
Oberon Data Types

Matteo Corti
corti@inf.ethz.ch

December 5, 2001

1 Introduction

This document is aimed at students without any previous programming expe-
rience. We briefly describe some data types of the Oberon language and how
they are internally represented.

This document is distributed in the hope that it will be useful, but without
any warranty; Without even the implied warranty of merchantability or fitness
for a particular purpose.

2 Definitions

Bit A bit (binary digit) is the smallest unit of information the computer uses.
It can assume only two values 1 or 0.

Byte A byte is a group of 8 bits, strung together.

3 Numbering systems

The decimal numbering system represents numbers using ten different symbols
(digits from 0 to 9) in a positional system: The meaning of a symbol is also
determined its position. A digit d at the nth position from right to left starting
at 0, has a value of d · 10n.

Similarly other numbering systems with different sets of digits can be used.
The binary system uses only two digits 0 and 1, which are called bits. The

value of a bit at the nth position is b · 2n.
The hexadecimal system uses 16 symbols (digits from 0 to 9 and letters from

A to F1). The value of an hexadecimal digit at the nth position is h · 16n.
The following examples show some convertions between different number

systems:

2001 = 2 · 103 + 0 · 102 + 0 · 102 + 1 · 100

= 2000 + 0 + 0 + 1
= 2001

1Letters from A to F have a value of 10 to 15 in the decimal system, e.g. D has a value of
13.

1

01010110 = 0 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20

= 0 + 64 + 0 + 16 + 0 + 4 + 2 + 0
= 88

3F4C = 3 · 163 + F · 162 + 4 · 161 + C · 160

= 3 · 163 + 15 · 162 + 4 · 161 + 12 · 160

= 12288 + 3840 + 64 + 12
= 16204

The hexadecimal numbers are widely used in computer science, because
they can be easily converted from and to binary once: Each hexadecimal digit
corresponds exactly to four bits. An example is depicted in the following table:

binary 0011 1111 0100 1100
decimal 3 15 4 12
hexadecimal 3 F 4 C

3.1 Negative numbers

With n bits you can represent 2n different numbers, for example integers between
0 and 2n − 1. The problem arises when we want to express negative numbers,
as we have to choose an appropriate representation.

A trivial method uses the first bit to express the minus sign, but we have
the problem that two different representations for 0 are possible (with 8 bits
00000000 will be 0 and 10000000 will be -0 which is nonsensical).

Negative numbers are usually represented by the so called 2’s complement
notation. To obtain the 2’s complement of a number, first take the complement
(invert each bit) and then add 1. All the negative numbers will have a 1 in
the most significant bit2 position (MSB), and the numbers will now range from
−2n−1 to 2n−1 − 1.

For example, if we want to express -42 in a 8 bit system we first convert 42 to
binary obtaining 00101010 (0 ·128+0 ·64+1 ·32+0 ·16+1 ·8+0 ·4+1 ·2+0 ·1).
We then compute the complement 11010101 and we finally add 1 obtaining
11010110.

3.2 Floating-point

Floating-points numbers approximate real (�) numbers. A floating-point num-
ber r is represented by a signed mantissa m and a signed exponent n with respect
to a base b:

r = ±m · b±n

The IEEE standard for single-precision floating point format allocates 1 bit
for the sign of the number, 8 bits for the signed exponent and 23 bits for the
mantissa.

2The MSB or most significant bit is the bit with the most significat position, in our case
the leftmost bit

2

3.3 Numbers in Oberon

Integer numbers in the decimal notation are expressed as usual with a sequence
of digits that can be preceded by a minus sign:

integer := digit {digit}.

Hexadecimal numbers are expressed with a capital H at the end:

integer := digit {hexDigit} "H".

Note that the first digit of an hexadecimal number cannot be a letter, numbers
beginning with a letter must be preceded by a 0 (e.g. 0AFH).

4 ASCII

Numbers are also used to represent characters. The standard way to do this is
the American Standard Code for Information Interchange or ASCII (pronounced
”Ask-ee”). ASCII is a 7-bit code, thus allowing to code 128 (27) different sym-
bols.

Oct Dec Hex Char Oct Dec Hex Char
000 0 00 NUL ’\0’ 100 64 40 @
001 1 01 SOH 101 65 41 A
002 2 02 STX 102 66 42 B
003 3 03 ETX 103 67 43 C
004 4 04 EOT 104 68 44 D
005 5 05 ENQ 105 69 45 E
006 6 06 ACK 106 70 46 F
007 7 07 BEL ’\a’ 107 71 47 G
010 8 08 BS ’\b’ 110 72 48 H
011 9 09 HT ’\t’ 111 73 49 I
012 10 0A LF ’\n’ 112 74 4A J
013 11 0B VT ’\v’ 113 75 4B K
014 12 0C FF ’\f’ 114 76 4C L
015 13 0D CR ’\r’ 115 77 4D M
016 14 0E SO 116 78 4E N
017 15 0F SI 117 79 4F O
020 16 10 DLE 120 80 50 P
021 17 11 DC1 121 81 51 Q
022 18 12 DC2 122 82 52 R
023 19 13 DC3 123 83 53 S
024 20 14 DC4 124 84 54 T
025 21 15 NAK 125 85 55 U
026 22 16 SYN 126 86 56 V
027 23 17 ETB 127 87 57 W
030 24 18 CAN 130 88 58 X
031 25 19 EM 131 89 59 Y
032 26 1A SUB 132 90 5A Z
033 27 1B ESC 133 91 5B [
034 28 1C FS 134 92 5C \ ’\\’

3

Oct Dec Hex Char Oct Dec Hex Char
035 29 1D GS 135 93 5D]
036 30 1E RS 136 94 5E ˆ
037 31 1F US 137 95 5F
040 32 20 SPACE 140 96 60 ‘
041 33 21 ! 141 97 61 a
042 34 22 ” 142 98 62 b
043 35 23 # 143 99 63 c
044 36 24 $ 144 100 64 d
045 37 25 % 145 101 65 e
046 38 26 & 146 102 66 f
047 39 27 ’ 147 103 67 g
050 40 28 (150 104 68 h
051 41 29) 151 105 69 i
052 42 2A * 152 106 6A j
053 43 2B + 153 107 6B k
054 44 2C , 154 108 6C l
055 45 2D - 155 109 6D m
056 46 2E . 156 110 6E n
057 47 2F / 157 111 6F o
060 48 30 0 160 112 70 p
061 49 31 1 161 113 71 q
062 50 32 2 162 114 72 r
063 51 33 3 163 115 73 s
064 52 34 4 164 116 74 t
065 53 35 5 165 117 75 u
066 54 36 6 166 118 76 v
067 55 37 7 167 119 77 w
070 56 38 8 170 120 78 x
071 57 39 9 171 121 79 y
072 58 3A : 172 122 7A z
073 59 3B ; 173 123 7B {
074 60 3C < 174 124 7C —
075 61 3D = 175 125 7D }
076 62 3E > 176 126 7E ˜
077 63 3F ? 177 127 7F DEL

The extended ASCII code (8 bits) can represent an additional set 128 charac-
ters which are not part of the standard and are platform and and configuration
specific (this means that german letters as ä, ü and ö are not part of the standard
ASCII code).

5 Oberon data types

Oberon offers eight different basic data types: BOOLEAN, CHAR, SHORTINT,
INTEGER, LONGINT, REAL, LONGREAL and SET.

4

5.1 BOOLEAN

BOOLEAN can express only two different values: TRUE or FALSE. Although
a boolean can be expressed with one bit only, for practical reasons one or more
bytes are commonly used.

5.2 CHAR

Character constants are expressed with the corresponding symbol or with the
index in the ASCII table in hexadecimal form followed by a capital X (e.g. “o”
or 06FX).

CharConstant = """ character """ | digit {hexDigit} "X".

CHAR can express the extended ASCII set (from 000X to 0FFX).

5.3 SHORTINT, INTEGER and LONGINT

Integer types represent signed integer values between MIN(type) and MAX(type).
On 32 bits CPUs this normally means:

Type Size MIN(type) MAX(type)
SHORTINT 8 bit -128 127
INTEGER 16 bit -32678 32677
LONGINT 32 bit 2147483648 -2147483647

5.4 REAL and LONGREAL

REAL and LONGREAL express real numbers between MIN(type) and MAX(type).
On 32 bits CPUs the IEEE single and double precision floating point format

is usually used (32 and 64 bits).

5.5 SET

A SET represents the set of integers between 0 and MAX(SET). On 32 bits
CPUs MAX(SET) is normally 31.

5.6 Order

Numeric types form a hierarchy; the larger type can represent (the values of)
the smaller type:

LONGREAL ⊆ REAL ⊆ LONGINT ⊆ INTEGER ⊆ SHORTINT

5.7 Conversions

A value of a smaller type is converted in a larger type implicitly, as shown in
the following example:

PROCEDURE Foo();
VAR
s: SHORTINT;

5

i: INTEGER;
l: LONGINT;

BEGIN
i := s;
l := s;
l := i

END Foo;

Other explicit conversions are possible as shown in the following table

Name Argument type Result type Function
ORD(x) CHAR INTEGER ordinal number of x
CHR(x) integer type CHAR character with ordinal number x

LONGINT INTEGER
SHORT(x) INTEGER SHORTINT identity (truncation possible)

LONGREAL REAL
INTEGER LONGINT

LONG(x) SHORTINT INTEGER identity
REAL LONGREAL

ENTIER(x) real type LONGINT largest integer not greater than x
Note that ENTIER(i/j) = i DIV j

Particular attention must be paid to explicit convertions since the smaller
type is not always able to hold the converted value as in the following example:

PROCEDURE Foo();
VAR
s: SHORT;
i: INTEGER;

BEGIN
i := 300; (* i = 000000100101100 or 300 *)
s := SHORT(i) (* s = 0101100 or 44 *)

END Foo;

6

