ETH

Eidgendssische Technische Hochschule
Zirich

Institut fiir Informatik

‘Niklaus Wirth

MODULA-2

March 1980 36

MODULA~2

N. Wirth

Abstract

Modula-2 is a general purpose programming language primarily
designed for systems implementation. This report constitutes its
definition in a concise, although informal style. It also describes
the use of an implementation for the PDP-11 computer.

Institut fur Informatik
ETH
CH-8092 Zurich

March 1980

* ¢ 1989 Institut fur Informatik der ETH Zurich

-1 -

Contents

t. Introduction
2, Notation for syntactic description
3. Vocabulary and representation
4. Declarations and scope rules
5. Constant declarations
6. Type declarations

1. Basic types

2. Enumerations

3. Subrange types

4. Array types

5. Record types

6. Set types

7. Pointer types

8. Procedure types
7. Variable declarations
8. Expressions

1. Operands

2. Operators
9. Statements

1. Assignments

2. Procedure calls

3. Statement sequences

4. If statements

5. Case statements

6. While statements

7. Repeat statements

8. For statements

9. Loop statements

18. With statements

11. Return and exit statements
18. Procedure declarations

N = o el) e b ot e) e o
VOVWOWOWOBOINNTAOAVNNWRDN—= =~ = ROWO0 0 JIJNDWN

1. Formal parameters 21
2. Standard procedures 22
11. Modules 23
12. System-dependent facilities 26
13. Processes 27

1. Creating a process and transfer of control 27

2. Device processes and interrupts 28
14. Compilation units 29
15. Implementation and use of Modula-2 38
16. Standard utility modules 32
1. Input and output 32
2. Streams 33
3. Files 34
4. Terminal input and output 37
5. Storage management 37
6. The Loader 38
7. Process Scheduler 38
17. Syntax summary and index 42

1. Introduction

Modula-2 grew out of a practical need for a general, efficiently
implementable systems programming language for minicomputers. Its
ancestors are PASCAL [1] and MODULA [2]. From the latter it has
inherited the name, the important module concept, and a systematic,
modern syntax, from PASCAL most of the rest. This includes in
particular the data structures, 1i.e. arrays, records, variant
records, sets, and pointers, Structured statements include the
familiar if, case, repeat, while, for, and with statements. Their
syntax is such that every structure ends with an explicit
termination symbol.

The language is essentially machine-independent, with the exception
of limitations due to wordsize. This appears to be in contradiction
to the notion of a system-programming language, in which it must be
possible to express all operations inherent in the underlying
computer. The dilemma is resolved with the aid of the module
concept. Machine-dependent items can be introduced in specific
modules, and their wuse can thereby effectively be confined and
isolated. In particular, the language provides the possibility to
relax rules about data type compatibility in these cases. In a
capable system-programming lanquage it is possible to express
input/output conversion procedures, file handling routines, storage
allocators, process schedulers etc. Such facilities must therefore
not be included as elements of the language itself, but appear as
(so-called low-level) modules which are components of most programs
written. Such a collection of standard modules is therefore an
essential part of a Modula-2 implementation.

The concept of processes and their synchronization with signals as
included 1in Modula is replaced by the 1lower-level notion of
coroutines in Modula-2. It 1is, however, possible to formulate a
(standard) module that implements such processes and signals. The
advantage of not including them in the langquage itself is that the
programmer may select a process scheduling algorithm tailored to his
particular needs by programming that module on his own. Such a
scheduler can even be entirely omitted in simple (but frequent)
cases, e.g. when concurrent processes occur as device drivers only.

A modern system programming language should in particular also
facilitate the construction of large programs, possibly designed by
several people. The modules written by individuals should have well~-
specified interfaces that can be declared independently of their
actual implementations. Modula-2 supports this idea by providing
separate definition and implementation modules. The former define
all objects exported from the corresponding implementation module;
in some cases, such as procedures and types, the definition module
specifies only those parts that are relevant to the interface, 1i.e.
to the user or client of the module.

Chapter 15 of this report describes the use of an implementation of
Modula-2 on the PDP-11 computer. This programming system consists of
a multi-pass compiler, a linker, and a loader. The compiler allows
to translate individual modules which can be combined by the linker.
The resulting linker output is loaded for execution by the loader.
Compatibility checks (e.g. for type consistency) between the
separately compiled modules are performed by the compiler.

Chapter 16 is a collection of a few widely usable utility modules,
particularly for input -and output handling. Listed are the
respective definition modules augmented by explanations of the
meaning of the exported procedures.

This report is not intended as a programmer's tutorial., It is
intentionally kept concise, and (we hope) clear. Its function is to
serve as a reference for programmers, implementors, and manual
writers, and as an arbiter, should they find disagreement.

I should 1like to acknowledge the inspiring influence which the
language MESA [3] has exerted on the design of Modula-2. An extended
opportunity to use the sophisticated MESA system has taught me how
to tackle problems on many occasions, and on a few that it is wiser
to avoid them altogether. Acknowledgment is also due to the
implementors of Modula-2, L. Geissmann, A. Gorrengourt, Ch. Jacobi,
and S.E. Knudsen, who have carefully proofread the manuscript, and
whose invaluable feedback has helped to keep the language designer's
fancies on firm ground.

References:

1. N.Wirth. The programming language PASCAL. Acta Informatica 1, 35-
63 (1971).

2. N.Wirth. Modula: a language for modular multiprogramming.
Software - Practice and Experience, 7, 3-35 (1977).

3. J.G.Mitchell, W. Maybury, R.Sweet. Mesa Language Manual. Xerox
PARC, CSL-78-1, (1978).

2. Notation for syntactic description

To describe the syntax, an Extended Backus-Naur Formalism called
EBNF is used. Syntactic entities (non-terminal symbols) are denoted
by English words expressing their intuitive meaning. Symbols of the
language (terminal symbols) either are words written in capital
letters, or they are strings enclosed in quote marks. Each syntactic
rule (production) has the form

S = E.
where S is a syntactic entity and E is a syntax expression denoting
the set of sentential forms (sequences of symbols) for which §
stands. An expression E has the form

TV | T2)] «e. | Tn (n > @)
where the Ti are the terms of E. Each Ti stands for a set of
sentential forms, and E denotes their union. Each term T has the
form

Fl1 F2 ... Fn ' (n > @)

where the Fi are the factors of T. Each Fi stands for a set of

sentential forms, and T denotes their concatenation. The
concatenation of two sets of sentences 1is the set of sentences
consisting of all possible concatenations of a sentence from the
first factor followed by a sentence from the second factor. Each
factor F is either a (terminal or non-terminal) symbol, or it is of
the form [E 1 denoting the union of the set E and the empty
sentence, or { E } denoting the union of the empty sequence and E,
EE, EEE, Parentheses may be used for grouping terms and
factors.

EBNF 1is capable of describing its own syntax. We use it here as an
example:

syntax = {production}.

production = NTSym "=" expression "."

expression = term {"|{" term}.

term = factor {factor}.

factor = TSym | NTSym | "(" expression ")" |

"[" expression "]" | "{" expression "}"

3. Vocabulary and representation

A language is an infinite set of sentences (programs), namely the
sentences well formed according to its syntax. Each sentence
(program) is a finite sequence of symbols from a finite vocabulary.
The vocabulary of Modula-2 consists of identifiers, numbers,
strings, operators, and delimiters. They are called lexical symbols
or tokens, and in turn are composed of sequences of characters.
(Note the distinction between symbols and characters.) The
representation of symbols in terms of characters depends on the
underlying character set. The ASCII set is used in this paper, and
the following lexical rules must be observed:

1. Identifiers are sequences of 1letters and digits. The first
character must be a letter.

S ident = letter {letter | digit}.

Examples:
X scan Modula ETH GetSymbol firstLetter

2. Numbers are (unsigned) integers or real numbers. Integers are
sequences of digits. If the number is followed by the 1letter B,
it is taken as an octal number; if it is followed by the letter
H, it is taken as a hexadecimal number; if it is followed by the
letter C, it denotes the character with the given (octal) ordinal
number (and is of type CHAR, see 6.1). An integer i in the range
g <= i <= MaxInt can be considered as either of type INTEGER or
CARDINAL; if it is in the range MaxInt < i <= MaxCard, it is of
type CARDINAL. For 16-bit computers: MaxInt = 32767,
MaxCard = 65535.

A real number always contains a decimal point. Optionally it may
also contain a decimal scale factor. The letter E is pronounced
as "ten to the power of". A real number is of type REAL.

number = integer | real.

integer = digit {digit} | octalDigit {octalDigit} ("B"["C")]
digit {hexDigit} "H".

real = digit {digit} "." {digit} [ScaleFactor].

ScaleFactor = "E™ ["+"}"-"] digit {digit}.

hexDigit = digit |®A™|"B"|"C"|"D"|™E"|"F".

digit = octalbDigit | "8"{"9".

octalDigit = "@"|"1"["2"|"3"|"4"|"5"|"6"|"7".

0w n

Examples:
1980 3764B 7BCH 33C 12.3 45.67E-8

3. Strings are sequences of characters enclosed in quote marks. Both
double quotes and single quotes (apostrophes) may be used as
quote marks. However, the opening and closing marks must be the
same character, and this character cannot occur within the
string. A string must not extend over the end of a line.

$ string = "'" {character} "'" | '"' {character} '"' .

A single-character string is of type CHAR, a string consisting of
n>1 chararcters is of type (see 6.4)

ARRAY [#..n-]1] OF CHAR

Examples:
“MODULA" "Don't worry!” 'codeword "Barbarossa"'

4. Operators and delimiters are the special characters, character
pairs, or reserved words listed below. These reserved words
consist exclusively of capital letters and MUST NOT be used in
the role of identifiers. The symbols # and <> are synonyms, and
so are & and AND.

+ = AND FOR QUALIFIED
- + ARRAY FROM RECORD
* < BEGIN IF REPEAT
/ > BY IMPLEMENTATION RETURN
1= < CASE IMPORT SET
& <= CONST IN THEN
. >= DEFINITION LOOP TO
R .o DIV MOD TYPE
; : Do MODULE UNTIL
() ELSE NOT VAR
[1 ELSIF OF WHILE
{ } END OR WITH
T i EXIT POINTER

EXPORT PROCEDURE

5. Blanks must not occur within symbols (except in strings). Blanks
and line breaks are ignored unless they are essential to separate
two consecutive symbols.

6. Comments may be inserted between any two symbols in a program.
They are arbitrary character sequences opened by the bracket (*
and closed by *). Comments may be nested, and they do not affect
the meaning of a program.

4, Declarations and scope rules

Every identifier occurring in a program must be introduced by a
declaration, unless it -is a standard identifier. The latter are
considered to be predeclared, and they are valid in all parts of a
program. For this reason they are called pervasive. Declarations
also serve to specify certain permanent properties of an object,
such as whether it is a constant, a type, a variable, a procedure,
or a module.

The identifier is then used to refer to the associated object. This
is possible in those parts of a program only which are within the
so-called scope of the declaration. In general, the scope extends
over the entire block (procedure or module declaration) to which the
declaration belongs and to which the object is local. The scope rule
is augmented by the following cases:

1. If an identifier x defined by a declaration D1 is used in another
declaration (not statement) D2, then DI must textually precede
D2.

2. A type T1 can be used in a declaration of a pointer type T (see
6.7) which textually precedes the declaration of T1, if both T
and Tl are declared in the same block. This is a relaxation of
rule 1.

3. If an identifier defined in a module M1 is exported, the scope
expands over the block which contains M1. If Ml is a compilation
unit (see Ch. 14), it extends to all those units which import M1,

4. Field identifiers of a record declaration (see 6.5) are valid
only in field designators and in with statements referring to a
variable of that record type.

An identifier may be qualified. In this case it 1is prefixed by
another identifier which designates the module (see Ch. 11) in which
the qualified identifier is defined. The prefix and the identifier
are separated by a dot.

$ qualident = ident {"." ident}.

The following are standard identifiers:

ABS (16.2) INCL (19.2)
ADR (18.2) INTEGER (6.1)
ASH (16.2) HALT (19.2)
BITSET (6.6) HIGH (10.2)
BOOLEAN (6.1) NEW (19.2)
CAP (19.2) NIL (6.7)
CARDINAL (6.1) oDD (18.2)
CHAR (6.1) PROC (6.8)
DEC (18.2) REAL (6.1)
DISPOSE (19.2) ROUND (19.2)
EXCL (108.2) SIZE (18.2)
FALSE (6.1) TRUE (6.1)
FLOAT (10.2) TSIZE (19.2)

INC (10.2)

5. Constant declarations

A constant declaration associates an identifier with a constant
value.

ConstantDeclaration = ident "=" ConstExpression.
ConstExpression = SimpleConstExpr {relation SimpleConstExpr].
relation = "=" | “§¥ [O | "KM | "K=" | ">" | ">=" | IN .
SimpleConstExpr = {"+"|"~"] ConstTerm {AddOperator ConstTerm}.
AddOperator = "+" | "-" | OR .
ConstTerm = ConstFactor {MulOperator ConstFactor}.
MulOperator = "** | *"/% | DIV | MOD | AND | "&" .
ConstFactor = qualident | number | string | set |

"(" ConstExpression ")" | NOT ConstFactor.
set = [qualident] "{" [element {"," element}] "“}".
element = ConstExpression (".." ConstExpression).

wnntrunannnannsnn

The meaning of operators is explained in Chapter 8. The identifier
preceding the left brace of a set specifies the type of the set. If
it is omitted, the standard type BITSET is assumed (see 6.6).

Examples of constant declarations:

N = 109
limit = 2*N -}
all = {@..WordSize-1}

6. Type declarations

A data type determines a set of values which variables of that type
may assume, and it associates an identifier with the type. In the
case of structured types, it also defines the structure of variables
of this type. There are three different structures, namely arrays,
records, and sets.

$ TypeDeclaration = ident "=" type.

$ type = SimpleType | ArrayType | RecordType | SetType |
$ PointerType | ProcedureType.

$ SimpleType = qualident | enumeration | SubrangeType.

Examples:

Color = (red, green, blue)
Index = [1 .. 88]
Card = ARRAY Index OF CHAR
Node = RECORD key: CARDINAL;
left, right: TreePtr

END
Tint = SET OF Color
TreePtr = POINTER TO Node
Function = PROCEDURE (CARDINAL): CARDINAL

6.1. Basic types
The following basic types are predeclared and denoted by standard

identifiers:

INTEGER A variable of type INTEGER assumes as values the
integers between MinInt and MaxInt.

CARDINAL A variable of type CARDINAL assumes as values the
integers between # and MaxCard.

BOOLEAN - A variable of this type assumes the truth values TRUE
or FALSE. These are the only values of this type which
is predeclared by the enumeration

BOOLEAN = (FALSE, TRUE).

CHAR ‘A variable of this type assumes as values characters
of the ASCII (ISO) character set.
REAL A variable of this type assumes as values real
numbers.
For implementations on 16-bit Computers, MinInt = -32768,

MaxInt = 32767, and MaxCard = 65535.

6.2. Enumerations

An enumeration is a list of identifiers that dénote the values which
constitute a data type. These identifiers are used as constants in
the program. They, and no other values, belong to this type. The
values are ordered, and the ordering relation is defined by their
sequence in the enumeration.

$ enumeration = "(" IdentList ")".
$ IdentList = ident {"," ident}.

Examples of enumerations:
(red, green, blue)

(club, diamond, heart, spade)
(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday)

6.3. Subrange types

A type T may be defined as a subrange of another, basic or
enumeration type T1 (except REAL) by specification of the least and
the highest value in the subrange.

$ SubrangeType = "[" ConstExpression ".." ConstExpression "]".

The first constant specifies the lower bound, and must not be
greater than the upper bound. The type T1 of the bounds is called
the base type of T, and all operators applicable to operands of type
T1 are also applicable to operands of type T. However, a value to be
assigned to a variable of a subrange type must lie within the
specified interval. If the lower bound is a non-negative integer,
the base type of the subrange is taken to be CARDINAL; if it is a
negative integer, it is INTEGER.

A type T1 1is said to be compatible with a type T#, if either
Tl = T8, or Tl is a subrange of T@, or T@# is a subrange of T}, or if

T8 and T1 are both subranges of the same (base) t&pe.

Examples of subrange types:
{6 .. N-1]
[HA'I .o -Zl]
{Monday .. Friday]

6.4. Array types

An array is a structure consisting of a fixed number of components
which are all of the same type, called the component type. The
elements of the array are designated by indices, values belonging to
the so-called index type. The array type declaration specifies the
component type as well as the index type. The latter must be an
enumeration, a subrange type, or one of the basic types BOOLEAN or
CHAR.

$ ArrayType = ARRAY SimpleType {"," SimpleType} OF type.
A declaration of the form
ARRAY T1, T2, «eo , TN OF T

with n index types T! ... Tn must be understood as an abbreviation
for the declaration

ARRAY T1 OF
ARRAY T2 OF

ARRAY Tn OF T
Examples of array types:

ARRAY [@..N-1] OF CARDINAL

ARRAY [1..10], [1..20]) OF [8..99]
ARRAY [-10¢..410] OF BOOLEAN
ARRAY WeekDay OF Color

ARRAY Color OF WeekDay

6.5. Record types

A record type is a structure consisting of a fixed number of
components of possibly different types. The record type declaration
specifies for each component, called field, its type and an
identifier which denotes the field. The scope of these so-called
field identifiers is the record definition itself, and they are also
accessible within field designators (see 8.1) refering to components
of record variables.

A record type may have several variant sections, in which case the
first field of the section is called the tag field. 1Its value
indicates which variant is assumed by the section. Individual
variant structures are identified by so-called case labels. These
labels are constants of the type indicated by the tag field.

- 19 -

RecordType = RECORD FieldListSequence END.
FieldListSequence = FieldList {";" FieldList}.
FieldList = [Identlist ":" type |
CASE [ident ":"] qualident OF variant {"|" . variant}
[ELSE FieldListSequence] END].
variant = CaselabelList ":" FieldListSequence.
CaselabellList = Caselabels {"," Caselabels}.
CaseLabels = ConstExpression [".." ConstExpression].

LR OGRIVRORDELE RS

Examples of record types:

RECORD day: [1..31]);
month: [1..12];

year: [0..2000]
END

RECORD
name,firstname: ARRAY {#..9] OF CHAR;
age: [0..99];
salary: REAL

END

RECORD x,y: T@;

CASE tag#: Color OF
red: a: Trl; b: Tr2 |
green: c: Tgl; d: Tg2 |
blue: e: Tbl; f: Tb2

END;

z: T@;

CASE tagl: BOOLEAN OF
TRUE: u,v: INTEGER |
FALSE: r,s: CARDINAL

END

END

The example above contains two variant sections. The variant of the
first section 1is indicated by the value of the tag field tag@, the
one of the second section by the tag field tagl.

RECORD
CASE BOOLEAN OF
TRUE: 1i: INTEGER (*signed*) |
FALSE: r: CARDINAL (*unsigned¥)
END
END

This example shows a record structure without fixed part and with a
variant part with missing tag field. In this case the actual variant
assumed by the variable cannot be derived from the variable's value
itself. This situation 1is sometimes appropriate, but must be
programmed with utmost care.

6.6. Set types

A set type defined as SET OF T comprises all sets of values of its
base type T. This must be a subrange of the integers between # and

-11 -
WordSize-i1, or a (subrange of an) enumeration type with at most
WordSize values.))
$ SetType = SET OF SimpleType.
The standard type BITSET is defined as

BITSET = SET OF [# .. WordSize-1]

6.7. Pointer types

Variables of a pointer type P assume as values pointers to variables
of another type T. The pointer type P is said to be bound to T. A
pointer value is generated by a call to the standard procedure NEW
(see 10.2).

$ PointerType = POINTER TO type.

Besides such pointer values, a pointer variable may assume the value
NIL, which can be thought as pointing to no variable at all.

6.8. Procedure types

variables of a procedure type T may assume as their value a
procedure P. The (types of the) formal parameters of P must
correspond to those indicated in the formal type list of T. P must
not be declared local to another procedure, and neither can it be a
standard procedure.

$ ProcedureType = PROCEDURE [FormalTypelist].

$ FormalTypelList = " (" [[VAR] FormalType

$ {",® [VAR] FormalType}] ")" (":" qualident].

The standard type PROC denotes a parameterless procedure:

PROC = PROCEDURE

7. variable declarations

variable declarations serve to introduce variables and associate
them with a unique identifier and a fixed data type and structure.
Variables whose identifiers appear in the same list all obtain the
same type.

$ variableDeclaration = IdentList ":" type.
The data type determines the set of values that a variable may

assume and the operators that are applicable; it also defines the
structure of the variable.

- 12 -

Examples of variable declarations (refer to examples in Ch. 6):
i,j: CARDINAL .
ks INTEGER
pP,q: BOOLEAN
St BITSET
F: Function
a: ARRAY Index OF CARDINAL
w: ARRAY [06..7] OF

RECORD ch : CHAR;
count : CARDINAL
END
t: TreePtr

8. Expressions

Expressions are constructs denoting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operands and
operators. Parentheses may be used to express specific associations
of operators and operands.

8.1. Operands

With the exception of 1literal constants, i.e. numbers, character
strings, and sets (see Ch. 5), operands are denoted by so-called
designators. A designator consists of an identifier referring to the
constant, 'variable, or procedure to be designated. This identifier
may possibly be qualified by module identifiers (see Ch. 4 and 11),
and it may be followed by selectors, if the designated object is an
element of a structure. If the structure is an array A, then the
designator A[E] denotes that component of A whose index 1is the
current value of the expression E. The index type of A must be
assignment compatible with the type of E (see 9.1). A designator of
the form A{El, E2, ... , En] stands as an abbreviation for
A[E1]1[E2] ... [En]. If the structure is a record R, then the
designator R.f denotes the record field £ of R. The designator Pf
denotes the variable which is referenced by the pointer P.

$ designator = qualident {"." ident | *([" ExpList "]* | "T"}.
$ ExpList = expression {"," expression}.

If the designated object is a variable, then the designator refers
to the variable's current value. If the object 1is a function
procedure, a designator without parameter 1list refers to that
procedure. If it is followed by a (possibly empty) parameter 1list,
the designator implies an activation of the procedure and stands for
the value resulting from its execution, i.e. for the so-called
"returned® value. The (types of these) actual parameters must
correspond to the formal parameters as specified in the procedure's
declaration (see Ch. 18).

- 13 -

Examples of designators (see examples in Ch. 7):
K

(INTEGER)
afi] (CARDINAL)
wi3].ch (CHAR)
tT.key (CARDINAL)

tT.leftT.right (TreePtr)

8.2. Operators

The syntax of expressions specifies operator precedences according
to four classes of operators. The operator NOT has the highest
precedence, followed by the so-called multiplying operators, then
the so-called adding operators, and finally, with the 1lowest
precedence, the relational operators. Sequences of operators of the
same precedence are executed from left to right.

expression = SimpleExpression [relation SimpleExpression].

SimpleExpression = [{"+"|"-"] term {AddOperator term}.

term = factor {MulOperator factor}.

factor = number | string | set | designator [ActualParameters] |
"(" expression ")"™ | NOT factor.

ActualParameters = " (" [ExpList] ")"

LOROROGEOGRORET

The available operators are listed in the following tables. In some
instances, several different operations are designated by the same
operator symbol. In these cases, the actual operation is identified
by the types of the operands.

8.2.1. Arithmetic operators

symbol operation
+ addition
- subtraction
* multiplication
/ real division
DIV integer division
MOD modulus

These operators (except /) apply to operands of type INTEGER,
CARDINAL, or subranges thereof. Both operands must be either of type
CARDINAL or a subrange with base type CARDINAL, in which case the
result is of type CARDINAL, or they must both be of type INTEGER or
a subrange with base type INTEGER, in which case the result is of
type INTEGER.

The operators +, -, and * also apply to operands of type REAL. In
this case, both operands must be of type REAL, and the result is

then also of type REAL. The division operator / applies to REAL
operands only.

wWhen used as operators with a single operand only, - denotes sign
inversion and + denotes the identity operation. Sign inversion
applies to operands of type INTEGER or REAL.

14 -

The operations DIV and MOD are defined by the following rules:
x DIV y is equal to the truncated quotient of x/y
X MOD y is equal to the remainder of the division x DIV y
x = (x DIVy) * y + (x MOD y)

8.2.2. Logical operators

These operators apply
result.

P OR g means
P AND g means

8.2.3. Set operators

to

operation
logical conjunction
logical disjunction
negation

BOOLEAN operands and vyield a BOOLEAN

"if p then TRUE, otherwise q"
"if p then q, otherwise FALSE"

operation

set union

set difference

set intersection
symmetric set difference

These operations apply to operands of any set type and yield a

result of the same type.

X IN (sl + s2)
x IN (sl - s2)
X IN (s1 * s2)
x IN (sl / s2)

8.2.4. Relations

iff
iff
iff
iff

(x
(x
(x
(x

IN s1) OR (x IN s2)

IN s1) AND NOT (x IN s2)
IN s1) AND (x IN s2)

IN sl) # (x IN s2)

Relations vyield a BOOLEAN result. The ordering relations apply to

the basic types INTEGER,
enumerations, and to subrange types.

HV VAASI|
1]

zn

CARDINAL, BOOLEAN, CHAR, REAL, to

relation

equal

unequal

less

less or equal (set inclusion)

greater

greater or equal (set inclusion)

contained in (set membership)

- 15 -

The relations = and # also apply to sets and pointers. If applied to
sets, <= and >= denote (improper) inclusion. The relation IN denotes
set membership. In an expression of the form x IN s, the expression
s must be of type SET OF T, where T is (compatible with) the type of
X.

Examples of expressions (refer to examples in Ch. 7):

1980 (CARDINAL)
k DIV 3 {INTEGER)
NOT p OR g { BOOLEAN)
(i+3) * (i-j) (CARDINAL)
s - {8,9,13} (BITSET)
ali] + aljl (CARDINAL)
ali+j] * al[i-j] (CARDINAL)
(B8<=k) & (k<108) (BOOLEAN)
tT.key = @ (BOOLEAN)
{13..15} <= s (BOOLEAN)
i IN {#, 5..8, 15} (BOOLEAN)

9., Statements

Statements denote actions. There are elementary and structured
statements. Elementary statements are not composed of any parts that
are themselves statements. They are the assignment, the procedure
call, and the return and exit statements. Structured statements are
composed of parts that are themselves statements. These are used to
express sequencing, and conditional, selective, and repetitive
execution,

$ statement = [assignment | ProcedureCall |

$ IfStatement | CaseStatement | WhileStatement |

$ RepeatStatement | LoopStatement | ForStatement |
$ WithStatement | EXIT | RETURN [expression]].

A statement may also be empty, in which case it denotes no action.
The empty statement is included in order to relax punctuation rules
in statement sequences.

9.1. Assignments

The assignment serves to replace the current value of a variable by
a new value indicated by an expression. The assignment operator is
written as ":=" and pronounced as "becomes".

$ assignment = designator ":=" expression.

The designator to the left of the assignment operator denotes a
variable. After an assignment 1is executed, the variable has the
value obtained by evaluating the expression. The old value is 1lost
("overwritten"). The type of the variable must be assignment
compatible with the type of the expression. Operands are said to be
assignment compatible, if either they are compatible, or of type
INTEGER or CARDINAL or subranges with base types INTEGER or
CARDINAL.

-16 -

A string of length nl can be assigned to a string variable of length

n2 > nl. In this case, the string value is extended with a null
character (6C).

Examples of assignments:

i =k
p:=1i=3j
j = log2(i+j)
F := log2
s := {2,3,5,7,11,13}
afi) := (i+3) * (i-j)
tT.key := i
w(i+1].ch := "aA"

9.2, Procedure calls

A procedure call serves to activate a procedure. The procedure call
may contain a list of actual parameters which are substituted in
place of their corresponding formal parameters defined 1in the
procedure declaration (see Ch. 18). The correspondence is
established by the positions of the parameters in the lists of
actual and formal parameters respectively. There exist two kinds of
parameters: variable and value parameters.

In the case of variable parameters, the actual parameter must be a
designator denoting a variable. If it designates a component of a
structured variable, the selector is evaluated when the
formal/actual parameter substitution takes place, i.e. before the
execution of the procedure. If the parameter is a value parameter,
the corresponding actual parameter must be an expression. This
expression is evaluated prior to the procedure activation, and the
resulting value 1is assigned to the formal parameter which now
constitues a local variable. The types of corresponding actual and
formal parameters must be compatible in the case of variable
parameters and assignment compatible in the case of value
parameters.

$ ProcedureCall = designator [ActualParameters].
Examples of procedure calls:
Read (i) (see Ch. 19)

Write(j*2+1,6)
INC(a[i])

9.3. Statement sequences

Statement sequences denote the sequence of actions specified by the
component statements which are separated by semicolons.

$ StatementSequence = statement {";" statement}.

-17 -

.4. If statements

9
$ IfStatement = IF expression THEN StatementSequence
$ {ELSIF expression THEN StatementSequence}

$ [ELSE StatementSequence] END.

The expressions following the symbols IF and ELSIF are of type
BOOLEAN. They are evaluated in the sequence of their occurrence,
until one vyields the value TRUE. Then its associated statement
sequence is executed. If an ELSE clause is present, its associated
statement sequence is executed if and only if all Boolean
expressions yielded the value FALSE.

Example:
IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier
ELSIF (ch >= "@") & (ch <= "9") THEN ReadNumber
ELSIF ch = '"' THEN ReadString('"')
ELSIF ch = "'" THEN ReadString("'")
ELSE SpecialCharacter
END

9.5. Case statements

Case statements specify the selection and execution of a statement
sequence according to the value of an expression. First the case
expression 1is evaluated, then the statement sequence is executed
whose case label list contains the obtained value. The type of the
case expression must be a basic type (except REAL), an enumeration
type, or a subrange type, and all labels must be compatible with
that type. No value must occur more than once as a case label. If
the value does not occur as a label of any case, the statement
sequence following the symbol ELSE is selected.)

$ CaseStatement = CASE expression OF case {"[|" case}
$ [ELSE StatementSequence] END.
$ case = Caselabellist ":" StatementSequence.

Example:
CASE i OF
@: p := p ORg; x := xt+y |
1: p :=pORQg; x :=x-y |
2: p := p AND g; x := x*y
END

9.6. While statements

while statements specify the repeated execution of a statement
sequence depending on the value of a Boolean expression. The
expression is evaluated before each subsequent execution of the
statement sequence. The repetition stops as soon as this evaluation
yields the value FALSE.

$ WhileStatement = WHILE expression DO StatementSequence END.

- 18 -

Examples:
WHILE j > 8 DO

j = Jj DIV 2; i := i+}
END
WHILE i # j DO
IF i > j THEN i := i-j
ELSE j := j-i
END
END

WHILE (t § NIL) & (tT.key # i) DO
t := tT.left
END

9.7. Repeat statements

Repeat statements specify the repeated execution of a statement
sequence depending on the value of a Boolean expression. The
expression 1is evaluated after each execution of the statement
sequence, and the repetition stops as soon as it yields the wvalue
TRUE. Hence, the statement sequence is executed at least once.

$ RepeatStatement = REPEAT StatementSequence UNTIL expression.
Example:

REPEAT k :

=i MOD j; i :=3; j :=k
UNTIL j = @

9.8, For statements

The for statement indicates that a statement sequence is to be
repeatedly executed while a progression of values is assigned to a
variable. This variable 1is called the control variable of the for
statement. It cannot be a component of a structured variable, it
cannot be imported, nor can it be a parameter. Its value should not
be changed by the statement sequence.

$ ForStatement = FOR ident ":=" expression TO expression
$ [BY ConstExpression] DO StatementSequence END.

The for statement
FOR v := A TO B BY C DO SS END

expresses repeated execution of the statement sequence SS with v
successively assuming the values A, A+C, A+2C, ... , A+nC, where
A+nC is the 1last term not exceeding B. v is called the control
variable, A the starting value, B the limit, and C the increment. A
and B must be assignment compatible with v; C must be a constant of
type INTEGER or CARDINAL. If no increment is specified, it |is
assumed to be 1.

- 19 -

Examples:
FOR i :=
FOR i :=

1 TO 86 DO j := j+ali] END
88 TO 2 BY -1 DO afi] := a[i-1] END

9.9. Loop statements

A loop statement specifies the repeated execution of a statement
sequence. It 1is terminated by the execution of any exit statement
within that sequence.

$ LoopStatement = LOOP StatementSequence END.

Example:
LOOP
IF t1T.key > x THEN t2 := tif.left; p := TRUE
ELSE t2 := t1f.right; p := FALSE END ;
IF t2 = NIL THEN EXIT END ;
tl = t2
END

While, repeat, and for statements can be expressed by 1loop
statements containing a single exit statement. Their use is
recommended as they characterize the most frequently occurring
situations where termination depends either on a single condition at
either the beginning or end of the repeated statement sequence, or
on reaching the 1limit of an arithmetic progression. The loop
statement is, however, necessary to express the continuous
repetition of cyclic processes, where no termination 1is specified.
It is also wuseful to express situations exemplified above. Exit
statements are contextually, although not syntactically bound to the
loop statement which contains them.

9.18. With statements

The with statement specifies a record variable and a statement
sequence. In these statements the gualification of field identifiers
may be omitted, if they are to refer to the variable specified in
the with <clause. If the designator denotes a component of a
structured variable, the selector is evaluated once (before the
statement sequence).

$ WithStatement = WITH designator DO StatementSequence END .
Example:
WITH tT DO

key := 6; left := NIL; right := NIL
END

9.11., Return and exit statements

A return statement consists of the symbol RETURN, possibly followed
by an expression E. It indicates the termination of a procedure (or

- 20 -

a module body). E specifies the value returned as result of a
function procedure, and its type must be assignment compatible with
the result type specified in the procedure heading (see Ch. 18).

Function procedures require the presence of a return statement
indicating the result value. There may be several, although only one
will be executed. In proper procedures, a return statement is
implied by the end of the procedure body. BAn explicit return
statement therefore appears as an additional, probably exceptional
termination point.

An exit statement consists of the symbol EXIT, and it specifies

termination of a loop statement and continuation with the statement
following the loop statement (see 9.9).

18. Procedure declarations

Procedure declarations consist of a procedure heading and a block
which 1is said to be the procedure body. The heading specifies the
procedure identifier and the formal parameters. The block contains
declarations and statements. The procedure identifier is repeated at
the end of the procedure declaration.

There are two kinds of procedures, namely proper procedures and
function procedures. The latter are activated by a function call as
a constituent of an expression, and vyield a result that is an
operand in the expression. Proper procedures are activated by a
procedure call. The function procedure is distinguished in the
declaration by indication of the type of its result following the
parameter 1list. 1Its body must contain a RETURN statement which
defines the result of the function procedure.

All constants, variables, types, modules and procedures declared
within the block that constitutes the procedure body are 1local to
the procedure. The values of 1local variables, including those
defined within a local module, are not defined upon entry to the
procedure. Since procedures may be declared as local objects too,
procedure declarations may be nested. Every object 1is said to be
declared at a certain level of nesting. If it is declared local to a
procedure at level k, it has itself level k+1. Objects declared in
the module that constitutes a compilation unit (see Ch. 14) are
defined to be at level 4.

In addition to its formal parameters and local objects, also the
objects declared in the environment of the procedure are known and
accessible in the procedure (with the exception of those objects
that have the same name as objects declared locally).

The use of the procedure identifier in a call within its declaration
implies recursive activation of the procedure.

ProcedureDeclaration = ProcedureHeading ";" block ident.
ProcedureHeading = PROCEDURE ident [FormalParameters].
block = {declaration} [BEGIN StatementSequence] END.
declaration = CONST {ConstantDeclaration ";"} |

TYPE {TypeDeclaration ";"} |

Ly A0

- 21 -

$ VAR {VariableDeclaration ";"} |
$ ProcedureDeclaration ";" | ModuleDeclaration ";".

10.1. Formal parameters

Formal parameters are identifiers which denote actual parameters
specified in the procedure call. The correspondence between formal
and actual parameters is established when the procedure is called.
There are two kinds of parameters, namely value and variable
parameters. The kind is indicated 1in the formal parameter list.
Value parameters stand for local variables to which the result of
the evaluation of the corresponding actual parameter is assigned as
initial value. Variable parameters correspond to actual parameters
that are variables, and they stand for these variables. Variable
parameters are indicated by the symbol VAR, value parameters by the
absence of the symbol VAR.

Formal parameters are local to the procedure, i.e. their scope is
the program text which constitutes the procedure declaration.

$ FormalParameters =

$ “(" [FPSection {";" FPSection}] ")" [":" qualident].
$ FPSection = ([VAR] IdentList ":" FormalType.

$ FormalType = [ARRAY OF] qualident.

The type of each formal parameter is specified in the parameter
list. In the case of variable parameters it must be compatible with
its corresponding actual parameter (see 9.2), in the case of value
parameters the formal type must be assignment compatible with the
actual type (see 9.1). If the parameter is an array, the form

ARRAY OF T

may be used, where the specification of the actual index bounds is
omitted. T must be compatible with the element type of the actual
array, and the index range is mapped onto the integers ¢ to N-1,
where N is the number of elements. The formal array can be accessed
elementwise only, or it may occur as actual parameter whose formal
parameter is without specified index bounds. A function procedure
without parameters has an empty parameter list. It must be called by
a function designator whose actual parameter list is empty too.

Restriction: If a formal parameter specifies a procedure type, then
the corresponding actual parameter must be either a procedure
declared at level @ or a variable (or parameter) of that procedure
type. It cannot be a standard procedure.

Examples of procedure declarations:

PROCEDURE Read (VAR x: CARDINAL);
VAR i : CARDINAL; ch: CHAR;
BEGIN i := 6;
REPEAT ReadChar (ch)
UNTIL (ch >= "g") & (ch <= "9");
REPEAT i := 16%i + (CARDINAL(ch)-CARDINAL("@"));
ReadChar (ch)

- 22 -

UNTIL (ch < "@") OR (ch > "9");
x :=1i
END Read

PROCEDURE Write(x,n: CARDINAL);
VAR i : CARDINAL;
buf: ARRAY [1..10] OF CARDINAL;
BEGIN i := g;
REPEAT INC(i); buf[i] := x MOD 19; x := x DIV 10
UNTIL x = 0@;
WHILE n > i DO
WriteChar(" "); DEC(n)
END ;
REPEAT WriteChar (CHAR(buf{i] + CARDINAL("@")));
DEC(1i)
UNTIL i = @;
END Write

PROCEDURE lo0g2(x: CARDINAL): CARDINAL;

VAR y: CARDINAL; (*assume x>@%*)
BEGIN x := x-1; y := @;

WHILE x > @ DO

X = X DIV 2; y := y+1

END ;

RETURN y
END log2

10.2. Standard procedures

Standard procedures are predefined. Some are so-called generic
procedures that cannot be explicitly declared, i.e. they apply to
classes of operand types or have several possible parameter list
forms. Standard procedures are

ABS (x) absolute value; result type = argument type

ADR (v) address of variable v (of type CARDINAL)
ASH(x,n) x % (2%%n)

CAP(ch) if ch is a lower case letter, the corresponding

capital letter; if ch is a capital letter, the
same letter

FLOAT (i) integer i represented as a REAL value

HIGH (a) high index bound of array a

ODD (x) X MOD 2 # 0

ROUND (x) x rounded to the nearest integer;
of type INTEGER

TSIZE(T) size of variables of type T

SIZE (x) size of variable x

DEC (x) X := x-]

DEC{x,n) X := X~n

EXCL(s,1i) s := 8 - {i}

INC (x) X := x+1

INC(x,n) X 1= x+n

INCL(s,i) s := s + {i}

HALT terminate program execution

- 23 -

The procedures INC and DEC also apply to operands x of enumeration

types and of type CHAR. In these cases they replace x by its (n-th)
successor or predecessor.

NEW and DISPOSE are translated into calls to ALLOCATE and
DEALLOCATE, procedures that are either explicitly programmed or
imported from another module.

NEW (p)

DISPOSE (p)
NEW(p,t1,t2, ...)
DISPOSE(p,t1,t2, ...)

ALLOCATE(p,TSIZE(T))

DEALLOCATE (p,TSIZE(T))

ALLOCATE (p,TSIZE(T,t1,t2,...)})
DEALLOCATE (p, TSIZE(T,t1,t2,...))

where p is declared as "VAR p: POINTER TO T".
These procedures must be compatible with the type

PROCEDURE (VAR ADDRESS, CARDINAL)

11. Modules

A module constitutes a collection of declarations and a sequence of
statements., They are enclosed in the brackets MODULE and END. The
module heading contains the module identifier, and possibly a number
of so-called import-lists and a so-called export-list. The former
-specify all identifiers of objects that are declared outside but
used within the module and therefore have to be imported. The
export-list specifies all identifiers of objects declared within the
module and used outside. Hence, a module constitutes a wall around
its 1local objects whose transparency is strictly under control of
the programmer.

Objects 1local to a module are said to be at the same scope level as
the module. They can be considered as being local to the procedure
enclosing the module but residing within a more restricted scope.

ModuleDeclaration =
MODULE ident [priority] ";" {import} [export] block ident.

priority = "[" integer "]".

export EXPORT [QUALIFIED] IdentList ";

import [FROM ident] IMPORT 1ldentList ";",

UVr W vty

The module identifier is repeated at the end of the declaration.

The statement sequence that constitutes the module body (block) is
executed when the procedure to which the module is local is called.
If several modules are declared, then these bodies are executed in
the sequence in which the modules occur. These bodies serve to
initialize local variables and must be considered as prefixes to the
enclosing procedure's statement part.

If an identifier occurs in the import (export) list, then the
denoted object may be used inside (outside) the module as if the
module brackets did not exist. If, however, the symbol EXPORT is
followed by the symbol QUALIFIED, then the listed identifiers must
be prefixed with the module's identifier when used outside the

- 24 -

module. This case is called qualified export, and is used when
modules are designed which are to be used in coexistence with other
modules not known a priori. Qualified export serves to avoid clashes
of 1identical identifiers exported from different modules (and
presumably denoting different objects).

A module may feature several import lists which may be prefixed with
the symbol FROM and a module identifier. The FROM clause has the
effect of "unqualifying” the imported identifiers. Hence they may be
used within the module as if they had been exported in normal, i.e.
non-qualified mode. '

If a record type is exported all its field identifiers are exported
without appearing in the export 1list. The same holds for the
constant identifiers in the case of an enumeration type.

Standard identifiers are always imported automatically. As a
consequence, standard identifiers can be redeclared in procedures
only, but not in modules, including the compilation unit (see Ch.
14).

Examples of module declarations:

The following module serves to scan a text and to copy it into an
output character sequence. Input 1is obtained characterwise by a
procedure 1inchr and delivered by a procedure outchr. The characters
are given in the ASCII code; control characters are ignored, with
the exception of LF (line feed) and FS (file separator). They are
both translated into a blank and cause the Boolean variables eoln
(end of 1line) and eof (end of file) to be set respectively. FS is
assumed to be preceded by LF.

MODULE Linelnput;
IMPORT inchr, outchr;
EXPORT read, NewlLine, NewFile, eoln, eof, lno;
CONST LF = 12C; CR = 15C; FS = 34C;
VAR lno: CARDINAL; (*line number?*)
ch: CHAR; (*last character read¥*)
eof, eoln: BOOLEAN;

PROCEDURE NewFile;
BEGIN
IF NOT eof THEN
REPEAT inchr(ch) UNTIL ch = FS;
END;
eof := FALSE; eoln := FALSE; 1lno
END NewFile;

[]
=

.

PROCEDURE NewLine;
BEGIN
IF NOT eoln THEN
REPEAT inchr(ch) UNTIL ch = LF;
outchr (CR); outchr (LF)
END ;
eoln := FALSE; INC(1lno)
END NewLine;

-~ 25 -~

PROCEDURE read (VAR x: CHAR);
BEGIN (*assume NOT eoln AND NOT eof*)
LOOP inchr(ch); outchr(ch);
IF ch >= " " THEN
X := ch; EXIT
ELSIF ch LF THEN
Xx := " "; eoln := TRUE; EXIT
ELSIF ch = FS THEN
X := " "; eoln := TRUE; eof := TRUE; EXIT
END
END
END read;

BEGIN eof := TRUE; eoln := TRUE
END LinelInput

The next example is a module which operates a disk track reservation
table, and protects it from wunauthorized access. A function
procedure NewTrack yields the number of a free track which is
becoming reserved. Tracks can be released by calling procedure
ReturnTrack.

MODULE TrackReservation;
EXPORT NewTrack, ReturnTrack;
CONST ntr = 1824; (* no. of tracks *)
w 16; (* word size ¥*)
m ntr DIV w;
VAR i: CARDINAL;
free: ARRAY [@#..m-1] OF BITSET;

PROCEDURE NewTrack(): INTEGER;
(*reserves a new track and yields its index as result,
if a free track is found, and -1 otherwise*)
VAR 1,j: CARDINAL; found: BOOLEAN;
BEGIN found := FALSE; i := m;
REPEAT DEC(i); j := w;
REPEAT DEC(J);
IF j IN free[i] THEN found:=TRUE END
UNTIL found OR (3j=0)
UNTIL found OR (i=@);
IF found THEN EXCL(free[i],j); RETURN i*w+j
ELSE RETURN -1
END
END NewTrack;

PROCEDURE ReturnTrack(k: CARDINAL);

BEGIN (*assume @ <= k < ntr *)
INCL(free{k DIV w], k MOD w)

END ReturnTrack;

BEGIN (*mark all tracks free¥*)
FOR i := @9 TO m-1 DO free[i] := {#..w-1} END
END TrackReservation

- 26 -

12. System~dependent facilities

Modula-2 offers certain facilities that are necessary to program so-
called low-level operations referring directly to objects particular
of a given computer and/or implementation. These include for example
facilities for accessing devices that are controlled by the
computer, and facilities to break the data type compatibility rules
otherwise imposed by the language definition. Such facilities are to
be used with utmost care, and it is strongly recommended to restrict
their use to specific modules (called low-level modules). Most of
them appear in the form of data types and procedures imported from
the standard module SYSTEM. A 1low-level module is therefore
explicitly characterized by the identifier SYSTEM appearing in its
import list.

Note: Because the objects imported from SYSTEM obey special rules,
this module must be known to the compiler. It is therefore called a
pseudo-module and need not be supplied as a separate definition
module (see Ch. 14).

The module SYSTEM exports the types WORD, ADDRESS, PROCESS, and the
procedures NEWPROCESS, TRANSFER, IOTRANSFER, and possibly others
depending on the operating system being used (see Ch. 13).

The type WORD represents an individually accessible storage unit. No
operation except assignment is defined on this type. However, if a
formal parameter of a procedure is of type WORD, the corresponding
actual parameter may be of any type that uses one storage word in
the given implementation. This includes the types CARDINAL, INTEGER,
BITSET and all pointers. If a formal parameter has the type ARRAY OF
WORD, its corresponding actual parameter may be of any type; in
particular it may be a record type to be interpreted as an array of
words.

The type ADDRESS is defined as
ADDRESS = POINTER TO WORD

It is compatible with all pointer types, and also with the type
CARDINAL. Therefore, all operators for integer arithmetic apply to
operands of this type. Hence, the type ADDRESS can be used to
perform address computations and to export the results as pointers.
The following example of a primitive storage allocator demonstrates
a typical usage of the type ADDRESS.

MODULE Storage;
FROM SYSTEM IMPORT ADDRESS;
EXPORT Allocate;

VAR lastused: ADDRESS;

PROCEDURE Allocate (VAR a: ADDRESS; n: CARDINAL);
BEGIN a := lastused; 1INC(lastused, n)

END Allocate;

BEGIN lastused := @
END Storage

Besides those exported from the pseudo-module SYSTEM, there are two
other, generally available facilities whose characteristics are

- 27 -

system—-dependent. The first is the possibility to use a type
identifier T as a name denoting the type transfer function from the
type of the operand to the type T. Evidently, such functions are
data representation-dependent, and they involve no explicit
conversion instructions.

The second facility is used in variable declarations. It allows to
specify the absolute address of a variable and to override the
allocation scheme of a compiler. This facility is primarily used to
access storage locations with specific purpose and fixed address,
such as e.g. device registers on a PDP-11 computer. This address is
specified as a constant integer expression enclosed in brackets
immediately following the identifier in the variable declaration.
The choice of an appropriate data type is left to the programmer.

Examples (see also 13.2):
VAR TWS [777564B]l: BITSET; (*typewriter status%*)
TWB [777566B]: CHAR; (*typewriter buffer¥*)

This facility should be considered as specific for the PDP-11
implementation.

13. Processes

Modula-2 is designed primarily for implementation on a conventional
single-processor computer. For multiprogramming it offers only some
very basic facilities which allow the specification of quasi-
concurrent processes and of genuine concurrency for peripheral
devices. The word "process"™ 1is here used with the meaning of
"coroutine”. Coroutines are processes that are executed by a
(single) processor one at a time.

13.1. Creating a process and transfer of control

A new process is created by a call to

PROCEDURE NEWPROCESS(P: PROC; A: ADDRESS; n: CARDINAL;
VAR pl: PROCESS)

P denotes the procedure which constitutes the-process,
A is the base address of the process' workspace,
n is the size of this workspace.

A new process with P as program and A as workspace of size n is
assigned to pl. This process is allocated, but not activated. P must
be a parameterless procedure declared at level §.

A transfer of control between two processes is specified by a call
to

PROCEDURE TRANSFER(VAR pl, p2: PROCESS)

The effect of this call is to suspend the current process, assign it
to pl, and to resume the process designated by p2. (Note: assignment

- 28 -

to pl occurs after identification of the new process p2; hence, the
actual parameters may be identical). Evidently, p2 must have been
assigned a process by an earlier call to either NEWPROCESS or
TRANSFER. Both procedures, as well as the type PROCESS, must be
imported from the module SYSTEM.

A program terminates, when control reaches the end of a procedure
which is the body of a process.

13.2. Device processes and interrupts

If a process contains an operation of a peripheral device, then the
processor may be transferred to another process after the operation
of the device has been initiated, thereby leading to a concurrent
execution of that other process with the so-called device process.
Usually, termination of the device's operation is signalled by an
interrupt of the main processor. In terms of Modula-2, an interrupt
is a transfer operation. This interrupt transfer is (in Modula-2
implemented on the PDP-11) preprogrammed by and combined with the
transfer after device initiation. This combination is expressed by a
call to

PROCEDURE IOTRANSFER(VAR pl, p2: PROCESS; va: CARDINAL)

In analogy to TRANSFER, this call suspends the calling device
process, assigns it to pl, resumes (transfers to) the suspended
process p2, and in addition causes the interrupt transfer occurring
upon device completion to assign the interrupted process to p2 and
to resume the device process pl. va is the so-called interrupt
vector address assigned to the device. The procedure IOTRANSFER must
be imported from the module SYSTEM, and should be considered as
PDP-11 implementation-specific.

It 1is necessary that interrupts can be postponed (disabled) at
certain times, e.g. when variables common to the cooperating
processes are accessed, or when other, possibly time-critical
operations have priority. Therefore, every module is given a certain
priority level, and every device capable of interrupting is given a
priority level. Execution of a program can be interrupted, if and
only 1if the interrupting device has a priority that is greater than
the priority level of the module containing the statement currently
being executed. Whereas the device priority is defined by the
hardware, the priority level of each module (9..7) is specified by
its heading. If an explicit specification is absent, the level in
any procedure is that of the calling program.

The following example shows a module with a process that acts as a
driver for a typewriter. The module contains a buffer B for N
characters.

MODULE Typewriter [4]; (*typewriter interrupt priority = 4%)
FROM SYSTEM IMPORT
WORD, PROCESS, NEWPROCESS, TRANSFER, IOTRANSFER, LISTEN;
EXPORT typeout;

CONST N = 32;

- 29 -

VAR n: INTEGER; (*no. of chars in buffer¥*)
in, out: [1..N];
B: ARRAY [1..N] OF CHAR;
PRO: PROCESS; (*producer*)
CON: PROCESS; (*consumer = typewriter driver*)
wsp: ARRAY [@..20) OF WORD;
TWS [177564B]: BITSET; (*status register*)
TWB [177566B]: CHAR; (*buffer register*)

PROCEDURE typeout(ch: CHAR);
BEGIN INC(n);

WHILE n > N DO LISTEN END ;

B[(in] := ch; in := in MOD N + 1;

IF n = & THEN TRANSFER(PRO,CON) END
END typeout;

PROCEDURE driver;
BEGIN
LOOP .DEC(n) ;
IF n < @ THEN TRANSFER(CON,PRO) END ;

TWB := B[out]; out := out MOD N + 1;
TWS := {6}; IOTRANSFER(CON,PRO,64B); TWS := {}
END

END driver;

BEGIN n := 0; in := 1; out := 1;
NEWPROCESS(driver, ADR(wsp), SIZE(wsp), CON);
TRANSFER (PRO, CON)

END Typewriter

LISTEN is a procedure that lowers the processor's priority level so
that pending interrupts may be accepted.

14, Compilation units

A text which is accepted by the compiler as a wunit is called a
compilation wunit. There are three kinds of compilation units: main
modules, definition modules, and implementation modules. A main
module constitutes a main program and consist of a so-called program
module., In particular, it has no export list. Imported objects are
defined in other (separately compiled) program parts which
themselves are subdivided into two units, called definition module
and implementation module.

The definition module specifies the names and properties of objects
that are relevant to clients, i.e. other modules which import from
it. The implementation module contains local objects and statements
that need not be known to a client. In particular the definition
module contains the export 1list, constant, type, and variable
declarations, and specifications of procedure headings. The
corresponding implementation module contains the complete procedure
declarations, and possibly further declarations of objects not
exported. Definition and implementation modules exist in pairs. Both
may contain import lists, and all objects declared in the definition
module are available in the corresponding implementation module
without explicit import.

- 39 -

DefinitionModule = DEFINITION MODULE ident ";" {import}
[export] {definition} END ident ".".
definition = CONST {ConstantDeclaration ";"} |
TYPE {ident ["=" type] ";"} |
VAR {vVariableDeclaration ";"} |
ProcedureHeading ";".
ProgramModule =
MODULE ident [priority] ";" {import} block ident ".".
CompilationUnit = DefinitionModule |
[IMPLEMENTATION] ProgramModule ".".

G VW Vrn rn

The definition module evidently represents the interface between the
definition/implementation module pair on one side and its clients on
the other side.

Definition modules require the use of qualified export. Type
definitions may consist of the full specification of the type (in
this case its export is said to be transparent), or they may consist
of the type identifier only. In this case the full specification
must appear in the corresponding implementation module, and its
export is said to be opaque. The type is known 1in the importing
client modules by its name only, and all its properties are hidden.
Therefore, procedures operating on operands of this type, and in
paricular operating on its components, must be defined in the same
implementation module which hides the type's properties. Opaque
export is restricted to pointers and to subranges of standard types.

Examples of compilation units follow in chapter 16.

15. Implementation and use of Modula-2

This chapter describes the use of Modula-2 in terms of its
implementation for the PDP-11 computer developed at ETH. This system
consits of a compiler, a linker, a debugger, and a basic executive
including a 1loader. The units of data which are accepted and
generated by these system components are files as defined by the
available file handler.

The basic executive is a resident program named MODULA. It accepts a
file name (default extensions is LOD) and, using its loader, loads
the named file. This file must have been generated by the linker and
carry the file name extension LOD. After 1loading, control is
transferred to that program, and upon termination of the program,
control returns to the basic executive. It indicates its readyness
to accept the file name of the next program by displaying an
asterisk ("*").

The compiler is itself a Modula-2 program and carries the file name
COMP. After loading, it requests the file name of the compilation
unit to be compiled. The assumed default extension is MOD. (The
extension MOD is recommended for program modules, DEF for definition
modules). The compiler generates a listing with the same file name
as the source and with extension LST. In the case of successful
compilation, it also generates a 1linkable object code file with
extension LNK in the case of a program module, or a symbol table
with file name extension SYM in the case of a definition module.

- 31 -

Additionally, a file to be used by the debugger is generated and
carries the extension REF (reference). Besides the source text, the
compiler requires as input the symbol table files (SYM) of all
modules specified in the import list of the compiled source program,

After compilation, the object code must be linked with the object
code of imported modules by the linker, which is itself a Modula-2
program named LINK. It requests the file name of the main program
(called the master file) which is to be 1linked (and assumes the
default extension LNK). It requires as further inputs the code files
of all modules to be linked, which must have the name extension LNK,
and it generates the loadable file with the name of the main program
module and extension LOD.

The 1linking process results in a so~-called core-image of the code,
and it determines the locations into which the 1loader will place
this code. The allocation strategy of the linker is based on a
stack; the linker accepts a specification of an environment, i.e. of
a code file (called the base file) assumed to be already present
(previously loaded). The default environment is the basic executive.
This scheme allows for so-called overlays, i.e. the loading of
program parts onto locations occupied by other, presently unused,
program parts, because the 1loader can be called directly from
programs themselves (see 16.6).

Compilation units of a program are compiled separately, but not
independently. The dependence is established by the symbol table
files, which allow the compiler to perform the necessary type
consistency checks. This scheme has the consequence that the
definition parts of imported modules must have been compiled prior
to compilation of the importing module. This chronological ordering
applies, however, to the respective definition modules only. It is
particularly noteworthy, that an importing module must be recompiled
whenever an imported definition module has been recompiled, but that
recompilation of an implementation module does not have any such
consequence, as long as 1its definition module is not altered
(recompiled) . In order to aid in maintaining consistency among the
linked versions of compilation units, the compiler supplies each
code and symbol table file with a date/time stamp, and the 1linker
refuses to link inconsistently generated files.

If a program terminates with an error, the state of the computation
can be inspected with the aid of the debugger. It is itself a
Modula-2 program called DEBUG. It requests the name of the
terminated program and requires the corresponding files with
extensions REF and LST. The state of computation is retained by a
file (core dump) generated upon error termination.

Most Modula-2 programs will make use of previously compiled utility
modules by importing them. Hence, an implementation will not only
consist of the basic executive, the compiler, etc., but also of a
collection of frequently used, utilities. They typically include
procedures for creating, reading, writing, and closing files, for
conventional conversions in input and output, for operating
peripheral devices, and for other purposes. Some such utility
modules are described in the following chapter. It must be kept in
mind, however, that these modules, although essential to most
programs, are not part of the language definition. In principle, any

- 32 -

implementation, in fact even every programmer, may supply its (his)
own versions of such modules, thereby creating its (his) own
environment of utilities that in most conventional computers belong
to its fixed operating system, or are even included in the language
definition. This additional flexibility is a direct consequence of
the module concept in conjunction with the facility for separate
compilation.

16. Standard utility modules

This chapter presents a collection of modules that are widely useful
and -~ for the sake of program transferability - suggested to be
available in every implementation of Modula-2., They are, however,
not part of the language. The <collection contains high-level
procedures for input and output, and presents a concept for quasi-
concurrent processes with signals for their synchronization.

16.1. Input and output

The procedures contained in the utility module InOut are used to
perform input from and output to standard input/output devices or to
sequential files. 1In particular, they perform the necessary data
representation conversions between the standard data types CARDINAL
and INTEGER, and sequences of characters. The input procedures read
from the system's standard input device (keyboard). The output
procedures write on the system's standard output device (display).
However, both input and output can instead be assigned to files by
calling OpenIO. This procedure requests the specification of the
names of the files (to be read and/or written). Input and output is
reset to the default devices (keyboard, display) by calling CloselO,
which must be called in order to close the associated files.

Several output procedures contain a parameter n specifying the
number of characters to be written. If n is greater than the number
m of characters actually needed to represent the value x, then n-m
blanks precede that value. If n is less than m, the specified n |is
ignored.

DEFINITION MODULE InOut; (*N.Wirth 6.2.80%)
FROM SYSTEM IMPORT WORD;
EXPORT QUALIFIED
StrLeng, String, OpeniIO, CloselO, Read, Readlnt,
Write, WritelInt, WriteCard, WriteOct, WriteHex,
Writeln, WriteString, ShowString;

CONST Strleng = 80;

TYPE String = ARRAY [#..StrLeng-1] OF CHAR;
PROCEDURE OpenlO;

PROCEDURE CloselO;

PROCEDURE Read (VAR ch: CHAR);

- 33 -

PROCEDURE ReadInt (VAR x: INTEGER;
VAR nextChar: CHAR; VAR IsNum: BOOLEAN);
(*skip blanks and control characters; if a sequence of

digits (possibly preceded by a sign) follows, read
it as a decimal integer. IsNum indicates whether a number
was read, nextChar gives the last character read, i.e. the
one following the sequence of digits. 8C signals the end
of the input stream. No tests for overflow are made.*)

PROCEDURE Write(ch: CHAR);
PROCEDURE WritelInt(x: INTEGER; n: CARDINAL);
PROCEDURE WriteCard(x, n: CARDINAL);
PROCEDURE WriteOct(w: WORD; n: CARDINAL);
PROCEDURE WriteHex(w: WORD; n: CARDINAL);
PROCEDURE Writeln;
PROCEDURE WriteString(s: String);
PROCEDURE ShowString(s: String; cr: BOOLEAN);
(* show s on standard output; if cr, terminate line *)

END InOut.

16.2. Streams

This module defines the abstract notion of a sequence., It implements
sequences of characters and words called streams in terms of files
as presented by the utility module Files.

A stream must first be connected to a file, which itself must first
have been opened. When a stream is connected, it can be read or
written as a sequence of characters or words. The type of the
stream's elements is defined when connecting the stream with a file,
and the stream must be read (written) accordingly with the
procedures ReadChar or ReadWord (WriteChar or WriteWord). Each call
sequentially reads (writes) the next element.

The writing of a stream must be terminated by a call to EndWrite.
Thereafter the stream may be disconnected from its file and the file
may be closed. After reading an element, the Boolean value obtained
from procedure EOS (end of stream) indicates whether the next
element had actually been read or the end of the stream was reached.
In the latter case, the value obtained by ReadChar is a null
character (@8C). The procedure Reset is used to reset the reading or
writing position to the beginning of the stream.

DEFINITION MODULE Streams; (* N.Wirth 22.1.80%)

FROM SYSTEM IMPORT WORD;
FROM Files IMPORT FILE;

EXPORT QUALIFIED
STREAM, Connect, Disconnect, Reset,
WriteWord, WriteChar, EndWrite,
ReadWord, ReadChar, EOS;

TYPE STREAM;

- 34 -

PROCEDURE Connect(VAR s: STREAM; f£: FILE; ws: BOOLEAN);
(* Connect stream s with (open) file f.
£ = RT-11 channnel number, # <= f < 16.
ws = "s is a word (not a character) stream" *)

PROCEDURE Disconnect(VAR s: STREAM; closefile: BOOLEAN);
PROCEDURE Reset(s: STREAM):;
PROCEDURE WriteWord(s: STREAM; w: WORD);
PROCEDURE WriteChar(s: STREAM; ch: CHAR);
PROCEDURE EndWrite(s: STREAM);
PROCEDURE ReadWord(s: STREAM; VAR w: WORD);
PROCEDURE ReadChar(s: STREAM; VAR ch: CHAR);
PROCEDURE EOS{s: STREAM): BOOLEAN;
END Streams.

The following two schemata demonstrate the typical use of streams.
The first generates a stream "out" connected with file 1, the second
reads a stream "in" connected to file 2.

VAR in, out: STREAM; ch: CHAR;

Connect(out, 1, FALSE);
REPEAT ... WriteChar(out, ch) ... UNTIL ... ;
EndWrite(out); Disconnect(out, FALSE);

Connect(in, 2, FALSE); ReadChar(in, ch);
WHILE NOT EOS(in) DO
... ReadChar(in, ch)
END ;
Disconnect(in, TRUE)

16.3. Files

This module allows the programmer to access files stored on disk
with Modula-2 procedure calls. Evidently, these procedures depend to
some degree on the wunderlying file system which is wusually an
integral part of the given operating system and cannot be determined
by the Modula-2 implementation. The module shown here is designed
for the RT-11 file system. RT-11 files are essentially sequences of
blocks of data corresponding to disk sectors. Each block consists of
512 characters or 256 words. Blocks are numbered 6, 1, 2,

Each file is identified by a value of type FILE, which in RT-11
terminology is called a channel number. A file is assigned a channel
number by calling either Lookup (when fetching an already existing
file 1listed 1in the dictionnary) or Create (when establishing a new
file) . Both procedures require the specification of a file name. An
existing file can either be read or overwritten. A new file is
entered in the dictionnary when calling the procedure Close (not by
Create) after writing has been completed. If this process registers
a file name identical to one listed already, then the old file is
deleted. An assigned channel number is freed either by Close or, if
the assigned file is not to be registered in the dictionnary, by
Release.

A file name consists of 12 characters (RT-11 convention). The first

-~ 35 -

three specify the device (default = "DK "), the next six are the

actual name, and the last three are the so-called name extension.
For further details, the reader is referred to the RT-11 manual.

DEFINITION MODULE Files; (* Ch. Jacobi 17.9.78 for RT-11 *%)

FROM SYSTEM IMPORT ADDRESS, WORD;
IMPORT SystemTypes;)

EXPORT QUALIFIED
FILE, FileName, Lookup, Create, Delete,
Release, Close, WriteBlock, ReadBlock, Rename,

SetBlock, TransmitBlock, Rad5@name, Radix50, Errcode;

(* Procedure RT-1) function
name request
Lookup . LOOKUP lookup file in dictionnary
Create .ENTER create a new file
Delete .DELETE delete file and entry from dictionnary
Release . PURGE release file, no dictionnary entry
Close .CLOSE close file and register in dictionnary
WriteBlock -WRITEW write
ReadBlock .READW read
Rename .RENAME rename a file ¥)

TYPE FILE = [@..15];
FileName = SystemTypes.FileName; (* ARRAY [#..11] OF CHAR *)

PROCEDURE Lookup(f: FILE; fn: FileName; VAR reply: INTEGER);
(* lookup file £ in dictionnary

reply: >=8 = done, file length
<@ = error
-1 = channel used
-2 = file not found *)

PROCEDURE Create(f: FILE; fn: FileName; VAR reply: INTEGER);
(* create a new file £

reply: >=@ = done, file length
<B = error
-1 = channel used
-2 = no space ¥*)

PROCEDURE Delete(f: FILE; fn: FileName; VAR reply: INTEGER);
(* delete file f and entry from dictionnary

reply: >=0 = done, file length
<@ = error
-1 = channel used
-2 = file not found ¥*)

PROCEDURE Close(f: FILE);
(* close file f and register in dictionnary *)

PROCEDURE Release(f: FILE);
(* release file £, no entry in dictionnary *)

- 36 -

PROCEDURE ReadBlock(f: FILE; p: ADDRESS; blknr, wcount: CARDINAL;
VAR reply: INTEGER);
(* read from file f
p: address of buffer
blknr: blocknumber of first block to read
wcount: number of words to read

reply: >=@ = number of words transferred
<@ = error
-1 = hard error
-2 = channel not open *)

PROCEDURE WriteBlock(f: FILE; p: ADDRESS; blknr, wcount: CARDINAL;
VAR reply: INTEGER);
(* write to file £
p: address of buffer
blknr: blocknumber of first block to write
wcount: number of words to write

reply: >=0 = number of words transferred
<@ = error
-1 = hard error
-2 = channel not open *)

PROCEDURE Rename{f: FILE; new, old: FileName;
VAR reply: INTEGER);
(* renames file f which must not be open

reply: 8 = done
<@ = error
-1 = channel used
-2 = file not found; *)
(* ___________________________ *)

TYPE RadS@name = ARRAY [@..3] OF INTEGER;

VAR Errcode[52B]: CHAR; (* RT-11 error location,
for detection of further errors *)

PROCEDURE Radix56 (VAR name: FileName; VAR nameS5#: RadS5@name);

PROCEDURE SetBlock(f: FILE; VAR fn: FileName; func, 1: CARDINAL;
VAR reply: INTEGER);

(* func: function code: @ = Delete; 1 = Lookup; 2 = Create
1l: file length code for Create
reply: >=0 done, file length
<0 error

-1
-2

channel used
file not found/no space *)

PROCEDURE TransmitBlock(f: FILE; func: CARDINAL;
PtrToBuf: ADDRESS; blknr, wcount: WORD;
VAR reply: INTEGER);

(* func: 19B Read; 11B = Write

reply: >=# = number of words transferred
<@ = error
-1 = hard error
-2 = channel not open *)

END Files.

- 37 -

16.4. Terminal input and output

This module exports a procedure that reads a character from the
keyboard and one that writes a character on the display (or
typewriter). A procedure SetMode allows to read according to several
different modes of operation; it is RT-11 specific.

DEFINITION MODULE TTIO; (* Ch. Jacobi 15.12,79 *)
EXPORT QUALIFIED Read, ReadAgain, Write, SetMode;
PROCEDURE Read (VAR ch: CHAR);

PROCEDURE ReadAgain;
(* put the last character back into the buffer,
such that it can be read again, only once %)

PROCEDURE Write(ch: CHAR);

PROCEDURE SetMode(m: CARDINAL; cc: BOOLEAN);
(* m = #: read does: No echo, give control back after any key
has been pressed, no special handling
of control characters. (default)

1 as m=@¢, but if neither a key is nor had
been pressed, a OC character is returned
immediately.

2: echo, buffer and wait until CR is pressed,
allow indirect command file input,
handle automatic backspaces.

cc = "interpret <ctrl>C as abort to RT-11" %)
END TTIO.

16.5. Storage management

The exported procedures ALLOCATE and DEALLOCATE serve to obtain and
return storage space for dynamically allocated variables. The
allocated space is identified by a pointer p; its size in terms of
storage units is specified by the parameter size.

Assuming the declarations

TYPE T = ... ;
VAR p: POINTER TO T;

the statements NEW(p) and DISPOSE(p) are translated by the compiler
into

ALLOCATE(p, TSIZE(T)) and
DEALLOCATE(p, TSIZE(T))

Therefore, whenever NEW or DISPOSE occur in a program, procedures
ALLOCATE and DEALLOCATE must either be imported or explicitly
declared. Usually, they will be imported from the standard module
Storage; however, it 1is also possible to import them from another
module supplied by the programmer.

- 38 -

DEFINITION MODULE Storage; (* Ch. Jacobi 5.12.79 *)
FROM SYSTEM IMPORT ADDRESS;
EXPORT QUALIFIED ALLOCATE, DEALLOCATE, SetMode;
PROCEDURE ALLOCATE (VAR p: ADDRESS; size: CARDINAL);
PROCEDURE DEALLOCATE (VAR p: ADDRESS; size: CARDINAL);
PROCEDURE SetMode(m: CARDINAL);
(* m= 1: ALLOCATE aborts when not enough free space (default)
2: ALLOCATE gives NIL when not enough free space *)

END Storage.

16.6. The Loader

This module exports the procedure Call, which loads a so-called
load-module generated by the linker. It uses a stack allocation
scheme. The base address of a load module is determined by the base
file specified when <calling the 1linker (default is the basic
operating system). The scheme allows programs to load other programs
(which are called overlays). The variable FirstFree specifies the
address of the top of the code stack.

DEFINITION MODULE Loader;
(* Ch. Jacobi, H.H. Naegeli 5.12.79 *)

FROM SystemTypes IMPORT FileName, LoadResultType, ErrorType;
EXPORT QUALIFIED Call, FirstFree;

VAR FirstFree: CARDINAL; (* address of first free location after
top overlay layer. Read-Only ¥)

PROCEDURE Call(fn: FileName; VAR LoadRes: LoadResultType;
VAR ExecutionRes: ErrorType);

(* Load and execute a program.
fn: Name of code file to be loaded
LoadRes: result of loading
ExecutionRes: result of execution *)

END Loader.

16.7. Process Scheduler

Several programming languages of recent years have postulated
concepts for expressing concurrent activities, notably Concurrent
Pascal, Modula, Pearl, and Portal. They all center around the notion
of the sequential process, augmented by a facility for the
synchronization of processes. Modula-2 instead features only the

-~ 39 -

lower-level coroutine concept with an explicit transfer of control
from one coroutine to another. The module described here shows how
processes and synchronization signals can be expressed in terms of
coroutines and transfer statements.

The module ProcessScheduler exports a procedure for starting a
process. Its parameters specify a procedure that is to represent the
process' actions, and a variable (array) that represents its
workspace. The module also exports a data type SIGNAL and its
associated operators SEND and WAIT. Each call SEND(s) wakes up
exactly one process waiting for s, if there is any. .

DEFINITION MODULE ProcessScheduler; (*N.Wirth, 29.1.88%)
FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED
SIGNAL, StartProcess, SEND, WAIT, Awaited, InitSignal;

TYPE SIGNAL;

PROCEDURE StartProcess(P: PROC; A: ADDRESS; n: CARDINAL);
(* start P with workspace A of length n ¥%)

PROCEDURE SEND (VAR s: SIGNAL);
(* resume first process waiting for s ¥*)

PROCEDURE WAIT(VAR s: SIGNAL);
(* insert at end of queue waiting for s and resume any
process that is ready ¥*)

PROCEDURE Awaited(s: SIGNAL): BOOLEAN;
PROCEDURE InitSignal (VAR s: SIGNAL);
END ProcessScheduler.

The essential difference between the above mentioned 1languages and
Modula-2 is that the former present processes as a distinct language
feature and therefore require a built-in, resident mechanism for
scheduling processes (at least for implementations with fewer
processors than processes), whereas Modula-2 allows (and requires)
the explicit programming of such an algorithm. It can be simple or
sophisticated depending on application and circumstances.

Subsequently we present one possible solution in the form of a
corresponding implementation module. Its characteristic is
simplicity, not sophistication. It corresponds very closely to the
nucleus of implementations of Modula. Processes with unscheduled
transfers, 1i.e. interrupts, represented by DOIO statements in
Modula, are not treated here.

The implementation module reveals that signals are represented by
queues (linked lists) of process descriptors. A signal variable
holds a pointer to the queue's head. SEND unlinks the first element
of a queue; WAIT inserts a descriptor at the queue's end, hence
establishing a first-in first-out strategy. All process descriptors
are also linked together in a ring. This ring serves to find a next
ready process after suspending the current process by a WAIT.

- 49 -

IMPLEMENTATION MODULE ProcessScheduler;
(* N. Wirth. 29.1.80 #*)
FROM SYSTEM IMPORT PROCESS, ADDRESS, NEWPROCESS, TRANSFER;
FROM Storage IMPORT ALLOCATE;

TYPE SIGNAL = POINTER TO ProcessDescriptor;
ProcessDescriptor =
RECORD ready: BOOLEAN;
pr: PROCESS;
next: SIGNAL; (* ring *)
queue: SIGNAL; (* waiting queue *)
END ;

VAR cp: SIGNAL; (* current process *)

PROCEDURE StartProcess(P: PROC; A: ADDRESS; n: CARDINAL);
(* start P with workspace A of length n *)
VAR t: SIGNAL;
BEGIN t := cp; NEW(cp);
WITH cp? DO
next := tT.next; ready := TRUE; queue := NIL; tT.next := cp
END ;
NEWPROCESS (P, A, n, cpl.pr); TRANSFER(tT.pr, cptl.pr)
END StartProcess;

PROCEDURE SEND(VAR s: SIGNAL);
(* resume first process waiting for s *)
VAR t: SIGNAL;
BEGIN
IF s # NIL THEN
t := cp; cp := s;
WITH cpl DO
S := queue; ready := TRUE; gqueue := NIL
END ;
TRANSFER(tT.pr, cptl.pr)
END
END SEND;

PROCEDURE WAIT(VAR s: SIGNAL);
VAR t#, tl: SIGNAL;

BEGIN (* insert current process at end of queue s *)
IF s = NIL THEN s := cp ELSE

tg := s;
LOOP t1 := t@T.queue;
IF t1 = NIL THEN tOf.queue := cp; EXIT END ;
tgd := ti
END
END ;

cpl.queue := NIL; cpl.ready := FALSE;
t@ := cp; (*now find next ready processt*)
LOOP cp := cpl.next;
IF cpl.ready THEN EXIT END ;
IF cp = t@ THEN HALT (*deadlock*) END
END ;
TRANSFER(t#2T.pr, cpl.pr)
END WAIT;

-4 -

PROCEDURE Awaited(s: SIGNAL): BOOLEAN;
BEGIN RETURN s # NIL
END Awaited;

PROCEDURE InitSignal(VAR s: SIGNAL);
BEGIN s := NIL
END InitSignal;

BEGIN NEW(cp);
WITH cpl DO
next := cp; ready := TRUE; queue := NIL
END
END ProcessScheduler.

WO wN —

18

- 42 -

Syntax summary and index

ident = letter {letter | digit}.
number = integer | real.
integer = digit {digit} | octalDigit {octalDigit} ("B"|"C")|
digit {hexDigit} "H".
real = digit {digit} "." {digit} ([ScaleFactor].
ScaleFactor = "E* ["+"|"-"] digit {digit}.
hexDigit = digit |"A"|"B"|"C"|"D"|"E"|"F".
digit = octalDigit | "8"|"9".
octalDigit = "g"["1"["2"|"3"|"4"|"5"|"6"|"7".
string = "'" {character} "'" | '*' {character} '"' .,
qualident = ident {"." ident}.
ConstantDeclaration = ident "=" ConstExpression.
ConstExpression = SimpleConstExpr [relation SimpleConstExpr].
relation = "=" | "§" | "<OM | "M | owg=" | wym | wy_w | TN
SimpleConstExpr = ["+"|"-"] ConstTerm {AddOperator ConstTerm}.
AddOperator = "+" | "-* | OR .
ConstTerm = ConstFactor {MulOperator ConstFactor}.
MulOperator = "#*" | "/® | DIV | MOD | AND | "&" .
ConstFactor = qualident | number | string | set |
"(" ConstExpression ")" | NOT ConstFactor.
set = [qualident] "{" [element {"," element}] "}".
element = ConstExpression [".." ConstExpression].
TypeDeclaration = ident "=" type.
type = SimpleType | ArrayType | RecordType | SetType |
PointerType | ProcedureType.
SimpleType = qualident | enumeration | SubrangeType.
enumeration = " (" IdentList ")".
IdentList = ident {"," ident}.
SubrangeType = "[" ConstExpression ".." ConstExpression "]".
ArrayType = ARRAY SimpleType {"," SimpleTypel OF type.
RecordType = RECORD FieldListSequence END.
FieldListSequence = FieldList {";" FieldList}.
FieldList = {IdentList ":" type |
CASE [ident ":"] gqualident OF variant {"|" variant}
[ELSE FieldListSequencel END].
variant = CaselLabellist ":" FieldListSequence.
CaselabelList = Caselabels {"," CaseLabels}.
CaselLabels = ConstExpression [".." ConstExpression].
SetType = SET OF SimpleType.
PointerType = POINTER TO type.
ProcedureType = PROCEDURE [FormalTypelList].
FormalTypeList = "(" [[VAR] FormalType
{",” [VAR] FormalType}l] ")" [":" qualident].
VariableDeclaration = IdentList ":" type.
designator = qualident {"." ident | "[" ExpList "]" | "T"}.
ExpList = expression {"," expression}.
expression = SimpleExpression [relation SimpleExpression].
SimpleExpression = ["+"|"-"] term {AddOperator term}.
term = factor {MulOperator factor}.
factor = number | string | set | designator [ActualParameters]
"(" expression ")" | NOT factor.
ActualParameters = “(" [ExpList] ")" .
statement = [assignment | ProcedureCall |
IfStatement | CaseStatement | WhileStatement |
RepeatStatement | LoopStatement | ForStatement |
WithStatement | EXIT | RETURN [expression]].

- 43 -~

57 assignment = designator ":=" expression.

58 ProcedureCall = designator [ActualParameters].

59 StatementSequence = statement {";" statement}.

68 IfStatement = IF expression THEN StatementSequence

61 {ELSIF expression THEN StatementSequence}

62 [ELSE StatementSequence] END.

63 CaseStatement = CASE expression OF case {"|" case}

64 [ELSE StatementSequence] END.

65 case = CaselabellList ":" StatementSequence.

66 WhileStatement = WHILE expression DO StatementSequence END.

67 RepeatStatement = REPEAT StatementSequence UNTIL expression.

68 ForStatement = FOR ident ":=" expression TO expression

69 [BY ConstExpression] DO StatementSequence END.

78 LoopStatement = LOOP StatementSequence END.

71 WithStatement = WITH designator DO StatementSequence END .

72 ProcedureDeclaration = ProcedureHeading ";" block ident.

73 ProcedureHeading = PROCEDURE ident [FormalParameters].

74 block = {declaration} [BEGIN StatementSequence] END.

75 declaration = CONST {ConstantDeclaration ";"} |

76 TYPE {TypeDeclaration ";"} |

77 VAR {VariableDeclaration ";"} |

78 ProcedureDeclaration ";" | ModuleDeclaration ";".

79 FormalParameters =

80 "(" [FPSection {";" FPSection}] ")" [":" qualident].

81 FPSection = [VAR] IdentList ":" FormalType.

82 FormalType = [ARRAY OF] qualident.

83 ModuleDeclaration =

84 MODULE ident [priority] ";" {import} [export] block ident.

85 priority = "[" integer "]".

86 export = EXPORT [QUALIFIED] IdentList ";".

87 import = [FROM ident]} IMPORT IdentList ";".

88 DefinitionModule = DEFINITION MODULE ident ";" {import}

89 [export] {definition} END ident ".".

99 definition = CONST {ConstantDeclaration ";"} |

91 TYPE {ident ["=" type] ";"} |

92 VAR {VariableDeclaration ";"} |

93 ProcedureHeading ";".

94 ProgramModule =

95 MODULE ident ([priority] ";" {import} block ident ".".

96 CompilationUnit = DefinitionModule |

97 [IMPLEMENTATION] ProgramModule ".".

assignment -57 53

ActualParameters 58 -52 58

AddoOperator 48 -16 15

ArrayType -390 24

block 95 84 -74 72

case -65 63 63

CaselabellList 65 -37 36

Caselabels -38 37 37

CaseStatement -63 54

CompilationUnit -96

ConstantDeclaration 99 75 -12

ConstExpression 69 38 38 29 29 22 22
-13 12

ConstFactor 20 -19 17 17

ConstTerm -17 15 15

character 10 196

20

DefinitionModule
declaration
definition
designator

digit

ExpList
element
enumeration
export
expression

factor

FieldList
FieldListSequence
FormalParameters
FormalType
FormalTypelList
ForStatement
FPSection
hexDigit
IdentList
IfStatement
ident

import

integer
LoopStatement
letter
ModuleDeclaration
MulOperator
number

octalDigit
priority
PointerType
ProcedureCall
ProcedureDeclaration
ProcedureHeading
ProcedureType
ProgramModule
qualident

RecordType
RepeatStatement
real

relation

set

statement

string
ScaleFactor
SetType
SimpleConstExpr
SimpleExpression
SimpleType
StatementSequence

SubrangeType

96

=75

-99
7
-8

52
-22
-27

89

68

56

51
-33

36
-79
-82
-42
-68
-81

-7

87
-60

95

73

12

95

85
-7

1
-83
49
5@
-9
95
-49
-58
78
93
-4
97
82
-11
-31
~-67
-5
47
50
59
58
-6
-39
-15
-48
39
74
62
-29

- 44 -

-88
74
89
58

-46
21

26

-86
68
51

-50
32
35
73
81
41
55
860

86
54
95
72
M
88
-3
55

78
-18
19

-85
25
53

=72

-73
25

-94
80

24
55

-14
=21
59
19

24
13
47
32
7
61
26

57

45
21

84
67
-47
49
32
-32

43

89
81

91
68
1M
-87

17
-2

84

72

45

13
19
~53
-10

13
47
30
7@
60

66
46
49

3
42

44

89
45
-1
84

43

-26
69
-59

-45

63
46

33

88
34

34

24
67

61

-28

87
28

26

66

60

27

84
28

21

65

57

84
23

19

64

term

type
TypeDeclaration
VariableDeclaration
variant
WhileStatement
WithStatement

-49
91
76
92

-36

-66

-7

- 45 -

48
44
-23
77
34
54
56

48
49

-44
34

33

30

23

