ON ""PASCAL'", CODE GENERATION, AND THE CDC 6000 COMPUTER

BY

NIKLAUS WIRTH

STAN-CS-72-257
FEBRUARY 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

O. r "oag*arCode Generation, and the CDC 6000 Conputer

by N kl aus wWirth

Abstract :

"RIUL AL 18 a genersl purpose programmng |anguage with character-
istics simlar to ALGOL 60, but with an enriched set of program and
data siiic Luclig Jwciiities. It has been inplenmented on the CDC 6000
computex Thir paper discusses selected topics of code generation,
in par b5 .o o “he selection of instruction sequences to represent,
sinple cgzrations on arithnetic, Boolean, and powerset operands.

Met hods to -inplement recursive procedures are briefly described, and

it is hirted that the nore sophisticated solutions are not necessarily
also the best. The CDC 6000 architecture appears as a frequent source
of pitfel 1< and nuisances, and its main trouble spots are scrutinized

and discussed.

The preparation of this paper was nmade possible by support from the
National Science Foundation, Gant nunber GJ-992, | BM Corporati on,
and Xerox Corporation.

ey

On "PASCAL", Code Generation, and the CDC 6000 Conputer

1. [ntroduction

This set of notes has a dual purpose. It is on the one hand

directed to the user of the PASCAL conpiler systemwho would like to

gain some insight into the machine code which is generated for various
basic operations. It is even recomended that he study these notes
careful 'y, because their understanding may prevent himfromcertain
pitfalls which are inherent in the use of the CDC 6000 computer [1].

On the other hand the notes-may be of interest to conpiler witers

in general, because they point out sone problens and di |l emmas and our
choices of solutions. It becones apparent that the choice of the code
to be generated is crucial for a good conpiler system and that it is
far from trivial as is usually believed.

The true purpose of a higher-level language is that it allows a
programmer to conceive his algorithns in terns of sone convenient

abstractions. For instance, he is given the opportunity to think in

terms of fanmiliar notions of nunbers, of relations, and of repetitions,
instead of having to express his programin terms of bitstrings
arithnetic instructions, and transfers of control. However, these
abstractions are only truly useful, if he can assune that his inplemen-

tation observes all the properties which are commonly attributed to

these abstractions, or else if it automatically issues a warning. As

an exanpl e, when dealing with nunbers in a high-level |anguage, one
should like to assume all the common axioms of arithmetic to hold. O
course this is not possible, since conputers can only represent finite

ranges of values. So one expects to receive a warning, if an operation

has trespassed the limts inposed by the inplenentation and an
operation generates a result not in accord with the rules governing
the abstraction. So the systemis expected to provide an error
indication, e.g. if an overflow occurs in an addition, if a value i S being
assigned which lies outside the specified range of values of variables,
or if an array index is used which lies outside the defined limts
Unfortunately, such potential warnings require the execution of
additional instructions, which in general is costly. As far as range
checking is concerned, they can be requested to be generated by the
conpiler for run-time execution by enabling so-called options. (The
A-option generates assignment range checks, the X-option index checks.)
They are relatively costly, but may speed up the finding of |ogica
m stakes a great deal
As far as irregularities of the arithnmetic are concerned, one has
becone used to receive these warning signals autonatically from the
hardware, particularly because they are easily generated by the hardware
whereas a solution to detect overflow by software is usually beyond any

reasonably economcal feasibility. Unfortunately, the CDC conputer

fails to satisfy even the nost nodest expectations in this respect, and
the effort to provide a systemwth security in the above sense was
therefore a series of constant frustrations. Equally disappointing are
sone of the "features" of its floating-point arithmetic instructions
One can go only a relatively short distance in trying to correct
m st akes of the hardware by means of software; otherw se a system
becomes ridiculously inefficient and will not be used by conscientious
programmers who are willing to take the peculiarities of a hardware

into account and guarantee safety of their algorithms by analytica

et AR cH

rather than experinmental neans. And this would have been against the
intentions of PASCAL. So all that can reasonably be done is to

elucidate the shortcomngs and linmtations of the hardware that are

still transparent through the "software cover", and to make the progranmer
fully aware of them And this is the purpose of this note

It concerns itself with the sinple operations of integer and rea
arithmetic, with Boolean operations and with powersets. The reader is
supposed to be famliar with the CDC COWPASS notation. The operands
are usually assumed to have been brought into the X and X2 registers
(If they were loaded into other registers, a corresponding renunbering
i's necessary which is, however, irrelevant to the operation itself)

Regi sters X1-X5 are used as a stack for internediate results, whereas
X0 is used exclusively as local work register.

Section 6 deals with the topic of inplenmenting recursive procedures
and the addressing of |ocal variables. Although the general techniques
are wel I -known, analysis of possible solutions and their experinenta
comparison yielded some noteworthy results. [t is shown that attenpts
to make full use of available hardware features such as base registers
may not necessarily lead to an optinal performance. Again, the
instruction set of the CDC conputer is hardly optiml to inplenent
nechani sns for recursive procedures. Conspicuously absent is a sub-

routine junp instruction which |eaves the code invariant (reentrant).

2. Integer Arithnetic

Data of type integer or of subranges thereof are represented by
fixed-point binary numbers. Addition and subtraction are represented
by the

Xi X o+ Xk
instructions. Qther operations are inplenented by short sequences of

instructions, as outlined bel ow

2.1 Multiplication

Due to a recent change of the hardware, fixed-point nultiplication

can be perfornmed by a single
DX1 x1*x2

instruction. It should, however, be noted that this instruction is
essentially a floating-point instruction, and yields incorrect answers
for fixed-point operands with |x| > 2lL8 . This can be regarded as an
overflow condition which is, alas, neither trapped nor indicated by the
conputer. A "safe code", checking against all inposed linits of operands
and result, is quite elaborate and uneconom cal by any standards, and was

therefore not inplemented

If one of the operands is a constant C being representable as

ei t her

1. c=2" (2, 4,8, 16...)

2. ¢ = 2m+2n (5) 55 6: 9, 10, 12 .i__
m n m=n

3. ec=2 -2 (7, 14, 15 ...)

then the conpiler generates the follow ng code for the multiplication

of XI by c
1: IX1 n mul tiply by 2"
2,3 IX1 n
Bxo X
LX1I mn
X1 X1+XO0
Again, overflow conditions are sinply ignored. Case 3 yields only

correct results, if |x1+2%| < 2?9

2.2 Division (div)

Integer division is represented by the instruction sequence

X1 X

PX2 X2 pack

NX2 x2

FX1 X1/Xx2 di vi de

UXl B7,X1

IX1 B7,X1

E’;(? ﬁ;ﬁg Suppress neg. zero

and suffers from the same basic shortcomng as nultiplication: an

operand |x| > 18 yields an incorrect result.

If the divisor is a constant ¢ = 2", the campiler agai n produces

an "optimzed" code, performing division by shifting. Unfortunately,

a single right shift instruction is unsatisfactory, because it may

generate a "negative" zero as result. Negative zeroes, however, nust

not be allowed to occur, since conparisons may yield wong answers if

applied to them Thus, the optinized division is inplenented as
AXL n di vi de by 2"
BXO X0-X0 suppress
| X1 X1+XO negative zero

Note that the unconditional generation and addition of a zero can be

acconplished with a code that is not only shorter than a conditional

junp, such as

AX1 n
NZ X1,L
sX1 BO

L

but al so avoids the insertion of padding instructions (NOPs) for word
boundary alignnent.

The D-option provides an additional security measure against
division by zero. It causes the conpiler to insert a

ZR X2, error

jump instruction preceding every division instruction. (This applies
to the Mdulus operation as well.) It is particularly recommended in
the case of integer division, where the actual divide instruction
generates a "floating-point infinity" value, which is incorrectly
treated by the subsequent conversion instructions and thereby represents

a senseless result.

2.3 Mdulus (mod)

The modul us or remainder operation is defined as

x mod y = x-(x div y)* v

As it involves integer nultiplication and division operations, it
suffers again fromthe sane deficiencies of the 6000 arithnetic. Its

correspondi ng code is:

D X

X6 X2
NX6 X6
FX6 X0/X6
UX6 BT,X6
IX6 B7,X6
DX6 X6¥X2
IX1 X1-X6

2.4 Sign inversion

The use of one's conpl ement representation for negative nunbers
makes again the nost obvious choice of code
BX1 -X
unsatisfactory, because it mght generate a "negative zero". So we use

BXO X0-XO
IX1 XO0-X1

2.5 Conparisons

Since the conputer does not offer a conpare instruction, subtraction
has to be used; this has primarily the disadvantage of generating wong
results in the case of overflow. The cases of testing for equality and
inequality are handled correctly, because the one*s conplement addition
generates an end-around-carry in the case of "negative overflow', thus
maintaining a result indicating inequality. Note that the Bool ean
subtraction

BX1 X1-X2
cannot be used, because a conparison of x| and x2 = -xI would yield
a zero result, thus indicating equality.

Wiereas equality testing is "safe" with the

Xl X1-X2
instruction ignoring overflows, this is not the case for the tests of
ordering (xI < x2) by subtraction and subsequent inspection of the
sign bit. The reason is that if overflow occurs, i.e., |x1-x2| > 229 s
then the sign bit will be the opposite of the true sign. This situation
Is quite hopeless, since overflowis in no sinple way detectable on this

machine. In order to obtain a (sign) bit representing the relation

x <y for any values x,y, the follow ng algorithmcan be used:
1 Conpare the signs of the two operands.
2. If they are different, then the result is obvious.
3. If they are equal, the subtraction x-y can be perforned
wi t hout danger of overflow, and x-y < 0 is the result.
A mniml instruction sequence to perform these operations and avoi ding

the use of undesirable junmp instructions is

BXO x1-x2 compare Sign bits

X2 X1-x2

BX1 XO*X1 i f unequal, choose sign of X
BX2 -XO*Xx2 i f equal, choose sign of xi-x2
BX1 x1+x2

Now the sign bit of XI is 1, if XI <X2 , and O otherwise. Still,
the effort to performa faultless conmparison is formdably cumbersome,
and the PASCAL conpiler does not generate it. The programmer is |eft

with the responsibility to verify that for every conparison of x and y ,

-v] <27 .

2.6 Taking the absolute value (ABS)

The code used to take an absolute value is designed to avoid junp
instructions, not only because they are long and slow, but because they

usual Iy introduce NOP instructions for alignnment.

Bxo Xl
AXO 59 generate 60 sign bits
BX1 XO0-X1

2.7 Testing for even or odd (QODD)

Since cne's complement representation is used for negative nunbers,
the least significant bit of the operand nust be conpared with its sign

bit:

BXO X
X0 59
BX1 X1-XO
This |leaves the sign-bit of Xl equal to 1, if X was odd, and

0 ot herwi se.

The conpiler "optimzes" in the case of CDD(x) with x being of
a subrange type with only non-negative values. It then generates the
single instruction

IX1 59

2.8 Summary

The foregoing explanations reveal that the absence of any overflow
i ndication makes analytical verifications necessary that guarantee the
non-occurrence of these conditions. An effective aid in experinental
testing is the A-option, causing interval check instructions to be
generated with every assignnent to a variable that is declared to be of
a subrange'type. The A-option is activated by the "coment"

{ar .. 3

and causes the code for an assignment to a variable

VAR V. a..b
to becone:
SX7 ¥ | ocation identification for error trap
X1 a
1x0 X6-X1
SXx1 b
X1 X1-X6
BXO X1+XO
NG X0, error jump to error routine
SA6 V

It should be noticed that unfortunately the attractive and shorter code

sequence

SX7 ¥

SX0 Xb6-a

SX1 X6-b-|
BXO -X1+XO
NG X0, error
SA6 vV

cannot be used, because the instructions
SXi Xj+K
perform an 18-bit arithmetic ignoring the leading 42 bits of the
register Xj which -- of course -- is not in the spirit of a check.
This ignoring rather than checking of the leading bits in 18-bit
arithnetic is the reason why the so-called "increment” instructions

cannot be used by the PASCAL conpiler, except in the follow ng specia

circumstance: if a variable x is declared of a subrange whose limits
are both less than 217 in absolute val ue, then the assignment statenent
x =X+k
i'S compiled as
SA1 X
SX6 X1tk
SA6 X

10

5. Floating-point Arithnetic

The PASCAL conpiler uses the canplete set of F-instructions for
arithnetic with values of type "real". Conparison is perforned by
subtraction due to the lack of a compare instruction. This is possible
wi thout handi cap since the occurrence of overflow generates a signed
"infinity" -value, but no immediate trap. Sign inversion is represented
by

BXO X0-XO generate zero
X1 X0-X1

and the absol ute val ue function by

BXO X
AX0 59
BX1 X0-X1

Arithnetic with the F-instruction possesses sone peculiar properties
which will briefly be reviewed, and has for instance the consequence that
X-y = 0 does not necessarily inply x =y, if the difference is
conmputed by an Finstruction. The trouble arises from the fact
that F-arithnetic truncates w thout rounding, and F-addition truncates
Wi thout post-normalization. Every addition is therefore conpiled into
two instructions:

FX1 X1+X2 add/ subt ract
Nxl X1 post-normalize

[f the two val ues

a = 1720 40...00B 1.0

-18

b =171717.. .77B 1.0-2
are conpared by subtraction
FXO X1-x2 a-b

the result is

1720 40... ...00 /00... . ..0
-1720 37... ® .. 77/%... . .0

1720 00... ...00/ bo... ...0

where the slash nmarks the separation between the |ower and the upper

hal f of the 96-bit accumulator. The result is 0 although the two

operands were different.

Notice that subtracting 0.5 from both a and b , and then

computing their difference, yields

a - 0.5=0.5 : 1717 40... . . . 00

b - 0.5=0.5-2-48 : 1716 77... ... 76

717 %0... ...00/00 0
-1717 37... ...77/00 .0 .00
Irir 00... ..012 /00 0

i.e., a difference which is not zero. Thus the result does not only

depend on the true result, but also on the values of the operands.
This unpl easant, property of the CDC F-arithnetic stens from the fact

that automatic post-normalization is absent.

5.1 Rounding

It was at one tine hoped that this defect could be avoi ded by
letting the PASCAL conpiler automatically generate R-instructions,
whi ch include a certain kind of rounding. However, R-arithnetic
turned out to feature some even stranger properties, so that it was
decided not to use R-instructions. |n order to point these features

cut, a brief review over R-arithnetic is necessary:

12

r— "

The R-instructions differ from the F-instructions only insofar

as a |-bit is appended to normalized operands before the arithnetic

operation is perfornmed. Thus for instance the subtraction of
b = 1.0-2748 froma = 1.0 yields
{

1720 40... ...00 /40 0

} | -bits appended
“1720_ 3Teee c0aT7/ 60 e «ea 0

1720 o0o0... .00 /6O0

whi ch of course is still zero.

The principal defect with "CDC-rounding", however, is that its
effect is unpredictably either the addition of 1/2 or 1/4 in the
l'ast position, because rounding takes place before instead of after
normal i zation (which nmust again be performed by a separate instruction).
The followi ng exanple illustrates this, which is shown on hand of a

five-bit nunber representation:

16 = 10000 / 1 inserted
+17 = 10001 / l:>' round-hits
33 = 100010 / 0
10001 / 0 = 3L
31 = 11111 / 1 inserted round- bit
+2 = 00010 / 0
33 = 100001 / 1
10000 / 1 = 32

In the first case, the pre-rounding results in correct rounding of the
not exactly representable 33 to 34 , \hereas in the second case
pre-rounding has no effect.

The same phenonmenon can be observed in the cases of nultiplication

and division. The followi ng exanpl e again uses a five-hit nunber

representation:

13

g

round-hit
!

15x12 = 11110 / 1 x llooo

11110 / 1 e—

+ 01111 / 01 e—0 01

101101 / 11
10110 / 111 = 176

round-bit
!

18 x10 = 10010 / 1 x 10100

10010 / 1 e——

+ 100 / 101 Le—d
10111 / 001 = 18k4

In the first case, the rounding effect is nil, |eaving the inexactly
representabl e value 180 be an unrounded 176; in the |atter case the

rounding effect transforns 180 into the value 18%. (Suitable adjust-
ment of exponents is not shown here.)

A method introducing proper rounding instead of "CDC-rounding"
relies on the use of the Dinstruction set [2]. Wereas the F-instructions
yield the high-order 48 bhits of the 96-bit accunul ator, the D-instructions
yield the loworder 4 bits with a suitably adjusted exponent, thereby
allowing access to a double precision result.

Notice that it is an ingeniously efficient nethod to conpute a
doubl e precision result by

1. conputing the DP-result and dispose of the [ow half

(F-instruction), then
2. computing the sane again and dispose of the high half

(D-instruction).

14

This conputer allows it to be done in no other way!
The PASCAL conpiler will generate the follow ng code for floating-

poi nt operations, depending on the choice of the R-option:

R-option OFF ON
X+ y FX1 X1+ x2 FXO x1+ x2
X1 X1 Nxo XO

DX1 x1+ x2
RX1 X1+ XO

N1 X
X %y FX1 X * x2 FXO x1* x2
DX1I x1* x2
RX1 x1+ XO
x/y FX1 X1/ x2 RXI X1/ x2

Exanpl es of addition/ subtraction:

1ev g 1720 L40... ...00 / 00... 0
1. 1.0-2 1717 TTees «++T7 / 00..s 1 O
1720 37ee. o .77/ 40.e. ... 0

1720 00... +..00 / hO... ... 0

= 1640 ko... . ..00 after addition of high
and | ow
_ _ ,-48 .
2. Take a = 1.0 and b = 2 , then subtract a-b :

F-subtraction yields

a
b

1720 40... ...00 / 00... ... 0
1720 00ee. .4.00 / 40ueee 4ea O

1720 3Tee. .77 / bO...

which, after normalization, is

1717 TTeee « .76 = 1.0-2'h7

R-subtraction inserts a |-bit after the slash in the first operand,
and thus yields the result

1720 40... ...00 = 1.0 exactly

15

—

The combined use of F and D instructions yields the true result,

because the normalization instruction left shifts the high order
result to
1717 TT7eee ooo76
whereafter a "rounded" -addition is used to add the correction
+ 1717 009.. . ..01
yi el ding

1717 TT7eee «o.77 = 1.0-27

3.2 Conversion fromfixed to floating-point (integer to real)

Wierever a real operand is permssible, PASCAL allows the specifi-
cation of an operand of type integer as well. However, the conpiler is
theh forced to generate the necessary representation conversion instruc-
tions, which are not only time-consumng, but potentially hazardous
It is therefore recormended to avoid "m xed-nmode" arithnetic expressions
wherever possible. The generated conversion instructions are

PX1 BO,X1 pack with zero exponent
NX1 BO,X1 normal i ze

The result of this conversion is wong, whenever the integer operand
in XI is larger or equal to 248 in absolute value, since the
exponent bits are sinply ignored by the P instruction. A test to verify

that the operand is within bounds could be conpiled as

Bxo Xl
AXO 48
NZ X0, error

but is easily seen to be nore costly than the conversion itself.

16

3.3 Conversion from floating to fixed-point (real to integer)

PASCAL does not provide for any inplicit real to integer conversion.
However, the standard function TRUNC(x) allows to truncate the

fractional part of a real nunber. The used code is:

UX1 B7,X1

IX1 B7,X1

BYO X0-XO }avoid

| X1 X1+XO0 negative zero

The result of this conversion is again wong, if |x|> 2h8 .

17

4. Bool ean Qperations

The standard type Boolean is defined in PASCAL as
type Boolean = (false, true)
Since the values of all scalar types are mapped onto the integers
0,1,2,..., the values false and true are represented by the nunbers
0 and 1 respectively.
The operations A and v are inplenented by the Bool ean AND and
OR instruction, nanely

BX1 x1*x2 and
BX1 x1+x2

Negation is perfornmed by

MXO 59
BX1 -X0-X1

If a relation has to be assigned to a Boolean variable, e.g

b : =x<y
then a sequence of instructions is necessary to obtain a 0 or 1
value. Again every effort is made to avoid the use of junps. The

following code is used in the above assignment; |eaving a Bool ean val ue

in X
FX1 X1-X2 X-y
Mo 1
BX1 XO¥X1 Extract sign bit
X1 1 nmove it to correct position

Anal ogous code is generated for the relations >, <, and > . But
unfortunately the equality relations cannot be reasonably inplenented
without a junp; in the assignnment

b::x=y

the followng instructions are generated

18

FXO X1-X2

BX1 X0-XO
NZ X1,L
sXx1 1

L ...

Bool ean conparisons, although occurring rather infrequently, are treated

as special cases, because a sinpler and shorter code is applicable:

p<a BX1 =X1*¥X2
P<gqg BX1 -X2¥X1

1;[;((2 ?)9(0_)(1 negat i on
P F£a BX1 X1-X2

The remaining three relations are compiled anal ogously.

19

5. Powerset (perations

PASCAL 6000 restricts powerset types to be built only on base sets
with |ess than 59 conmponents. This allows a powerset value S to be
represented by one "word", in which the i-th bit indicates the presence

(1) or absence (0) of the elenent i in S .

5.1 CGeneration of the Singleton Set [i]

Assume that i is loaded into register X, then
sB7 X
sxi 1
LX1 B7,X1

Notice that the nunbering of bits starts with O at the |ow order end.
This choice was nade in order to be able to | oad powerset constants

with small valued components (less than 18) by a single SXi instruction.

5.2 Set Intersection, Union, and Difference

These three operations are inplenented by a single instruction

intersection BX1 x1*x2
uni on BX1 x1+x2
di fference BX1 -Xo¥X1

5.3 Set _Menbership (in)

The relation i in Sis inplenented by shifting the hit representing

i into the sign position which can be tested:

SBT X i
AX1 B7,X2 S
IX1 59
If the expression i is in the formof a constant ¢ , then the conpiler

generates of course only the single instruction
IX1 59-c

20

5.4 Set Conpari son

Sets can be conpared for equality and inclusion. Equality is
tested by a Bool ean subtraction
BXO Xi-x2
and a subsequent zero test. Note that the peculiar property of the
zero test to recognize a word with either 60 zero-bits or 60 one-bits
as a zero is responsible for the restriction that powersets may contain
at nost 59 instead of 60 elenents. |If sets with 60 conponents were
allowed, then a full set and an enpty set woul d not be distinguishable
by a single subtraction followed by a zero-test.
| ncl usion expressed as x <y and neaning x cy , is inplemented
by the single instruction
BXO -X1*X2
which is followed by a zero-test instruction. The same instruction is
used for the relation x >y , whereas strict inclusion (xc y) is not

i mpl enent ed.

21

Sone Exercises Addressed to the CDC 6000 Expert

1. Is the follow ng code to represent the function trunc(Xl)

acceptabl e? If not, why?

BXO X0-X0
PXO XO

FX1 X1+XO
UX1 B7,X1

NZ B7, overflow

2. Is the follow ng code for X1 mod X2 acceptable? If so, prove it

‘ 1 X
g Px2 x2
? X6 x2

FX6 X1/X6

Bxo XO

FX6 X6+XO0
t DX6 X6%¥X2
g FX6 X1-X6
i UX1 X6

3. Wy can the instructions

BXO X1-x2
ZR X0, equal

not ve used to represent a conmparison X = X2 ? Prove that

1x0 X1-X2
ZR X0, equal

always yields the correct action.

22

6o I rnpl entntution of Recursive Procedures

The |anguage PASCAL has been carefully designed so that dynamc

storage allocation is not required, wth the followng two exceptions

1. Variables local to procedures nay be allocated storage only
when the procedure is called, and
2. Conponents of class variables are allocated storage by calling
the standard procedure "alloc". An area of store is allocated
to the entire class variable as soon as the procedure is
called to which the class is |ocal
In this section we will briefly review the well-known techniques for
handl i ng recursive procedure calls and of allocating storage to their
local quantities, and discuss the code selected to represent the
procedure call mechanism
Due to the first-in last-out nature of the hierarchy of activated
procedures a stack nmay be used to allocate local variables. This is of
great advantage, since storage retrieval is trivial in the case of
stacks, resulting in low storage management overhead. V& consider the
set of local variables of each activated procedure as a record (often
called "data segment”) in the stack. Since their lengths may all be
different, the nost convenient nethod to thread the way back through
such a stack is by constructing a chain of pointers linking the records
Every record then contains a "header" containing
1 the link to the previous record, and

2. the (frozen) programstatus (counter) of the calling procedure.

Variabl es are addressed relative to the origin of the record of

which they are a part. The origin address is unknown at compile-time,

25

and nust be determned at run-tine. This can be done by descending
through the link chain, until the desired record is reached. But how
is the desired record recognized' ? The nost straight-forward method
which interprets the scope rules of an ALGOL bl ock structure correctly

is probably the follow ng:

Met hod | :
1. Define the level of an object to be 1 greater than the
| evel of the procedure to which it is local. The |evel of
the main programis 0 .
2. Indicate the Ievel of each record (equal to the level of its
conponents) in its heading
3. \Wenever an object on level i has to be accessed, the record
containing it is found by descending down the chain of [inks
until the first occurrence of a level indicator with value i
is found.
This accessing method has the obvious drawback of inefficiency (and of
not being applicable in the case of paranetric procedures). A slight
nodi fication, however, inproves efficiency and generalizes to paranetric

procedur es.

Method 11

Instead of indicating levels explicitly in the record headings,
a second link chain is constructed connnecting each record A with its
static ancestor, i.e., with the record B of the procedure in which A
was declared locally. In order to distinguish the two link chains, the
former is called the "dynamc link" and the latter the "static Llink".
An exanple of a state of conputation is shown below for a given --

admttedly not very realistic -- program
2k

with the desired |evel

widely used in conpilers for

var vO;

procedure QO (procedure X);

var w;
procedure Q;
var we;
begin w2 = wltv0; X
end,
begin W := vO; Q1
end,
procedure PG
var_vl;
procedure Pl;
var ve;
begin v2 : = v1+v0; QO(PO)
end;
begin vl :=vo; Pl

end,

begin {main program v0 := 0; PO

Method 111

. stack

N\
Ql h
Q0 R\,
1 \

PO

Ql

Q0

Pl
_—
Ql o

w |

n |

main

i i i i i e

dynani c static
l'i nk l'i nk

Al though the use of a high-speed index register to represent the

25

origin of the link chains inproves access speed significantly, the
process of descending down the static chain to the record (data segnent)
is relatively tine-consuning. An ingenious
device to reduce access tinme was introduced by Dijkstra [4] and is now

bl ock-structured |anguages. The device

!
r
i
|
b
|

is an array of base addresses, called the Display D, which is at any
time a copy of the static chain. If an object at level i is to be
accessed, the origin address of its data segment i s quickly obtained

as Di . The nethod is particularly attractive for conputers with a

set of high-speed index registers which can be used as the Display.

The price for this increase in access speed -- apart from the reservation
of registers -- is the setting and updating of the Display each tinme a
procedure is called and termnated. To be more specific, the necessary

actions are as follows:

1. if an actual procedure of level i is called, D has to be
set;

2. if control is returned froma procedure at level i to one
at level j , (j >1), D, ...DJ. have to be reassigned,

3. if a formal procedure at level i is called from a procedure

at level j D, . «+Dy have to be reassigned, where k is
the level on which the static link emerging from the calling
and the called procedures merge. Since k is not known at
the time the procedure declaration is conpiled, k can be
chosen as zero without significant [oss in efficiency.

This schenme was used in the inplenmentation of PASCAL 6000. It is

described in Reference 4. Registers BL...B5 are used as the Display,

B5 is the origin of the link chains, and B6 is the pointer to the top

of the stack. The conpiled instructions are the follow ng:

26

Procedure call of P :

SX7 L save return address
j08) P and junp

update the display, if j >

Procedure entry:

P, SBi X } prolog, entry for calls

Foam X 1 of formal procedures
SB(i-1) X
sal kl updat e di spl ay
SB1 X 1
PA SAT B5+2 save return address in header
gﬁ; géi—l) save static link
gﬁ; §Z+1 save dynamc |ink
SBi B6 new di splay entry
SB5 B6 T
SB6 B6+L top of stack, L = data segment |ength

Procedure exit:

SB6 BS reset top of stack

SAL B5+1 }

SBS X1 reset T

SA1 B5+2 _

SB7 X1 fetch return address and junp
JP B7+0

Notice that global variables in the main program are assigned absol ute

addresses. Since BO= 0, they can be considered as based on BO .

27

In the first half of 1971, Prof. C. A R Hoare and his collaborators
nodi fied and bootstrapped the PASCAL compiler for the |CL 1966 computer [6].
ne of the nore significant alterations concerned the elimination of
the Display, due to the fact that the ICL conputer has no set of index
registers that are available for a Display, and since the use of a
Di splay was not considered to be an advantage, in this case. During
a visit of Prof. Hoare in July l9fl, he suggested that nmaybe even with
a register set available for the Display, the benefits gained should be
investigated. H's suggestion was certainly valid, since variables
either global or local to the nost recently called procedure could be
accessed with the sane speed even without a Display. Thus the gain from
a Display is limted to faster access of objects at intermediate |evels
while the price is the updating at every call regardl ess of whether such
objects are accessed or not. A superficial |ook at the PASCAL conpil er
itsel f showed that accesses to such intermediate |evel objects were
indeed relatively rare, and it was decided to generate a version that
would not use a Display (Method I1). This version still uses the address
register B5 as origin of the link chains (and base address of the nost
| ocal data segnent) and B6 as pointer to the top of the stack. The

generated code is:

Procedure call P
* X6 1= base of environnment of P

SX7T L
] P

28

Procedure entry:

SXO B5
X0 18 pack and store
BX7T XT+X0 dynamic link and
SB5 B6 return address
SA7 BS5+1
SB6 B7+L stack pointer

* SA6 B5 static link

Procedure exit:

SA1 B5+1

SB6é B5 fetch and unpack
SB7 X dynamc link and
IX1 L2 return address
SB5 X

JP BT+0

Fetching an object x at level j fromcode at |evel i :

1) =0 SA1 BOtx

2) i o=1i: SA1 B5+X

3) O<j <i: SAlL B5 o .
sa1 X repeated i-j-1 tines
SA1 XI#x

A comparison of the codes generated by the two conpilers shows that gains
and |osses of execution speed should be measured, but also those of code
length. The shorter codes for procedure entry (2 - é% wor ds vs.

4 - 6 words), procedure exit (2 vs. 3 words), and procedure calls

(no updating of display) are very attractive, particularly in a conpiler
where space is more on a premiumthan time. (It should be noted that

the instructions marked with an asterisk can be omitted in the call or
the entry code of procedures declared on the first level). O course

it nmust be kept in mind that the decision about which conpiler is to be
preferred depends not only on the weighting of space vs. tine, but even

more on the programs to be processed. But it is obvious that if the

29

mpjority of these programs rarely use nested procedure declarations,
and often call procedures on the same level, then the conpiler without
Display is to be preferred. The conpiler itself, although featuring
nested procedure declarations, but seldomaccessing internmediate |evel
variables, belongs to this class. Conparisons of code generated by the
two conpiler versions produced the follow ng results:
1. The efficiency of codes not using a Display is in the average
slightly higher (the conpiler itself runs about 1.5% faster).
2. The size of codes not using a Display is smaller (by about
44 measured on 25 sanple prograns, about 6% in the case of
the conpiler's code).
3. The conpiler programitself is slightly less conplex wthout
Di spl ay.
Thi s epi sode where a nore sophisticated nethod was abandoned in favor
of a sinpler and nore direct technique could well be added to the Iist
of D. Knuth's exanples of adverse influences of "conputer science" on
"comput er usage" [5]. Their common characteristic is that inproved
met hods are adopted wi thout closer inspection of the nature and direction
of the inprovenent, and w thout analysis of the circunmstances to be
improved. An interesting fact is that the Burroughs B5500 computer --
specifically designed for ALGOL inplementation -- did contain exactly
the two base registers required to efficiently address objects at
levels O and i . Unfortunately, addressing of internediate |evel
obj ects was inpossible due to the software; this deficiency was
justifiably criticized. The remedy adopted in the successor B6500 was,
however, not a correction of the deficient software, but the inclusion

of a full set of high-speed registers to serve as Display.

30

7. Summary of the Main Trouble Spots of the CDC 6000 Architecture

1. Use of one's conplenent arithnetic. In order to keep conparisons

simple and efficient, the occurrence of negative zeroes nust be

prohibited. (Note that PL and NG test the sign bit only.) Various
optimzations are nore cunmbersome and |ess effective, because
negative zeroes nust be suppressed by additional instructions.

Sone instructions are thenselves unsafe against the generation

of -0 !

2. No overflow check on fixed-point arithmetic. This lack is very
serious and nmay cause wong restuls in totally unexpected
situations. Overflow check by software is prohibitive.

3. No conpare instructions. The use of subtraction may cause wong
results, unless expensive precautions are taken.

4, Use of uU8-bit multiplier and divider for fixed-point 60-bit nunbers
without warning of possible "overflow' of operands.

5. Floating-point addition and subtraction w thout automatic post-

nornal i zati on.

6. Fl oating-point arithmetic with rounding of operands instead of
roundi ng postnormalized results.

7. No subroutine junp instruction depositing the program counter P
in an operand register, and no return junp |oading P froma general
operand register. This defect requires the use of 3 instructions
each to junp and deposit a return address, and to retrieve it and
return, whereas many other conputers need only a single instruction

for these purposes.

31

Concl usi ons,
Wien considering these complaints, the reader should bear in mnd
that this computer's architecture was conceived in the very early 1960's.
The CDC 6600 machine was a very advanced design for a special purpose:
fast nunber crunching. The design relied heavily on the use of several
arithmetic units working simultaneously ("in parallel"). Integer
arithmetic was considered as al rms-t di spensi bl e, and overflow interrupts
as undesirabl e, because of the inpossibility to mrror the present state
of the entire machine by a sinple program counter and of resumng conpu-
tation. The use of simultaneously operating units is apparently also
made responsible for the otherw se inconprehensible absence of post-
nornal i zation, nanely because the unit for floaint-point addition does
not contain a left-shift circuitry. A few years later, the CDC 6400
(and 6500) conputers were announced; they were to have the sane instruction
set as the 6600, but only one conventional integrated arithnetic-Iogical
unit. Although the "reasons" for the absence of interrupts and post-

nornal i zation had vani shed, these "features" were retained in the pane

of compatibility. It was apparently considered nost inportant that

pitfall |oaded programs could be transported to the new machines at no
extra cost. This policy of staying "upward conpatible with all previous
m st akes" was sternly maintained when the successor to the 6000 series
was announced in 1971.

This attitude, which is by no neans atypical amongcomputer
manuf acturers, nakes it doubtful whether any progress toward nore
reliable and nore efficient conputing will ever be achievable. It
does not seemso, until the conputer consumers' attitudes will no |onger

justify the present manufacturers' policies. They, in turn, wll not

32

change before they are made aware of the hidden cast involved in using

the present equipment. | amconvinced that the cost incurred by the
programers having to discover bugs the hard way by reprogrammi ng
repeatedly, and having to reexecute prograns many tines until they
were believed to be correct, is inconparably higher than the reduction
in cost due to staying conpatible with outdated architectures. The
project to devel op the PASCAL conpiler for the CDC 6000 conputer

unfortunately provided anple support for this conviction.

Acknow edgnent s

| amgrateful to W Kahan for pointing out some additional problens

with the CDC floating-point arithmetic as well as the method for obtaining

correct rounding.

o)

Ref er ences

[11 N Wrth, "The programm ng |anguage PASCAL", ACTA | NFORMATI CA,
Vol . 1, 35-68 (1971).

[2] D. S. Lindsay, "A rounded arithmetic FORTRAN conpiler for CDC 6000
machines", U of California, Berkeley, Dec. 1971.

(3] B. Randell and L. Russell, "ALGOL 60 i npl enentation", Acad. Press,
196k,

(41 N Wrth, "The design of a PASCAL conpiler", Software - Practice

and Experience, Vol. 1, (1971) .

[5] D. E. Knuth, "me dangers of conputer-science theory", unpublished
paper, August 1971.

[6] J. Welsh and C. Quinn, "A PASCAL conpiler for ICL 1900 series
computers”, Dept. ‘of Conputer Science, Queen's University,

Bel fast, Sept. 1971.

3k

005001 {scC+

005001
005004
005007
005010
005012
005076
005105
005112
005117
005117
005127
005127
005140
005145
005154
005154
005160
005171
005200
005210
005212
005212
005216
005223
005223

005074

005075

005076

005077

005100

005101

005102

VAR 1,J,Ks | NTEGER;

T13s EXPRESS|I ONS AND ASSI GNVEWS 3}

X,¥y28 REAL;
NS 0..9999;

P,Qs

BOOLEAN;;

BEGIN { REAL AR THMVETIC 3

X t= 1.0; Y= X + 3.14159;

X 8= X + (Y +(Z+ (1.0 + X))

Z 3= X*Y + X/Y,

X a= ABS(#Y); Y 8= SGR{(X); 2 3= =X}
{$R+ ROUNDED REAL ARITHMETIC}
X 8= ¥ +# 23 X t= Y*Z23 X &= Y/2;
{ InTEGER ARITHMETIC }
I t=1; 9= | + 100; Ks=| *usKse=| DV J;
K 8= (=J) MOD K3 J a= SGQRWJ)}
I t= TRUNC(X) 3 Z 8= |;: X 3= 1I/J;
{ BOOLEAN ARI THVETI C 3
P t= TRUE; Q8= P a ™(QvP)};
P t=x=Yy P s=1= J;, Qt= P =Q;
P st= X<Yy P t=1¢«<xJy Q=P < Q;
Pa= x <Y; Ps= 1| < J; Q@s=Ps Q
Q 1= 0DD(I);
€ OPTIMIZATION OF INTEGER ARITHMETIC }
| a= 1*8 + J*10;
J ts= | DDV 8 = N OIV 2; K 8= | MID 16;
N s= | + 4100
END
005103
SA3 80+005005
SA7 85+80 FXx2 X2/X3
SX7 85+80 FX1 X1+X2
SA7 B0+005000 005104
NX6 BO,X1
S86 854000001 SA6 B0+005006
SA1 804+005225 NO
005105
BX6 Xi SA1 80+005004%
SA6 80+005004 SA2 80+005005
NO 005106
SA3 B0+005006
SAi 80+005004 SA4 B80+005225
SA2 B0+005226 005107
SAS BO+005004
FX1 Xi+X2 FX4 X4+x5
NX6 B0,X1 NX&4 80y X4
SA6 B80+005005 005110
FX3 X3+x4
SAI B80+005004 NX3 B0y X3
SA2 B0+005005 FXx2 X2+X3
NX2 B0,X2
FXx1 X1*x2 005111
SA2 80+005004 FXx1 X1+X2
NO NX6 B0yX1
SA6 80+005004

35

005112

005113

005114

005115

005116

005117

005120

005121

005122

005123

005124

005125

005126

005127

SAI 80+0050065
8Xx0 Xi

AXO 73

BX6 X0=X1

SA6 80+005004
NO

SA1 80+005004
FX6 X1*xX14

NO

SAb6 80+005005
SA1 80+005004
BX0O X0=-X0

1X6 X0-X1

SA6 B0+005006
SA1 80+005005
SA2 B0+005006
FX0 Xi+X2

NXO B0, X0

DXx1 X1+X2

RX1 X0+X 1

NX6 B80,X1

SAG6 80+005004
NO

SA1 B0+005005
SA2 80+005006
FX0 X1#x2

DX1 X1*xX2

RX6 X0+X1

NO

SA6 B0+005004&
SA1 B0+0050 05
SA2 804005006
RX6 X1/%X2

NO

SA6 B80+005004
SX6 B80+000001
SA6 804005001

56

005130

005131

005132

005133

005134

005135

005136

005137

005140

005141

005142

065143

005144

SA1 B0+005001
SX0 80+000144
1X6 X1i+X0
NO
SA6 BO+005002
SA1 B0+005001
SA2 BP+005002
DX1 X1%¥X2
0x0 Xg=X0
| X6 X1+X0
SAG B0+005003
NO
SA1l B0+005001
SA2 B0+005002
PX2 B0,X2
NX2 B0, X2
PX1 BO,X1
FXI X1/X2
UXxi B7,4X1
LX1 B74X1
0x0 X0-X0
1X6 X1+4X 0
SAG6 B0+005003
SAl 80+005002
8X0 X0=X0
IX1 X0-X 1
SA2 B0+#005003
PX6 B0, X2
NXb6 B80,X6
PX0 B0y X1
FX6 X0/X €
UX6 B7,X6
LX6 87 ,X6
DX6 X2*X6
1X6 Xi-X6
SA6 80+005003
SA1 B0+005002
OX6 X1*X1
SAG6 80+ 05002
NO

005145

005146

005147

005150

005151

005152

005153

005154

005155

005156

005157

005160

005161

005162

SA1 804005004
Uxi1 B7,4X1

1x1 B7,X1

0x0 X0=-X0

1X6 X1i+X0

SA6 B0+005001
SA1 804005001
8xe xi

PX6 80,X6

NX6 80, X6

SA6 B0+305006
NO

SA1 804005001
SA2 80+005002
PX2 B80,X2

NX2 B0, X2

PX1 BO,X1

NX1 B0y X4

RX6 X1/7x%x2

SA6 B80+005004
NO

SX6 80+000001
SA6 804005010
SA1 B0+0305010
SA2 B0+005011
SA3 80+005010
0x2 X2vX3

MXO0 73

0x2 ~X2-X0
BX6 X1aX2

SAG B0+005011
SA1 80+005004
SA2 B0+005005
IXo X1i-X2

MX6 00

NZ X0,005163
SX6 B0+000001
NO

37

005163

005164

005165

005166

005167

005170

005171

005172

005173

005174

005175

005176

005177

NO

SAb 80+0050190
SA1 804005001
SA2 B0+00500 2
1x0 Xi=X2

MX6 00

NZ X0,005166
SX6 B0+000001
SA6 80+005010
SA1 80+005010
SA2 BU+005011
BX1 X1=X2

MXO 73

BX6 “X1-X0
SA6 B0+005011
NO

SA1 B0+005004
SA2 B0+005005
FXxi X1=X2

MX0 01

%X6 X0aX1

Ltxe 01

SA6 B0+005010
SA1l 80400500 1
SA2 B0+005002
1x1 X1=-X2

HXO 01

8X6 XgaXxX1i

LX6 01

SA6 80+005010
SA1 80+005010
SA2 B80+0050 11
BX6 “X1AX2
SAG6 804005011
NO

005200

005201

005202

005203

005204

005205

005206

005207

005210

005211

005212

005213

005214

005215

SA1 80+005004
SA2 804005005
FX1 X2=X1

HXO 01

BX6 “X1AX0
LX6 01

SAb6 B0+005010
SA1 004005001
SA2 B0+005002
1x1 x2-x 1

MX0 01

BX6 *X1aX0
LXo6 01

SAb B80+005010
SAt B0+005010
SA2 80+005011
B8X1 “X2AaX1
MXO 73

BX6 ~“X1i-X0

NO

SA6 B0+005011
SA1 B0+005001
8X0 Xl

LX0 73

8X1 X1-X0
MXO 01

B8Xo6 X0aX1

L X6 01

SA6 80+005011
SA1l 80+005001
LX1 03

NO

SA2 B0+005002
LX2 01

8X0 X2

LX2 02

IX2 X2+X0

1X6 Xi1+X2

NO

SAG6 80+005

38

005216

005217

005220

005221

005222

005223

005224

005225
005226

SAL B0+005001
AX1 03

BX0 X0-X0

IX1 X1+X0

NO

SA2 804005007
AX2 01

1X6 X1-X2

SA6 B80+005002
SA1 B80+005001
BX0 Xi

AXO 04

LX0 oL

I1X6 X1=X0

SA6 80+005003
SA1 B0+00500 1
SX6 x14000144
SAG B0+005007
SA1 B5+8B0

S87 X1+80

Jp B7+000000
17204000000000000000
17216220771740156064

