
Type Extensions

N. WIRTH
lnstitut fijr Informatik, ETH, Zurich

Software systems represent a hierarchy of modules. Client modules contain sets of procedures that
extend the capabilities of imported modules. This concept of extension is here applied to data types.
Extended types are related to their ancestor in terms of a hierarchy. Variables of an extended type
are compatible with variables of the ancestor type. This scheme is expressed by three language
constructs only: the declaration of extended record types, the type test, and the type guard. The
facility of extended types, which closely resembles the class concept, is defined in rigorous and concise
terms, and an efficient implementation is presented.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs-data
types and structures; modules, packuges; D.3.4 [Programming Languages]: Processors-code
generation

General Terms: Languages

Additional Key Words and Phrases: Extensible data type, Modula-2

1. INTRODUCTION

Modern software development tools are designed for the construction of exten-
sible systems. Extensibility is the cornerstone for system development, for it
allows us to build new systems on the basis of existing ones and to avoid starting
each new endeavor from scratch. In fact, programming is extending a given
system.

The traditional facility that mirrors this concept is the module-also called
package-which is a collection of data definitions and procedures that can be
linked to other modules by an appropriate linker or loader. Modern large systems
consist, without exception, of entire hierarchies of such modules. This notion
has been adopted successfully by modern programming languages, such as Mesa
[4], Modula-2 [8], and Ada [5], with the crucial property that consistency of
interfaces be verified upon compilation of the source text instead of by the linking
process. An enormous number of calamitous pitfalls, which constituted a genuine
impediment to the construction of extensible systems, have thereby been elimi-
nated. The essential ingredient of these systems is that a new module can be
developed and changed without the need for recompilation of the modules on
whose resources it rests. It was made possible by the textual separation of a
module description into a definition and an implementation part, where the
former specifies the interface.

Author’s address: Institut fur Informatik, ETH-Zentrum, CH-8092 Zurich, Switzerland.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0164-0925/88/0400-0204 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988, Pages 204-214.

Type Extensions l 205

Extensibility has, however, been largely confined to procedural aspects. The
aspect of applying extensibility to data, and data types in particular, has received
less attention. The first successful step in this direction appears to have been the
concept of the class in Simula 67 [l], and in particular the notion of the prefix
to a class. It has been adopted in derivatives of Simula, notably Smalltalk [2, 31,
Object Pascal [7], and C” [6].

The basic idea is to provide a facility for defining a new data type that relates
to an existing type by some rule of compatibility. It receives genuine importance
if the new type can be defined in a module importing the existing type, that is,
when the class feature coexists with that of separately compilable modules.
Regrettably, the class feature has remained rather vaguely defined and is usually
presented in combination with other language features. This factor is witnessed
by the undue length and verbosity of language manuals. The concept has therefore
remained difficult to understand and apply.

The main purpose of this paper is to base data type extensions on well-
understood mathematical concepts and to present a rigorous, complete, and
concise definition.

2. EXTENDED DATA TYPES

The notion of extensible data type to be presented here is based on the well-
known concept of data type used in most modern programming languages. Here
we shall in particular adhere to the syntax of Modula-2. It is based on the record
structure, the cornerstone of programmer-defined data types.

Definitions. Given a declaration of the form

T’ = RECORD (T) . . . END

T’ is a (direct) extension of T, and T is the (direct) base type of T’. We write
T’+=T.

Let, for example, a type T and extensions TO and Tl be defined as

T = RECORD X, y: INTEGER END
TO = RECORD (T) z: REAL END
Tl = RECORD (T) b: BOOLEAN; s: CHAR END

The base type is extended by the record fields specified in the declaration of
the extension. The components (fields) of anextended record type are therefore
those specified in its declaration in addition to those of the (direct) base type. In
the given example, TO has fields X, y, z, and Tl has fields X, y, b, and s. It is
essential that the definition of the extension need not occur in the same module
as that of its base type. It can occur in any module importing the base type.

Extended types can be reextended, thereby giving rise to type hierarchies. For
example, let TOO be defined as

TOO = RECORD (TO) w: LONGREAL END

and hence having fields x, y, z, and w.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

206 l Niklaus Wirth

Definitions. A type T’ is an extension of a type T if T’ = T or T’ is a direct
extension of an extension of T. T is a base type of T’ if T = T’ or T is the direct
base type of a base type of T’. We write T’ + T.

Using this notation, the relationship of the previously declared types is
denoted as

TOO-+TO+T,Tl-+T, TOO+T

Intimately coupled with the concept of data type is that of assignment compat-
ibility. The conventional rule is that the type of the assigned value x must be the
same as that of the variable u to which x is assigned. It is, however, quite
appropriate to consider an instance (variable) of an extended type to also be an
instance of its base type(s). Accordingly, it is appropriate that a value x be
assignable to a variable u if the type of x is an extension of the type of u. Hence
we generalize the compatibility rule type(x) = type(u) to type(x) + type(u).

This generalization, however, requires some closer inspection. A record type
represents the Cartesian product of its component types. Each record value is
mirrored by a point in the Cartesian space in which each dimension corresponds
to a record component. A base type is therefore represented by a space of lower
dimensionality than those of its extensions, and hence an assignment to a variable
of a base type must be regarded as a projection onto the Cartesian space spanned
by the base type.

Definition. An assignment IJ := x is possible if the type of x is an extension of
the type of u, that is, type(x) + type(u). It constitutes a projection of x onto the
type of u.

Let us, for example, assume the following declarations of variables:

u: T
~0: TO
ul: Tl

Then the following assignments are possible:

U := uo

U := ul
U := uoo

uo := uoo

The assignment u := ~0, for example, consists of the components u.x := u0.x
and u.y := u0.y. The field ~0.2 remains uninvolved. Hence all values with identical
components x and y result in the same value u. u0 is projected onto the x-y space.
In contrast, the assignments

uo := u
ul := u
uo := ul

must be rejected because the assigned values do not completely specify a value
of the respective assignee. It is tempting to consider the instances of a type as a
set characterized by the type. Then the instances of an extended type appear as
a subset. However, the “merging” of different elements of the subset into the

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

Type Extensions l 207

same element of the superset, as may happen in the case of projections, is
inconsistent with the set notion in which distinct elements retain their identity
when being removed from the subset.

3. DATA STRUCTURES WITH EXTENDED TYPES

The concept of related types becomes genuinely useful in connection with data
structures, and in particular with dynamically generated structures, because it
permits the construction of heterogeneous structures. They typically represent
the relationship among their elements by pointers. In typed languages, pointers
are always bound to a particular type called the pointer base type. It is therefore
necessary and logical to extend the concept of type extension to pointer types.

Definition. A pointer type PO is an extension of a pointer type P if its pointer
base type is an extension of the pointer base type of P.

Examples are

P = POINTER TO T
PO = POINTER TO TO
Pl = POINTER TO Tl
PO0 = POINTER TO TOO

POO-PO+P,Pl+P, POO*P

The stated rule of assignment then covers the case of pointers too. In analogy
to the record assignments shown above the pointer assignments

are possible, whereas

p := po
p := pl
p := poo

po := p
pl := p
po := pl

are not. The examples demonstrate that the assignment rule guarantees that a
pointer variable bound to a base type T may possibly refer to a variable whose
actual type is a (genuine) extension of T but never to a variable whose type is
not an (extension of) T.

Because of the relaxation of the assignment rule, it is possible to construct
data structures that are heterogeneous, that is, structures whose elements are of
different types. However, they are all related by having a common base type.
Assume, for instance, a tree structure based on the following declarations where
T denotes the node type

P = POINTER TO T
T = RECORD key: INTEGER,

left, right: P
END

The elements may be of any extension type of T because the pointers referring
to them are extensions of P and can therefore be assigned to the linking fields
left and right.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

208 l Niklaus Wirth

Procedures for manipulating the structure, such as insertion, deletion, and
search, are defined in terms of the (base) type. Procedures manipulating indiuid-
ual nodes will be specific for each extended type. This facility is once again
particularly attractive if the base type together with the structure-manipulating
procedures is defined in a (base) module, whereas its client modules individually
define extensions of the base type together with procedures operating on respec-
tive nodes. New client modules with new extensions may be added to a system
at any time without affecting the base module or other client modules or even
requiring their recompilation. This clearly contrasts with the notion of the
abstract data type in which all applicable operators are supposed to be defined
together with the data type.

An example of a dynamic, heterogeneous data structure is taken from system
software: Let the base type be Window, with extensions TextWindow, Graph-
Window, and PictureWindow. Another example stems from a compiler whose
“symbol table” is a dynamic data structure with elements of the base type Object.
Appropriate extensions are ConstantObject, VariableObject, TypeObject, and
ProcedureObject. Extensions of ConstantObject are, for instance, IntegerObject,
RealObject, and so forth. Again, we emphasize the fact that the extensions can
be declared in different modules, which may be added to a system without
invalidating the existing modules.

4. TYPE DISCRIMINATION

If, for example, after a search through a tree, an operation is to be applied to a
referenced element, it may well be necessary to determine the actual type of that
element since the operation may depend on the particular extension type.
However, the element is referenced by a pointer obtained from the structure
(fields left and right). The pointer is therefore of the (common) base type and
does not yield access to extension specific information. In order to access fields
of extensions it must be established that the element is actually of the anticipated
type. A facility for type discrimination is therefore required. We emphasize that
this is in contrast to the case of statically defined variables since their (actual)
type is always the one explicitly declared in the program text.

Definition. A type test is a Boolean expression of the form u IS T, where v is a
designator and T a type. The symbol IS is classified as a relational operator and
is pronounced as “is (of a type which is) an extension of.”

Because types must be identifiable within variable designators, and since
designators do not include expressions, a second form of discriminator is sug-
gested. Its sole purpose is to guarantee that a designator is of the indicated type.

Definition. A type guard applied to the designator v has the form u(T). It
asserts that u is of type T. If this is not so, the guard aborts execution of the
program.

Referring to the preceding examples, we recall that the assignment u0 := u is
not admissible. It is, however, if an appropriate guard is applied to u, namely
u0 := u(T0). By the same token, access to the field z via u, that is, the designator

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

Type Extensions - 209

U.Z, is not admissible. However, the designator u(TO).z is correct since the guard
asserts that u is an object of type TO, which has a field z.

5. EXTENDED TYPES VERSUS VARIANT RECORDS

Inhomogeneous data structures are quite common. Most languages offer some
facility to express these structures in tricky and, from a mathematical point of
view, unsatisfactory ways. In Pascal and Modula-2, they are expressed as variant
records. Specific variants are designated by values of a (syntactically) distin-
guished field called the tug field. The variant record facility bears several draw-
backs. Of particular relevance is the danger of misusing a field declared as
belonging to one category, whereas actually the tag value specifies the individual
record to be of another category. This can have catastrophic consequences in the
case of assignment to the field. In principle, every field access could be preceded
by an (implicit) check of the tag value validating the field in question. Most
implementations forego this “overhead.” An even worse misuse of the facility is
the assignment of a new value to the tag field istelf: As a side effect, it invalidates
all previous assignments to the fields of the specified category.

A severe handicap is the fact that further cases (variants) cannot be added
unless the record declaration is altered. Therefore, the module containing it must
be recompiled, and with it all the client modules referring to it. The variant
record facility clearly defies the notion of extensible system design.

In systems relying on automatic storage retrieval (garbage collection), the
variant record is a severe stumbling block. Its handling is complex and cumber-
some to say the least; we note in passing that a declaration may contain several
discriminated cases at the same level, and also that they may be nested. It is
practically impossible to use a garbage collector in conjunction with variant
records without restricting the feature in some way.

In contrast, the presented facility for type extensions allows for a safe and
efficient implementation, in particular in conjunction with automatic storage
retrieval.

6. POLYMORPHIC PROCEDURES

The adjective polymorphic is used for procedures that feature parameters for
which the strict type consistency rule (equality of formal and actual parameter
types) is relaxed. We note that the presented concept of extended types includes
precisely such a relaxation. If a formal value parameter is of base type T, then
the corresponding actual parameter can be of any extension of T. This follows
from the fact that value parameters are considered as local variables to which
the actual parameter’s value is assigned initially.

Reference parameters (in Pascal and Modula called VAR-parameters) are
considered as local pointers to which a reference to the actual parameter is
assigned initially. It follows that the same relaxation holds for both value and
reference parameters.

7. TYPE EXTENSION AND INFORMATION HIDING

The most important aspect of the module concept from the point of view of
system design is the decoupling of individual modules. By this we refer to the

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

210 l Niklaus Wirth

possibility of developing modules separately, once their interfaces are defined.
More specifically, it is essential that changes in subordinate modules be accom-
plished without the need for changing their client modules. This includes recom-
pilation of subordinate modules without the need for recompilation of the clients.

This decoupling is achieved by separating a module description into a definition
part and an implementation part. Changes to a module remain hidden, as long as
the definition part remains unchanged. The definition part constitutes the
interface in which the name only of a type is declared, whereas its properties and
the applicable operations are specified in the implementation part. A type defined
in this manner is called an abstract data type. In Modula-2 the type is called
opaque, and it effectively constitutes a pointer type whose binding is specified in
the implementation part.

Sometimes the total invisibility to clients appears as a harsh measure, and it
is circumvented by the introduction of procedures merely inspecting a single
component of the hidden data structure. A more general solution consists of the
declaration of the visible part of a type in the module’s definition part and of its
extension in the implementation part. Let, for example, a type T be declared in
the definition part of a module M:

T = RECORD
X, y: INTEGER

END

and then let T be extended in M’s implementation part by the private fields
a and b (for convenience, the declaration of x and y is repeated):

T = RECORD
X, y: INTEGER; (*externally visible fields*)
a, b: INTEGER (*private fields)

END

An explicit mention of the base type is unnecessary because the (re)use of the
name T declared in the definition part identifies this (re)declaration as an
extension.

We draw attention to the fact that extension of a type specified in a module’s
definition part is of a conceptual nature only. Referring to the example, every
variable of type T consists of the four components x, y, a, and b; nonextended
versions do not exist. It is therefore appropriate to regard the declaration given
in the definition parts as a public projection of the complete declaration given in
the implementation part.

8. IMPLEMENTATION

The simplicity of the presented type extension concept raises the hope that its
implementation is simple too and therefore also efficient. This is indeed so; in
particular, the addition of type extensions does not impinge on any of the basic
facilities already present in languages such as access to record fields. The only
new constructs requiring additional instructions are the type test and the type
guard. Since they do not occur with significant frequency, at least in soundly
designed programs, they contribute little to execution time. It is noteworthy that
the concept can be implemented entirely free of any run-time support routines.
Type test and type guard result in a small number of in-line instructions.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

Type Extensions l 211

When considering a way to implement the type test, we notice that the type of
a variable can be determined by a mere textual scan, except when the variable is
accessed indirectly, that is, in the cases of pointers or VAR-parameters. Only in
these two cases need a compiler generate additional instructions and need the
variables be supplemented by additional type information.

Variables accessed via pointers are (usually) allocated dynamically, for in-
stance, by an explicit executable statement NEW(p) that sets aside the storage
and assigns its address to the pointer variable p. It is at this point that the
variable is supplemented with an identification of its type. In passing we note
that systems relying on automatic storage retrieval (garbage collection) require a
type description anyway. In practice this identification consists of a (hidden)
pointer to a type descriptor. The pointer is called a type tag.

In the case of (record typed) VAR-parameters, the type tag of the referenced
variable is supplied together with its address. This is necessary because the actual
record may be statically allocated, and therefore, does not carry a tag.

For our purpose, type descriptors are extended by an additional field repre-
senting a pointer to the descriptor of the type’s base type (the base tag). This
information is used to evaluate type tests and to execute type guards. In order to
explain the required operations, we postulate as an example the following con-
stellation of types:

TOO0 + TOO ---) TO + T, TOO1 + TOO, TOl-+TO, Tl+T

Consider now the type test IJ IS TO, where IJ is a VAR-parameter of type T.
(An analogous case is p IS P, where P is a pointer type bound to 2’). Evidently,
a static (compile-time) test can verify that TO is indeed an extension of T. If this
were not the case, a programming error would be likely. It is, for instance, obvious
from the program text that u0 IS Tl is false, and hence this situation must be
diagnosed as a type error.

The test at execution time must determine whether or not u is an extension of
TO, that is, a TO, TOO, TOl, TOOO, or TOOl. This is accomplished by successively
comparing the tag TO with the types (tags) along the linked list starting with the
element designated by u (p?). If, in this example, u (pt) is an element of type
TO, a match is found by the first comparison, if it is an element of type TOO or
TOl, it is found by the second comparison, and if it is a TOO0 or a TOOl, it is
found by the third comparison. If u is of type Tl, no match is found since Tl
does not lie on the traversed branch of the tag tree.

The type test is expressed by the following piece of program. t is a local variable
(register):

t := u.tag;
LOOP

IF t = TO THEN EXIT (TRUE) END;
t := tT.basetag;
IF t = NIL THEN EXIT (FALSE) END

END

The operation for the type guard is virtually identical, except that no Boolean
value need be generated, and program execution may be aborted instead.

Since both type test and type guard involve sufficiently few instructions, they
can well be represented by in-line code, enhancing the resulting efficiency.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

212 l Niklaus Wirth

Unfortunately, the provision of a loop construct for descending the linked list of
tags is unavoidable since in the context of the test no information is available
about the number of extensions of the tested type that may have been defined in
other modules. (Note that TOO, TOl, TOOO, and TOO1 may have been defined
in modules importing TO). However, in practice, the length of the list of tags will
be very small, ensuring that the test will never involve the execution of a large
number of instructions.

The implementation of the extended declaration in implementation parts
(public projection in the definition part) poses the following problem: When
compiling a client module importing the record type, the compiler must be
provided with information about the type, in particular its size. This information
must therefore be included in the symbol file generated when the definition part
is compiled. At this time, however, the size is unknown, if the type is to be
extended in the corresponding implementation part. In fact, it must be unknown,
because by definition clients must not depend on the imported modules’ imple-
mentations. We suggest circumventing this intrinsic dilemma by providing a
compiler hint in the definition part, which indicates a maximum size that the
record declaration in the implementation part may require. This hinted size is
then taken as the actual size, and respecifications of the type in the implemen-
tation part will not affect clients, as long as the required size does not exceed the
hinted size.

9. ADDITIONAL PROGRAMMING CONSTRUCTS

The facilities presented here, namely the type extension declaration, the type
test, and the type guard are logically sufficient to construct and use inhomoge-
neous data structures with the guarantee of full type integrity. Nevertheless, one
is tempted to suggest additional language constructs with the goal of improving
efficiency. An obvious inefficiency of programs restricted to the basic facilities
lies in the repeated (and therefore unnecessary) execution of the same checks.

A sequence of references to fields of the same (extended) record require
repeated checks. They can be avoided by (textually) binding the record variable
to the extended type. For example, given the parameter u of type T, the three
statements

q := v(Tl).b; ch := u(Tl).s; r := u(Tl).u

could be condensed into a construct of the form

WITH u: Tl DO
q := v.b; ch := v.s; r := v.u

END

Here the WITH clause merely states that u is to be considered as of type Tl
within the contained statement sequence, and that this fact is asserted before
execution of the statements. (Note that this kind of WITH statement differs
from that of Modula-2: Neither is an anonymous variable involved, nor is a new
scope containing the field identifiers opened.) If type guards as previously
introduced are considered as punctual guards, this WITH construct appears as a
regional guard.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

Type Extensions l 213

Obviously, a conscientious programmer will ensure that a guard will never lead
to program abortion. Hence, constructs of the form

IF u IS TO THEN . . . u (TO) . . . END

will be frequent. This situation is analogous to

IFp#NILTHEN...pT...END

with every pointer dereferencing operation implying a guard against the value
NIL in spite of the fact that a nonnil value had been asserted by the preceding
test. The idea of combining test and guard(s) therefore suggests itself. It might
be expressed by a construct similar to the WITH statement

WHEN u IS TO THEN
q := u.b; ch := VA; r := v.u

END

implying that the statements are executed if the test is affirmative. However,
ample experience has taught that the combination of different objectives in a
single construct is often of dubious value in practice, causes considerable (and
sometimes unforeseen) complications of implementation, and quickly calls for a
(nonterminating) sequence of extension proposals. In this case, an ELSIF option,
as well as the admission of unrestricted Boolean expressions in the WHEN
clause, immediately appear as desirable.

If the temptation to introduce such combinational constructs is resisted, it
might be argued that the burden of avoiding double checks could be placed onto
the compiler. An “intelligent” compiler might accumulate sufficient contextual
information to recognize the superfluity of type guards when they are implied in
an IF clause. In these cases, the compiler would suppress the emission of the
unnecessary guard instructions. The required compilation scheme would in fact
be similar to techniques employed for other code optimizations (i.e., improve-
merits) .

It remains an open question, however, whether the resulting gain in execution
speed would justify either the introduction of combinational language constructs
or a complex additional optimization machinery in the compiler.

ACKNOWLEDGMENTS

The presented concept has emerged from many fruitful discussions with J.
Gutknecht. I gratefully acknowledge his insights and suggestions, as well as his
acrimonious criticism, if an earlier proposal did not fully satisfy conceptual
consistency and practical needs.

REFERENCES

1. BIRTWISTLE, G. et al. Simula Begin. Auerbach, Pennsauken, N.J., 1973.
2. GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and Its Implementation. Addison-

Wesley, Reading, Mass., 1983.
3. KAEHLER, T., AND PATTERSON, D. A small taste of Smalltalk. BYTE(Aug. 1986), 145-160.
4. MITCHELL, J. G., MAYBURY, W., AND SWEET, R. Mesa language manual. Xerox PARC, CSL-

79-3, Xerox, Inc., Palo Alto, Calif., 1979.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988.

214 l Niklaus Wirth

5. REFERENCE MANUAL FORTHE ADA PROGRAMMING LANGUAGE. US Dept. ofDefense,Wash-
ington, D.C., July 1980.

6. STROUSTRUP, B. The Pr0grammin.g Language C++. Addison-Wesley, Reading, Mass., 1986.

7. TESLER, L. Object Pascal report. Structured Language World 9,3 (1986).
8. WIRTH, N. Programming in Module2. Springer-Verlag, New York, 1982.

Received February 1987; revised September 1987; accepted January 1988

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988

