = 4
END PrintColumn;

PROCEDURE PrintPicture (N: INTEGER; X, Y: LONGINT);
VAR j: INTEGER;

BEGIN
WriteLn("1 0 1 setrgbcolor");
WriteInt(X); WriteInt(Y); WriteInt(4*W); WriteInt(4*H); WriteLn("rect");
WriteLn("0 1 1 setrgbcolor"); j := 0;
WHILE j # 4 DO
PrintColumn(N MOD 6, X, Y); N := N DIV 6; X := X + W; INC(j)

END
END PrintPicture;

PROCEDURE Print*;
VAR N: INTEGER; X, Y: LONGINT; ch: CHAR;
f: Files.File; RF: Files.Rider; T: Texts.Text; RT: Texts.Reader;

BEGIN Texts.OpenWriter(WT);
WriteLn("%!"); WriteLn("/rect {");
WriteLn("/rh exch def"); WriteLn("/rw exch def");
WriteLn("newpath"); WriteLn("moveto");
WriteLn("rw 0 rlineto"); WriteLn("0 rh rlineto");
WriteLn("rw neg 0 rlineto"); WriteLn("closepath fill");
WriteLn("} bind def");
WriteLn("0.2835 0.2835 scale"); (*to units of 0.1 mm*)
WriteLn("90 rotate"); WriteLn("120 −1856 translate");
WriteLn("/Times−Roman findfont"); WriteLn("28 scalefont");
WriteLn("setfont"); WriteLn("0 0 0 setrgbcolor");
WriteLn("0 0 moveto"); WriteLn("(Artwork Code 86 by Peter Schweri) show");
WriteLn("0 −30 moveto"); WriteLn("(Copyright (C) Peter Schweri) show");
WriteLn("180 rotate");
N := 0; X := −4*W; Y := −1622;
REPEAT
PrintPicture(N, X, Y); INC(N); Y := Y +dY;
IF N MOD 36 = 0 THEN X := X − dX; Y := −1622 END

UNTIL N = 1296;
WriteLn("showpage");
NEW(T); Texts.Open(T, ""); Texts.Append(T, WT.buf);
f := Files.New("Artwork.PS"); Files.Set(RF, f, 0);
Texts.OpenReader(RT, T, 0); Texts.Read(RT, ch);
WHILE ˜RT.eot DO Files.Write(RF, ch); Texts.Read(RT, ch) END;
Files.Register(f)

END Print;

BEGIN
col[0, 0] := TRUE; col[0, 1] := TRUE; col[0, 2] := FALSE; col[0, 3] := FALSE;
col[1, 0] := TRUE; col[1, 1] := FALSE; col[1, 2] := TRUE; col[1, 3] := FALSE;
col[2, 0] := FALSE; col[2, 1] := TRUE; col[2, 2] := TRUE; col[2, 3] := FALSE;
col[3, 0] := TRUE; col[3, 1] := FALSE; col[3, 2] := FALSE; col[3, 3] := TRUE;
col[4, 0] := FALSE; col[4, 1] := TRUE; col[4, 2] := FALSE; col[4, 3] := TRUE;
col[5, 0] := FALSE; col[5, 1] := FALSE; col[5, 2] := TRUE; col[5, 3] := TRUE

END ArtworkCode.

Oberon News July 1994 5



(a) a large poster−sized version of the

catalogue and (b) high−quality litho_

graphs of some carefully selected

pictures. For the interested reader we

present the Oberon program that

generates the complete ArtworkCode

86 catalogue in green on red. −Jürg

Gutknecht, Institute for Computer Systems.

ArtworkCode 86 is a trademark of Peter

Schweri. PostScript is a trademark of Adobe

Company.

Joint Modular Languages
Conference (JMLC)

This conference will be held from

September 28th−30th 1994 in Ulm,

Germany. Having evolved from both

the former International Modula−2

Conference and the former European

Modula−2 Conference, JMLC is actual_

ly two conferences in one.

Besides of unification, the confe_

rence has also widened its scope.

Although still concentrating on the

Pascal−Modula−Oberon line

(Niklaus Wirth will be the keynote

speaker), JMLC features comparative

language studies and contributions

that focus on other advanced

modular languages, such as the Beta

language.

Also noticeable are tutorials on

Oberon, Ada 9X and C++ that are

offered as aprelude to the conference

and an extensive social program,

aimed at introducing historical Ulm

to accompanying persons. The

conference fee is budgeted to

approximately 350 DM. Discounts

are available for GI, SI and BCS SIG

members and for students. −Jürg

Gutknecht, Institute for Computer Sys_

tems. Further information can be obtained

from and applications can be placed at:

JMLC Conference

Secretary

Verteilte Systeme, Informatik

Universitaet Ulm

Oberer Eselsberg o−27

D89069 ULM (Germany)

Phone: (++49)−731/502−4140

Fax: (++49−731/502−4142

E−mail: schulthe@informatik.uni−ulm.de

The Oberon User Group

The Oberon User Group (OUG), a

sub−goup of the Schweizerischen

InformatikerGesellschaft (SI), has the

goal to popularize Oberon and to

collect all information about the

Oberon language and system. Every

year we organize the Oberon Day,

oneof themajorOberon events of the

year, where we present a full day of

talks by well−known speakers

around a specific topic. We also

publish the Oberon Newsletter

together with the Institute for

Computer Systems. The User group

provide user support by e−mail and

hasa telephonehotline (details at the

end of the newsletter). −Markus

Dätwyler, Oberon User Group

The Oberon Day '94

The programming language and

operating system Oberon has been

successfully used as a computer

science education medium at ETH

andother educational institutions for

the last few years. The pragmatic

simplicity and understandability of

the system, together with its

complete and concise documen_

tation makes it an ideal educational

tool. Oberon success stories include

applications like the Electronic Book

and a system for the design and

programming of digital components

(FPGA). Oberon is freely available for

different computer architectures,

making it a favourite of students

around the world.

After the successful Oberon Day

'93 organized by the Oberon User

Groupand the Institute for Computer

Systems of the ETH Zürich, this year's

Oberon Day is dedicated to Oberon

in education. Together with the

fathers of Oberon, Prof. N. Wirth and

Prof. J. Gutknecht, speakers from

different backgrounds will talk about

their use of Oberon in education.

Oberon and its applications will be

demonstrated live and attendees will

have the possibility of buying the

system for a small fee.

The event will take place on the

14th of September 1994, in the

Auditorium Maximum of the ETH

Zuerich. All talks will be held in

German.More details, a program and

a registration form can be obtained

from theOberonUser Group, or from

the Secretary of the SI, Frau A. Nicolet

++41/1/371 73 42. −Markus Dätwyler,

Oberon User Group

Welcome to Hades

The Oberon User Group manages an

internet FTP server called hades_

.ethz.ch (129.132.71.5) on which

public domain Oberon software is

archived. The directories are orga_

nized according to the system in

/pub/Oberon, with each system

sub−divided again for Oberon V4 and

Oberon System 3. A special directory

contains programs that have been

written for non−ETH Oberon imple_

mentations. You may upload your

programs to /pub/incoming, from

where they will be copied by the

systemadministrators to their correct

directory. Don't forget to include a

README file in ASCII when

uploading. The Oberon User Group

cannot accept responsibility for the

functionality of Oberon programs on

the FTP server, and does not adjust

software for newer Oberon versions.

−Patrick Saladin, Oberon User Group

Oberon for AmigaTM

The Institute for Computer Systems is

proud to announce the availability of

the Oberon System V4 for Amiga

computers. Oberon for Amiga is an

implementationof the standardObe_

ron System Version 4, featuring an

Oberon−2 compiler. All Oberon pro_

gramswritten for anyOberon System

V4 can be compiled without modifi_

cation. The software package oberon_

.lha is available without fee via

anonymous internet ftp from

neptune.inf.ethz.ch (129.132.101.33)

in directory /pub/Oberon/Amiga/.

−Stefan Ludwig, Institute for Computer

Systems

Oberon in a Digital Design
Course

For thesecondyear, a course in digital

design for Computer Science

students at ETH was held with great

success. During the course, students

solve exercises in digital design by

implementing a circuit on an FPGA

board (Field−Programmable Gate

Array), using CAD software written

entirely in Oberon. The software

package consists of a hardware

description language compiler, a

Oberon News July 1994 6



graphical design editor, and a design

checker for comparing a formal

description of a design with its

implementation. The portability of

Oberon allowed an easy migration of

the tools to various other machines,

such that students could solve the

exercises on their computers at

home, and only needed the FPGA

board for final verification of the

designs. −Stefan Ludwig, Institute for

Computer Systems

Using TrueTypeTM fonts with
Oberon System 3

Tired of having to select a font for

your Oberon documents from a very

narrow set of choices? Oberon

System 3 now supports Apple's True_

Type font technology, which is

incorporated in such widely used

systems as Apple Macintosh or

Microsoft Windows. This means that

Oberon usersmay nowuse TrueType

fonts within their documents, on

screen as well as on paper.

Unlike traditional Oberon bitmap

fonts, which need one file for every

point size, TrueType fonts come with

only one file holding all necessary

information. There's not even a dis_

tinction between screen fonts and

printer fonts anymore, since a True_

Type font does not make a funda_

mental difference between the two.

This allows users to have lots of fonts

available at reasonable storage

requirements.

Integration into Oberon System 3

is so smooth that most users will

hardly ever notice, because all

existing bitmap fonts will continue to

work as before. The only difference

lies in the fact that if a font is

requested but cannot be found, the

TrueType machinery will look for an

appropriate TrueType description in_

stead of immediately returning a

default font. The bitmap patterns that

are needed to display characters on

the screen are generated the first time

they are requested and are kept in

memory for further uses. This makes

sure that computation effort is only

spent where it is needed, since no

pattern will ever be generated for

characters that are never used, and

keeps response times short (as long

as only short text stretches are

affected).

Another way to use TrueType fonts

is to convert them to traditional

Oberon font files, which is also

possible. These can of course be used

with Oberon V4, too, and may be

edited manually to improve their

appearance on the screen.

The use of TrueType fonts within

Oberon documents opens a whole

new range of possibilities, and we

hope that a lot of users will take

advantage of this opportunity and

use their TrueType fontswithOberon,

too [Editor's note: The TrueType

interpreter is available with the Leda

page layout system demo version in

each DOS−Oberon release]. −Erich

Oswald, Institute for Computer Systems

TCP/IP and Oberon

The growing interest in distributed

services using the client/server

paradigmhas led to the development

of a large collection of network

protocols in the computer science

community. One, TCP/IP, currently

dominates the scene as it is already

serving as a de facto standard in the

world of UNIX. Most remote services

including telnet, ftp and www are

based on the reliable connections

offered by TCP/IP.

The abbreviation TCP/IP indicates

that TCP is based on IP, both of which

are layers in the Internet layering

model. Compared with the OSI

reference model, they correspond to

the network layer (IP) and the

transport layer (TCP). The Internet

protocol family contains several

other protocols, i.e. arp (address

resolution) and icmp (internet

correction message), which are used

by TCP/IP.

We have implemented the entire

Internet protocol family for the client

side with the exception of frag_

mentation of IP packets and dynamic

routing. We support two different

versions, i.e. one for the standard

Oberon sytem and another for

ConcurrentOberon. The two versions

differ from one another in dealing

with asynchronous input from a

network. All ported versions of

Oberon can rely on a unique TCP/IP

interface so network applications are

portable. The complete implemen_

tation is rather small (only around

15KB). For further information feel

free to contact gitsels@inf.ethz.ch.

−Martin Gitsels, Institute for Computer Sys_

tems

FTPServer for ResearchReports

Most of the research reports, disser_

tations and technical reports of the

Institute for Computer Systems are

available electronically via Internet

FTP from neptune.inf.ethz.ch in the

/doc directory. In addition to the text

files containing the report abstracts,

you will find the reports in Postscript

format. Some of the Oberon related

reports are listed in the next

paragraphs; additional or older re_

ports are listed in the abstracts on the

server. Unfortunately we don't sell

dissertations directly; these have to

be ordered from the person who

wrote it, or if it has an ISBN number,

directly from your book store. If you

don't have electronic access to the

technical reports, please write to us

and we will send you a copy if

available. Please keep inmind that we

print only a limitednumberof copies.

Technical Report 156, Mar. 1991:

R. Griesemer, On the Linearization of

Graphs and Writing Symbol Files

C. Pfister (ed.), B. Heeb, J. Templ,

Oberon Technical Notes

Technical Report 198, Jul. 1993:

N. Wirth, An Extension−Board with an

FPGA for Experimental Circuit Design

S. Ludwig, CL − An Editor for the

CLi6000 Field Programmable Gate

Array and its Implementation

S. Ludwig, CL−Editor User Manual

Technical Report 212, Feb. 1994:

J. Supcik,HP−Oberon(TM):TheOberon

Implementation for Hewlett−Packard

Apollo 9000 Series 700

Technical Report 215, May 1994:

H. Eberle, S. Gehring, S. Ludwig, N.

Wirth, Tools for Digital Circuit Design

using FPGAs

−Johannes Marais, Institute for Computer

System

Literature

Several books have been written

about the Oberon System and Lan_

Oberon News July 1994 7



guage. We recommend these books

for serious Oberon users. However, if

you want to try out Oberon before

buying abook,most Oberon releases

have enough online information to

get a new user started with Oberon.

N. Wirth and M. Reiser: Programming

inOberon. StepsbeyondPascal andMo_

dula. Addison Wesley, 1992, ISBN 0−

201−56543−9.

Tutorial for theOberonprogramming

language and concise language refe_

rence.

M. Reiser: The Oberon System. User

Guide and Programmer's Manual.

Addison Wesley, 1991, ISBN 0−201−

54422−9.

User manual for the programming

environment and reference for the

standard module library.

N. Wirth and J. Gutknecht: Project

Oberon. The Design of an Operating

System and Compiler. Addison

Wesley, 1992, ISBN 0−201−54428−8.

Program listings with explanation for

the whole system, including the

compiler for NS32000.

H. Mössenböck: Object−Oriented

Programming in Oberon−2. Springer,

1993, ISBN 3−540−56411−X.

Principles and applicationsof object−

oriented programming with exam_

ples in the language Oberon−2.

How to get Oberon

All the different Oberon versions are

available free of charge from our

InternetFTP serverneptune.inf.ethz.ch

in the /pub/Oberon directory. The

sub−directory System3 contains the

Oberon System 3 versions. Classic

Oberon is available for Amiga, DEC_

Station, MS−DOS, Microsoft Win_

dows andWindows NT, HP 700, Mac

II, IBM RS6000, SPARC and Silicon

Graphicsmachines. Oberon System 3

Version 1.5 is currently only available

for MS−DOS and SPARC computers.

If you do not have access to

Internet, you canorder diskettes from

the address below.We charge a fee of

Sfr50.00 to cover our costs.Weaccept

payment via Eurocard/Mastercard or

VISA. To order by credit card, specify

your credit card number, expiration

date, and your name exactly as it

appears on the card.

If you already purchased an Obe_

ron version from us, we will upgrade

you to a newer version for Sfr. 20. The

upgrading policy applies only to

versionsof the samearchitecture; this

means you cannot upgrade from an

older Oberon V4 for Windows

version to a newer DOS−Oberon

version or vice−versa.

How to contact us

Institut für Computersysteme

ETH Zentrum

CH−8092 Zürich

Switzerland

Telephone +41 (1) 6327311

Fax +41(1) 261 53 89 until 12 Aug 94

Fax +41(1) 632 12 20 after 12 Aug 94

e−mail oberon@inf.ethz.ch

The Oberon User Group

Bergstrasse 5

CH−8044 Zürich

Switzerland

Hotline: +41(1) 632 72 13

e−mail oberon−user@inf.ethz.ch

The following page contains a typical

Oberon System 3 display snapshot. The

lefthand area is the so−called Oberon

desktop showing two documents, the

backdrop generator panel and the online

tutorial system. On the righthand you see a

typical tool with a set of useful menus and

buttons floating in the text. Below the tool

we have opened a tool which allows you to

visualize the grid−fitting of TrueType fonts.

This tool is included in the TrueType

application package of DOS−Oberon

System 3 and allows you to observe in a

step−by−step manner how a TrueType

character comes to life.

Acknowledgements:

Big thanks to our contributors, and to Hans

Eberle, Dominique Lebegue, and Stefan

Ludwig for their effort in proof reading the

newsletter.

Oberon News July 1994 8


	Title
	DOS-Oberon System 3 Version 1.5 Release
	The Oberon Tutorial System of Oberon System 3
	The Backdrop Generator
	The Offline Text Formatter
	Leda Demo Version Available
	New Dissertations
	Oberon for Windows
	ArtworkCode 86 or how to visualize 1296 pictures
	Joint Modular Languages Conference (JMLC)
	The Oberon User Group
	The Oberon Day '94
	Welcome to Hades
	Oberon for Amiga
	Oberon in a Digital Design Course
	Using TrueType fonts with Oberon System 3
	TCP/IP and Oberon
	FTP Server for Research Reports
	Literature
	How to get Oberon
	How to contact us

	return: 
	home: 


