ALGOL W

REFERENCE MANUAL

JUNE 1972

PREFACE

This manual describes the ALGOL ¥ language and the compiler
constructed for the IBM 360 at Stanford University under the
direction of Niklaus Wirth. The language is based upon "A
Contribution to the Development of ALGOL™ by Niklaus Wirth and
C.A.R. Hoare. The compiler was written by Henry R. Bauer,
Sheldon Becker, Susan L. Graham and Edwin H. Satterthwaite who
also documented the systen.

Subsequently a number of mnminor amendments and several
extensions have been made to the language; substantial changes
have been made to the compiler to improve its efficiency and to
add to 1its capabilities. In particular, a debugging system has
been added which is a significant isprovement on the programming
tools normally provided by compilers. Many of these changes, the
work of Edwin Satterthwaite, have been described in the revised
documentation of the language and coapiler prepared by Richard L.
Sites (Stanford University Techmical BReport STAN—-CS-71-230,
"ALGOL W REFERENCE MANUAL") others have been described in NUMAC
Programming Notes 39 and 41, A few recent additions are
documented here for the first time. In preparing this edition of
the manual all of these sources have been used freely.

The manual consists of two distinct parts. 1In the first
part of the manual, sections one to eight define the ALGOL W
language. Sections nine to eleven form the "Programmer’s Guide
to ALGOL W"., Section nine describes the compiler, sections ten
and eleven deal with aspects of the operating systems, MTS and
05/360 respectively, which are relevant to the use of the ALGOL ¥
compiler. The second part of the manual is a transcription of
"Introduction to ALGOL W Programming” by Henry R. Bauer.
Amendments have been made here, to reflect changes to the
language and to simplify its transcription to machine readable
form. The author's permission to make these changes is
gratefully acknovwledged.

This edition of the ALGOL ¥ manual supercedes the 1970
edition of the NUMAC ALGOL ¥ manual and replaces NUMAC
Programming Notes 27, 39 and 41. <Changes since the previous
manual are summarised below.

1) The introduction of three new basic symbols, assert, algol
and fortran, providing a new statement, the assert
statement (cf.7.8) ard the ability to invoke externally
defined procedures {cf.5.3.2.8%).

2) The use of the character ¥Y_" as a character in identifiers
{(cf.3.1).

3) Changes to the precision of arithmetic; products ({other
than of integer quantities) have the guality ™long™.

4) The precedence of operators has been changed {cf.6, 6.4).
This obviates the need for the intuitively unnecessary
parentheses 1in conditions involviang relational and logical
operators, but implies changed interpretation of bit and
logical expressions involving these operators.

5) Block expressions are no longer restricted to defining
function procedure bodies but are permitted in any
expression (cf.6).

3

6) In comparing strings of equal 1lengths the shorter is
(effectively) extended with blanks to the length of the
longer before comparison. String assignments are done in a
single action rather than character by character left to
right, removing the anomalous behaviour on assigning
strings to substrings of themselves {(cf.6.4,7.2)

7) Pacilities for creating formatted output have been added to
the WRITE and WRITEON standard procedures {(cf.7.9) using
additional predeclared variables.

8) An additional exceptional condition, ENDFILE, is detected
on input.

9) Sections 9, 10, 11 and Appendix II are new.

10) The standard functions COMPLEXSQRT and LONGCOMPLEXSQRT have
been deleted.

BExcept in the case of the completely new sections (9, 10,
11, and Appendix II) changes (in content as opposed to layout or
presentation) since the previous version of the manual are marked
with vertical lines in the left margin.

The manual describes the 01JULY72 version of the compiler.

June, 1972. J. Eve

4 Table of Contents

LANGUAGE DESCRIPTION

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS 8
2« SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES 10
2.1 Basic SYMDOlS cceecesenccescscccnncanssenenss 10
2.2 Syntactic ERtitiesS cccececncecccansencsences 11
3. IDENTIFIERS ceececcsccccenssnsssvsnannsansomnansmnse 12
b. VALUES AND TYPES ceeccamcccensesncncancscennnenss 14
4.1 NURDEIS weweccesnsncascsscsnssnsnennsncnsaanese 14
4,2 Logical Values-;.................... 15
4.3 Bit SEQUENCES eveaceececcsancsssncnssannsnnns 15
4.4 StLiNGS cevecssescseccccccasscscssasanasmans 1D
4.5 REfEreONCES cescecssanncsscsnassacncscscsnsnns 10
5. DECLARATIONS cceeesenceccesncsenssasnsscnosneasances 17
5.1 Simple Variable Declarations eceeececccccase. 17
5.2 Array DeclaratioDS .cecececescecccssccsscssases 18
5.3 Procedure DeclaratiolNs eseececececcscccssceassas 18
5.4 Record Class DeclaratiolRS .ceececcececccccaceses 21
6. EXPRESSIONS ceecveeccncacsscsnasnnnsncsnsssenscsnnssns 20
6.1 VariableS .eecesecescccccscccsscacsccasnsscsncas 23
6.2 Punction DeSigNAtOrS cecececescssncescenssess 28
6.3 Arithmetic EXPreSSiONS .ceececcscccscscsssasas 25
6.4 Logical PXPresSSioNS ecececescccceccncncccssess 27
6.5 Bit EXPresSSioONS ceaececscccccscesnscscscsccansass 28
6.6 String EXPresSsioNS .eceecceccscsccccscncsoccss 29
6.7 Reference EXPresSSiONS ceeecececccccsscscncsaa 29
6.8 Conditional EXpPresSSiONS seeeccccccccccccccns 30
7. STATEMENTS ceeeecccnnssoscsccsaannsscscsasnsansnmonnanes J31
7ol BlOCKS cewececcccscsccnasasnssscsnscncsacsacsnan 31

7.2 Assignment StateBents ..ceecececcececcesccsscs 32

8.

Table of Contents

Procedure StateReNtS .cecceccssssenscsenssncasns

GOtO Stateﬂeﬁts PRI W A WA A R N A I R R R

If statements IR RN EEEEENREERRERE ENRERENRNEEERESREJSRESES B

Case Stateﬂents O W VO W RS P DD POV E eSS EeOS

Iterative StatemenNtsS ceesssenccccnsncseancecnes

Assett Stateﬂeﬂts EI I S IR I A I B N R BN BN BRI R

Standard ProceduireS ceesvesssasncenscacsccsnscce

7.9.1

7.9.3

The Input/Output SYStel .cecvceccsscscsas
Read Statements - W O % D H B OO PSS BE SO0 e

Hrite Statements ..-...-..0...-....¢;

Con

trOl State.ents - O® e e OO NS SR BNBONS

STANDARD PUNCTIONS AND PREDECLARED IDENTIPIERS ..

Standard Transfer FUNCLIiONS eescaccscencscons

Standard Punctions Of ANAlySiS cceeccccesccss

Time Fuﬂction IR R REEEEEREREBEENNEER-ENRERJNSEIESEEERSES]

Predeclared VariableS ceeemcsccasssccsncesane

Exceptional ConditionNs ceicececccecccaccccancas

GUIDE

PROGRAMMER'S

9.

THE

9.1

ALGOL w COHPILBR O O PV RN SO RO DT OEDSPEDS TSI SS

The Laﬂguage ITEEE RN I IR WA IR B IR E R R B R E X NEENRELSRSEN]

9.1.1

9.1.2

Sym

Sta

bol Representation ..ceceecccecccaas

ndard IdentifierS ceecccsccnsecnsca

9&1.3 Restrictions BB W B BW DD DD OO DRSS

Input Forﬂat IEEEEREREEER I N I I I N I I IR N R N

Compiler Directives .cccecccevcencaccscnnsnns

DebUQQing System . VWP O OW NP O OB N RO N D PSSO RS

Deb

ugging Pacilities .cceccccncccncace

9' u->3

The

TR!CE Rontine DWW DG D GY RO OSSN

33
34
35
36
36
38
38
38
39
40
41
44
44

45

46

47

52
52
52
53
53

54
54

56

56

10.

11.

Appendix
Appendix
1.

2.

Table of Contents

9.5 Compiler OULPUL eceecececcesccncsesanacsccsnnan

9.5.1 The Source Program Listing .ccececcace-

9.5.2 Debugging System Output ecceeccecececanss
9.6 Externally Defined Procedures ...cesssecesec=
ALGOL W IN MTS ecessnccssccccsancsccccsncncnsnosnsns
1071 MTS SUBMATY eaveccccsncscccsccccnsacssnansne
10.2 MNTS *XALGOLW Specificafions esscescecsssses
10.3 HMTS *ALGOLW SpecificationsS ceececcmcesccnccasn
10.4 MTS System Error Hessaées eemaccsvnesnecsses
ALGOL W IN OS scevevsscsccnnccsccnsncosnscssncnonss
11.1 0S5 SUMRBATY ccesencsecsencnscsssacancsmsanssascan
11.2 OS XALGOLW SpecificationNS cecececcecencccacse
11.3 0SS ALGOLW SpecificationNsS ececevccecmcecsecccan
11.4 O0OS Systeh Error MeSSAJesS eceeccessscccssnscss
I. CHARACTER ENCODING .cccecsvvccsnncasnssnsavsnsse
II. ERROR MESSAGES ccecccvvnccnsncssnasccsssscscas
Pass One Error MeSSAgeS ecssecsesescsscsncssnsonnnans
Pass TWO ETTIOr MESSAGES eecevwsecsscsscscsassncssnncnse
Pass Three Error MeSSAJeS secesveveccssscsscnscsasn
Loader ErTOr MESSAJES eesnvnscscasasssscscscssnses

Run-Time ErrOr MeSSAQeS cesceccncssesassssvsnssscse

56
57
58
63
66
66
67
68
70

71

71
71
73
77
78
79
79
81
85
86

87

ALGOL W

LANGUAGE DESCRIPTION

1 TERMINOLOGY, NOTATICN AND BASIC DEFINATIONS

The Reference Language 1is a phrase structure language,
defined by a formal metalanguage. This metalanguage makes use of
the notation and definitions explained below. The structure of
the language ALGOL W is determined by:

(1) VT, the set of basic {or terminal) symbols
of the language,
(2) VN, the set of syntactic entities
(or nonterminal symbols) ,and
{3) P, the set of syntactic rules {(or productions).

1.1 Notation

A syntactic entity is denoted by its name (a sequence
consisting only of letters, digits and hyphens) enclosed in the
brackets < and >. A syntactic rule has the fornm

<a> 21:= X

vhere <a> is a member of VN, and x is any possible sequence of
basic symbols and syntactic entities, simply to be called a
"sequence®. In ALGOL W, the set P contains the syntactic rule

<bar> ::= |
implying that | is a basic symbol of the language. RAdopting the
convention that all references to this basic symbol 1in other

syntactic rules shall be replaced by <bar> permits the
unambiguous use subsequently of the notation

€a> 2:1= X | Y | «=aes {| 2

as an abbreviation for the set of syntactic rules

<a> :1:= 2
In the syntactic rule
<empty> ::=
the sequence Contains zero symbols, i.e. the empty sequence.

1.2 Definitions
1. A sequence x is said to directly produce a sequence Yy
if and only if there exist (possibly empty) sequences u and
W, so that weither (i) for some <a> in VN, x = u<adw,
Y uvw, and <a> ::= v is a rule in P; or (ii) x = uw,
y uvw and v is a "comament" ({see below).

2. A sequence x 1is said to produce a sequence y if and
only if there exists an ordered set of sequences s[0]),
s{1), ««- » s[n)], so that x = s{0], s[n] =y, and s[i-1]

1.2 Definitions 9
directly produces s{i] for all i = 1, ... , n.

3. A segquence x is said to be an ALGOL W program if and
only if 1its constituents are members of the set VI, and x
can be produced from the syntactic entity <programd>.

The sets VT and VN - {|} are defined Through enumeration of
their members in Section 2 (cf. also 4.8). The syntactic rules
are given throughout sections 1 to 8. To provide explanrations for
the meaning of ALGOL W programs, lower case letter sequences used
in syntactic entities have been chosen to be English words
describing approximately the nature of the syntactic entity or
construct. Where words which have appeared in this manner are
used elsewhere in the text, they refer to the corresponding
syntactic definition. Along with these 1letter sequences the
symbol T or Tn, where n is a digit, may occur. It is understood
that this symbol must be replaced by any one of a finite set of
English words {or word pairs). Unless otherwise specified in the
particular section, all occurrences of the symbol T within one
syntactic rule must be replaced consistently, and the replacing
words are

integer logical
real bit
long~-real string
complex reference

long-complex
For example, the production
<T-expression-1> ::= <(T-expression-2> {cf.b)
corresponds to
<integer-expression-1>
<real-expression-1>
<long-real-expression-1>

<complex-expression-1>
<long-complex-expression-1>

<integer-expression-2>
{treal-expression-2>
<long~-real-expression-2>
<complex-expression-2>
<long-complex—-expression-2>

s 08 we sy A
TR D
oot o

The production

<Tl4-expression-8> ::= long <TS5-expression-8> {cf.6.3.1 and
6.3.2.7)

corresponds to
long <real-expression-8>

long <integer-expression-8>
long <complex-expression-8>

<long-real-expression-8> :
<long-real-expression-8> 3
<long-complex—expression-8> ::

il H

It is recognized that typographical entities exist of lover
order than basic symbols, <called characters. The accepted
characters are those of the IBM System 360 EBCDIC code.

The symbol comment followed by any sequence of characters
not containing semicolons, followed by a semicolon, is called a
conment. A comment has no effect on the meaning of a progran,

10 1.2 Definitions

and is ignored during execution of the progran. An identifier
(cf.3.1) immediately following the basic symbol end is also
regarded as a comment,

The execution of a program can be considered as a sequence
of units of action. The sequence of these units of action is
defined as the evaluation of expressions and the execution of
statements as denoted by the program. In the definition of the
implemented language the evaluation or execution of certain
constructs 1is either (1) defined by System 360 operations, e.g.,
real arithmetic, or (2) 1left undefined, e.g., the order of
evaluation of arithmetic primaries in expressions, or {3) said to
be not valid or not defined.

2 SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1 Basgic Symbols {(VN-{11})

A} BJ]CJ|D}|RB]P]IG]H}|]I{JI}JK}|LI NI
Nj1O0O{PIQIRISITIU VW 1 XT1TY | Z

01 1] 2131815161 718109

true | false | ® | null | & | * |

integer { real | complex | logical | bits | string |
reference | array | procedure | record |

e V3 4 21«1 (1))} begin | end | if | then | else |
case 19f 1 + | - 1 * { s | *+ | div | rem | shr | shl | is |
abs | long | short {1 and 1 o I ~ 1 _ 1 =1 ~=1] < |

<= 1> 1 > 1 22 |

:= | goto | go to | for | step | until | do | while |
comment | value | result | assert 1 algol | fortran

, A1l underlined words, which are called “reserved vords", are
represented by the same words in capital letters in an actual
program, with no intervening blanks. Adjacent reserved words,
identifiers (cf.3.1) and nunbers (cf.4.1) must include no blanks
and must be separated by at least one blank space. Othervise
blanks have no meaning and can be used freely to improve the
readability of the progranm.

2.2 Syntactic Entities 11

2.2 Syntactic Entities {(VT)

(vith corresponding section numbers)

.

<for-list>
<formal-array-parameter>
<forrmal-parameter-list>
<formal~-parameter-segment>!
<formal—-type>
<goto—statementd>

<substring-designator>
<T-array-declaration>
<T-array-designator>
<T-array-identifier>
{T-assignment-statement>
<T-block-expression>

[
[} [2 T

.
W W EUVNNJdwt @ O I ND b W TWWWWLAd LD E WL E -

<hex-digit> - <T-constant> 4.1-4.
<identifier> - <T-expression>
<identifier-list> <T-expression-i> 6~

[]
ot N ws - O~ N W N ad ed DN b &N O ws

<T-expression-list>
<T-field-designator>
<T-field-identifier>
<T-function—-designator>
<T-function-identifier>
<T-function-procedure-body>
<T-function-procedure-

<if-clause>
<if-statement)>
<imaginary-number>
{increment)>
<initial-value>
<input—-parameter-list>
<iterative-statement>

. 0 08 8
[I R]

<actual-parameter> «3 <procedure-statement)> 7.3
<actual-parameter-list> -3 <program> 7
<assert-statement> .8 <proper-procedure-body> 5.3
<bar> -1 <proper-procedure-declaration>5.3
<block-body> -1 <record-class-declaration> 5.4
<block-head> .1 <record-class-identifier> 3.1
<block> .1 <record-class-identifier-list>5.1
<bound-pair> .2 <record-designator> 6.7
<bound-pair-list> .2 <relation> 6.4
<case-clause> .8 <relational-operator> 6.4
{case-statenment> .6 <{scale-factor> 4.1
<character> -4 <sign> 4.1
<conditional-T-expression>6.8 <simple-statement> 7
<control-identifier> .1 <simple~-T-variable> v 6.1
<declaration> <simple-T-variable-declaration>
<digit> . 5.
<dimension-specification> 5. <standard-procedure-statement>7.
<empty> - {statement> 7
<equality-operator> - <{statement-listd> 7.
<expression-list)> - <string> 4.
<external-reference> - <subarray-designator-list> 7.
<field-list> - <subscript> 6
<for-clause> <subscript-list> 6.

6

5

6

3

7

6

4

6

6

6

6

3

6

3

5

ki S g G S g R Sk e Y Gl e SR sgngs RN N g Gh e GNAD AN o AN S g Gy A R TR i s SR i Gk S g G s e S e MRS Mea G G s e S e

<label-definition> . declaration> 5.3
<label-identifier> . <T-left-part> 7.2
<letter> - <T-subarray-designator> 7.3
<limit> - <T-type> 5.1
<lower-bound> . <T-variable> 6.1
<null-reference> - <{T-variable-identifier> 3.1
<open-string> - <transput-parameter-list> 7.9
<procedure-declaration> . <unscaled-real> 4.1
<procedure-heading> - <upper-bound> 5.2
<procedure-identifier> - <while-clause> 7.7

12
3 IDENTIFIERS
3.1 syntax

<identifier> ::= <letter> | <identifier> <letter> |
<identifier> <digit> | <identifier> _
<T-variable~-identifier> ::= <identifier>
<T-array-identifier> ::= <identifier>
<procedure-identifier> ::= <identifier>
<T-function-identifier> ::= <identifier>
<record-class-identifier> 2:= <identifier>
<T-field-identifier> :;:= <identifier>
<label-identifier> ::= <identifier>
<control-identifier> = <identifier>
<letter> :2:= A | B | { DIt E]F{ G} B} I
N} O } Q1 R S} TV O} V]
12131415161 718109
1:= {identifier> |
ntifier list> , <identifier>

c JJ K| L1HN]
P WlxX1Y |z

<digit> ::= 0 { 1
<identifier-list>
<ide

—— e e i i

Variables, arrays, procedures, record classes and record
fields are said to be guantities. 1Identifiers serve to identify
gquantities, or they stand as labels, formal parameters or control
identifiers. Identifiers have no inherent meaning, aad can be
chosen freely in the reference language. In an actual progranm a

reserved vord cannot be used as an identifier.

Every identifier used in a program must be defined. This is
achieved through

{a) a declaration (cf. Section 5), if the identifier
identifies a quantity. It is then said to denote that
quantity and to be a T variable identifier, T array
jdentifier, T procedure identifier, T function identifier,
record class identifier or T field 4identifier, where the
symbol T stands for the appropriate word reflecting the
type of the declared quantity;

{b) a label definition (cf.7.1), if the identifier stands as a
label. It is then said to be a label identifier;

{c) its occurrence in a formal parameter list (cf.5.3). It is
then said to be a formal parameter;

(d) its occurrence following the symbol for in a for clause
(cfE.7.7). It is then said to be a control identifier;

{e) its implicit declaration in the 1language. Standard
procedures, standard functions, and predefined variables
(cf. 7.9 and 8) may be considered to be declared in a block
containing the program.

The recognition of the definition of a given identifier is
determined by the following rules:

3.2 Semantics 13

Step 1. If the identifier is defined by a declaration of
a quantity or by its standing as a 1label within the
smallest block (cf.7.1) embracing a given occurrence of
that identifier, then it denotes that quantity or label. A
statement following a procedure heading (cf.5.3) or a for
clause {cf.7.7) is considered to be a block, as is a block
expression (cf.6).

Step 2. Otherwise, if that block is a procedure body and
if the given identifier is identical with a formal
parameter in the associated procedure heading, then it
stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for
clause and the identifier 1is identical to the control
identifier of that for clause, then it stands as that
control identifier.

Othervise, these rules are applied considering the smallest
block embracing the block which has previously been considered.

If either step 1 or step 2 could lead to nmore thanm one
definition, then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a
control identifier is the set of statements in which occurrences
of an identifier may refer by the above rules to the definition
of that quantity, label, formal parameter or control identifier.

3.3 Exapmples

I

PERSON
ELDERSIBLING
X15, X20, X25
NEW_PAGE

14

4 VALUES AND TYPES

Constants and variables (cf.6.1) are said to possess a
value. The value of a constant is determined by the denotation
of the constant. In the language, all constants {except
references) have a reference denotation (cf.l4.1 - 4.4). The
value of a variable is the one most recently assigned to that
variable. A value is {recursively) defined as either a simple
value or a structured value (an ordered set of one or nmore
values). Every value 1is said to be of a certain type. The
following types of simple values are distinguished:

integer: the value is a 32 bit iateger,
real: the value is a 32 bit floating point number,
long real: the value is a 64 bit floating poiat number,
complex: the value is a complex number composed of two
numbers of type real,
long complex: the value is a complex number composed
of two long real numbers,
logical: the value is a logical value,
bits: the value is a linear sequence of 32 bits,
string: the value is a linear sequence of at least one and

at most 256 characters,
reference: the value is a reference to a record.

The following types of structured values are distinguished:

array: the value is a an ordered set of values, all of
identical type,
record: the value is an ordered set of values.

A procedure may yield a value, in which case it is said to
be a function procedure, or it may not yield a value, in which
case it is called a proper procedure. The value of a function
procedure is defined as the value which results from the
execution of the procedure body {cf.6.2.2).

Subsequently, the reference denotation of constants is
defined. The reference denotation of any constant coansists of a
sequence of characters. This, hovever, does not imply that the
value of the denoted constant is a sequence of characters, nor
that it has the properties of a sequence of characters, except,
of course, in the case of strings.

4.1 Numbers

——— s e . et

4.1.1 Syntax

<long-complex—-constant> ::= <complex-constantd>L

<complex-constant)> ::= <imaginary-constant>

<imaginary-constant> ::= <real-constant>I |
<integer-constant>I

<long-real-constant> ::= <real-constant>L |
<integer-constant>L

<real-constant> ::= <unscaled-real> |
<unscaled-real><scale-factor> |
<integer-constant><scale-factor> |
<scale-factor>

4.1 Numbers 15

<unscaled-real> ::= <integer-constant>.<integer-constant> |
.<integer-constant> | <integer-constant> .

<scale-factor> ::= '<integer-constant> |
t<{sign><integer-constant>

<integer-constant> ::= <digit> | <integer-constant><digit>

<sign> ::= + | -

4.1.2 Semantics

Arithmetic constants are numbers interpreted according to
the conventional decimal notation. A scale factor denotes an
integral power of 10 which is multiplied by the unscaled real or
integer number preceding it. EBach number has a uniguely defined
type. {(Note that all <T-constantd>s are unsigned.)

4.1.3 Exanples

1 -5 11

0100 13 0.671
3.1416 6.02486'+23 ' 1IL
2.718281828459045L 2.3'-6

4.2 Logical Values
4.2.1 Syntax

<logical-constant> ::=

ﬂ
]
15
)
-
e
lo

<bit-constant> ::= # <hex-digit> |
<bit-constant><hex digit>
<hex-digit> ::= 0 | 1} 2|1 3 441 5161718149
A{B}jJC4§{IDYV}JVVELPF
Note that 2 | ... | F correspond to 2 | o= 1 15 -
10 10

4.3.2 Semantics

The number of bits in a bit constant is 32 or 8 hex digits.
The bit constant is alvays represented by a 32 bit word with the
specified sequence of bits right justified in the word and zeros
filled in on the left.

4.3.3 Examples

0000 0000 0000 0000 0000 0000 0100 1111
0000 0000 0000 0000 0000 0000 0000 1001

E o
&=
ry
([}

4.4.1 Syntax

<{string-constant> ::= <string>
<string> ::= "<open-stringd>"
<open-string> ::= <character> | <open-string><{character>

16 4.4 Strings
4.4.2 Semantics

Strings consist of any sequence of (at least one and at most
256) characters accepted by the System 360 enclosed by ", the

string quote. If the string guote appears in the sequence of
characters it must be immediately followed by a second string
gquote which 1is then 1ignored. The number of characters in a

string is said to be the length of the string. The characters
accepted by the IBM System 360 are listed in Appendix I.

4.4.3 Exanmples

"JOHN"

nunn jg the string of length 1 consisting of the string
quote.

4.5 BReferences

4.5.1 Syntax
<reference-constant> ::= null
4.5.2 Semantics
The reference value null fails to designate a record; if a

reference expression occurring in a field designator {cf.6.1) has
this value, then the field designator is undefined. '

17
5 DECLARATIONS

Declarations serve to associate identifiers with the
quantities used in the program, to attribute certain permanent
properties to these gquantities (e.g type, structure), and to
determine their scope. The quantities declared by declarations
are simple variables, arrays, procedures and record classes.

Upon exit from a block, all quantities declared or defined
within that block lose their value and significance (cf. Te 1.2
and 7.4.2).

Syntax:

<declaration> ::= <simple-T-variable-declaration> |
<T-array-declaration> | <procedure-declaration> |
<record-class-declaration>

5.1 Simple Variable Declarations

5.1.1 Syntax

<simple-T-variable-declaration> ::= <T-type><identifier-list>

<integer-type> ::= integer

<real-type> ::= real

<long-real-type> ::= long real

<complex-typed> ::= cgmplex

<long-complex—-typed> o

<logical-typa> 11

<bits-type> :1:= b

<{string-type> ::

<reference-type> ::
reference (<record-class-identifier-list))

<record-class—identifier-list> ::= <record-class-identifier>|
<record-class-identifier-listd>,<record-class-identifier>

s (32)
| string (<integer-constant))

5.1.2 Semantics

Bach identifier of the identifier list is associated with a

variable which is declared to be of the 1indicated type. A
variable is called a simple variable, if its value is simple {(cf.
Section u4). If a variable is declared to be of a certain type,

then this implies that only values which are assignnent
compatible with this type {cf. 7.2.2) can be assigned to it. It
is understood that the value of a variable is equal to the value
of the expression most recently assigned to it.

A variable of type bits is alvays of length 32 whether or
not the declaration specification is included.

A variable of type string has a length egqual to the unsigned
integer in the declaration specification. The value of this
integer may not be less than 1 or greater than 256. If the
simple type 1is given only as string, the length of the variable
is 16 characters.

A variable of type reference may refer only to records of
the record classes whose identifiers appear in the record class

18 5.1 Simple Variable Declarations
identifier list of the reference declaration specification.
5.1.3 Exanmples

integer I, J, K, M, N

real X, Y, Z
long complex C

bits G, H
string (10) s, T
reference (PERSON) JACK, JILL

—— e, . ek iy

5.2 Array Declarations
5.2.1 Syntax

<T-array-declaration> ::= <T-type> array <identifier-list>
(<{bound-pair-list>)

<bound-pair-list> ::= <bound-pair> |
<bound-pair-list>,<bound-pair>

<bound-paird> ::= <lower-bound> :: <upper-bound>

<lowver-bound> ::= <integer-expression>

<upper-bound> ::= <integer-expressiond>

Wi

5.2.2 Semantics

Fach identifier of the identifier 1list of an array
declaration is associated with a variable which is declared to be
of type array. A variable of type array is an ordered set of
variables wvhose type is the type preceding the symbol array. The
dimension of the array is the number of entries in the bound pair
list.

_ Every element of an array is identified by a 1list of
indices. The indices are the integers between and including the
values of the lower bound and the upper bound. FEvery expression
in the bound pair list is evaluated exactly once upon entry to
the block in which the declaration occurs. The bound pair
expressions can depend only on variables and procedures global to
the block in which the declaration occurs. If, for any bound
pair, the value of the upper bound is less than the value of the
lower bound, the array has no elements.

5.2.3 Examples
integer array H{1::100)

real array A, B{1::4, 1::0N)
string (12) array STREET, TOWN, CITY (J::K + 1)

5.3 Procedure Declarations

5.3.1 Syntax

<procedure-declaration> ::= <proper-procedure-declaration> |
<T-function-procedure-declaration>

<proper-procedure~-declaration> ::= procedure
<procedure-heading>; <proper-procedure-body>

<T0-function-procedure-declaration> ::=

5.3 Procedure Declarations 19

— i . s i it e i

<T1-function-procedure—-body>
<proper-procedure-body> ::= <statement> |
<external-reference>
<T-function-procedure-body> ::= <T-expression> |
<external-reference>
<procedure-heading> ::= <identifier> |
<identifier> (<formal-parameter-list))
<formal-parameter-listd> ::= <formal-parameter-segment> |
<formal-parameter-list>;<formal-parameter-segment>
<formal-parameter-segment> ::= <formal-array-parameter> |
<formal-type><identifier-list>
<formal-type> ::= <T-type> | <T-type> value |
<T-type> result | <T-type> value result |
<T-type> procedure | procedure
{formal-array-parameter> ::= <T-type> array
<identifier-list> (<dimension-specificationd)
<dimension-specification> ::= * |
<dimension-specification> , *
<external-reference> ::= fortran <string> | algol <string>

5.3.2 Semantics

A procedure declaration associates the procedure body with
the identifier immediately following the symbol procedure. The
principal part of the procedure declaration is the procedure
body. Other parts of the block in wvhose heading the procedure is
declared can then cause this procedure body to be executed or
evaluated. A proper procedure 1is activated by a procedure
statement (cf.7.3), a function procedure by a function designator
{cf.6.2). Associated with the procedure body is a heading
containing the procedure identifier and possibly a list of formal
parameters. The type of a functiom procedure body, T1, must be
assignment compatible (cf.7.2.2) with the type, TO, of the
procedure. :

5.3.2.1 Type specification of formal parameters. All formal
parameters of a formal parameter segment are of the same
indicated type. The type must be such that the replacement of
the formal parameter by the actual parameter of this specified
type leads to correct ALGOL W expressions and statements
(cf.7.3.2).

5.3.2.2 The effect of the symbols value and result appearing in
a formal type 1is explained by the folloving rule, which is
applied to the procedure body before the procedure is invoked:

{1) The procedure body is enclosed by the symbols begin and
end;
{2) For every formal parameter whose formal type contains the
symbol value or result (or both),
{a) a declaration followed by a semicolon is inserted
after the first beqgin of the procedure body, with
a type as indicated in the formal type, and with
an identifier different from any identifier valid
at the place of the declaration;
{b) throughout the procedure body, every occurrence of

ke s S gy, ittt it

20 5.3 Procedure Declarations

the formal parameter identifier is replaced by the
identifier defined in step 2a;

(3) If the formal type contains the symbol value, an assignment
statement {cf.7.2) followed by a semicolon is inserted
after the declarations in the outermost block of the
procedure body. Its left part contains the identifier
defined in step 2a, and its expression consists of the
formal parameter identifier. The symbol yalue 1is then
deleted;

(4y I1If the formal type contains the symbol result, an
assignment statement preceded by a semicolon is inserted
before the symbol end which terminates the procedure body.
Its left part contains the formal parameter identifier, and
its expression consists of the identifier defined in step
2a. The symbol result is then deleted.

5.3.2.3 Specification of array dimensions. The number of "#"'s
appearing in the formal array specification is the dimension of
the array parameter.

5.3.2.4 External references. Use of an external reference as a
procedure body indicates that the actual procedure body is
specified by the environment in which the program is to be
executed. The information in the external refereace is used to
locate and interpret that procedure body. The details of such
use depend upon the specific environment. (cf. 9.6, 10.3 and
11.3)

5.3.3 Examples

o o i wa a s

real procedure MAX (
if X < Y then Y else X

procedure COPY (real array U, V{*,*); integer value A, B);

§g§ I := 1. until A do
for J := 1 until B do U(IL,Jd) := V(I,J)

real procedure HORNER (real array A{(*); integer yvalue N:
real value X);
S;

beqin real
for I :
S

:= 0
step -1 until 0 do 5 := 35 * X + A(I);

1]

nd

long real procedure SUM (integer K, N; long real X);

begin long real ¥; Y := 0; K := N;
while K >= 1 do
begin Y := Y ¢+ X; K 2= K - 1
end;
Y

. < s <. <o o

5.3 Procedure Declarations 21

begin reference (PERSON) P, M;
P := YOUNGESTOFFSPRING (FATHER (FATHER {(R)));

while P-~= null and -~ MALE (P) or

P = FATHER (R) do
P := ELDERSIBLING (P);
M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R))):
while M -~= null and ~ MALE (M) do
M:= ELDERSIBLING (M)
if P = pull then M else
if M = pull then P else
if AGE{P) < AGE(M) then P else M

end

procedure PLOTSUBROUTINE {(integer value I); fortran "PLOTSB"

5.4 Record Class Declarations

S.4.1 Syntax

<record-class-declaration> ::=

<field-list> ::= <simple-T-variable-declaration> |}
<field-list>; <simple-T-variable-declaration>

S.4.2 Semantics

A record class declaration serves to define the structural
properties of records belonging to the class. The principal
constituent of a record class declaration is a segquence of simple
variable declarations which define the fields and their types for
the records of this c¢lass and associate identifiers with the
individual fields. A record class identifier can be used in a
record designator (cf. 6.7) to construct a new record of the

given class.
5.4.3 Examples
record NODE (reference (NODE) LEFT, RIGHT)

record PERSON (string NAME; integer AGE; logical MALE;
reference (PERSON) FATHER, MOTHER, YOUNGESTOFF¥SPRING,

s e, o, < s s WS

ELDERSIBLING)

—— o — p— A — -~ it - —— iy D gyl Gt WA

e M M bl S i, W it it

22
6. EXPRESSIONS

Expressions are rules which specify hovw new values are
computed from existing ones. These new values are obtained by
performing the operations indicated by the operators on the
values of the operands. The operands are either constants,
variables or function designators, or other expressions, enclosed
by parentheses if necessary. The evaluation of operands other
than constants may involve smaller units of action such as the
evaluation of other expressions or the execution of statements.
The value of an expression between parentheses is obtained by
evaluating that expression. If an opetrator has two operands,
then these operands may be evaluated in any order with the
exception of the 1logical operators discussed in 6.4.2.2.
Expressions are distinguished by a type and a precedence level,
the former depending on the types of the operands and the latter
resulting from the precedence hierarchy imposed upon operators in
the syntactic rules which follow. The syntactic entities naming
different kinds of expression in these rules display these
attributes, the word "expression® being prefixed by a type and,
usually, postfixed by an integer indicating the precedence level.
{(Higher precedence is implied by increasing magnitude of this
integer). The operators and their precedence levels are:

level operators
1 or
2 and
3 -
4 < <= = 2= >= > is
5 + -
6 * s div rem
7 shl shr *#
8 long short abs

When the types allow an operator at level i to be applied to
operands, the resulting expression, wvhich belongs to the
syntactic class <T-expression-i>, has the intuitive meaning given
in the second column of the table.

Syntactic Entity Meaning Definitions
<T-expression-1> disjunction 6, 6.4, 6.5
<T-expression-2> conjunction 6, 6.4, 6.5
{T-expression-3> negation 6, 6.4, 6.5
{T-expression-4> relation 6, 6.4
<T-expression-5> sunm 6, 6.3
<T-expression-6> tern 6, 6.3
{T-expression-7> factor 6, 6.3, 6.5
{T-expression-8> primary 6, 6.3, 6.7

The third column of the table indicates sections where
definiticns of these syntactic entities occur.

Throughout section 6 and its subsections the symbol T has to
be replaced consistently as described 1im Section 1 and the
triplets T0, T1, T2 have to be either all three replaced by the
same one of the words

e iy, R Qs ool gy T LS g M gy o it

L

— i

- oy, i Wi

23

logical
bit
string
reference

or (subject to specification to the contrary) in accordance with
the following "triplet rules".

1. Given the qualities (integer, real or complex) of T1 and
T2, the corresponding quality of T0 is given in the table

T2 | integer real complex
I1 1
integer { integer real : complex
real { real Teal complex
complex | complex coekplex complex
2. TO0 has the quality "long"™ either if both T1 and T2 have

that quality, or if one has the gquality *long" and the
other is "integer".

Syntax:

<T-expression> ::= <T-expression-1> |
<conditional-T-expression>
<T-expression-1> <T-expression-2>
<T-expression-2> <T-expression-3>
<T-expression-3> <{T-expression-4>
{T-expression—4> <T-expression-5>
<T-expression-5> {T-expression-6>
{T-expression-6> {T-expression-7>
<T-expression-7> {T-expression-8>
<T-expression-8> {T-variable> |
<T~funct10n—de31gnator> i <T-constant> |
(<T-expression>) | <T-block-expressiond>
<T-block-expression> ::= <block body><T-expression> end

30 S0 08 g3 8% a0 9
4 88 43 g0 8% 48 es

O (I T T O | T O

Semantics:

There are 8 levels of precedence; an expression at one level
of precedence 1is a valid expression at each lower level of
precedence.

A block expression introduces a new level of nomenclature
and specifies the execution of a seguence of statements.in the
block body as described for blocks (cf.7.1). After execution of
the block body, the final expression is evaluated and the value
of that expression becomes the value of the entire block
expression.

Variables, function designators and conditional expressions
are defined in subsegquent paragraphs of section 6.

6.1 Jdariables

6.1.1 Syntax

<simple-T-variable> ::= <T-variable-identifier> |

24 6.1 Variables

<T-field-designator> | <T-array-designator>
<T-variable> ::= <simple-T-variable>
<string-variable> ::= <substring-designator>
<T-field~designator> ::= <T-field-identifier>
(<reference—expressiond)
<T-array-designator> ::= <T-array-identifier>
{<subscript-list>)
<sukscript-list> ::= <subscript> |
<subscript-1list> , <subscript>
<subscript> ::= <integer-expressiond>

6.1.2 Semantics

An array designator denotes the variable whose indices are
the current values of the expressions in the subscript list. The
value of each subscript must lie within the declared bounds for
that subscript position.

A field designator designates a field in the record referred
to by its reference expression., The type of the field designator
is defined by the declaration of that field identifier in the
record class designated by the reference expression of the field
designator {cf. 5.4).

6.1.3 PExamples

X A(T) M{I+K,I-J)
FATHER (JACK) MOTHER (PATHER (JILL))

6.2 Punction Designators

6.2.1 Syntax

<T-function-designator> ::= <T-function-identifier> |
<T-function-identifier> (<actual-parameter-list)>)

6.2.2 Semantics

A function designator defines a value which can be obtained
by a process performed in the following steps:

Step 1. A copy 1is made of the body of the function procedure
vhose procedure identifier is gqiven by the function
designator and of the actual parameters of the latter.

Steps 2, 3, 4. As specified in 7.3.2.

Step 5. The copy of the function procedure body, modified as
indicated in steps 2-4, is executed. Execution of the
expression which constitutes or is part of the modified
procedure body consists of evaluation .of that
expression, and the resulting value is the value of the
function designator. The type of the function
designator is the type in the corresponding function
procedure declaration.

6.2 Function Designators 25

6.2.3 Examples

MAX (X *% 2, Y *% 2) soM(I, 100, H({I))
YOUNGESTUNCLE (JILL) SOM (I, ®, SUM(J, N, A(I,d)))
HORNER (X, 10, 2.7) SUM(I, 10, X(I) * Y(I))

6.3 Arithmetic Expressions

$.3.1 Syntax

<T3-expression-5> ::= + <T3—-expression-6> |
- <T3-expression-6>
{T0-expression-5> ::= <Tl-expression-5> ¢ <T2-expression-6> |
<Ti-expression-5> - <T2-expression-6>
<T0-expression-6> :1:= <T1-expression-6> * <T2-expression-7> |
<T1-expression-6> / <T2-expression-7>
<integer-expression-6> ::=
<integer—expression-6> div <integer-expression-7> |
<integer-expression-6> rem <integer-expression-7>
{Th-expression-7> z:=
<T5-expression~7> ** <integer-expression-8>
<T4-expression-8> ::= abs <TS5-expression-8> |
long <TS5-expression-8> | short <T5-expression-8>
<integer-expression-8> ::= <control-identifier>

$6.3.2 Semantics

An arithmetic expression is a rule for computing a number.
According to its type it is called an integer expression, real
expression, long real expression, complex expression, or 1long
complex expression.

6.3.2.1 The operators +, -, ¥, and / have the conventional
meanings of addition, subtraction, multiplication and division.

For the operator *, the second "triplet rule® is modified so
that TO has the quality long unless both T1 and T2 are integer.

For the operator /, the "triplet rules"™ apply except when
both T1 and T2 are integer, them TO is long-real.

6.3.2.2 The operator "-" standing as the first symbol of an
expression at priority level 5 denotes the monadic operation of
sign inversion. The type of the result is the type of the
operand. The operator "+" standing as the first syabol of such
an expression denotes the monadic operation of identity.

In the relevant syntactic rules of 6.3.1, every occurrence
of the symbol T3 must be systematically replaced by one of the
following words (or word pairs):

integer

real
long-real
complex
long-complex

6.3.2.3 The operator div is defined (for B -= 0) as

o i

26 6.3 Arithmetic Expressions

A

[»1]

iv B = SGN (A * B) * D {abs A, abs B) (cf. 6.3.2.6)
where the fuction procedures SGN and D are declared as

integer procdure
if A <

value 1A);
’

integer procedure D (integer value A, B):
if A < B then O else D{A-B, B) + 1

6.3.2.4 The operator rem (remainder) is defined as
A rem B =A - (A div B) * B

6.3.2.5 The operator ** dJdenotes exponentiation of the first
operand to the power of the second operand. In the relevant
syntactic rule of 6.3.1 the symbols T4 and T5 are to be replaced
by any of the following combinations of words:

T4 } T5

1
long-real { integer
long-real | real
long—-complex) complex

T4 has the quality "long" wvhether or not TS5 does.

6.3.2.6 The monadic operator abs yields the absolute value or
modulus of the operand. In the relevant syntactic rule of 6.3.1
the symbols T4 and TS5 have to be replaced by any of the following
combinations of words:

T4 1 T5

1
integer { integer
real ! real
real { conplex

If T5 has the quality "long", then so does Td.

6.3.2.7 Precision of arithmetic. If the result of an arithmetic
operation is of type real, complex, long real, or lopg cosplex,
its value is defined by System/360 arithmetic and 1is the
mathematically understood result of the operation performed on
operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1 the symbols T4 and
TS5 must ke replaced by any of the following combinations of words
(or word pairs):

Operator long

T4 | T5

1
long-real i real
long-real { integer
long-complex | complex

o S oy, W gt SO A, IS s U

6.3 Arithmetic Expressions 27

Operator short

T4 i T5

1
real 1 long-real
complex } long-complex

Note: It is illegal to apply lomng to an expression which is

- —

already long; similarly for short.
6.3.3 Exanmples

C +A{I) * B(I)
EXP{(-X/(2 * SIGMA)) / SQRT(2 * SIGMA)

6.4 Logical Expressions

6.4.1 Syntax

In the following rules for <relation> the symbols T6 and T7
must either be identically replaced by any one of the following
words:

bit
string
reference

or by any of the words from:

complex
long-complex
real
long~real
integer

and the symbols T8 or T9 must be identically replaced by string
or must be replaced by any of real, long-real, integer.

<logical-expression-1> ::=
<logical-expression-1> or <logical-expression-2>
<logical-expression-2> ::=
<logical-expression-2> apd <logical-expression-3>
<logical-expression-3> ::= -~ <logical-expression-i#>
<logical-expression-4> ::= <relatioa>
<relation> ::=
<T6-expression-5><equality-operator><T7-expressioa-5> |
{T8-expression-5><inequality-operator><T9-expression-5> |
<reference-expression-5> is <record-class-identifier)>
<eguality-operator> ::= =
<inequality-operator> ::= < | <= }{| >= | >

| ~=

$.4.2 Semantics

A logical expression is a rule for computing a logical
value.

6.4.2.1 The relational operators represent algebraic ordering
for arithmetic arguments and EBCDIC ordering for string

i S

28 6.4 Logical Rxpressions

arguments. If two strings of unequal length are compared, the
shorter string is considered to be extended to the length of the
longer (for the comparison only) by appending blanks to the
right. The relational operators yield the logical value true if
the relation is satisfied for the values of the two operands;
false otherwise. Two references are equal if and only if they
are both null or both refer to the same record. The operator is
yields the 1logical value true if the reference expression
designhates a record of the 1indicated record class; false
othervise. The reference value null fails to designate a record
of any record class.

6.4.2.2 The operators -~ {(not), and, and or, operating on logical
values, are defined by the following egquivaleances:

-~ X if X then false else true
X and Y if X then Y else false
X or Y if X then true else Y

6.4.3 Examples

P or Q
X < Yand Y < 3
YOUNGESTOFFSPRING (JACK) -= null
FATHER (JILL) is PERSON

6.5 Bit Expressions

6.5.1 Syatax

<bit-expression-1> ::=
<bit-expression-1> or <bit-expression-2>
<bit-expression-2> ::=
<bit-expression-2> apd <bit-expression-3>
<bit-expression-3> ::= -~ <bit-expression-4>
<bit-expression-7> 3::=
<bit-expression-7> shl <integer-expression-8> |
<bit-expression-7> shr <integer—expression-8>

6.5.2 Semantics
A bit expression is a rule for computing a bit sequeace.
The operators and, or, and - produce a result of type bits,

every bit being dependent on the corresponding bit(s) in the
operand (s) as follows:

X Y } -X X and Y Xor¥Y
]
1

0 0 | 1 0 0

0 1 i 1 0 1

1 0) 0 0 1

1 1 | 0 1 1

The operators shl and shr denote the shifting operation to
the left and to the right respectively by the number of bit
positions indicated by the absolute value of the integer operand.

6.5 Bit Expressions 29

Vacated bit positions to the right or left respectively are
assigned the bit value 0.

6.5.3 Examples

G

H or %38
G -

)}
n (H or G) shr 8

I I
o few

6.6 String Expressions

6.6.1 Syntax

<substring-designator> ::= <string-variable>
{<integer-expression><bar><integer-constant>)

6.6.2 Semantics

A string expression is a rule for «computing a string
{sequence of characters).

6.6.2.1 A substring designator denotes a sequence of characters
of the string designated by the string variable. The integer
expression preceding the bar selects the starting character of
the sequence. The value of the expression indicates the position
in the string variable. The value must be greater tham or egual
to 0 and 1less than the declared length of the string variable.
The first character of the string has position 0. The integer
number following the bar indicates the length of the selected
sequence and is the length of the string expression. The sum of
the 1integer expression and the integer number must be less than
or equal to the declared length of the string variable.

6.6.3 Examples

S{413)

S(I+J}1)

STREET (J+1) (I11)

NAME (FATHER (JACK)) (018)

6.7 Reference Expressions

6.7.1 Syntax

<reference-expression-8> ::= <record-designator>
<record-designator> ::= <record-class-identifier> |
<record-class-identifier> (<expression-listd)}
<expression-list> ::= <empty> { <T-expressiond> |
<expression-list>, |
<expression-list> , <T-expressioa>

6.7.2 Semantics

A reference expression is a rule for computing a reference
to a record.

The value of a record designator is the reference to a newvly
created record belonging to the designated record class. If the
record designator contains an expression list, then the length of

- -

30 6.7 Reference Expressions

the list must egqual the number of fields specified in the record
class declaration. Vvalues of nonempty expressions in the
expression list are assigned tc the corresponding fields of the
new record, and the types of the expressions must be assignment
compatible with the types of the record fields (cf. 7.2.2).

6.7.3 Examples
PERSCN ("JANE", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING
{JACK))
NODE (, null)

6.8 Conditional Expressions

6.8.1 Syntax

<conditional-T-expression> ::=

<{case-clause> (<{T-expression-list))
<conditional-TO0-expressiond> ::=

<if-clause> <T1-expression> else <T2-expression>
<T-expression-list> ::= <T-expression>
<T0-expression-1list> ::=

<T1-expression-list> , <T2-expression>
<if-clause> ::= if <logical-expression> then
<case-clause> ::= case <integer-expression> of

6.8.2 Semantics
The construction
<if-clause> <T1-expression> else <T2-expression>

causes the selection and evaluation of an expressiona on the basis
of the current value of the logical expression contained in the
if clause. If this value is true, the expression following the
if clause is selected; if the value is false, the. expression
following else is selected. If T1 and T2 are type string, the
length of the resulting expression is the maximum of the 1lengths
of the coamponent string expressions; if necessary, blanks are
appended on the right of the shorter string. The coastruction

<case-clause> (<T-expression-list))

causes the selection of the expression vhose ordinal nusber in
the expression list is egqual to the curreat value of the integer
expression contained in the case clause. 1In order that the case
expression be defined, the current value of this expression must
be the ordinal number of some expression in the expression list.
If T is type string, the 1length of the resulting string
expression is the maximum of the lengths of the strings in the
expression list. If necessary, the length of any shorter element
is increased by appending blanks on the right.

6.8.3 Examples

if A>B then A else B
case I of ("SPADES"™,"HEARTS","DIAMONDS","CLUBS")

31

7 STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action, which
may consist of smaller units of action such as the evaluation of
expressions or the execution of other statements.

Syntax:

<program> ::= <{statementd>. |

<proper—-procedure-declaration>. |
<T-function-procedure-declaration>.

<{statement> ::= <simple-statement> | <iterative-statement> |

<if-statement> | <case-statementd>

<simple-statement> ::= <block> | <T-assignment-statement)> |

<procedure-statement> | <goto-statementd> |
<standard-procedure-statement> |
<assert-stateaent> | <empty>

Programs which are procedure declarations cannot be executed

directly, but the corresponding procedure bodies can form part of

the
{cf.

71

7.1.1

environment in which other ALGOL ¥ programs are executed
5.3, 2.4, 9.6, 10.3 and 11.3)

Blocks

Syntax

<block> ::= <block-body> <statement> end
<block-body> ::= <block-head> | <block-body> <statement> ; |

<block-body> <label-definition>

<block-head> ::= begin] <block-head> <declaration> ;
<label-definition> ::= <identifier> :

7.1.2

Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:

Step 1. If an identifier, say A, defined in the block head
or in a label definition of the block body is already
defined at the place from which the block is entered, then
every occurrence of that identifier, A, within the block
except for occurrence in array bound expressions is
systematically replaced by another identifier, say A’',
vhich is defined neither within the block nor at the place
from which the block is entered.

Step 2. If the declarations of the block contain array
bound expressions, then these expressions are evaluated.

Step 3. Execution of the statements contained in the block
body begins with the execution of the first statement
following the block head.

After execution of the last statement of the block {unless

it is a goto =statement leading to a label within the block) a
block exit occurs, and the statement following the entire block

32 7.1 Blocks
is executed.
7.1.3 Example

begin real U;
g :=¥%; X 2= Y¥; Y 2= Z; Z 2= 4

end

7.2 Assignment Statements

7.2.17 Syntax

In the following rules the syabols T0 and T1 must be
replaced by words which may be substituted for T as indicated in
Section 1, subject to the restriction that the type T1 must be
assignment compatible with the type TO as defined in 7.2.2.

<TO0-assignment-statement> ::= <T0-left-part><Tt-expression> |
<TO0-left-part><{Tl1-assignment-statement>
<T-left-part> ::= <T-variabled> :=

7.2.2 Semantics
The execution of a simple assignment statement
<T0-left-part><{T1-expression>

causes the assignment of the value of the expression to the
variable. 1If a shorter string is to be assigned to a longer one,
"the shorter string is first extended to the right with blanks
until the lengths are equal. In a multiple assignment statement

<T0-left-part> <T1l-assignment-statenment>

the assignments are performed from right to left. Por each left
part variable, the type of the expression or assignment variable
immediately to the right must be assignment compatible with the
type of that variable.

A type T1 is said to be assignment compatible with a type TO
if either

{1) the twvwo types are identical (except that if T0 and T1 are
string, the length of the T0 variable must be greater than
or equal to the length of the T1 expression or assignament),
or

{(2) T0O is real or long real, and T1 is integer, real or long
real or

{3) T0 is complex or long complex, and T1 is jipnteger, real,
long real, complex or long complex.

In the case of a reference, the reference to be assigned
must be null or refer to a record of one of the classes specified
by the record class identifiers associated with the reference
variable in its declaration.

7.2.3
Z
X

7.3

7.2 Assignment Statements 33

Examples
:= AGE (JACK) := 28 C:=1+X +C
:= Y + abs 2 P 2= X ~= Y

Procedure Statements

7.3.1

<

<

<

Syntax

procedure-statement> ::= <procedure-identifier> |
<procedure-identifier> (<actual-parameter-list>)

actual-parameter-list> ::= <actual-parameter> |
<actual-parameter-list> , <actual-parameter>

actual-parameter> ::= <T-expression> | <statement)> |
<T-subarray-designator> | <procedure-identifier> |
<T-function-identifier>

<T-subarray-designator> ::= <T-array-ideatifier> |

<T-array-identifier> {<subarray-designator-list)>)

<subarray-designator-list> ::= <subscript> | * |

7.3.2

<subarray-designator-list>,<{subscript> |
<{subarray-designator-list>,*

Semantics

The execution of a procedure statement is eguivalent to a

process performed in the following steps:

Step 1. A copy is made of the body of the proper procedure
whose procedure identifier is given by the procedure
statement, and of the actual parameters of the latter. The
procedure statement 1is replaced by the copy of the
procedure body.

Step 2. If the procedure body is a block, then a
systematic change of identifiers in its copy is performed
as specified by step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in
an undefined order as follows: If the copy is an expression
different from a variable, then it is enclosed by a pair of
parentheses, or if it is a statement it is enclosed by the
symbols begin and end. 1In each subarray desigmator, any
subscripts are evaluated and replaced by constants
designating the resulting values.

Step 4. In the copy of the procedure body every occurrence
of an identifier identifying a formal parameter is replaced
by the copy of the corresponding actual parameter (cf.
7.3.2.1). In order for the process to be defined, these
replacements must lead to correct ALGOL ¥ expressions and
statements, -

Step 5. The <copy of the procedure body, modified as
indicated in steps 2-4, is executed.

7.3.2.1 Actual-formal correspondence. The correspondence
between the actual parameters and the formal parameters is
established as follows. The actual paraseter 1list of ‘the

34 7.3 Procedure Statenments

procedure statement (or of the function designator) must have the
same number of entries as the formal parameter 1list of the
procedure declaration heading. The correspondence is obtained by
taking the entries of these two lists in the same order.

7.3.2.2 The folloving table summarises the forms of actual
parameters which may be substituted for each kind of formal
parameter specification.

Formal_type 1 Actual parameter
|
<T-type> | {T-expression>
|
<T0-type> value 1 <T1-expression>
|
<T1-type> result i <T0-variatled>
{
<T1-type> value result i {T2-variable>
: |
<T-type> procedure 1 <T-function-identifier>
| {T-expression>
1
procedure | <procedure-identifier>
1 <statenment>
|
|

<T-type> array <T-subarray-