Oberon Data Types

Matteo Corti
corti@inf.ethz.ch

December 5, 2001

1 Introduction

This document is aimed at students without any previous programming expe-
rience. We briefly describe some data types of the Oberon language and how
they are internally represented.

This document is distributed in the hope that it will be useful, but without
any warranty; Without even the implied warranty of merchantability or fitness
for a particular purpose.

2 Definitions

Bit A bit (binary digit) is the smallest unit of information the computer uses.
It can assume only two values 1 or 0.

Byte A byte is a group of 8 bits, strung together.

3 Numbering systems

The decimal numbering system represents numbers using ten different symbols
(digits from 0 to 9) in a positional system: The meaning of a symbol is also
determined its position. A digit d at the n*" position from right to left starting
at 0, has a value of d - 10™.

Similarly other numbering systems with different sets of digits can be used.

The binary system uses only two digits 0 and 1, which are called bits. The
value of a bit at the n*® position is b - 2".

The hexadecimal system uses 16 symbols (digits from 0 to 9 and letters from
A to F!). The value of an hexadecimal digit at the n*® position is A - 16™.

The following examples show some convertions between different number
systems:

2-10°+0-10240-10%+1-10°
= 20004+04+0+1
2001

ILetters from A to F have a value of 10 to 15 in the decimal system, e.g. D has a value of
13.

2001

01010110 = 0-274+1-2640-2°+1-2*40-22+1-224+1-2'4+0-2°
= 04+64+04+16+0+4+2+0
= 88

3F4C = 3-163+F-16°+4-16"+C - 16°
= 3.16°+15-16°+4-16" +12-16°
= 12288+ 3840+ 64 + 12
= 16204

The hexadecimal numbers are widely used in computer science, because
they can be easily converted from and to binary once: Each hexadecimal digit
corresponds exactly to four bits. An example is depicted in the following table:

binary 0011 | 1111 | 0100 | 1100
decimal 3 15 4 12
hexadecimal 3 F 4 C

3.1 Negative numbers

With n bits you can represent 2" different numbers, for example integers between
0 and 2™ — 1. The problem arises when we want to express negative numbers,
as we have to choose an appropriate representation.

A trivial method uses the first bit to express the minus sign, but we have
the problem that two different representations for 0 are possible (with 8 bits
00000000 will be 0 and 10000000 will be -0 which is nonsensical).

Negative numbers are usually represented by the so called 2’s complement
notation. To obtain the 2’s complement of a number, first take the complement
(invert each bit) and then add 1. All the negative numbers will have a 1 in
the most significant bit? position (MSB), and the numbers will now range from
—2n=1 o 271 — 1,

For example, if we want to express -42 in a 8 bit system we first convert 42 to
binary obtaining 00101010 (0-128+0-64+1-32+0-164+1-8+0-4+1-240-1).
We then compute the complement 11010101 and we finally add 1 obtaining
11010110.

3.2 Floating-point

Floating-points numbers approximate real (R) numbers. A floating-point num-
ber r is represented by a signed mantissa m and a signed exponent n with respect
to a base b:

r=4m- b

The IEEE standard for single-precision floating point format allocates 1 bit
for the sign of the number, 8 bits for the signed exponent and 23 bits for the
mantissa.

2The MSB or most significant bit is the bit with the most significat position, in our case
the leftmost bit

3.3 Numbers in Oberon

Integer numbers in the decimal notation are expressed as usual with a sequence
of digits that can be preceded by a minus sign:

integer := digit {digit}.
Hexadecimal numbers are expressed with a capital H at the end:
integer := digit {hexDigit} "H".

Note that the first digit of an hexadecimal number cannot be a letter, numbers
beginning with a letter must be preceded by a 0 (e.g. 0AFH).

4 ASCII

Numbers are also used to represent characters. The standard way to do this is
the American Standard Code for Information Interchange or ASCII (pronounced
” Ask-ee”). ASCII is a 7-bit code, thus allowing to code 128 (27) different sym-
bols.

Oct | Dec | Hex | Char Oct | Dec | Hex | Char
000 | O 00 NUL \0’ | 100 | 64 40 (@
001 |1 01 SOH 101 | 65 41 A
002 | 2 02 STX 102 | 66 42 B
003 | 3 03 ETX 103 | 67 43 C
004 | 4 04 EOT 104 | 68 44 D
005 | 5 05 ENQ 105 | 69 45 E
006 | 6 06 ACK 106 | 70 46 F
007 | 7 07 BEL \a’ | 107 | 71 47 G
010 | 8 08 BS \b’ 110 | 72 48 H
011 | 9 09 HT \t’ 111 | 73 49 I
012 | 10 0A | LF \n’ 112 | 74 4A | J
013 | 11 0B | VT \v’ 113 | 75 4B | K
014 | 12 0C | FF '\ 114 | 76 4C | L
015 | 13 0D | CR\r’ 115 | 77 4D | M
016 | 14 0E SO 116 | 78 4E | N
017 | 15 OF SI 117 | 79 4F (0]
020 | 16 10 DLE 120 | 80 50 P
021 | 17 11 DC1 121 | 81 51 Q
022 | 18 12 DC2 122 | 82 52 R
023 | 19 13 DC3 123 | 83 53 S
024 | 20 14 DC4 124 | 84 54 T
025 | 21 15 NAK 125 | 85 55 U
026 | 22 16 SYN 126 | 86 56 Vv
027 | 23 17 ETB 127 | 87 57 W
030 | 24 18 CAN 130 | 88 58 X
031 | 25 19 EM 131 | 89 59 Y
032 | 26 1A | SUB 132 | 90 5A | Z
033 | 27 1B | ESC 133 | 91 5B [
034 | 28 1C | FS 134 | 92 5C |\ \\

Oct | Dec | Hex | Char Oct | Dec | Hex | Char
035 | 29 1D | GS 135 | 93 5D |]
036 | 30 1IE | RS 136 | 94 5E "
037 | 31 1F US 137 | 95 5F _
040 | 32 20 SPACE 140 | 96 60 ‘
041 | 33 21 ! 141 | 97 61 a
042 | 34 22 7 142 | 98 62 b
043 | 35 23 # 143 | 99 63 c
044 | 36 24 $ 144 | 100 | 64 d
045 | 37 25 % 145 | 101 | 65 e
046 | 38 26 & 146 | 102 | 66 f
047 | 39 27 ’ 147 | 103 | 67 g
050 | 40 28 (150 | 104 | 68 h
051 | 41 29) 151 | 105 | 69 i
052 | 42 2A | ¥ 152 | 106 | 6A | j
053 | 43 2B + 153 | 107 | 6B | k
054 | 44 2C , 154 | 108 | 6C |1
055 | 45 2D | - 155 | 109 | 6D | m
056 | 46 2E . 156 | 110 | 6E | n
057 | 47 2F / 157 | 111 | 6F o
060 | 48 30 0 160 | 112 | 70 P
061 | 49 31 1 161 | 113 | 71 q
062 | 50 32 2 162 | 114 | 72 r
063 | 51 33 3 163 | 115 | 73 S
064 | 52 34 4 164 | 116 | 74 t
065 | 53 35 5 165 | 117 | 75 u
066 | 54 36 6 166 | 118 | 76 v
067 | 55 37 7 167 | 119 | 77 w
070 | 56 38 8 170 | 120 | 78 X
071 | 57 39 9 171 | 121 | 79 y
072 | 58 3A | : 172 | 122 | 7TA | z
073 | 59 3B ; 173 | 123 | 7B {
074 | 60 3C < 174 | 124 | 7C | —
075 | 61 3D | = 175 | 125 | 7D | }
076 | 62 3E > 176 | 126 | 7E -
077 | 63 3F ? 177 | 127 | TF DEL

The extended ASCII code (8 bits) can represent an additional set 128 charac-
ters which are not part of the standard and are platform and and configuration
specific (this means that german letters as &, i and & are not part of the standard

ASCII code).

5 Oberon data types

Oberon offers eight different basic data types: BOOLEAN, CHAR, SHORTINT,

INTEGER, LONGINT, REAL, LONGREAL and SET.

5.1 BOOLEAN

BOOLEAN can express only two different values: TRUE or FALSE. Although
a boolean can be expressed with one bit only, for practical reasons one or more
bytes are commonly used.

5.2 CHAR

Character constants are expressed with the corresponding symbol or with the

(A9l

index in the ASCII table in hexadecimal form followed by a capital X (e.g. “o
or 06FX).

CharConstant = """ character """ | digit {hexDigitl} "X".

CHAR can express the extended ASCII set (from 000X to OFFX).

5.3 SHORTINT, INTEGER and LONGINT

Integer types represent signed integer values between MIN(type) and MAX (type).
On 32 bits CPUs this normally means:

Type Size MIN(type) MAX(type)
SHORTINT 8 bit -128 127
INTEGER 16 bit -32678 32677

LONGINT 32 bit 2147483648 -2147483647

5.4 REAL and LONGREAL

REAL and LONGREAL express real numbers between MIN(type) and MAX (type).
On 32 bits CPUs the IEEE single and double precision floating point format
is usually used (32 and 64 bits).

5.5 SET
A SET represents the set of integers between 0 and MAX(SET). On 32 bits
CPUs MAX(SET) is normally 31.

5.6 Order

Numeric types form a hierarchy; the larger type can represent (the values of)
the smaller type:

LONGREAL C REAL C LONGINT C INTEGER C SHORTINT

5.7 Conversions

A value of a smaller type is converted in a larger type implicitly, as shown in
the following example:

PROCEDURE Foo () ;
VAR
s: SHORTINT;

i: INTEGER;

1: LONGINT;
BEGIN

i :=s;

1l :=s;

1 :=1
END Foo;

Other explicit conversions are possible as shown in the following table

Name Argument type | Result type Function

ORD(x) CHAR INTEGER ordinal number of x

CHR(x) integer type CHAR character with ordinal number x
LONGINT INTEGER

SHORT(x) | INTEGER SHORTINT | identity (truncation possible)
LONGREAL REAL
INTEGER LONGINT

LONG(x) SHORTINT INTEGER identity
REAL LONGREAL

ENTIER(x) | real type LONGINT largest integer not greater than x

Note that ENTIER(i/j) = i DIV j

Particular attention must be paid to explicit

convertions since the smaller

type is not always able to hold the converted value as in the following example:

PROCEDURE Foo () ;

VAR
s: SHORT;
i: INTEGER;
BEGIN
i := 300;

s := SHORT(i)

END Foo;

G
(x s

000000100101100 or 300 *)

0101100 or 44 x*)

