Eidgenossische Berichte der

Technische Fachgruppe
Hochschule Computer-
Zurich Wissenschaften
Niklaus Wirth

The Programming
Language Pascal
(Revised Report)

November 1972 5

Niklaus Wirth

The Programming
Language Pascal
(Revised Report)

Abstract

A programming language called Pascal is described which was
developed on the basis of Algol 60. Compared to Algol 60, its

range of applicability is considerably increased due to a variety
of data structuring facilities. In view of its intended usage

both as a convenient basis to teach programming and as an efficient
tool to write large programs, emphasis was placed on keeping the
number of fundamental concepts reasonably small, on a simple and
systematic language structure, and on efficient implementability.

A one-pass compiler has been constructed for the CDC 6000 computer
family. This Report may serve as a programmers manual for PASCAL

6000.

Preis:

Fr.

7.--

Preface to the Revised Report

The language PASCAL has now been in use since almost three years,
during which considerable experience has been gained through its
use, its teaching, and its implementation. Although many reasons
suggest that a language should be kept unchanged as scon as it

has gained a user community, it would be unwise to ignore this
experience and to refrain from making good use of it. This Report
therefore describes a revised language which includes some changes
suggested by the work of the last two years. It is still of the
form of the original definition*, and in fact the changes are

very few and relatively minor. They concern the following subjects:

- Constant parameters are replaced by value parameters (in the

"sense af ALGOL 60).

- The class structure is eliminated: pointer variables are bound

to a data type instead of a class variable.

- The handling of files is changed such that the buffer variable
f* always has a defined value except when the condition eof(f)

is true.

- Packed records and packed arrays are introduced. As a consequence,
the type alfa becomes a special case of a packed character
array, and the need for a standard definition vanishes. The
generalization has some consequences on the denotation of sfrings

(formerly called alfa constants).

Moreover, there are a few minor syntactic changes, such as the
renaming of the powerset structure to set structure. All syntactic

changes are specially marked in this report.

The main effort of implementation has lately been spent on improving

irun—time checking facilities including a post-mortem dump routine.

These facilities make the system very attractive for program
development and teaching. In this connection, the reader is
referred to the introductory programming text developed

particularly for these purposes**.

Implementation efforts on other computers have brought the

problem of portability and machine independence of software

systems to our closer attention. Many of the above mentioned
changes, and also some additional restrictions, were adopted and
imposed in the interest of program portability and machine
independent definability. They made it possible to define almost
the entire language by a set of abstract axioms and rules of
inference***. Such a rigorous definition is necessary to be able

to prove properties of programs. This rigour and machine indepen-
dence has notably been achieved without sacrifice in the efficiency

of program execution.

I wish to thank my collaborators U. Ammann, K. Jensen, E. Marmier,
and R. Schild for their efforts to implement the language and to
make the PASCAL system a success.

N. Wirth

* N. Wirth, "The Programming Language PASCAL", ACTA INFORMATICA
1, 35-63, (1971) and Berichte der Fachgruppe Computer-
Wissenschaften 1 (Nov. 1970)

** —— "Systematisches Programmieren", Teubner Verlag, Stuttgart,
1972

—— "Systematic Programming”, Prentice-Hall, Englewood Cliffs,
1973

**¥* C,A.R. Hoare and N. Wirth, "An Axiomatic Definition of the

Programming Language PASCAL", to he published.

Contents

Preface

1.

1.

12.

13.

14.

Introduction

Summary of the language

Notation, terminology, and vocabulary
Identifiers, Numbers, and Strings
Constant definitions

ata type definitions

.1. Simple types
.2.
.3.

Structured types
Pointer types

ooy ONO

Declarations and denotations of variables
7.1. Entire variables

7.2. Component variables

7.3. Referenced variables

Expressions

8.1. Operators

8.2. Function designators
Statements

9.1. Simple statements

9.2. Structured statements

Procedure declarations
10.1. Standard procedures

Function declarations
11.1. Standard functions

Programs
Pascal 6000

Glossary

Appendix:

Syntax diagrams

10

10
10
12
15

16
17
17
19

19
21
22
23
23
25

31
34

36
37

39
39

45

1. Introduction

The development of the language Pascal is based on two principal
aims. The first is to make available a language suitable to teach
programming as a systematic discipline based on certain fundamental
concepts clearly and naturally reflected by the language. The
second is to develop implementations of this language which are

both reliable and efficient on presently available computers.

The desire for a new language for the purpose of teaching program-
ming is due to my deep dissatisfaction with the presently used
major languages whose features and constructs tooc oftemn cannot be
explained logically and convincingly and which too often represent
an insult to minds trained in systematic reasoning. Along with

this dissatisfaction goes my conviction that the language in

which the student is taught to express his ideas profoundly influ-
ences his habits of tought and invention, and that the disorder
governing these languageé directly imposes itself onto the program-

ming style of the students.

There is of course plenty of reason to be cautious with the intro-
duction of yet another programming language, and the objection
against teaching programming in a language which is not widely
used and accepted has undoubtedly some justification - at leaét
based on short-term commercial reasoning. However, the chaoice of

a language for teaching based on its widespread acceptance and
availability, together with the fact that the language most widely
taught is thereafter going to be the one most widely used, forms
the safest recipe for stagnation in a subject of such profound
pedagogical influence. I consider it therefore well worth-while

to make an effort to break this vicious circle.

Of course a new language should not be developed just for the sake

of noveltys; existing languages should be used as a basis for

development wherever they meet the criteria mentioned and do not
impede a systematic structure. In that sense Algol 60 was used as

a basis for Pascal, since it meets the demands with respect to
teaching to a much higher degree than any other standard language.
Thus the principles of stfucturing, and in fact the form of
expressions, are copied from Algol 60. It was, however, not deemed
appropriate to adopt Algol 60 as a subset of Pascal; certain con-
struction principles, particularly those of declarations, would
have been incompatible with those allowing & natural and convenient

representation of the additional features of Pascal.

The main extensions relative to Algol 60 lie in the domain of data
structuring facilities, since their lack in Algol 60 was considered
as the prime cause for its relatively narrow range of applicability.
The introduction of record and file structures should make it
possible to solve commercial type problems with Pascal, or at least
to employ it successfully to demonstrate such problems in a pro-
gramming course. The syntax of Pascal is summarised in graphical

form in the Appendix.

The language has been implemented on the CDC 6000 computers. Pascal
6000 is described by a few amendments included here as a separate
chapter to demonstrate the brevity of a manual necessary to

characterise a particular implementation.

2. 8Summary of the language

An algorithm or computer program consists of two essential parts,
a description of actions which are to be performed, and a
description of the data, which are manipulated by these actions.
Actions are described by so-called statements, and data are

described by so-called declarations and definitions.

The data are represented by values of variables. Every variable
occuring in a statement must be introduced by a variable declara-
tion which associates an identifier and a data type with that
variable. The data type essentially defimes the set of values
which mayby assumed by that variable. A data type may in Pascal be
either directly described in the variable declaration, or it may
be referenced by a type identifier, in which case this identifier

must be described by an explicit type definition.

The basic data types are the gcalar types. Their definition indicates
an ordered set of values, i.e. introduces identifiers standing for
each value in the set. Apart from the definable scalar types, there

exist four standard scalar types: Boolean, integer, char, and real.

Except for the type Boolean, their values are not denoted by
identifiers, but instead by numbers and quotations respectively.
These are syntactically distinct from identifiers. The set of
values of type char is the character set available on a particular

installation.

A type may alsoc be defined as a subrange of & scalar type by indicat-

ing the smallest and the largest value of the subrange.

Structured tvpes are defined by describing the types of their

components and by indicating a structuring method. The various

structuring methods differ in the selection mechanism serving to
select the components of a variable of the structured type. In
Pascal, there are four structuring methods available: array

structure, record structure, set structure, and file structure.

In an array structure, all components are of the same type. A com-

ponent is selected by an array selector, or computable index,

whose type is indicated in the array type definition and which must
be scalar. It is usually a programmer-defined scalar type, or a
subrange of the type integer. Given a value of the index type, an

array selector yields a value of the component type. Every array

variable can therefore be regarded as a mapping of the index type
onto the component type. The time needed for a selection does not
depend on the value of the selector (index). The array structure

is therefore called a randcm-access structure.

In a record structure, the components (called fields) are not
necessarily of the same type. In order that the type of a selected
component be evident from the program text (without executing the
program), a record selector is not a computable value, but instead
is an identifier uniquely denoting the component to be selected.
These component identifiers are declared in the record type defini-
tion. Again, the time needed to access a selected component does
not depend on the selector, and the record is therefore also a

random-access structure.

A record type may be specified as consisting of several variants.
This implies 'that different variables, although said to be of the
same type, may assume structures which differ in a certain manner.
The difference may consist of a different number and different
types of components. The variant which is assumed by the current
value of a record variable is indicated by a component field which
is common to all variants and is called the tag field. Usually,

the part common to all variants will consist of several components,

including the tag field.

A set structure defines the set of values which is the powerset

of its base type,. i.e. the set of all subsets of values of the
base type. The base type must be a scalar type, and will usually
be a programmer-defined scalar type or a subrange of the type

integer.

A file structure is a seguence of components of the same type. A

natural ordering of the components is defined through the sequence.

At any instance, only one component is directly accessible. The

other components are made accessible by progressing sequentially
through the file. A file is generated by sequentially appending
components at its end. Consequently, the file type definition does

not determine the number of components.

Variables declared in explicit declarations are called static. The
declaration associates an identifier with the variable which is
usedto refer to the variable. In contrast, variables may be generated
by an executable statement. Such a dynamic generation yields a
so-called pointer (a substitute for an explicit identifier) which
subsequently serves to refer to the variable. This pointer may be
assigned to other variables, namely variables of type pointer.

Every pointer variable may obtain pointers pointing to variables

of the same type T only, and it is said to be bound to this type T.
It may, however, also obtain the value nil, which points to no
variable. Because pointer variables may also occur as components

of structured variablgs, which are themselves dynamically generated,
the use of pointers permits the representation of finite graphs in

full generality.

The most fundamental statement is the assignment statement. It

specifies that a newly computed value be assigned to a variable (or
components of a variable). The value is obtained by evaluating an
expression. Expressions consist of variables, constants, sets;
operators and functions operating on the denoted quantities and
producing new values. Variables, constants, and functions are
either declared in the program or are standard entities. Pascal
defines a fixed set of operators, each of which can be regarded as
describihg a mapping from the operand types into the result type.

The set of operators is subdivided into groups of

1. arithmetic operators of addition, subtraction, sign inversion,

multiplication, division, and computing the remainder.

2, Boolean operators of negation, union (OR), and conjunction (AND).

3. set operators of union, intersection, and set difference.

4. relational operators of equality, inequality, ordering,

set membership and set inclusion. The results of relational
operations are of type Boolean. The ordering relations apply

only to scalar types.

The procedure statement causes the execution of the designated

procedure (see below). Assignment and procedure statements are

the components or building blocks of structured statements, which

specify segquential, selective, or repeated execution of their
components. Sequential execution of statements is specified .by

the compound statement, conditional or selective execution by

the if statement and the case statement, and repeated execution

by the repeat statement, the while statement, and the for state-

ment. The if statement serves to make the execution of a statement
dependent on the value of a Boolean expression, and the case state-
ment allows for the selection among many statements according to
the value of a selector. The for statement is used when the number
of iterations is known beforehand, and the repeat and while state-

ments are used otherwise.

A statement can be given a name (identifier), and be referenced
through that identifier. The statement is then called a rocgdure,
and its declaration a procedure declaration. Such a declaration
may additionally contain a set of variable declarations, type
definitions and further procedure declarations. The variables,
types and procedures thus declared can be referenced only within
the procedure itself, and are therefore called local to the
procedure. Their identifiers have significance only within the
program text which constitutes the procedure declaration and which
is called the gcope of these identifiers. Since procedures may be
declared local to other procedures, scopes may be nested. Entities
which are declared in the main program, i.e. not local to some

procedure, are called global.

A procedure has a fixed number of parameters, each of which is
denoted within the procedure by an identifier called the

formal parameter. Upon an activitation of the procedure statement,

an actual quantity has to be indicated for each parameter which
can be referenced from within the procedure through the formal
parameter. This quantity is called the actual parameter. There

are three kinds of parameters: value parameters, variable para-
meters, and procedure or function parameters. In the first case,
the actual parameter is an expression which is evaluated once. The
formal parameter represents a local variable to which the result of
this evaluation is assigned before the execution of the procedure
{(or function). In the case of a variable parameter, the actual
parameter is a variable and the formal parameter stands for this
variable. Possible indices are evaluated before execution of the
procedure (or function). In the case of procedure or functian
parameters, the actual parameter is a procedure or functian

identifier.

Functions are declared analogously to procedures. The only
difference lies in the fact that a function yields a result which
is confined to a scalar type and must be specified in the functian
declaration. Functions may therefore be used as constituents of
expressiaons. In order to eliminate side-effects, assignments to

non-local variables should be avoided within function declarations.

3. Notation, terminology, and vocabulary

According to traditional Backus-Naur form, syntactic constructs
are denoted by English words enclosed between the angular brackets
< and > . These words also describe the nature or meaning of the
construct, and are used in the accompanying description of
semantics. Possible repetition of a conmstruct is indicated by an

asterisk (0 or more repetitions) or a circled plus sign (1 or more

repetitions). If a sequence of constructs to be repeated consists
of more than one element, it is enclosed by the meta-brackets {

and } which imply a repetition of 0 or more times.

The basic vocabulary consists of basic symbels classified into
letters, digits, and special symbols.

<letter> ::= A|B|C|D|E|F|G[H|T]|I]K|L|M|N|o|P|Q|R|S|T|UjV|wW|X]|Y]|Z]
albleldlelflglnliljlkllmnlolplale]s|tlulv]w|x]|y]z

<digit> o|1]2|3]a|s]6]7]|8]9

{special symbol> ::=
=117 vIal- L= A DLLI2 OO TTTTICT +=]
A lsle][] div|mod|nid |in]

if{then elseIcaselgi|regeat|until|whilelgg|
forl;gldowntolbeginlgﬂg|with|goto|

constlgg;]tyge|arra¥|recordlggj|filel
functionlgrocedurellabel|gacked

The construct

{<any sequence of symbols not containing "}"> }
may be inserted between two identifiers, numbers (cf. 4), or special
symbols. It is called a comment and may be removed from the program
text without altering its meaning. The symbols { and } do not
occur otherwise in the language, and when appearing in syntactic

descriptions they denote meta-symbols like | and ::= .

4, Identifiers, Numbers, and Strings

Identifiers serve to denote constants, types, variables, procedures
and functions. Their association must be unique within their scope
of validity, i.e. within the procedure or function in which they

are declared (cf. 10 and 11).

{identifier> ::= <{letter><letter or digit>*
{letter or digitd> ::= <letter> | {digit>

The usual decimal notation is used for numbers, which are the
constants of the data types integer and real (see 6.1.2). The
letter E preceding the scale factor is pronounced as "times 10

to the power of”.

{unsigned integer> ::= <digit>B

{unsigned real> ::= <unsigned integer> . <digit>e I
{unsigned integer> . <digit>(EJ E <scale factor> |
{unsigned integer> E <{scale factor>

{unsigned number> ::= {unsigned integér) I {unsigned real>

{scale factor> ::= <digit>m I {sign> <digit>B

sign> :1:= + | -

Examples:

1 100 0.1 5E-3 87.35E48

Sequences of characters enclosed by quote marks are called strings.
Strings consisting of a single character are the constants of the
standard type char (see 6.1.2). Strings consisting of n (>1)

enclosed characters are the constants of the types (see 6.2.1)

packed array [1..n] of char

Note: If the string is to contain a quote mark, then this quote

mark is to be written twice.

{string> ::= '<character>®! l

Examples:

IAI '
'PASCAL! 'THIS IS A STRING'

-

5. Constant definitions

A constant definition introduces an identifier as a synonym to

a constant.

{constant identifier> ::= <identifier>
{unsigned constant> ::= <unsigned number> | {string> |

{constant identifier> I nil

{constant> ::= <unsigned number> | <sign><unsigned number>]
{constant identifier> I {sign><{constant identifier>] {string>

{constant definition> ::= <identifier> = <constant>

The following are standard constant identifiers defined in every

implementation:

eal = control character denoting end of line = 'eol'
alfaleng = maximum no. of characters that may be packed into a
"word".

6. Data type definitions

A data type determines the set of values which variables of that

type may assume and associates an identifier with the type.

{type>.::= <simple type> | {structured type> | {pointer type>
{type definition> ::= <identifier> = <type>

6.1. Simple types

{simple type> ::= <scalar type> l {subrange type> |
{type identifier>
{type identifier> ::= <identifier>

6.1.1. Scalar_tvpes

A scalar type defines an ordered set of values by enumeration of

the identifiers which denote these values.

{scalar type> ::= (<identifier> {Kidentifier>})

Examples:

(red, orange, yellow, green, blue)

(club, diamond, heart, spade)

(Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, Sunday)

Functions applying to all scalar types are:

succ

pred

the succeeding value {in the enumeration)

the preceding value (in the enumeration)

6.1.2. Standard scalar tvpes

The following types are standard in Pascal:

integer

real

Boolean

char

The values are a subset of the whole numbers defined
by individual implementations. Its values are the

integers (see 4.).

Its values are a subset of the real numbers depending
on the particular implementation. The values are

denoted by real numbers (see 4.).

Its values are the truth values denoted by the

identifiers true and false.

Its values are a set of characters determined by
particular implementations. They are denocted by the

characters themselves enclosed within guotes.

6.1.3. Subrange types

A type may be defined as a subrange of another scalar type by

indication of the least and the largest value in the subrange. The

first constant specifies the lower bound, and must not be greater

than the upper bound.

{subrange type> ::= <constant>..<constant>

Examples: 1..100
-10 .. +10
Monday .. Friday

6.2. Structured types

A structured type is characterised by the type(s) of its components
and by its structuring method. Moreover, a structured type defini-
tion may contain an indication of the preferred data representation.
If a definition is prefixed with the symbol packed, this has no
effect on the meaning of a program, but is a hint to the compiler
that storage should be economised even at the price of some loss

in efficiency of access, and even if this may expand the code

necessary for expressing access to components of the structure.

{structured type> ::= <unpacked structured type>]
packed <unpacked structured type>
{unpacked structured type> ::= <array type> |
{record type> | {set type> [{file type>

6.2.1. Array types

An array type is a structure consisting of a fixed number of
components which are all of the. same type, called the component
type. The elements of the array are designated by indices, values
belonging to the so-called index type. The array type definition

specifies the component type as well as the index type.

array type> ::= array [<index type> {,<index type>}] of
{component type>

{index type> ::= <simple type>

{component type> ::= <type>

If n index types are specified, the array type is called

p-dimensional, and a component is designated by n indices.

Examples: array [1..100] of real
array [1..10, 1..20] of D0..95
array [Boolean] of Color

6.2.2. Record types

A record type is a structure consisting of a fixed number of
components, possibly of different types. The record type defini-
tion specifies for each component, called field, its type and an

identifier which denotes it. The scope of these so-called field

identifiers is the record definition itself, and they are also

accessible within a field designator (cf. 7.2) referring to a

record variable of this type.

A record type may have several variants, in which case a certain
field is designated as the tag field, whose value indicates which
variant is assumed by the record variable at a given time. Each
variant structure is identified by a case label which is a constant

of the type of the tag field.

{record type> ::= record <field list> end
{field list> ::= <fixed part>|<fixed partds;<variant part>]
{variant part>

{fixed part> ::= <record section> {;<record section>}

{record section> ::= <field identifier> {,<field identifier)}:(type>

{variant part> ::= case <{tag field> : <type identifier> of"
{variant> {;(variantﬂ

{variant> ::= <{case label list> : (<field list>)|<case label list>

<case label list> ::= <case label> {,<case label>}

{case label> ::= <unsigned constant>

{tag field> ::= <identifier>

Examples: record day: 1..31%;
month: 1..12;
year: integer
end
record name, firstname: Alfaj;
age: 0..99;
married: Booclean
end
record x,y: real;
area: real;
case s: Shape of
triangle: (side: real;
inclination, anglel, angle?: Angle);
rectangle: (sidel, side2: real;

circle:
end
6.2.3. Set tvpes

skew, angle3: Angle);

(diameter: real)

A set type defines the range of values which is the powerset of

its so-called base type.

Base types must not be structured types.

Operators applicable to all set types are:

v union

A intersection

- set difference

in membership

{set type> ::=
<base type> ::=

set of <base type>
{simple type>

6.2.4. File types

A file type definition specifies a structure consisting of a
sequence of components which are all of the same type. The number
of components, called the length of the file, is not fixed by the
file type definition. A file with 0 components is called empty,

and files with components of type char are called textfiles.

{file type> ::= file of <type>

The following is a standard type:

type text = packed file of char

6.3. Pointer types

Variables which are declared in a program (see 7.) are accessible
by their identifier. They exist during the entire execution process
of the procedure (scope) to which the variable is local, and these
variables are therefore called gtatic (or statically allocated). In
contrast, variables may also be generated dynamically, i.e. without
any correlation to the structure of the program. These dynamic
variables are generated by the standard procedure new (see 10.1.2);
since they do not occur in an explicit variable declaration, they
cannot be referred to by a name. Instead, access is achieved yia

a so-called pointer value which is provided upon generation of the
dynamic variable. A pointer type thus consists of an unbounded set
of values pointing to elements of the same type. No operations are

defined on pointers except the test for equality.

The pointer value nil belongs to every pointer type; it points to

no element at all.

{pointer type> ::= M type identifier>

Examples of type definitions:

Color = (red, yellow, green, blue)

Sex = (male, female)

Text = file of char

Shape = (triangle, rectangle, circle)
Card = array[1..80] of char

Alfa = packed g££g¥[1..alfaleng] of char
Complex = record re, im: real end

Person = record name, firstname: alfa;

age: integer;
married: Boolean;
father, child, sibling:%*Person;
case s: Sex of
male: (enlisted, bold: Boolean);
female: (pregnant: Boolean);
size: array[1..3] of integer)
end

7. Declarations and denotations of variables

Variable declarations consist of a list of identifiers denoting

the new variables, followed by their type.

{variable declaration> ::= <identifier> &(identifierﬁ} : {type>

Every declaration of a file variable f with components of type T
implies the additional declaration of a so-called buffer variable
of type T . This buffer variable is denoted by ft and serves

to append components to the file during generation, and to access

the file during inspection (see 7.2.3 and 10.1.1).

The standard file variables input and gutput are predeclared as
textfiles. A Pascal program should be regarded as a procedure

with these two variables as formal parameters. The corresponding
actual parameters are expected to be either the standard input and
output media of the computer installtion, or to be specifyable in

the system command activating the Pascal system.

Examples:
Xyy,z: real
u,v: Complex
i,j: integer
k: 0..9
p,q: Boolean
operator: (plus, minus, times)
a: array[0..63] of real
b: array{Color,Boolean] pf Complex
c: Color
f: file of char

huel, hue2: set of Color

p1,p2: #Person

Denotations of variables either designale an entire variable, a
component of a variable, or a variable referenced by a pointer
(see 6.3). Variables in examples in subsequent chapters are assumed

to be declared as indicated above.

{variable> ::= <entire variable> | <component variable> |

{referenced variable>

7T.1. Entire variables
An entire variable is denoted by its identifier.

{entire variable)> ::= <variable identifier>

{variable identifier> ::= <identifier>

7.2. Component variables

A component of a variable is denoted by the denotation for the
variable followed by a selector specifying the component. The

form of the selector depends on the structuring type of the variable.

{component variable> ::= <indexed variable) |

{field designator> | <file buffer>

7.2.1. Indexed variables

A component of an n-dimensional array variable is denoted by the

denotation of the variable followed by n index expressions.

{indexed variable> ::=
{array variable> [<expression> {,(expression)}]

{array variable> ::= <variable>

The types of the index expressions must correspond with the index

types declared in the definition of the array type.

Examples:
a[12]
ali+j]
b[red,true]
b{succ(c), pag]

Note: Packed arrays are not indexable (see 10.1.3).

7.2.2. Field designators

A component of a record variable is denoted by the denotation
of the record variable followed by the field identifier of the

component.

{field designator> ::= <record variable>.<{field identifier>
{record variable> ::= <{variable>

{field identifier> ::= <identifier>

Examples:
u.re
b[red,true].im

pZT.size

7.2.3. File buffers

At any time, only the one component determined by the current
file position (read/write head) is directly accessible. This
component is called the current file component and is represented

by the file's buffer variable.

{file buffer> ::= <file variabled>?®
{file variable> ::= <variable>

7.3. Referenced variables

{referenced variable> ::= <{pointer variable>?®

{pointer variable> ::= <variable>

If p is a pointer variable which is bound to a type T , p
denotes that variable and its pointer value, whereas pT denotes

the variable of type T referenced by p .

Examples:
p1%.father
pi14.sibling®.child

8. Expressions

Expressions are constructs denoting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operands, i.e.

variables and constants, operators, and functions.

The rules of composition specify operator precedences according
to four classes of operators. The operator = has the highest
precedence, followed by the so-called multiplying operators, then
the so-called adding operators, and finally, with the lowest
precedence, the relational operators. Sequences of operators of

the same precedence are executed from left to right. The rules

- 20 -

of precedence are reflected by the following syntax:

{factor> ::= <variable> | <unsigned constant> I
{function designator> | <set> |(<expression>) |
4 <factor>

<set> ::= [<expression> {,<expression>}] | []

{term> ::= <factor> | {term><{multiplying operator><factor>

{simple expression> ::= <term> |

<simple expression> <adding operator><term> l

<adding operator><{term>

{expression> ::= <simple expression> |

<simple expression>{relaticnal operator>

{simple expression>

Expressions which are members of a set must all be of the same

type, which is the base type of the set. []

Examples:

Factors: X
15
(x+y+z)
sin(x+y)

[red,c,green]

P

Terms: x *y

i/(1-1)

PAQ

(x L yIN(y < 2)
Simple expressions: x + y

-X

huet v hue?2

i*j + 1

I
[}

Expressions: X

p<q

denotes the empty set.

8.1. Operators

8.1.1. The

operator 1

The operator =

8.1.2., Multiplying operators

<multiplying operator> ::= * | / | div |

applied to a Boolean operand denotes negation.

od I A

operator operation type of operands type of result
integer, if both ope-
.o . real .
* multiplication - rands are of type in-
integer .
teger, real otherwise
/ division real real
integer
div division integer integer
with truncation g 9
mod modulus integer integer
logical "and" Boolean Boolean
N set intersectionfany set type T T
8.1.3. Adding operators
{adding operator> ::= + l - IV
operator operation type of operands type of result
integer, if both
+ addition integer operands are of
subtraction real type 1ntegeF,
_ real otherwise
set difference any set type T T
set union
v logical "or" Boolean Boolean

When used as operators with one operand only,

inversion,

and +

- denotes sign

denotes the identity operation.

8.1.4. Relational operators

<relational operator> ::= =|#|<|<|>|>|in
operator | type of operands result
= # any type. (except file types) Boolean
<> any scalar or subrange type Boolean
L2
in any scalar or subrange type and Boolean
its set type respectively

Notice that all scalar types define grdered sets of values. In

particular, false < true.

The operators < and 2> may also be used for comparing values

of set type, and then dencte set inclusion € and 2 respectively.

The operators <, £, >, > may also be applied to packed arrays
with components of type char, and then denote alphabetical

ordering according to the underlying set of characters.

B.2. Function designators

A function designator specifies the activation of a function. It
consists of the identifier designating the function and a list of
actual parameters. The parameters are variables, expressions,
procedures, and functions, and are substituted for the

corresponding formal parameters (cf. 9.1.2., 10, and 11).

{function designator> ::= <function identifier> |
{function identifier> (<actual parameter {, <actual parameter>})

{function identifier> ::= <identifiexr>

Examples: Sum(a,100)
GCD(147,k)
sin(x+y)
eof(f)
ord(f%)

9. Statements

Statements denote algorithmic actions, and are said to be
executable. They may be provided with a label which can be

referenced by goto statements.

{statement> ::= <unlabelled statement>|<label>:<unlabelled statement>
unlabelled statement> ::= <simple statementd|<structured statement>
{label> ::= <unsigned integer>

9.1. Simple statements

A simple statement is a statement of which no part constitutes

another statement.

{simple statement> ::= <assignment statement> |

{procedure statement> l {goto statement> I {empty statement>

9.1.1. Assignment statements

The assignment statement serves to replace the current value of a

variable by a new value specified as an expression.

{assignment statement> ::= <variable> := <{expression> |

{function identifier> := <expression>

The variable (or the function) and the expression must be of

identical type, with the following exceptions being permitted:

1. the type of the variable is real, and the type of the
expression is integer or a subrange thereof.

2. the type of the expression is a subrange of the type of the

variable, or vice-versa.

Examples: X 1= y+z

p = (1 < i)Aa (i < 100)
i

I

sqrik) - (i*j)
[blue,succ(c)]

hue

9.1.2. Procedure statements

A procedure statement serves to execute the procedure denoted by

the procedure identifier. The procedure statement may contain a

list of actusl parameters which are substituted in place of their
corresponding formal parameters defined in the procedure declara-
tion (cf. 10). The correspondence is established by the positions

of the parameters in the lists of actual and formal parameters
respectively. There exist four. kinds of parameters: so-called

value parameters, variable parameters, procedure parameters (the
actual parameter is a procedure identifier), and function parameters

(the actual parameter is a function identifier).

In the case of a value parameter, the actual parameter must be an
expression (of which a variable is a simple case). The correspon-
ding formal parameter represents a local variable of the called
procedure, and the current value of the expression is initially

assigned to this variable. In the case of a variable parameter,

the actual parameter must be a variable, and the corresponding
formal parameter represents this actual variable during the

entire execution of the procedure. If this variable is a component
of an array, its index is evaluated when the procedure is called.

A variable parameter must be used whenever the parameter represents

a result of the procedure.

{procedure statement> ::= <{procedure identifier> l
{procedure identifier> (<actual parameter>
{, <actual parameter>})

{procedure identifier> ::= <identifier>

{actual parameter> ::= <expression> | {variable> |
<procedure identifier> | <function identifier>
Examples: next

Transpose (a,n,m)

Bisect (fct,-1.0,+1.0,x)

- 25 -

9.1.3. Goto statements

A goto statement serves to indicate that further processing should
continue at another part of the program text, namely at the place

of the label.

{goto statement> :z:= goto <label>
The following restrictions hold concerning the applicability of
labels:

1. The scope of a label is the procedure within which it is

defined. It is therefore not possible to jump inte a procedure.

2. If a goto statement leads outside of a procedure, then its label
must be specified in a label declaration in the heading of the

procedure in which the label is defined.

9.1.4. The empty statement

The empty statement consists of no symbols and denotes no actions.

{empty statement> ::=

9.2. Structured statements

Structured statements are constructs composed of other statements
which have to be executed either in seqguence (compound statement),
conditionally (conditional statements), or repeatedly (repetifive

statements).

{structured statement> ::= <{compound statement> I
{conditional statement> | <repetitive statement)> |

<with statement>

9.2.1., Compound statements

The compound statement specifies that its component statements
are to be executed in the same sequence as they are written. The

symbols begin and gnd act as statement brackets.

{compound statement> ::= begin <{statement> {;<statement>} end

Example: begin z := x3 x :=y; y := z end

9.2.2. Conditignal statements

A conditional statement selects for execution a single one of its

component statements.

{conditional statement> ::=

<if statement> l {case statement>

9.2.2.1. 1f statements

The if statement specifies that a statement be executed only if a

certain condition (Boolean expression) is true.

If it is false, then either no statement is to be executed, or

the statement following the symbol else is to be executed.

{if statement> ::= if <expression> then <statement> l

if <expression> then <statement> else <statement>

The expression between the symbols if and then must be of type

Boolean.
Note:
The syngactic ambiguity arising from the construct

if <expression-1> then if <expression-2> then <statement-1>

else <statement-2>
is resolved by interpreting the construct as equivalent to

if <expression-1> then
begin if <expression-2> then <statement-1> else <statement-2>

end

x < 1.5 then z := x+y glse z := 1.5

f p1 £ nil then pt := ptt.father

Examplef: if
i

9.2.2.2. LCase statements

The case statement consists of an expression (the selector) and
a list of statements, each being labeled by a constant of the
type of the selector. It specifies that the one statement be

executed whose label is equal to the current value of the selector.

{case statement> ::= case <expression> gof

{case list element> {;(case list element>} end
{case list element> ::= <case label list> : <statement> I
{case label 1list> ::= <case label> {,<case label)}

Examples:

case operator of case i of
plus: X = X+y3 1 x := sin{x);
minus: X := X=y; 2 x = cos{x);
times: x := x*y 3: x 1= exp(x)s
end 4: x = 1n{x)
end

9.2.3. Repetitive statements

Repetitive statements specify that certain statements are to be
executed repeatedly. If the number of repetitions is known
beforehand, i.e. before the repetitions are started, the for
statement is the appropriate construct to express this situa#ion;

otherwise the while or repeat statement should be used.

{repetitive statement> ::= <while statement)> |

{repeat statement> | {for statement>

9.2.3.1. While statements

{while statement> ::= while <expression> do <statement>

The expression controlling repetition must be of type Boolean.
The statement is repeatedly executed until the expression becomes

false. If its value is false at the beginning, the statement is

- 28 -

not executed at all. The while statement

while e . do S

is eguivalent to

if e zhen
begin S;
while e do S
end
Examples:

while a(i] # x do i := i+1

while i > 0 do

begin if odd(i) then z := z*x;
i := 1 div 23
x 1= sqgr(x)

end

while veof(f) dg
begin P(f%); get(f)
end

9.2.3.2. Repeat statements

{repeat statement> ::=

repeat <statement> {;<5tatement5} until <expression>

The expression controlling repetition must be of type Boolean.
The sequence of statements between the symbols repeat and until
is repeatedly (and at least once) executed until the expression

becomes true. The repeat statement

repeat S until e

is equivalent to

begin S3
if ve then
repeat S until e
end

Examples:

repeat k = 1
i = 33
j =k

until j = 0

repeat P(fY); get(f)
until eof(f)

9.2.3.3. For statements

The for statement indicates that a statement is to be repeatedly
executed while a progression of values is assigned to a variable

which is called the control variable of the for statement.

{for statement> ::=
for <control variable> := <{for list> do <statement>
{for list> ::= <initial value> to <final value> |
<initial value> downto <final value>
{control variable> ::= <identifier>
{initial value> ::= <expression>

{final value> ::= <expression>

The control variable, the initial value, and the final value must
be of the same scalar type (or subrange thereof), and must not be

altered by the repeated statement.

A for statement of the form

for v := el to e2 do 5

is equivalent to the sequence of statements
v = el; S; v := succl(v); S; ...; v := 23 S
and a for statement of the form

for v := el downto e2 do S

is equivalent to the statement
v t= el; S; v := pred(5); S; ...; v 1= e2; S

Note: The final value of the control variable is left undefined.

- 30 -

Examples:

for i := 2 to 100 do if a[i] > max then max := al[i]

for i := 1 to n do

for j := 1 to n do

begin x := 0;
for k := 1 to n do x := x+ali,k]*b[k,j];
cli,j] := x

end

for ¢ := red to blue do Q(c)

9.2.4. With statements

{with statement> ::= with <record variable list> do <statement>

{record variable list> ::= <record variable){,(record variable}}

Within the component statement of the with statement, the components
(fields) of the record variable specified by the with clause can be
denoted by their field identifier only, i.e. without preceding them
with the denotation of the entire record variable. The with clause
effectively opens the scope containing the field identifiers of the
specified record variable, so that the field identifiers may occur

as variable identifiers.

Example:

with date do
if month = 12 then

begin month := 1; year := year+]
end
else month := month+1

is equivalent to

if date.month = 12 then

begin date.month := 1; date.year := date.year+1
end
else date.month := date.month+1

No assignments may be made by the qualified statement to any

constituents of the record variable list.

10. Procedure declarations

Procedure declarations serve to define parts of programs and to
associate identifiers with them so that they can be activated by
procedure statements. A procedure declaration consists of the
following parts, any of which, except the first and the last, may
be empty:

{procedure declaration> ::=
{procedure heading><label declaration part>
{constant definition part><{type definition part>
{variable declaration part>

{procedure and function declaration partd><{statement part>

The procedure heading specifies the identifier naming the procedure

and the formal parameter identifiers (if any).
The parameters are either value-, variable-, procedure-, or function

parameters (cf. also 9.1.2).

{procedure heading> ::= procedure <identifier> ; l
procedure <identifier> (Kformal parameter section>

{;(formal parameter section>}) ;

{formal parameter section> ::=
{parameter group> I
var <parameter group> |
function <parameter group>]
procedure <identifier> {,(identifier)}
{parameter group> ::= <identifier>{,<identifier>}:
{type identifier>

A parameter group without preceding specifier implies that its

constituents are value parameters.

The label declaration part specifies all labels which are defined

local to the procedure and cccur in goto statements within proce-

dures which are themselves local to the procedure.

{label declaration part> ::= <empty> I
label <label> {,<labeld} ;

The constant definition part contains all constant synonym de-

finitions local to the procedure.

{constant definition partd> ::= <empty> l

const <constant definition> {;(constant definition)} 5

The type definition part contains all type definitions which are

local to the procedure declaration.

{type definitions part> ::= <empty> I
type <type definition> {;(type definition)} ;

The variable declaration part contains all variable declarations

loeal to the procedure declaration.

{variable declaration part> ::= <empty> l

var <{variable declaration>{;<variable declaration>} 3

The procedure and function declaration part contains all procedure

and function declarations local to the procedure declaration.

{procedure and function declaration part> ::=
{kprocedure or function declaration> ;}
{procedure or funetion declaration> ::=

{procedure declaration> | {function declaration>

The statement part specifies the algorithmic actions to be executed

upon an activation of the procedure by a procedure statement.

{statement part> ::= <{compound statement>

All identifiers introduced in the formal parameter part, the
constant definition part, the type definmition part, the variable-,

procedure or function declaration parts are local to the procedure

declaration which is called the gcope of these identifiers. They
are not known outside their scope. In the case of local variables,

their values are undefined at the beginning of the statement part.

The use of the procedure identifier ina procedure statement within

its declaration implies recursive execution of the procedure.

Examples of procedure declarations:

procedure readinteger (var x: integer);
var i,j: integer;
begin i := 0;

while (input® > '0')A (input? £ '9') do
begin j := ord(input®) - ord('0');
1= 10%i + j;
get(input)
end;
x = 1

procedure Bisect(function f: real; a,b: real; yvar z: real);
var m: real;
begin {assume f(a) < 0 and f(b) > o}
while abs(a-b) > 1E-10x%abs{a) do

begin m := (a+b)/2.0;

if f(m) < 0O then a :=m else b :=m
end;
z :=m

procedure GCD(m,n: integer; var x,y,z: 1 ;
var al,a2,bl,b2,c,d,q,r: integer; {m 20, n> U}
beginiGreatest Common Divisor x of m and
Extended Euclid's Algorithm}

al := 0; a2 :=1; bt :=1; b2 := 03

cC (= m; d := n;

while d # 0O do

begin{at*m + bi1xn = d, a2%m + b2#*n = c,

ged(c,d) = ged(m,n)}

g (= c div d; r := c mod d;

a2 := a2 - g¥al; b2 := b2 - g*bl;
c :=d; d := r;

r := al; al := a2; a2 := 1r;

r := bl; bl := b2; b2 :=r

10.1. Standard procedures

Standard procedures are supposed to be predeclared in every imple-
mentation of Pascal. Any implementation may feature additional

predeclared procedures. Since they are, as all standard guantities,
assumed as declared in a scope surrounding the program, no conflict
arises from a declaration redefining the same identifier within the

program. The standard procedures are listed and explained below.

10.1.1. File handling procedures

put(f) appends the value of the buffer variable f4 to the
file f . The effect is defined only if pricr to
execution the predicate eof(f) is true. eof(f)

remains true, and ™ becomes undefined.

get(f) advances the current file position (read/write head)
to the next component, and assigns the value of this
component to the buffer variable ft . If no next
component exists, then eof(f) becomes true, and the
value of ff is not defined. The effect of get(f)
is defined only if =eof(f) = false prior to its

execution. (see 11.1.2)

reset(f)

rewrite(f)

read(ch)

write(ch)

resets the current file position to its beginning

and assigns to the buffer variable f4 the value of

the first element of f . eof(f) becomes false, if f
is not empty; otherwise f%* is not defined, and eof(f)

remains true.

discards the current value of f such that a new

file may be generated. eof(f) becomes true.

means

begin ch := input?; get(input) end

means

begin output? := ch; put(output) end

where ch denotes a variable (expression) of type char.

10.1.2. Dynamic allocation prgcedure

new(p)

new{p,t)

allocates a new variable v and assigns the pointer to
v to the pointer variable p . If the type of v is a

record type with variants, the form

can be used to allocate a variable of the variant with
tag field value t . The allocation then implies an
assignment to the tag field. The value of the tag field

must subsequently remain constant.

10.1.3. Data transfer procedures

array[m..n] of T

Let a be an array variable of type

and let =z be a variable of type
packed array[u..v] of T
where n-m 2> v-u . Then

pack(a,i,z) means

- 36 -

for j := u to v do z[j] := a[j-u+i]
unpack(z,a,i) means
for j := u to v do alj-u+i] := z[j]

where j denotes an auxiliary variable not occuring elsewhere

in the program.

11. Function declarations

Function declarations serve to define parts of the program which
compute a scalar value or a pointer value. Functions are activated
by the evaluation of a function designator (cf. 8.2) which is a
constituent of an expression. A function declaration consists

of the following seven parts, any of which, except the first and

the last, may be empty (cf. also 10.).

{function declaration> ::=
{function heading><label declaration part>
{constant definition part><{type definition part>
{variable declaration part>

{procedure and function declaration part><{statement part>

The function heading specifies the identifier naming the function,

the formal parameters of the function and the type of the function.

{function heading> ::= function <identifier>:<result type>; I
function <identifie£> ({formal parameter section>
{;(formal parameter‘section>}) : <{result type> ;
{result type> ::= <{type identifier>

The type of the function must be a scalar, subrange, or pointer
type. Within the function declaration there must be at least cne
assignment statement assigning a value to the function identifier.
This assignment determines the result of the function. Occurrence

of the function identifier in a function designator within its

- 37 -

declaration implies recursive execution of the function.

Examples:

function Sqrt(x: real): real;
var x0,x1: real;

begin x1 := x; {x > 1, Newton's method}
repeat x0 := x1; x1 := (x0 + x/xD) * 0.5
until abs{x1-x0) < eps*x1;
Sqrt := x0

end

function Max(a: vector; n: integer): real;
var x: real; 1i: integer;
begin x := al1];

for i := 2 1o n do
begin { X = max(a1 L P }
if x < a[i] then x iz ali]
end 3
{ x = max(a1 ..a_)}
Max := x
end
function GCD(m,n: integer): integer;
begin if n = 0 then GCD := m glse GCD := GCD(n,m mod n)
end
function Power(x: real; y: integer): real; { y 2 U}
var w,z: real; i: integer;

begin w := x; z 1 1 :=y;

while i # O d

OI!*

begin { z wl = xy}
if odd(i) th z 1= z%w;
i := i div 2;
w := sqgr(w)

ends;

{z=xY}

Power := z '

11.1. Standard functions

Standard functions are supposed to be predeclared in every implemen-
tation of Pascal. Any implementation may feature additional prede-

clared functions (cf. also 10.1).

The standard functions are listed and explained below:

M1,

abs(x)

11.1.2.
odd(x)

eof (f)

11.1.3.

trunc(x)

ord(x)

chr(x)

11.1.4.

succ(x)

pred(x)

Arithmetic functions

computes the absolute value of x . The type of x

must be either real or integer, and the type of the

result is the type of
2

computes x“ . The type of x must be either real or

integer, and the type of the result is the type of x .

Predicates

> the type of x must be either real or integer, and
the type of the result is zreal.

the type of x must be integer, and the result is x mod 2 =

indicates, whether the file f is in the end-of-file status.

Transfer functigns

x must be of type real,

and the result is of type integer,

such that if x>0, then x-1 < trunc{x) £ x .

x must be of type char,

and the result (of type integer)

is the ordinal number of the character x in the defined

character set.

x must be of type integer, and the result (of type char)

is the character whose ordinal number is x.

Further standard functions

x 1s of any scalar or subrange type, and the result is

the successor value of x

(if it exists).

x 1s of any scalar or subrange type, and the result is

the processor value of x

(if it exists).

1

12. Programs

A Pascal program has the form of a procedure declaration without
heading.
{program> ::= <label declaration part>

{constant definition part><type definition part>
{variable declaration part>

{procedure and function declaration part><{statement part>.

13. Pascal 6000

This chapter provides additional information concerning PASCAL as

it is implemented on the CDC 6000 series of computers. It differs
from Standard PASCAL as defined in the preceding chapters by a

few restrictions and a number of extensions. The programmer should
be well aware that the use of extensions may render his programs
unacceptable to other implementations of PASCAL. The section numbers
used hereafter refer to the corresponding sections of the preceding

language definition.

(3) Vocabulary
Only capital letters are available in the basic set of symbols.
Symbols which consist of a sequence of underlined letters are

called word-delimiters. They are written in Pascal 6000 without

underlining and without any surrounding escape characters. As a
consequence, they must not be used as identifiers. Blanks, end-of-
lines, and comments are called separators. An arbitrary number of
separators may be inserted between any two symbols except within
word-delimiters, identifiers, numbers, and := . At least one
separator must be inserted between two consecutive word-delimiters,

identifiers, and numbers.

- 40 -

(4) Identifiers
Only the10 first symbols of an identifier are significant.
Identifiers not differing in the 10 first symbols are considered

as equal.

All identifiers must be declared (textually) prior to their use.
An exception is possible for pointer type definitions and procedure

declarations (see below).

(6.1.2) Standard scalar types
integer is defined as

tyvpe integer = —248+1 .. 248—1

Nogte: no indication of overflow is provided by the CDC

computer!

real is defined according to the CDC 6000 floating point

format specifications.

char is defined by the CDC 6000 display code character set.
This set is extended by the line separator gol .
eol A B C D E F G H I
J K L M N 0 P Q R S
T u Vv W X Y Z g 1 2
3 4 5 6 7 8 g + - *
/o) 3 = o, . ' [
] : £ [v oAt} o< >
L 2 - 3
Note: The characters ' { } are special features on

the printers of the ETH installation, and correspond to

the characters @ ¥ on standard CDC systems.

{(6.,2.3) Set types

The base type of a set type must be either

1. a scalar type with less than 60 values, or

2. a subrange of the type integer, with a minimum element

min(T) > 0 and a maximum element max(T) < 59, or

3. a subrange of the type char with the maximum element

max(T) < '>!

(6.2.4) File types

No component of any structured type can be of a file type.

(7) Variable declarations
File variable declarations in the main program may be provided
with a specifier implying various restrictions or dispositions

on the file. The available specifiers and their implications are:

IN The file is an external file (e.g. a permanent file
connected to the job by a SCOPE ATTACH command). This

file is to be read only.

EXT As IN. However, the file may be extended by appending

further components at its end.

ouT As in all above cases, the file is not discarded at the
end of the PASCAL run, but remains available (e.g. in

order to be made permanent by a SCOPE CATALDG command).
PRINT The file is printed after termination of the job.
PUNCH The file is punched after termination of the job.
In all cases, the first seven characters of the file variable
identifier are used as its Logical File Name (see SCOPE Reference
Manual).
Example:
flin], glout]: text
(10 and 11) Procedure and function declarations

A procedure or a function which contains local file declarations

must not be activated recursively.

Procedures and functions may be used before they are declared,

if they are "preannounced" by a forward declaration.

- 42 -

Example:

procedure Q(x:T}; forward;
procedure P(y:T);
. QY

-

begin .. a) ... end;
procedure Q; {parameters are not repeated}
begin ... P(b) ... end;
begin ... P(a) ... Q(b) ... end.

(10.1.1) Extension of standard procedures read and write.

The standard procedure read is extended in two ways:

- it accepts a variable number of parameters such that
read(cl, c2 ... cn) means

begin read(c1); read(c2); ... read{cn) end

- its parameters may be of type char, integer, or real. In the
first case, only the one next character is read; in the latter
two cases, a sequence of characters is read which represents an
integer or a real number according to the PASCAL syntax.

(Consecutive numbers must be separated by blanks or end of lines).

The standard procedure write is extended in several ways:
- it accepts a variable number of parameters such that
write(pl, p2 ... pn) means

begin write(pl); write(p2); ... write(pn) end

- every parameter must be of one of the forms

e
e: el
e: el: el

where e, el, and e2 are expressions. e is the value to be output

and el indicates the number of characters to be output (often

called "field width").

- every parameter e may be of type char, integer, real, Boolean,
or of any packed array. The corresponding values are converted
to sequences of el characters representing these values in
standard notation. If a specification of el is omitted, the

following default values are selected:

- 43 -

type default field width
char 1
integer 10
real 20
Boolean 10

- e2 is applicable only for real valued parameters and specifies
the number of digits to be printed after the decimal point. If
g2 is omitted, real numbers are printed in decimal floating point

form.

Example:

Let k = 135, n =4, x = 72.83, b = true, c = 'A', then

write(k+k: n, x: 12, x:6:1, '__.A', c, b, eol)
appends the character sequence

w2700 7.2830E4010L72. BonAAL e TRUE 0l

to the standard file output.

A line may contain at most 136 characters. The end of each line
must be explicitly indicated by an g0l character. The first
character of each line is interpreted by the printer as a control
character and is not printed. The following characters have a

standard meaning:

blank single spacing
'o! double spacing
" skip to top of next page before printing

(For an explanation of other control characters at ETH see

RZ Bulletin 11, 7-9, Juni 1972).

Table of standard identifiers

Constants:

false, true, eol, alfaleng

Types:

integer, Boolean, real, char, text

Variables:

input, output

Functions:
abs, sqr, odd, suéc, pred, ord, chr, trunc,

sin, cos ex 1ln, sqrt arctan
s ’ q ’

Procedures:
get, put, reset, rewrite,

new, read, write, pack, unpack .

eof,

- 45 -

14. Glossary

actual parameter
adding operator

array type

array variable
assignment statement
base type

case label

case label list

case list element
case statement
component type
component variable
caompound statement
conditional statement
constant

constant definition
constant definition part
constant identifier
control variable
digit

empty statement
entire variable
expression

factor

field designator
field identifier
field list

file buffer

file type

file variable

final value

fixed part

for list

formal parameter section
for statement
function declaration
function designator
function heading
function identifier
goto statement
identifier

if statement

index type

indexed variable
initial value

label

label declaration part
letter

letter or digit
multiplying operator 8.1.2
parameter group

« .
o« .
S~ NN NW === WN

and 6.2.2

. .
NN

NNNMNNNONNNN 22NN ==
. e o s o+ e .

.
[

. e o s O
—_ N .
. .
E=N w
.
w

.
w

NNNNNNNND NN
WN wWwwbhbwmMmPNON

R e S S S s e e 2 e O
. NN SN N N
¢« o . .
wW—-—=-N (85
w w

PULOULP OV NN OOV L2 O 02V OOV ODNOWOUUI—= UMWV O-NIONOWOO OO~ OO
. . . « o s . .

.

—
o

- 46 -

pointer variable 7.3
pointer type 6.3
procedure and function

declaration part 10.
procedure declaration 10.
procedure heading 10.
procedure identifier 9.1.2

procedure or function declaration 10.
procedure statement
program

record section
record type

record variable
record variable list
referenced variable
relational operator
repeat statement
repetitive statement
result type

scale factor

scalar type

set

set type

sign

simple expression
simple statement
simple type

special symbol
statement

statement part
string

structured statement
structured type
subrange type

tag field

term

type

type definition

type definition part
type identifier
variable

variable declaration
variable declaration part
variable identifier
variant

variant part
unlabelled statement
unpacked structured type
unsigned constant
unsigned integer
unsigned number
unsigned real

with statement
while statement

\0
N e
—
N

.
ANNON

.

NN = WNNNRN .
. . .
ww b

.

N

— O \D0 O —~\O~ OO -
. e —3> e s e e e P
— .
.

\S]
.
w

« .

. O

.
.

N =N
N W

. o . o . .
NN—\. —_ .

. .

NN

N

.

\D\Dbbme\\DU\G\\I—‘\I\IG\—-‘O\G\CDU\G\G\\Db—‘\DLJU\\DCD&O’\CDO’\«D-

w

NN
N

]@A\ 1ST] plol] @I@E
¥

@ aa1yr3uspt 2dLy A.@l.—hmaﬂcwﬁ:_l‘mmmawj

- _ ad£y @ _.NwGS:wg_
N
N4
1ST1 PTeTy
\. szJ __Hm: p1oy l|®oomm e

t——————1 5d £} a1dwats ‘l@’é‘l

__ adAy __ @

<] @f@ﬁ‘g T € Gl

@ A AOVd
o Jaeymiuapl 2dSy T@

[odts arduac]

{ AI1A T

ad£y

E

_ 1UB)SUOD T‘@"

_Ec::wE ad4y __

ad4y ardwrs

Ly -

O30

Jaguinu paudisun

J3TJTIUSPT JUBISUOD

JUBISUOD

‘III‘ TIN v‘llnl

[t—————) Jaquinu paudisun

_uwaﬁsw«: Eﬁm:ﬂ

juejsuod paudrsun

aadajur pauldisun —V J o

@ ‘ aadojur paudisun

Jagquunu paudisun

_\wjﬁ

(3)

Ja89jut paudisun

-

{ a0)}
1191
AN

a81y13ULpPL

xTpuaddy

E TUNATDOU)=

NOILONN A)+

©

TEESE oab_é pwascwvu_

o
A\

1811 J919weaed

worssadxa waaa: F 1]
RLPPPQ

uorssaadxa

E

PPY —

L1

uotssaadxs ardurs

8P

—
& 69 mv _
Pt [J-—

le—|aayrpuspt praty Al@tl

wast
Q)
l«——| uorssaadxa
1 O—
“ J03}0®} _‘I®l‘.’
O~ - O——
lla uotssaadxs @ JJ1JTIUapl uorjouny
__ a[qeraea _—4
_Hcmemcoo vw:mﬂmcs_l
JI010®]

M)
()

Ja1J1Uspt PTG

é uotssaadxa @f

J31JTIUIPT I[qrTIRA

STqEIJBA

. E _pmmwﬁ: paudisun TI@BOOU"I,
ureafoad T mmB;Oll

QZ@ _ JUsWId}B)S NIDHY)e—

. s O B N G
za1313uapl adky _0@|_ 1811 uﬁwsﬁmfa_lr Bcnﬁﬂf@oﬁozzm -

OLNMOd
1S11 uwaoEmuMM_‘l_mGSgwEEMDDEO%
| :oﬂwwwg&ﬁ# AILNA
<\ | —— () _ h
O/ L [

P @r"_‘gmmmp&agd:m? -]
¢

r i\ d

IIEAI JI9TTIU3PT {uva) @ u\:oEmumamT@\ﬂﬂmﬂ‘*cSmmmn&S ASVO

0 T ED GO

~ @ l
¢

r O/ Ll
[EAI@ E LSNOD TwaxcoE aanpaooad
o Ol (- e

‘ JI97ITIUBPT uoTidUnNy

juswale}s LVIdHY)=

Ja3ajut paudrsun

uotrssaadxa o

wawWaYe}S

° aa8ajur paufisun

