
Oberon News

Institute for Computer Systems The Oberon User Group

Number 3, December 1994

Contents

Editorial : : : : : : : : : : : : : : : : : : : 1
The Joint Modular Languages Conference 1
Oberon Day '94 : : : : : : : : : : : : : : : 2
The Oberon Module Interchange (OMI) : 2
The Hybrid Project : : : : : : : : : : : : 4
PC-Oberon: A Progress Report : : : : : : 5
Dynamic Online Documents in Oberon : : 6
News around Oberon System 3 and Gadgets 7
TCP/IP for MacOberon and PowerMac

Oberon : : : : : : : : : : : : : : : : 7
DART-Oberon : : : : : : : : : : : : : : : 7
Logic Magicians' Oberon : : : : : : : : : : 8
Integrating Multimedia on the worksta-

tion Ceres-2 : : : : : : : : : : : : : : 9
Oberon Tutorial : : : : : : : : : : : : : : 9
Power Gadgets Available : : : : : : : : : 10
Action-Oberon : : : : : : : : : : : : : : : 10
ONTIME : : : : : : : : : : : : : : : : : : 10
Oberon V4 for the PowerMacintosh : : : : 11
Post Mortem Debugger for Oberon V4 : : 11
Oberon Dialogs: A Graphical User Inter-

face for Oberon V4 : : : : : : : : : : 11
Oberon/F: Introducing a New Oberon

System : : : : : : : : : : : : : : : : : 12
Call for Papers : : : : : : : : : : : : : : : 12
Statistics on a Voyage to Oberon : : : : : 13
Recent Publications : : : : : : : : : : : : 13
Accessing The Internet By E-Mail : : : : 13
Oberon Source Code : : : : : : : : : : : : 14
Programmieren in Oberon | Das neue

Pascal : : : : : : : : : : : : : : : : : 14
Miscellaneous Oberon Software : : : : : : 14
Literature : : : : : : : : : : : : : : : : : : 15
How to get Oberon : : : : : : : : : : : : : 15

Editorial

Johannes L. Marais

Everything that happens three times becomes
tradition and will repeat itself again. Consequently
this third issue of the newsletter predicts a bright
Oberon future | and if we look at the number of
contributions in this issue in contrast to the previ-
ous newsletters, an ever growing one too. We would

like to thank all the authors who took time to write
a contribution.

I would like to point out two \must read" articles
in this issue (with no o�ense to the other authors
intended). The �rst is a report on Joint Modu-

lar Languages conference held in Germany by Pe-
ter Schulthess. If you are interested in Oberon, the
conference proceedings are de�nitely something to
have. The other article that promises to revolution-
ize the Oberon world is titled The Oberon Module

Interchange by Michael Franz. Happy reading!

The Joint Modular Languages Con-

ference

Peter Schulthess, Department of Distributed
Systems, Ulm.

From the 28th to the 30th September the Joint
Modular Languages Conference 1994 was organized
at the University of Ulm, Germany. The tradi-
tion of the conference goes back to earlier confer-
ences on Modula-2 in 1989, 90, 91, 92. The tra-
ditional theme of the conference was extended to
provide a comprehensive perspective of the cur-
rent programming language scene. The scope of
the selected papers included contributions on the
use of Oberon, Modula-2, Modula-3, C++, Ada,
Ei�el, Beta, and other languages. However, fol-
lowing the tradition and the subtitle of the con-
ference (\Modula-2, Oberon and Friends") many
of the contributions centered on the Oberon Lan-
guage. Commercial products of relevance to the
conference topic were presented at a product exhi-
bition during the event. Compilers and program-
ming environments for Unix, MS-DOS, Macintosh
and DEC-Stations attracted considerable interest
by the visitors. Tutorials preceding the conference
o�ered the opportunity to the participants to fa-
miliarize themselves with C++ or Oberon. Tutori-
als and conference were attended by approximately
170 participants.

The keynote presentation entitled \A Brief His-
tory of Modula and Lilith" was given by Prof.
Niklaus Wirth. The gradual progress of modu-
lar languages and the concurrent design of the
Lilith computer was described. Object-oriented

1

paradigms were later added to the original mod-
ule concepts and led to the design of the Oberon
Language and Oberon Systems. Professor Wirth's
fascinating tour through the history of modular
languages and into the imminent future of object-
oriented languages has indeed set the stage for a
large number of interesting presentations during
the conference.
Important topics of the conference sessions

were Object-Oriented Development Tools and
Techniques, Language Design & Implementation
Projects, Realtime Programming and Large Soft-
ware Systems. Particular attention was paid to dif-
ferent concepts of inheritance. The question of sin-
gle versus multiple inheritance was extensively dis-
cussed and several innovative schemes for restricted
and partial inheritance were put forward. Atten-
tion appears to have shifted from the Modula-2
language to Oberon and a large number of im-
plementations on di�erent hardware and operat-
ing system platforms were reported. Successful us-
age of Modula-2 and Oberon in real-time program-
ming projects was reported but it is highly desirable
that future conferences should solicit even more ac-
tively contributions from \real programming lan-
guage users".
A signi�cant group of programmers has adopted

the language as a tool to write typesafe and ef-
�cient application programs within existing oper-
ating systems, but they refuse to work with the
Oberon system interface. Typically, however, it
was recognized that the Gadgets system now pro-
vides an alternative user interface to the earlier
rather frugal Oberon user interface. Gadgets was
demonstrated to provide unrivalled exibility in
extensible graphical user interfaces. In addition
to Oberon implementations on existing Unix, MS-
DOS, VMS, or Macintosh operating systems, na-
tive Oberon systems are emerging which are di-
rectly based on a relevant hardware platform. Ex-
perimental distributed Oberon systems might soon
provide a mode of lean distributed processing which
will �t seamlessly into existing network environ-
ments.
Two panel discussions were held | the �rst

one on Modula-2 standardisation and the second
on standardisation of Oberon. The history of
Modula-2 standardisation was reported and lessons
were learned how not to standardize a language.
The activity of standardisation must be kept sep-
arate from the actual design process and members
of a standards committee should refrain from re-
designing and extending the language. The issue
whether an ISO standard for Oberon would be
needed was not resolved. Oberon documentation
from ETH was recommended as a de facto stan-
dards document.

The JMLC 94 conference has clearly demon-
strated that language design is still an active area of
research and it is expected that the next Joint Mod-
ular Languages Conference will again o�er reports
on scienti�c progress and case studies on object-
oriented and modular language usage in business
and industrial applications. This conference is
likely to be organized in spring 1996 at the Uni-
versity of Linz in Austria. The proceedings of the
JMLC 94 conference can be ordered from Univer-
sitaetsverlag Ulm GmbH, P.O.Box 4204, D-89032
Ulm for DM 90 plus mailing.

Oberon Day '94

Erich Oswald, The Oberon User Group.
More than two hundred participants attended

the Oberon Day '94 on 14th September in the Au-
ditorium Maximum at ETH Zurich. After the big
success last year, the Oberon User Group in cooper-
ation with the Institute for Computer Systems had
decided to organize a second edition of the event.
This year's theme was titled \New Ways in Com-

puter Science Education"and was speci�cally ad-
dressed to teachers of computer science. The orga-
nizers were very pleased with the high number of
attendees which suggested the theme had appealed
to a lot of other people as well.
Talk topics included introductions to Oberon

programming and Oberon concepts, case studies
of Oberon usage for teaching and Oberon prod-
uct announcements. Among the speakers were sev-
eral persons well known to the Oberon commu-
nity like Prof. J. Gutknecht, Dr. M. Reiser, and
Dr. J. Templ.
The Oberon User Group is planning to organ-

ise further events in the future which will be an-
nounced in the Oberon News.

The Oberon Module Interchange

(OMI)

Michael Franz, Institute for Computer Systems.
\That's a program for the Macintosh, it will not

run on my PC" | It has been �fteen years since
the arrival of the personal computer, and by now
even technical laymen understand that there are
di�erent kinds of computer, which require di�er-
ent kinds of software. Although this diversity adds
huge costs to software development and distribu-
tion, it is generally accepted as an unalterable fact
of life.
The OMI project attempts nothing less than to

change this long-established view. It introduces the
concept of a \portable object �le" that can be used
on more than one kind of target machine. The
mechanism behind OMI is completely transparent

2

to the user; there are no converter programs to be
run or installation procedures to be executed before
a portable object �le can be used on another ma-
chine participating in OMI. From the user's view-
point, the only di�erence between \portable" ob-
ject �les and \regular" ones is that the former are
usable on a wider range of machines than the latter.

Well Then, How Does It Work? It should of
course be obvious that \portable object �les" can-
not contain \real" object code. Instead, they con-
tain an abstract program description using a clever
encoding that later permits the fast generation of
appropriate native code for the eventual target ma-
chine, which in OMI happens during loading. Since
OMI is integrated into the Oberon system, in which
modules can be loaded dynamically at any time
during a computing session, this means that OMI
can incrementally compile parts of a software sys-
tem while other parts are already running. For ex-
ample, when the user (or a program) invokes a com-
mand from a \portable" module that has not yet
been loaded, OMI kicks in, compiles the module
on-the-y, executes the newly created body of the
module, and returns to the command handler that
will then jump to the new command.

On-the-y code generation at load time would
be useless if it were too slow, thereby inconvenienc-
ing interactive users, or if it produced bad code.
Luckily, it seems that both of these problems have
been solved in OMI. In its �rst implementation,
OMI is able to compile-and-load \portable object
�les" in about the same time that would be re-
quired for reading equivalent \regular" object �les
from disk. The reason for this is that \portable ob-
ject �les" are much smaller than their native coun-
terparts, while program loading time is dominated
by I/O overhead. Since processor performance is
rising more quickly than storage speeds, it is even
highly probable that on-the-y code generation will
outperform loading of \traditional" object �les in
the long run.

Sounds Good In Theory. What About

Practice? OMI is an ongoing research project at
ETH's Institute for Computer Systems, building on
the dissertation work of the author. At present,
OMI is available only for MC680x0-based Macin-
toshes, but several additional platforms will be sup-
ported in the near future.
There are several reasons for releasing OMI al-

ready at this time, even before there are further
implementations that would make it more useful.
First of all, it is hoped that the existing implemen-
tation will convince even hard-line sceptics that the
ideas behind OMI are sound. Secondly, OMI should

provide the outside world with an idea of where
future versions of the Oberon system are headed.
Thirdly, the existence of OMI is likely to bene�t
the cause of spreading Oberon, so that publicis-
ing it early on might prevent some not-so-easily-
reversable decisions in favor of other systems. And
�nally, it is impossible to debug a complex system
without any user feedback. Hopefully, many people
will experiment with OMI, comment on it and pro-
vide error reports, so that OMI will reach \indus-
trial strength" by the time further implementations
are ready.
Most importantly, there will be an implemen-

tation of OMI for the Apple PowerMacintosh in
early 1995, which will form the core of a new Mac-
Oberon release that will run in native mode both
on MC680x0 processors and on PowerPC proces-
sors. Hence, as far as users are concerned, ETH
will continue to supply only a single MacOberon
system, but in the future, this system will provide
native performance on both of Apple's hardware
platforms. This may not sound so extraordinary,
as there are already some commercial applications
for the Apple Macintosh that run in native mode
on either kind of Macintosh, but behind the scenes,
the OMI approach is truly revolutionary.
Up until now, the problem of allowing programs

to run on more than one kind of machine has been
solved by what is called fat binaries. This means
that there are actually several executable versions
of a program within a single \application program
�le", one for each type of target processor, and
the system chooses at startup which part of the
�le is used. Of course, using \fat binaries" also
means that programs grow to several times their
original size. For example, applications that run
on both kinds of Macintosh are usually even more
than twice as big as their identical MC680x0-only
counterparts, owing to the fact that the PowerPC
has a lower code density than the MC680x0. Us-
ing OMI technology, the future MacOberon will be
able to provide slim binaries. Readers who down-
load the present release of OMI from our server
and study it will �nd that OMI's \portable object
�les" are actually quite a lot smaller than the corre-
sponding MC680x0 object �les. Nevertheless, they
are capable of replacing the native object �les for
both kinds of Macintosh systems simultaneously.
Since most of the Oberon system can be repre-
sented as portable code, the future MacOberon will
not grow larger than the present one, although
Oberon's core modules and OMI itself will need
to be present in \fat binary" format. Eventually,
OMI-interchangeability will be extended to further
Oberon implementations. In fact, some projects
are already under way. Programmers will then be
able to release their modules for use by the whole

3

OMI community, but without having to publish the
source code. This will bring us one step closer to
the old dream of \software components" that might
yet revolutionize the discipline of software engineer-
ing.

To Probe Further OMI is now an optional part
of ETH's MacOberon distribution. Optional means
that, for the time being, modules are provided both
in native and in OMI formats. Users on su�ciently
powerful (i.e., MC68040) machines should not no-
tice any di�erence when using the OMI-encoded
modules, except for much smaller object �les. On
older Macintoshes, the performance balance be-
tween CPU and I/O is less to the advantage of
on-the-y code generation, and users of OMI will
experience longer loading times (but no change in
performance).
The technical details behind what has now

become OMI are described in the author's
doctoral dissertation. It is available via
World-WideWeb from http://www.inf.ethz.ch-

/department/publications/diss.html.

The Hybrid Project

Pieter Muller, Johan de Villiers, de Vil-

liers de Wet, Jaco Geldenhuys, University of
Stellenbosch, South Africa.
The Hybrid group at the Computer Science de-

partment of the University of Stellenbosch is pri-
marily interested in reactive systems | protocols,
operating systems and dedicated control systems.
We have developed a kernel to support distributed
client-server applications.
The Hybrid kernel is small, stable, e�cient and

exible. It supports multiple virtual machines,
which are protected address spaces containing sev-
eral light weight processes. A virtual machine sup-
ports the non-privileged instructions of the under-
lying machine (Intel 386), plus three additional in-
structions for interprocess communication. These
instructions are implemented as traps to the ker-
nel and provide synchronous rendez-vous message
passing. The kernel runs on a bare 386 in 32-bit
protected mode. Messages to VMs on remote ma-
chines are transparently delivered by the kernel via
Ethernet. This facilitates the construction of exi-
ble distributed systems.
The kernel is in everyday use in a number of

factories where it supports a production manage-
ment system. The system consists of a number
of microprocessor-based computing nodes intercon-
nected via Ethernet and running the Hybrid kernel.
It communicates to industry standard platforms
such as Novell, Unix and Windows via a TCP/IP
server running in a VM.

An experimental distributed computing environ-
ment based on the kernel has been developed. This
system supports teams of virtual machines working
together to solve a single problem. An interactive
factory scheduling system is under development to
enable factory operators to manipulate the order in
which jobs are selected to optimize throughput or
other important parameters.

The kernel consists of about 16,000 lines of
Modula-2 code (including the Ethernet drivers, IP
and VMTP protocols). A further 170,000 lines of
device drivers, servers and application programs
have been developed. All the code was cross-
developed on a Unix system using the MCS com-
piler. The system is maintained by graduate stu-
dents and a sta� member, who is also responsible
for the factory applications.

Oberon on the Hybrid Kernel During 1993,
Oberon System 3 was ported to run in a VM on
the Hybrid kernel. Hybrid Oberon can be placed
in full control by running it as a single VM on the
kernel, or it can co-exist with the existing Hybrid
window server. The Gadgets system and several
applications from ETH were also recompiled to run
on Hybrid Oberon.

The facilities provided by Hybrid make it possi-
ble to do background processing in a separate VM
(possibly on another machine), thereby achieving
true multitasking. The Oberon System was ex-
tended to support the transparent invocation of re-
mote services.

At the implementation level, multiple light
weight processes were used to marry the polling
loop of Oberon with the synchronous message pass-
ing supported by Hybrid. In order to improve ef-
�ciency in a multitasking system, the Oberon loop
was altered to block when it is idle.

The starting point of the porting exercise was
the DOS Oberon System, which meant that the
compiler could be used unchanged. However, the
inner core of DOS Oberon was restructured by re-
moving the Loader module and statically linking
the Kernel, Modules, FileDir and Files modules.
A full-featured static linker was developed for this
purpose.

We have experimented with several �le systems
for Oberon. Our �rst �le system uses a Unix ma-
chine to store the �les. The Files module for-
wards requests to a Unix process via the TCP/IP
server. This �le system allows us to use our existing
diskless PCs and also allows �le sharing with the
Unix system. Unfortunately it is somewhat ine�-
cient. Our most e�cient �le system is the one from
Project Oberon, with some caching added. How-
ever, this �le system can not be used on diskless

4

PCs. A central network �le system based on the
Project Oberon code is under development as a stu-
dent project.

Hybrid: Switching to Oberon The success of
the Hybrid Oberon port prompted us to switch to
the Oberon language for all our programming. Dur-
ing 1994 the Hybrid kernel was re-implemented in
the Oberon language. The basic design has stayed
the same and the new kernel (now called Gneiss)
can execute VMs written for the old kernel, without
recompilation.
Implementation of the Gneiss kernel is suf-

�ciently advanced that it supports the Hybrid
Oberon system using the Project Oberon �le sys-
tem on a local hard disk. The new kernel is smaller
and faster than the Modula-2 based kernel, even
though the compilers generate code of comparable
e�ciency. This can be attributed to several factors.
The new kernel was implemented by a single per-
son over a period of a few months, whereas several
people have worked on the old kernel over a period
of four years. The experience gained in the imple-
mentation of the old kernel helped to make the new
one more e�cient. New techniques, e.g. continua-
tions, were used in the implementation of the new
kernel.
During a visit to ETH in October the Gneiss

kernel author used code from the kernel and the
Hybrid Oberon system to create a prototype of an
Oberon system running natively on a PC. Work is
continuing to develop device drivers to be used for
Gneiss and native Oberon.

Using Oberon for Embedded Systems The
current academic focus of the Hybrid group is the
development of reliable embedded system software.
Testing is not a su�ciently powerful method to de-
velop highly reliable systems. For such systems it is
necessary to build a validation model of the design
that can be proved to conform to the intentions of
the designer.
We have developed a validation tool | a model

checker | that can be used to detect errors in sys-
tem designs. A modelling language was developed
to allow high-level models of reactive systems to be
expressed concisely. The model checker checks the
system model against system speci�cations written
in a formal logic syntax. A model stepper tool is
used to gain insight into errors found by the model
checker. A code generator is being developed to
translate a correct model into an executable code
skeleton which captures the control-ow of the ap-
plication. These tools form a veri�cation work-
bench running on Oberon.
Although the model checker allows one to gener-

ate correct control-ow skeletons, the Oberon code
that is hand-written to esh out the skeletons may
also contain errors. In embedded systems, errors
may also be caused by the peripheral hardware. To
�nd these kinds of errors, there is no replacement
for testing an embedded system in-place.
For this purpose, a remote debugger for embed-

ded applications is under development. The �rst
prototype supports post-mortem analysis, as well
as interactive debugging via breakpoints and step-
ping. Oberon modules are linked into an executable
image which is loaded into a VM on any Hybrid ma-
chine. The debugger communicates with the kernel
on the target machine to monitor and control the
debugged application.
Source and assembly level debugging is sup-

ported. Code breakpoints can be set and machine
instructions can be stepped one at a time. A small
modi�cation was made to the Oberon compiler to
generate a mapping between Oberon statements
and machine addresses.
The user can view the stack (active procedures

and local variables), global variables and registers
at any stage. A useful feature of the debugger is
that pointers can be dereferenced. Symbolic deref-
erencing cannot be done, but a hexadecimal dump
of the memory is given, and if it is a record con-
taining pointers, they are marked and can in turn
be followed.
Currently work is being done to support the same

debugging interface over a serial link, for debugging
stand-alone embedded applications.
E-mail: hybrid@cs.sun.ac.za
Finger: @hybrid.sun.ac.za
Ftp: ftp.sun.ac.za:pub/US/hybrid

PC-Oberon: A Progress Report

F. Arickx, J. Broeckhove, T. Van den Eede,

L. Vinck, Onderzoeksgroep Toegepaste Informat-
ica, Universiteit Antwerpen (RUCA), Belgium.
As introduced at the JMLC conference, held

last September at the University of Ulm (Ger-
many), PC-Oberon represents a native port of the
Oberon operating system to the PC compatible
hardware platform, featuring i80386 processors or
above. PC-Oberon provides a full 32-bit version of
the Oberon OS, based on a custom 32-bit kernel,
running in i80386 protected mode.
The whole porting project consists of several sub-

tasks: (1) implementation of the (real mode) mas-
ter bootrecord code, including management of the
hard disk partitioning capabilities; (2) implemen-
tation of logical (partition based) bootrecord code,
preparing the processor to run in protected mode,
switching the processor in this protected mode,
loading the 32-bit kernel and transferring control to

5

the Oberon boot code; (3) implementation of a 32-
bit reentrant kernel, providing a software interface
to the hardware components; (4) implementation
of 32-bit Oberon boot code transferring control to
the proper Oberon operating system code.

The bootrecord codes, master as well as logical,
were written, compiled and linked on a DOS sys-
tem, using Borland C and Turbo assembler. The
32-bit kernel contains a functional interface for ac-
cess to oppy and IDE hard disk, keyboard, serial
and parallel ports, sound system, memory manage-
ment, real-time clock, etc. This 32-bit code is writ-
ten in C and assembler, also using Borland's 32-bit
code generating compilers and linker. The kernel is
functional and was low-level tested by speci�c rou-
tines for each hardware component; the test pro-
grams are temporarily included in the kernel and
can be invoked at boot time. High-level testing oc-
curs (will occur) from the Oberon system.

The Oberon interface to the kernel consists of a
single software interrupt. One of the parameters is
always, as we call it, the invoke number, identifying
the desired kernel function. All required parame-
ters for the kernel function, including the invoke
number, are pushed on the stack before issuing the
software interrupt. This allows for reentrancy of
the kernel. For e�ciency reasons, the kernel calls
are coded using inline assembly, and are concen-
trated in a single Oberon module Invoke.Mod.

The Oberon system used as a starting point in
this project is DOS-Oberon System 3 Version 1.5.
This choice was mainlymade because DOS-Oberon
is based on a 32-bit i80386 code generating Oberon
compiler. All real mode system calls to BIOS
and DOS were removed from DOS-Oberon and re-
placed, where possible, by the 32-bit kernel calls.
The original Ceres oriented �lesystemmodules were
used to replace the DOS �le interface.

The current status of the system is that PC-
Oberon correctly accomplishes its boot sequence,
and we are currently eliminating bugs from the ker-
nel. We expect to have a fully operational version
of PC-Oberon in the near future. This will how-
ever not be the end of this project. The current
kernel will be extended to provide additional hard-
ware support, in particular network functionality.
Support within the kernel, for additional operating
system features such as e.g. \active objects" will be
considered.

Progress of the project may be monitored at
any time through the World Wide Web at URL
http://www.ruca.ua.ac.be/Memex/Oberon.

Dynamic Online Documents in

Oberon

Ralph Sommerer, Institute for Computer Sys-
tems.

Dynamic online documents provide a uni�ed ab-
stract model for interactive information services.
Their most important properties compared to \or-
dinary" documents are their non-locality (online
documents may be distributed over several loca-
tions) and the lack of a static global state (online
documents or parts of it may be computed at the
time of their access i.e. \on the y"). Two variants
of such dynamic online documents have recently
been integrated into the Oberon system.

TeleNews is an online document that presents
itself as an electronic newspaper. Its content is
generated, maintained and updated by a Teletext

server (Teletext is a page-oriented information ser-
vice that is broadcast together with the television
video signal). TeleNews allows clients to interac-
tively access and obtain news articles from the Tele-
text service in hypertext form. An electronic TV

guide as part of the electronic newspaper allows
excerpts of a television program list (program pro-

jections) to be constructed depending on, for ex-
ample, a range of broadcast time or the type of the
program. The last page of the newsletter shows a
display snapshot of the TeleNews panel.

World-Wide Web (WWW) is a network infor-
mation service that is structured as a global hyper-
text document whose pages contain reference links
that allow to switch context to logically related
items (further hypertext documents, but also im-
ages, video sequences and sound patterns). These
items may be physically located at very di�er-
ent locations in the world. The de�nition of the
World-Wide Web consists of a network protocol
(HTTP, hypertext transfer protocol) and a markup
notation for hypertext documents (HTML, hyper-
text markup language). World-Wide Web can be
viewed as an online document whose parts are ac-
cessed via network. Its integration into the Oberon
system bases on an almost complete implementa-
tion of the current HTML de�nition, including,
since recently, also �ll-out forms. On the last page
of the newsletter you see a snapshot of the WWW
panel.

Although both services have di�erent semantics
and accessing schemes, they are integrated into the
Oberon system based on a uni�ed user interface
model which centralizes all service speci�c aspects
within a single concept called active hypertext link

(or active link for short).

6

News around Oberon System 3 and

Gadgets

Johannes L. Marais, Institute for Computer
Systems.
Oberon System 3 is an important research

project at the Institute for Computer Systems to
improve the Oberon system and its use. The sys-
tem has turned out to be a successful platform for
experimentation with new ideas in system design
and user interfaces. It has spawned a number of
research projects at the Institute for Computer Sys-
tems and other institutes at ETH.
Oberon System 3 and Gadgets have experienced

a remarkable dynamic development. Positive devel-
opments are continually being incorporated into the
system so that it is consistently improving in qual-
ity and functionality. Currently we are entering an-
other consolidation phase based on the experiences
we made in the last two years. This is mainly to
rectify two things. First, we found that some con-
�gurability we built in from the start was seldomly
used, and can now be replaced with new and uni-
�ed concepts that we developed later on. Secondly,
from experience gained from projects outside the
institute, some gadgets, notably the panels, have
been redesigned for increased extensibility. Perhaps
the most important, the Oberon System 3 docu-
mentation project with electronic books is gaining
momentum. To allay the fears of those thinking we
are changing everything again, I can assure users
that we are very concerned about compatibility.
In addition to preparing the release 1.6 of Oberon

System 3, we are also looking towards the future
| we hope to deliver these ideas in future ver-
sions. The two research directions involve connect-
ing Oberon to the world of electronic services, and
to extend the Oberon System with concurrency in
the form of \active objects". The �rst of which
is progressing well, as you will see on the display
snapshot at the end of the newsletter. If all goes
well you may expect release 1.6 of Oberon System 3
around the beginning of next year.

TCP/IP for MacOberon and Power-

Mac Oberon

Daniel Scherer, TIK, ETH Zurich.
Implementations of TCP/IP are now available

both for MacOberon and for PowerMac Oberon;
they also work with both Oberon V4 and Oberon
System 3. TCP/IP stands for Transmission Con-
trol Protocol/Internet Protocol and is a widely used
standard for connecting computers over any dis-
tance and running many di�erent operating sys-
tems. Therefore it is now possible to do worldwide
communication from a Macintosh using an Oberon

System.
Our implementations of TCP map the Oberon

TCP procedures to calls of Apple's MacTCP driver.
While at �rst sight this might seem trivial, it was
rather tricky as MacTCP does not provide all ser-
vices in the way required by the Oberon de�ni-
tion and also due to large numbers of parameters
in MacTCP calls which required the consultation
of the original paper de�ning TCP. Particular care
has also been taken to ensure that TCP does not
block an application if e.g. a communication part-
ner does not respond. Therefore, most MacTCP
calls are executed asynchronously and resources
used by a MacTCP call are not released until its
asynchronous completion. Furthermore, our imple-
mentations also provide �nalization of connections
(as speci�ed by the de�nition) which signi�es that
TCP connections no longer used are automatically
closed. A possible scenario in a TCP application
is that a user closes a window displaying a TCP
connection without �rst disconnecting. If the user
thereby loses all references to that connection, TCP
automatically closes it.
All the asynchronous operations are hidden by

the simple synchronous interface. It provides ways
to establish connections for both clients and servers
including translation of host names to IP addresses
as well as synchronous read and write procedures
for various data types. These services may be used
by application modules to implement speci�c com-
munication protocols, e.g. for �le transfer based on
TCP. A TCP application normally also contains
some asynchronous parts, e.g. by using an Oberon
task to poll for the availability of data before using
a blocking read operation.
At TIK, we plan to use TCP for communica-

tion in a distributed environment to be imple-
mented on Oberon Systems running on (Power-)
Macintosh computers. So far, we have im-
plemented some basic application modules us-
ing TCP such as �le transfer and message ex-
change among users. Our TCP implementations
have been used successfully at TIK for several
months already and currently contain no known
bugs. They are available through anonymous
ftp from rudolf.ethz.ch, directory /pub/Oberon,
and feedback to scherer@tik.ee.ethz.ch is ap-
preciated.

DART-Oberon

Libero Nigro, DEIS, Universita' della Calabria,
Italy and Brian Kirk, Robinson Associates, UK.
DART|Distributed Architecture for Real Time

| represents an ongoing project aimed at support-
ing the development of Real Time systems using
Oberon-2 or C++ as the implementation language.

7

DART is centred on the concept of light-weight
operating software: its mechanisms are not exten-
sions of built-in OS mechanisms, rather they re-
fer to active objects, i.e. instances of abstract data
types. Active objects are modeled as �nite state
machines which communicate one with another by
asynchronous message passing. Messages are trans-
parently captured and managed by a scheduler ob-
ject which imposes a dispatching policy which can
be tuned to the application needs. In an object,
message reception is implicit. The arrival of a mes-
sage triggers a state transition and then the exe-
cution of an atomic action. Action execution ex-
tends the thread of control of the scheduler. The
runtime model is non-preemptive. Action granu-
larity can be �ne-grained in order to guarantee real
time constraints to be met. An overall system is
organised as a collection of subsystems. Each sub-
system corresponds to an application domain, and
thus to a particular set of aspects of the system.
Objects belonging to di�erent subsystems are al-
lowed to communicate using a system-wide non-
blocking send, which relies on a heterogeneous mes-
sage format. As a matter of simpli�cation, a sub-
system can admit a special object named a coordi-
nator which is the target of inter-subsystem com-
munications and delegates sub-tasks to hidden ob-
jects of the subsystem. DART programming in
the small is conveniently supported by Oberon-
2 or C++. The project addresses interoperabil-
ity: a major goal is supporting mixed platforms
and implementations. Subsystems programmed in
C++ can interact with Oberon-2 subsystems and
vice versa. A prototype implementation of DART
has been achieved on a PC network under Nov-
ell provision of AT&T TLI (Transport Layer Inter-
face). DOS and Windows platforms can be used
in combination. User interface issues can be dealt
with on a Windows platform where the Robinson's
Oberon-2/386 compiler and POW! environment are
used. On a DOS platform the Extacy Oberon pack-
age is used. More information on DART can be
found in JMLC '94 proceedings. For more de-
tails contact Robinson Associates, Painswick, UK,
email robinsons@cix.compulink.co.uk or L Ni-
gro, DEIS, Universita' della Calabria, Italy, email
nigro@ccusc1.unical.it

Logic Magicians' Oberon

Taylor Hutt, Logic Magician, USA.
When compared to other languages and operat-

ing systems on a PC, using Oberon is undoubt-
edly a pleasurable experience for you. Yet, de-
spite the advantages which Oberon brings into the
realm of programming, you still want more. You
secretly desire a single system which runs under

DOS, Windows, & OS/2 using a 2 or 3 button
mouse and places no special constraints on your
system con�guration. Just in case someone hap-
pens to be listening to your secret fantasies, you
quickly add that you want to have an Oberon-2
compiler, source code for most of the system and
Postscript documentation for undocumented parts
of Oberon. FREE.

Perhaps someone has been listening to your
thoughts, because the Logic Magicians' Oberon
System V2, complete with garbage collection, is
now available as freeware. Sporting an Oberon-2
compiler which allows 96Kb of code and 128Kb
of constants/data per module, this system relies
on the industry standard DPMI (DOS Protected
Mode Interface) speci�cation to provide a 32bit,
protected mode, at memory model environment.
Special care has been taken during the porting of
this system to limit the impact on your system
con�guration; to that extent, we have been ex-
tremely successful: there are no special require-
ments for CONFIG.SYS or AUTOEXEC.BAT and
both 2 and 3 button Microsoft compatible mice
are supported. A standard VGA is required for
640x480x16, but an ET4000 chipset is supported at
1024x768x256 (more display drivers are planned).

Not surprisingly, several advantages are realized
because a DPMI server has been used as the base
for the DOS extender. First of all, the system is
portable to any DPMI v0.90+ server. Secondly,
the amount of heap space is only limited by the
DPMI server | the minimumis 2Mb and the maxi-
mum is 32Mb. Thirdly, and most importantly, dif-
ferences in low-level hardware are masked by the
DPMI server, thus allowing greater compatibility
with various machines.

In an e�ort to increase the usage and under-
standing of Oberon, virtually all the source code
to the operating system is available for this pack-
age. Further, Postscript documentation has been
made available for many previously undocumented
aspects of the V2 Oberon system, plus a complete
description on how to write display drivers. Stan-
dard printing of Oberon source and documents can
be achieved if a Postscript or HP laser printer is
connected to the parallel port. An auto-import fea-
ture has been designed to make it easy to include
new software into an installed Oberon system. It
works transparently and does not require interven-
tion on the part of the user.

You may get this Oberon implementation from
ftp.clark.net:/pub/thutt/distrib/V2. See
the 00index �le for instructions on which parts to
download. If you do not have access to ftp, you
may get the most recent copy on disk by sending a
check or money order for US $3 to

8

Taylor Hutt
3428 Moultree Place
Baltimore, MD 21236-3110 USA

Integrating Multimedia on the work-

station Ceres-2

Peter Ryser, Institute for Computer Systems.

The workstation Ceres was designed and con-
structed in 1985. Its simple and e�cient hardware
interface gives a wide range of opportunities for
hardware extensions. In 1993 we built an Ethernet
card that allows for direct access to the services
of the Internet, and in the spring of 1994, in his
diploma thesis, a student built an audio- and video
board (AVB). The AVB allows to capture video
from a video source such as a camera or a VCR. The
quality of the captured video data ranges from 8 bit
grey scale to 24 bit RGB. The audio channel sam-
ples and plays stereo data up to 48k samples at 16
bits per sample. The acquisition of audio and video
data is interrupt driven and is handled completely
in the background. Watching TV at a resolution
of 320x400 pixel and a rate of 25 frames/s (the
PAL frame rate) on the monitor of the Ceres work-
station was a �rst step of integrating multimedia
into Oberon. A more sophisticated solution uses a
client/server approach. The server, a Ceres work-
station equipped with an AVB and an Ethernet
card, broadcasts the captured audio and video data
streams over the local subnet. The clients listen on
a speci�c port, get the incoming data, display the
video data on the screen and simultaneously play
the audio data through an audio device. The inter-
face to the user on the client side is made through
an extension of Oberon V4's text elements. These
multimedia elements (MMElems) have the same
properties as all the other text elements. There-
fore, one can have one or several TV screens oat-
ing in a text. All MMElems are updated simul-
taneously at the arriving of a new frame. \Video
on demand", a catchword not thought of when the
Ceres workstation was designed ten years ago, be-
comes possible on this platform because of simple
but powerful hard- and software. For more details
contact ryser@inf.ethz.ch.

Oberon Tutorial

Michael Franz, Institute for Computer Systems.

ETH is pleased to announce another three-day
intensive tutorial on the programming language
Oberon. The tutorial will take place in Zurich from
Wednesday, 5th April 1995 to Friday, 7th April
1995. The tutorial language is German. A detailed

description (in German) follows below; for further
information please contact:

Madeleine Bernard
Kurswesen
Departement Informatik
ETH Zurich
CH-8092 Zurich
Switzerland

Moderne Programmierparadigmen | vom

\Structured Programming" �uber den objektorien-

tierten Ansatz zum \Extensible Programming". N.
Wirth, M. Franz (Kursleitung), M. Brandis, S.
Ludwig, J. Supcik
Die Entwicklung der Programmiersprachen ist

gepr�agt von der Entstehung immerm�achtigerer Ab-
straktionsmechanismen. Was einst bescheiden mit
der Einf�uhrung mnemonischer Codes (f�ur die Op-
erationen) und Variablennamen (f�ur die Operan-
den) begann, hat in der Zwischenzeit wieder-
holt vollst�andig neue Ans�atze hervorgebracht, die
nicht nur die eigentliche Programmierung, sondern
auch die Methodik des Software-Design grundle-
gend ver�andert haben.
Mit der Scha�ung der Programmiersprachen

Pascal, Modula-2 und Oberon durch Profes-
sor Niklaus Wirth ist die ETH Z�urich an
diesem Entwicklungsprozess seit langem massgeb-
lich beteiligt. Jede dieser Sprachen repr�asentiert
einen Meilenstein in der Entstehungsgeschichte der
Programmierparadigmen: Pascal steht f�ur \Struc-
tured Programming", Modula-2 f�ur \Modular Pro-
gramming", und Oberon schliesslich f�ur objekto-
rientiertes und \Extensible Programming", wobei
jede dieser Sprachen die Konzepte ihrer jeweiligen
Vorg�anger nat�urlich einschliesst.
Der Kurs vermittelt diejenigen Programmier-

paradigmen, die erst nach der De�nition von Pas-
cal vor mehr als 25 Jahren entstanden sind, und
die heute in Oberon wiederzu�nden sind. Er folgt
dabei in drei Schritten der Evolution der Program-
miersprachen, beginnend am ersten Kurstag mit
den Konzepten der strukturierten und modularen
Programmierung. Der zweite Kurstag besch�aftigt
sich mit den Ideen der objektorientierten Program-
mierung, w�ahrend der dritte Tag schliesslich den
erweiterbaren Programmsystemen gewidmet ist.
Ein wichtiger Bestandteil des Kurses sind be-

treute �Ubungen, in denen die Teilnehmer die
M�oglichkeit haben, die gelernten Konzepte in
kleinen Gruppen am Computer zu erproben.
Als Basis f�ur die �Ubungen wird die Pascal-
Nachfolgesprache Oberon verwendet, weshalb eine
gewisse Vertrautheit mit Pascal oder einer Pascal-
�ahnlichen Sprache Voraussetzung f�ur den Besuch
dieses Kurses ist.

9

Power Gadgets Available

Andreas Wuertz, TIK, ETH.
By the time you read this, there should be a beta

release of Oberon System 3 for Power Macintosh
available on neptune.inf.ethz.ch. Look in the
directory /pub/Oberon/System3/POWERMAC.
Some features are:

� Up to 8 bit colour support on screen and pic-
tures.

� Colour/grayscale printing on all newer Quick-
Draw and PostScript printer drivers.

� Display3 and Printer3 optimised for Macintosh
clipping architecture

� Full Oberon-2 Compiler (same as Power V4,
except it allows up to 127 imports)

� Hierarchical �le system (same as Power V4)

There are still a few known bugs. The colour
model is not very stable yet. Specially when editing
pictures with Paint, the background color may un-
expectedly change. Although the system is based
on PowerOberon 1.0 and MacOberon 4.1xx, it is
still in beta state and not tested for stability, so be
careful!
Please send questions, comments and bug reports

to:

Andreas Wuertz
TIK, ETH Z�urich
Gloriastr. 35
CH-8092 Z�urich
Switzerland
email wuertz@tik.ee.ethz.ch

Action-Oberon

Eric Hedman, �Abo Akademi University, Finland.
The department of computer science at �Abo

Akademi University has an active programming
methodology research group. One of the groups re-
search topics is action systems. An action system
is a model for specifying and reasoning about par-
allel programs, based on Dijkstra's guarded com-
mand language. Lately, action systems have been
extended with modular constructs in [1]. Action-

Oberon is an extension of both the Oberon system
and the Oberon language that incorporates action
systems in Oberon according to these principles.
In an action system the individual actions are

atomic, but may be interleaved arbitrarily, or ex-
ecuted in parallel if they do not share any com-
mon variables. As such, the Oberon Loop can be
considered an action system, and is thus a good

starting point for a scheduler of actions. The ex-
tended Oberon Loop provides support for interact-
ing with the scheduling of actions. The actions,
which by themselves are guarded commands, are
introduced at the module level of Action-Oberon,
making modules active at load-time. Parallel com-
position of action systems is then modelled by two
active modules loaded into memory at the same
time. While preserving the original semantics of
the Oberon Loop, this approach extends it with
the parallel behaviour of action systems.
At the language level only one extension is re-

ally needed, namely the concept of guarded com-
mands. Action-Oberon distinguishes between two
types of guarded commands, actions and guarded
procedures. In the action system model, guarded
procedures can be used for modellingmost synchro-
nisation and communication mechanisms.
Action-Oberon also includes an interactive en-

vironment for monitoring the execution of action
systems. One of the goals of Action-Oberon is to
provide a speci�cation environment where fairly ab-
stract action systems can be executed and moni-
tored. This has to some extent de�ned the terms
of the design and outweighed optimal performance
in the implementation.
Action-Oberon has been implemented in

SPARC Oberon and will be released to the
public in the (hopefully) near future. The
release will be announced in the Usenet
newsgroup comp.lang.oberon. For more in-
formation about the implementation contact
Eric.Hedman@abo.fi and for information about
the Programming Methodology Group at �Abo
Akademi and its publications (including [1] as
TR A-154, 1994) consult our WWW server at
http://www.abo.fi/~mbutler/pmg/.

References

[1] R. J. R. Back and K. Sere. From Action Sys-
tems to Modular Systems. In Naftalin, Denvir
and Bertran, editors, Proceedings of FME '94.
Springer-Verlag, 873, 1994.

ONTIME

Karl Rege, Institute for Computer Systems.
ONTIME is an acronym for an \Object Oriented

Framework Assisting Time and Information
Management of an Executive". It is the realiza-
tion of an advanced prototype Personal Digital As-
sistant (PDA) based on Oberon System 3 and Gad-
gets (kernel) that co-design quali�ed the author of
this article to exploit its features in an optimal
way. We believe a PDA should not be merely a

10

scaled down workstation system but a system pro-
vided with new qualities in terms of integration and
ease of use. Consequently, the user interface fol-
lows mainly the direct manipulation user interac-
tion paradigm. Non-modality and simplicity were
properties inherited from the original Oberon sys-
tem. To achieve a maximum level of integration,
ONTIME is realized in an object-oriented manner,
i.e. the system is composed of advanced and versa-
tile objects. The essence of such a system reveals in
these objects cooperative working \hand in hand".
Speci�c functionalities of the ONTIME system in-
clude its powerful time management realized both
as weekly and monthly diary. Various diary syn-
chronizations are possible such as, for example, be-
tween di�erent personal agendas to determine pos-
sible meeting times (also over a network). The in-
tegrated electronic mail system examines incoming
mails and (optionally) inserts event announcements
directly into the diary. To perform this task a reg-
ular grammar matcher is included. The grammar
may be speci�ed in an augmented EBNF notation.
This grammar matcher is also applied to decom-
pose arbitrarily formatted mail addresses (accord-
ing to national uses) into their components to be
inserted into a (standard) relational database. For
the handling of text messages a textual data base
(so called Archives) has been integrated into the
system. Applying a full text search algorithm (us-
ing PAT-arrays) allows arbitrary queries to be per-
formed in logarithmic time. Due to the homoge-
neous system architecture these Archives may be
used for texts and objects. Furthermore, Archives
serve as interfaces for remote access to such objects
and hence allow to realize a system of distributed
objects (comparable with DSOM). Links to docu-
ments may be speci�ed including also external ref-
erences, for example, to WWW-documents. For
the spacial arrangement of the documents on the
display a versatile non overlapping display space
organization of these documents has been realized,
that uni�es the Oberon track model with a exible
application speci�c organization. Finally, there is
support for ONTIME on pen based portable com-
puters due to an integrated gesture and handwrit-
ing recognition [Xerox Unistrokes by Goldberg &
Richardson, INTERCHI 93, Conference on Human
Factors in Computer Systems].

Oberon V4 for the PowerMacintosh

H. M�ossenb�ock, Johannes Kepler University,
Linz.
The ETH Oberon System V4 has recently been

ported to the PowerMacintosh where it runs in na-
tive mode on a PowerPC processor. It supports the
hierarchical �le system with user-de�nable search

paths. Foreign language procedures from shared li-
braries (DLLs) can be called from within Oberon.
Basic toolbox support is available; other toolbox
interfaces can be implemented on demand. The
compiler supports Oberon-2 and generates native
PowerPC code. It compiles about 2000 lines per
second on a 66 MHz PowerPC. The distribution
contains also new tools and packages, such as a
post mortem debugger, a package for building and
using graphical user interfaces, a scanner/parser
generator, and lots of new text elements. Most of
this new software is available in source code. See
also the articles about the debugger and the Di-
alogs package in this newsletter. PowerMac users
with a one-button mouse can use a modi�ed ver-
sion of the TextFrames module which allows point-
ing, selecting and scrolling with the single mouse
button (no modi�er keys). This module also works
with the familiarMacintosh scroll bars. The system
and its documentation can be obtained via anony-
mous ftp from oberon.ssw.uni-linz.ac.at,
/pub/Oberon/PowerMac. For further questions
contact moessenboeck@ssw.uni-linz.ac.at.

Post Mortem Debugger for Oberon

V4

M. Hof, Johannes Kepler University, Linz.
The original Oberon environment o�ered only

limited means for inspecting run time information
and determining the reason of traps. Only variables
of basic types such as INTEGER or CHAR could
be inspected. There is a new post mortem debug-
ger which allows also the inspection of structured
types such as records, arrays, and pointers. It sup-
ports views on local and global variables. Pointers
can be followed in order to traverse complex data
structures on the heap. Run time types are sup-
ported as well as open arrays. Additionally, the
trap position in the source code can be viewed.
The new debugger is available for the PowerMac
and the Windows version of Oberon. It can be
obtained via anonymous ftp as part of the respec-
tive system from oberon.ssw.uni-linz.ac.at,
/pub/Oberon/PowerMacor /pub/Oberon/Windows.
The debugger sources are included in the PowerMac
version. Documentation is also included. For fur-
ther questions contact hof@ssw.uni-linz.ac.at.

Oberon Dialogs: A Graphical User In-

terface for Oberon V4

Markus Knasmueller, Johannes Kepler Univer-
sity, Linz.
The Oberon System has a compact textual inter-

face. This is convenient for professional program-
mers, but not always for end users who prefer a

11

Figure 1: Dialog for creating new dialog panels

graphical interface. Therefore the Oberon Dialogs

package was implemented at the University of Linz.
This package allows a user to create and use dia-
log viewers with buttons, checkboxes, text �elds
and other user interface items. Dialogs �t smoothly
into the Oberon system and should run under all
(Oberon V4) platforms without any changes in the
system. Existing tools can be augmented with a
graphical user interface without having to be mod-
i�ed. Because of the object-oriented nature of Di-
alogs, new user interface items and new commands
can be added by third party programmers.

A similar package for graphical user interfaces is
the Gadgets system implemented for Oberon Sys-
tem 3. While the Gadgets system is more powerful
(e.g. nested objects) it is also more complex and
does not run under Oberon V4. The virtue of the
Dialogs package is that it is extremly light-weight
and smoothly �ts into Oberon V4.

Working with dialogs is quite simple. There are
commands to use, edit and print a dialog. Dialogs
can be displayed in two modes: Dialog.Open opens
a dialog for using it while Dialog.Edit opens it for
editing. Dialogs can be created using an insert dia-
log (Figure 1). This dialog contains a list box which
shows all items implemented so far. The user can
select an item and insert it into a dialog viewer.
Items can be moved, resized, deleted and copied
with mouse clicks. It is even possible to associate
an item with a command, which is called whenever
a property of the item changes.

Oberon Dialogs can be used and understood in
a few minutes. Therefore we believe that the Di-
alogs package is a good example for the exibility
of Oberon and object-oriented programming. Try
it and give us your comments via e-mail.

Oberon Dialogs (with full source code) can be
obtained via ftp (Oberon.ssw.uni-linz.ac.at,
/pub/Dialogs). Extensive documentation is
available. For questions or comments contact
knasmueller@ssw.uni-linz.ac.at.

Oberon/F: Introducing a New Oberon

System

Cuno Pfister, Oberon microsystems.
Oberon microsystems, Inc., Switzerland, an-

nounces a new Oberon system called Oberon/F.
Oberon/F will soon be available in versions for
Windows 3.1 and for Mac OS 7. Oberon/F ap-
plications can be ported from one platform to the
other simply by recompiling them, i.e. their appli-
cation programming interfaces (APIs) are identical
and platform-independent. However, the correct
native look-and-feel is provided on each platform.
Unlike the ETH Oberon systems, Oberon/F has no
proprietary user interface. The design of Oberon/F
has been strongly inuenced by the experience with
earlier Oberon systems like ETH Oberon System 3,
V4, and Ethos, nevertheless it is a new design not
directly compatible with any of its predecessors. It
is fully based on the language Oberon-2. An ex-
tensible text editor is part of the standard distri-
bution of Oberon/F, as is a forms editor and an
integrated development environment. Documen-
tation is available both in printed form and on-
line. Oberon/F supports a compound document
architecture which provides a seamless migration
path towards OLE and OpenDoc; these standards
will be supported in a later release. An educa-
tional version of Oberon/F (not for commercial use)
will become freely available electronically, e.g. via
anonymous ftp from hades.ethz.ch (129.132.71.5)
/pub/Oberon/NonETHSystems.
The company's address is

Oberon microsystems, Inc.
Solothurnerstr. 45
CH-4053 Basle
Switzerland
phone (+41 61) 361 38 58
fax (+41 61) 361 38 46
e-mail Oberon@applelink.apple.com

Call for Papers

Oberon Track at the First Joint Annual GI-SI
Conference 1995, Zurich, Switzerland, 18th-20th
September 1995
Main Conference Theme: Die Herausforderun-

gen eines globalen Informationsverbundes f�ur die

Informatik

Oberon Track Theme: Oberon-Betriebssystem

der Zukunft f�ur globale Informationsdienste

Submissions are solicited from present users of
Oberon, both in education and in industry, relat-
ing their experiences with the language and system.
Please send six copies of your paper (not exceeding
about 10 pages single-spaced) to the ProgramChair

12

before the due date. Submissions are accepted in
English or in German and will appear in a proceed-
ings published by Springer-Verlag.
Key Dates:

13th January 1995 Submission Deadline
15th March 1995 Noti�cation
15th May 1995 Camera-Ready Papers
Due

Program Chair:

Michael Franz
Institut f�ur Computersysteme
ETH Zurich
CH-8092 Zurich

Program Committee Members:

R. Crelier, Borland, Scotts Valley, USA
M. Franz, ETH Zurich, CH
H. M�ossenb�ock, Universit�at Linz, A
C. P�ster, Oberon microsystems AG,
Basle, CH
C. Szyperski, Queensland U of Technol-
ogy, Brisbane, AUS
N. Wirth, ETH Zurich, CH

Statistics on a Voyage to Oberon

G. Sawitzki, Universit�at Heidelberg.
StatLab Heidelberg, the statistical laboratory at

the Institut f�ur Angewandte Mathematik, Univer-
sit�at Heidelberg, is developing a statistical data
analysis and simulation system based on Oberon.
The system provides an extensible base for classi-
cal statistics, but is focused on what is known in the
trade as \interactive exploratory data analysis". It
provides all the usual statistical interactive facilities
like brushing in linked windows, selection and iden-
ti�cation, or rotating 3d scatterplots. A �rst pro-
totype has been demonstrated at the conference on
computational statistics CompStat, Vienna 1994.
The CompStat report is available as a postscript �le
by ftp or www from statlab.uni-heidelberg.de.
As part of this project, a library of statistical al-

gorithms in Oberon is being build up and will be
published on the same ftp/www site. If you need
special algorithms like distribution functions, quan-
tiles or random number generators now, you can
contact me at gs@statlab.uni--heidelberg.de.

Recent Publications

The following Oberon related papers appeared in
Advances in Modular Languages, the proceedings
of the JMLC conference in Ulm (ISBN 3-89559-
220X)1:

1The proceedings includesmanymore papers not directly

related to Oberon.

Process Visualisation with Oberon System 3 and

Gadgets | E. Templ, A. Stritzinger, G.
Pomberger
Compiler Optimizations Should Pay for

Themselves | M. Franz
Building an Optimizing Compiler for Oberon:

Implications on Programming Language Design |
M.M. Brandis
Post Mortem Debugger for Oberon | M. Hof
Using Oberon to Design a Hierachy of Extensible

Device Drivers | P.J. Muller
Object-Oriented Distributed Programming in the

Oberon-PVM Environment | E. Bugnion, M.
Gitsels, B.A. Sanders
Design of a Distributed Oberon System | S.
Traub
A Distributed Real-Time Architecture in Oberon-2

| B. Kirk, L. Nigro
Oberon Perspectives of Evolution | J. Gutknecht
Towards End-User Objects: The Gadgets User

Interface System { J.L. Marais
Native Oberon on the PC Compatible (ISA)

Platform | F. Arickx, J. Broeckhove, T. Van den
Eede, L. Vinck
Alpha AXP/Open VMS (Modula|Oberon)-2

Compiler Project | G. Dotzel
Bringing the Oberon Language to the Macintosh

| J. Gesswein, R. Ondrus, O. Schirpf

The following Oberon related papers appeared
elsewhere:

Inside Oberon System 3, Johannes L. Marais, Dr.
Dobb's Journal October 1994
A comparison of object-oriented programming in

four modern languages., Software - Practice and
Experience, 24, 11, 1077-1095 (Nov. 94).

Accessing The Internet By E-Mail

The following text is copyrighted by \Doctor Bob"

Rankin. Please read the copyright notice in the doc-

ument refered to by this text.

If your only access to the Internet is via e-mail,
you don't have to miss out on all the fun! Maybe
you've heard of FTP, Gopher, Archie, Veron-
ica, Finger, Whois, WAIS, World-Wide Web, and
Usenet but thought they were out of your reach
because your online service does not provide those
tools. Not so! And even if you do have full Internet
access, using e-mail servers can save you time and
money.
This special report will show you how to retrieve

�les from FTP sites, explore the Internet via Go-
pher, search for information with Archie, Veron-
ica, or WAIS, tap into the World-Wide Web, and
even access Usenet newsgroups using E-MAIL AS
YOUR ONLY TOOL.

13

If you can send a note to an Internet address,
you're in the game! This is great news for users of
online services where there is partial or no direct
Internet access.
I encourage you to read this entire document �rst

and then go back and try out the techniques that
are covered. This way, you will gain a broader per-
spective of the information resources that are avail-
able, an introduction to the tools you can work
with, and the best methods for �nding the infor-
mation you want.
This document is now available from an auto-

mated mail server. To get the latest edition, send
e-mail to either address below.

To: LISTSERV@ubvm.cc.buffalo.edu (US)

Leave Subject blank, and enter only this line in
the body of the note:

GET INTERNET BY-EMAIL NETTRAIN F=MAIL

Or:

To: MAILBASE@mailbase.ac.uk (Europe)

Leave Subject blank, and enter only this line in
the body of the note:

send lis-iis e-access-inet.txt

You can also get the �le by anonymous FTP at
either of these sites:

At: ubvm.cc.buffalo.edu

cd NETTRAIN

get INTERNET BY-EMAIL

Or: mailbase.ac.uk

cd pub/lists/lis-iis/files/

get e-access-inet.txt

Oberon Source Code

Stefan Ludwig, Institute for Computer Systems.
If you login on our ftp-server ftp.inf.ethz.ch

(also known as neptune.inf.ethz.ch,
129.132.101.33), you will �nd many interest-
ing programs in the /pub/Oberon/Tools directory.
Among them are an extended text-editor for the
Oberon V4 system, called XE, which features
convenient enhancements for programmers. For
instance, text-selection works incrementally:
Subsequent clicks on the same location select a
character, a word, a name (e.g. a.b.c), and a whole
line. Also, you can middle-click at a selected text,
interclicking the left key in the target viewer,
and thereby moving the text stretch to another
location (drag and drop). A exible compile

command lets you compile programs containing
folded texts, and you can append a command and
options overriding standard options to the compile
command (e.g. Analyzer.Analyze instead of Com-
piler.Compile). Error elements showing possible
errors are inserted into the text automatically.
By middle-right clicking at a text stretch, the
command Doc.Open is called with the clicked-at
text as an argument. This way, you can open any
kind of document according to its extension with
an installed command (e.g. for *.Text XE.Open

may be called, for *.Graph Draw.Open, etc.). Doc
is also in that directory among other programs,
such as AsciiCoder, CaptionEdit, Find, Folds,
LineSorter, and Macro. If you are using these
programs, please write your comments to the
authors, which are listed in the respective tool
texts. Enjoy!

Programmieren in Oberon | Das

neue Pascal

The German edition of Programming in Oberon |

Steps beyond Pascal and Modula-2 by N.Wirth and
M. Reiser is available from Addison-Wesley as Pro-
grammieren in Oberon | Das neue Pascal. The
German edition has been prepared by Josef Templ,
a native German speaker with 5 years of experi-
ence in teaching and using Oberon at ETH Zurich.
ISBN 3-89319-657-9, hard cover, 330 pages, DM
69,90 incl. tax. Discounts up to 35% have been
reported for ordering more than 200 pieces.
In addition to the Oberon book, Addison-Wesley

o�ers an Oberon CD-ROM, which contains all
ETH-Oberon implementations, a number of exam-
ple programs in source form, demo versions of com-
mercial Oberon products and | due to the lack
of German documentation | a German introduc-
tion into using the Oberon system. Since all ETH-
Oberon distributions contain installation guidelines
and online documentation in English, the CD-ROM
will also serve the needs of the English speaking
reader. ISBN 3-89319-791-5, DM 69,90 incl. tax.

Miscellaneous Oberon Software

Johannes L. Marais, Institute for Computer
Systems.
The Compress package2 from Emil Zeller allows

you to compress Oberon �les into a single archive.
The resulting archive is useful for the distribu-
tion of Oberon �les as the longer Oberon �lenames
are stored inside of the archive. The Compress
source code is portable between V4 and System

2This package is not compatible with the UNIX utility

with the same name.

14

3 on all Oberon ports and can be obtained from
hades.ethz.ch in the /pub/Oberon/Sources di-
rectory.
Alan Freed has released a basic Oberon Math li-

brary for REALs and LONGREALs (sqrt, sin, cos,
cot etc). It is based on the existing Math modules
of Oberon with an interface providing error mes-
sages for exceptional conditions. It can be down-
loaded as the �les Maths.Mod and MathsL.Mod from
the ftp server hades.ethz.ch. Alan can be con-
tacted at al@sarah.lerc.nasa.gov.

Literature

Several books have been written about the Oberon
System and Language. We recommend these books
for serious Oberon users. However, if you want to
try out Oberon before buying a book, most Oberon
releases have enough online information to get a
new user started with Oberon.

N. Wirth and M. Reiser: Program-

ming in Oberon | Steps beyond Pascal

and Modula. Addison Wesley, 1992, ISBN
0-201-56543-9. Tutorial for the Oberon
programming language and concise lan-
guage reference.

N. Wirth and M. Reiser: Program-

mieren in Oberon | Das neue Pascal.
Addison Wesley, 1994, ISBN 3-89319-657-
9. The German translation of Program-
ming in Oberon.

M. Reiser: The Oberon System: User

Guide and Programmer's Manual. Ad-
dison Wesley, 1991, ISBN 0-201-54422-9.
User manual for the programming envi-
ronment and reference for the standard
module library.

N. Wirth and J. Gutknecht: Project

Oberon. The Design of an Operating
System and Compiler. Addison Wesley,
1992, ISBN 0-201-54428-8. Program list-
ings with explanation for the whole sys-
tem, including the compiler for NS32000.

H. M�ossenb�ock: Object-Oriented Pro-

gramming in Oberon-2. Springer, 1993,
ISBN 3-540-56411-X. Principles and ap-
plications of object-oriented programming
with examples in the language Oberon-2.

How to get Oberon

Oberon is available free of charge from our Internet
FTP server ftp.inf.ethz.ch in the /pub/Oberon
directory. The sub-directory System3 contains the
Oberon System 3 versions. Oberon V4 is avail-
able for Amiga, DECStation, MS-DOS, Microsoft

Windows and Windows NT, HP 700, Mac II, IBM
RS6000, SPARC and Silicon Graphics machines.
Oberon System 3 Version 1.5 is currently only avail-
able for MS-DOS, Linux, and SPARC computers.
If you do not have access to Internet, you can or-
der diskettes from the address below. We charge a
fee of Sfr 50.00 to cover our costs. We accept pay-
ment via Eurocard/Mastercard or VISA. To order
by credit card, specify your credit card number, ex-
piration date, and your name exactly as it appears
on the card. If you already purchased an Oberon
version from us, we will upgrade you to a newer ver-
sion for Sfr 20. The upgrading policy applies only
to versions of the same architecture; this means you
cannot upgrade from an older Oberon V4 for Win-
dows version to a newer DOS-Oberon version or
vice-versa.
Note that the ftp server hades.ethz.ch also

archives a number of Oberon ports (notably
Linux and OS/2) and several example pro-
grams and packages. The o�cial archive
of the newsletter is ftp.inf.ethz.ch in the
/pub/Oberon/Newsletter directory. If you don't
have ftp access we can add you to our address list.

Institut f�ur Computersysteme

ETH Zentrum
CH-8092 Z�urich
Switzerland

Telephone +41 (1) 632 73 11
Fax +41(1) 632 12 20
e-mail oberon@inf.ethz.ch

The Oberon User Group

Bergstrasse 5
CH-8044 Z�urich
Switzerland
e-mail oberon-user@inf.ethz.ch

Acknowledgements: Many thanks goes to
Stephan Gehring, J�urg Gutknecht, Taylor Hutt,
Dominique Leb�egue, and Stefan Ludwig for
proof-reading the newsletter.

c 1994 Institute for Computer Systems, Oberon
User Group.

On the backpage of the newsletter you see a desktop
snapshot of Oberon System 3 and Gadgets. The left
bottom corner shows a panel by Emil Zeller to play
music CDs from an attached CD-ROM drive. On
the right we have the Oberon System 3 World-Wide
Web browser from Ralph Sommerer with inbuilt
formula support (Text�eld gadgets are used to
\register" Oberon at the White-House). In the
background we have the TeleNews panel generated
by the teletext database.

15

	Title
	Contents
	Editorial
	next column

	The Joint Modular Languages Conference
	next column
	next column

	Oberon Day '94
	The Oberon Module Interchange (OMI)
	next column
	next column
	next column

	The Hybrid Project
	next column
	next column
	next column

	PC-Oberon: A Progress Report
	next column

	Dynamic Online Documents in Oberon
	News around Oberon System 3 and Gadgets
	TCP/IP for MacOberon and PowerMac Oberon
	next column

	DART-Oberon
	next column

	Logic Magicians' Oberon
	next column
	next column

	Integrating Multimedia on the workstation Ceres-2
	Oberon Tutorial
	next column

	Power Gadgets Available
	Action-Oberon
	next column

	ONTIME
	next column

	Oberon V4 for the PowerMacintosh
	next column

	Post Mortem Debugger for Oberon V4
	Oberon Dialogs: A Graphical User Interface for Oberon V4
	next column

	Oberon/F: Introducing a New Oberon System
	Call for Papers
	next column

	Statistics on a Voyage to Oberon
	Recent Publications
	next column

	Accessing The Internet by E-Mail
	next column

	Oberon Source Code
	next column

	Programmieren in Oberon -- Das neue Pascal
	Miscellaneous Oberon Software
	next column

	Literature
	How to get Oberon
	next column

	return:
	home:

