
I
I

I. .
I
I

I’,’

w -

I

ON “PASCAL”, CODE GENERATION, AND-THE CDC 6000 COMPUTER

’ BY

NIKIAUS WIRTH

STAN-CS-72-257
FEBRUARY 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

O r “~!xcA:[_ - ", Codct Generation, and the CDC 6000 Computer

by Niklaus Wirth

Abstract:

‘“j&‘..‘.;:, *r;y ls a genera 1 ptirpose programming language with character-

istics similar to ALGOL 60, but with an enriched set of program- and

data ~,,x~,ic ~,.~'i~-~ lacilititis. It has been implemented on the CDC 6000

ccmpuS;cr I?li.;-, paper discusses selected topics of code generation,

in j+.:2i* f,f.: .-:i 0 f- -tilt! ;elcctian of instruction sequences to represent,

simple ci5r:;Ytions on arithmetic, Boolean, and powerset operands.

Methods to -implement recursive procedures are briefly described, and

it is hinted that the more sophisticated solutions are not necessarily

also the best. The CDC 6000 architecture appears as a frequent source

of p!jt.fP? 1 c and nuisances, and its main trouble spots are scrutinized

ad d-js~~;~~~.

The preparation of this paper was made possible by support from the
National Science Foundation, Grant number GJ-992, IBM Corporation,
and Xerox Corporation.

i

On 'fPASCAL" , Code Generation, and the CDC 6000 Computer

1. Introduction

This set of notes has a dual purpose. It is on the one hand

directed to the user of the PASCAL compiler system who would like to

gain some insight into the machine code which is generated for various

basic operations. It is even recommended that he study these notes

carefully, because their understanding may prevent him from certain

pitfalls which are inherent in the use of the CDC 6000 camputer [l].

On the other hand the notes-may be of interest to compiler writers

in general, because they point out some problems and dilemmas and our

choices of solutions. It becomes apparent that the choice of the code

to be generated is crucial for a good compiler system, and that it is

far fram trivial as is usually believed.

The true purpose of a higher-level language is that it allows a

programmer to conceive his algorithms in terms of some convenient

abstractions. For instance, he is given the opportunity to think in

terms of familiar notions of numbers, of relations, and of repetitions,

instead of having to express his program in terms of bitstrings,

arithmetic instructions, and transfers of control. However, these

abstractions are only truly useful, if he can assume that his implemen-

tation observes all the properties which are c-only attributed to

these abstractions, or else if it automatically issues a warning. As

an example, when dealing with numbers in a high-level language, one

should like to assume all the c-on axioms of arithmetic to hold. Of

course this is not possible, since computers can only represent finite

ranges of values. So one expects to receive a warning, if an operation

1

has trespassed the limits imposed by the implementation and an

operation generates a result not in accord with the rules governing

the abstraction. So the system is expected to provide an error

indication, e.g. if an overflow occurs in an addition, if a value is being

assigned which lies outside the specified range of values of variables,

or if an array index is used which lies outside the defined limits.

Unfortunately, such potential warnings require the execution of

additional instructions, which in general is costly. As far as range

checking is concerned, they can be requested to be generated by the

compiler for run-time execution by enabling so-called options. (The

A-option generates assignment range checks, the X-option index checks.)

They are relatively costly, but may speed up the finding of logical

mistakes a great deal.

As far as irregularities of the arithmetic are concerned, one has

become used to receive these warning signals automatically fram the

hardware, particularly because they are easily generated by the hardware,

whereas a solution to detect overflow by software is usually beyond any

reasonably economical feasibility. Unfortunately, the CDC computer

fails to satisfy even the most modest expectations in this respect, and

the effort to provide a system with security in the above sense was

therefore a series of constant frustrations. Equally disappointing are

some of the "features" of its floating-point arithmetic instructions.

One can go only a relatively short distance in trying to correct

mistakes of the hardware by means of software; otherwise a system

becomes ridiculously inefficient and will not be used by conscientious

programmers who are willing to take the peculiarities of a hardware

into account and guarantee safety of their algorithms by analytical

2

rather than experimental means. And this would have been against the

intentions of PASCAL. So all that can reasonably be done is to

elucidate the shortcomings and limitations of the hardware that are

still transparent through the "software cover", and to make the programmer

fully aware of them. And this is the purpose of this note.

It concerns itself with the simple operations of integer and real

arithmetic, with Boolean operations and with powersets. The reader is

supposed to be familiar with the CDC COMPASS notation. The operands

are usually assumed to have been brought into the Xl and X2 registers.

(If they were loaded into other registers, a corresponding renumbering

is necessary which is, however, irrelevant to the operation itself).

Registers Xl-X5 are used as a stack for intermediate results, whereas

X0 is used exclusively as local work register.

Section 6 deals with the topic of implementing recursive procedures

and the addressing of local variables. Although the general techniques

are well-known, analysis of possible solutions and their experimental

ccmparison yielded some noteworthy results. It is shown that attempts

to make full use of available hardware features such as base registers

may not necessarily lead to an optimal performance. Again, the

instruction set of the CDC computer is hardly optimal to implement

mechanisms for recursive procedures. Conspicuously absent is a sub-

routine jump instruction which leaves the code invariant (reentrant).

2. Integer Arithmetic

Data of type integer or of subranges thereof are represented by

fixed-point binary numbers. Addition and subtraction are represented

by the

IXi Xj + Xk-

instructions. Other operations are implemented by short sequences of

instructions, as outlined below.

2.1 MultiDlication

Due to a recent change of the hardware, fixed-point multiplication

can be performed by a single

DXl x1*x2

instruction. It should, however, be noted that this instruction is

essentially a floating-point instruction, and yields incorrect answers

for fixed-point operands with 1x1 2 248 . This can be regarded as an

overflow condition which is, alas, neither trapped nor indicated by the

computer. A "safe code", checking against all imposed limits of operands

and result, is quite elaborate and uneconomical by any standards,

therefore not implemented.

If one of the operands is a constant C being representable

either

1. c=2n
(2, 4, 8, 16 . . .)

and was

as

2. c z zrn+p > (3, 5, 6, 9, 10, 12 l l .1
m > n

3. c = 2m-2n
(7, 14, 15 l ..I

4

then the compiler generates the following code for the multiplication

of Xl by c :

1: Ix1 n multiply by 2"

2,3: IX1 n
Bxo Xl
LX1 m-n
IX1 x1+x0

Again, overflow conditions are simply ignored. Case 3 yields only

correct results, if IXl*2m\ < 25g .

2.2 Division (div)

Integer division is represented by the instruction sequence

PXl Xl
px2 x2 pack
NX2 x2
FXl Xl/X2 divide
UXl B7, X1
IX1 B7,Xl
BXO x0-x0
1x1 xl+xo suppress neg. zero

and suffers frcxn the same basic shortcoming as multiplication: an

operand 1x1 ,> 248
yields an incorrect result.

If the divisor is a constant c = 2n , the ccxnpiler again produces

an "optimized" code, performing division by shifting. Unfortunately,

a single right shift instruction is unsatisfactory, because it may

generate a "negative" zero as result. Negative zeroes, however, must

not be allowed to occur, since comparisons may yield wrong answers if

applied to them. Thus, the optimized division is implemented as

AX1 n divide by 2n
BXO x0-x0 suppress
IX1 xlsxo negative zero

Note that the unconditional generation and addition of a zero can be

5

accomplished with a code that is not only shorter than a conditional

jump, such as

AX1 n
NZ Xl,L
SXl BO

L . . .

but also avoids the insertion of padding instm;Lctions (NOPs) for word

boundary alignment.

The D-option provides an additional security measure against

division by zero. It causes the compiler to insert a

ZR X2, error

jump instruction preceding every division instruction. (This applies

to the Modulus operation as well.) It is particularly recommended in

the case of integer division, where the actual divide instruction

generates a "floating-point infinity" value, which is incorrectly

treated by the subsequent conversion instructions and thereby represents

a senseless result.

2.3 Modulus (mod)

The modulus or remainder operation is defined as

x mod y = x-(x div y) * y

AS it involves integer multiplication and division operations, it

suffers again from the same deficiencies of the 6000 arithmetic. Its

corresponding code is:

PXD Xl
~1x6 x2
xc6 x6
~1x6 x0/x6
1x6 B7J6
1x6 B7J6
DX6 x6*x2
IX1 x1-x6

6

2.4 Sign inversion

The use of one's complement representation for negative numbers

makes again the most obvious choice of code

RX1 -Xl

unsatisfactory, because it might generate a "negative zero". So we use

BXO x0-x0
IX1 x0-x1

c

2.5 Comparisons

Since the computer does not offer a compare instruction, subtraction

has to be used; this has primarily the disadvantage of generating wrong

results in the case of overflow. The cases of testing for equality and

inequality are handled correctly, because the one% complement addition

generates an end-around-carry in the case of "negative overflow", thus

maintaining a result indicating inequality. Note that the Boolean

subtraction

BXl Xl-X2

cannot be used, because a comparison of xl and x2 = -xl would yield

a zero result, thus indicating equality.

Whereas equality testing is "safe" with the

IX1 Xl-X2

instruction ignoring overflows, this is not the case for the tests of

ordering (xl < x2) by subtraction and subsequent inspection of the

sign bit. The reason is that if overflow occurs, i.e., \xl-x2\ ,259,

then the sign bit will be the opposite of the true sign. This situation

is quite hopeless, since overflow is in no simple way detectable on this

machine. In order to obtain a (sign) bit representing the relation

7

x < y for any values x,y , the following algorithm can be used:

1.

2.

3.

A minimal

Compare the signs of the two operands.

If they are different, then the result is obvious.

If they are equal, the subtraction x-y can be performed

without danger of overflow, and x-y < 0 is the result.

instruction sequence to perform these operations and avoiding

the use of undesirable jump instructions is

BXO Xl-X2
IX2 Xl-X2
BXl XWXl
BX2 -x0*x2
BXl x1+x2

Now the sign bit of Xl

the effort to perform a

and the PASCAL compiler

with the responsibility

I IX-Y < 259 .

campare sign bits

if unequal, choose sign of Xl
if equal, choose sign of Xl-X2

is 1, if Xl <X2 , and 0 otherwise. Still,

faultless comparison is formidably cumbersome,

does not generate it. The programmer is left

to verify that for every comparison of x and y ,

2.6 Taking the absolute value (ABS)

The code used to take an absolute value is designed to avoid jump

instructions, not only because they are long and slow, but because they

usually introduce NOP instructions for alignment.

Bxo Xl .
Ax0 59 generate 60 sign bits
BXl x0-x1

2.7 Testing for even or odd (ODD)

Since one's complement representation is used for negative numbers,

the least significant bit of the operand must be compared with its sign

bit:

BXO Xl
ml 59
BXl Xl-X0

This leaves the sign-bit of Xl equal to 1 , if Xl was odd, and

0 otherwise. ---

The compiler "optimizes" in the case of ODD(x) with x being of

a subrange type with only non-negative values. It then generates the

single instruction

Lx1 59

2.8 summarv

The foregoing explanations reveal that the absence of any overflow

indication makes analytical verifications necessary that guarantee the

non-occurrence of these conditions. An effective aid in experimental

testing is the A-option, causing interval check instructions to be

generated with every assignment to a variable that is declared to be of

a subrange'type. The A-option is activated by the "comment"

c$A+ . . . 3

and causes the code for an assignment to a variable

VAR V: a..b

to become:

sx7 * location identification for error trap
SXl a
1x0 x6-x1
SXl b
IX1 x1-x6
BXO xl+xo
NG XO,error jump to error routine
SA6 v

It should be noticed that unfortunately the attractive and shorter code

sequence

L --

sx7 *
sxo x6-a
SXl x6-b-l
BXO -x1+x0
NG X0, error
SA6 v

cannot be used, because the instructions

SXi Xj+K

perform an 18-bit arithmetic ignoring the leading 42 bits of the

register Xj which -- of course -- is not in the spirit of a check.

This ignoring rather than checking of the leading bits in 18-bit

arithmetic is the reason why the so-called "increment" instructions

cannot be used by the PASCAL compiler, except in the following special

circumstance: if a variable x is declared of a subrange whose limits

are both less than 217 in absolute value, then the assignment statement

X :=x+k

is campiled as

SAL x
sx6 Xl+k
SA6 x

10

/
P

I
i
[.

3. Floating-point Arithmetic

The PASCAL compiler uses the canplete set of F-instructions for

arithmetic with values of type "real". Comparison is performed by

subtraction due to the lack of a ccxnpare instruction. This is possible

without handicap since the occurrence of overflow generates a signed

"infinity" -value, but no immediate trap. Sign inversion is represented

bY

BXO x0-x0 generate zero
IX1 x0-x1

and the absolute value function by

lx0 Xl
Ax0 59
IX1 x0-x1

Arithmetic with the F-instruction possesses some peculiar properties

which will briefly be reviewed, and has for instance the consequence that

x-y = 0 does not necessarily imply x = y , if the difference is

computed by an Finstruction. The trouble arises from the fact

that F-arithmetic truncates without rounding, and F-addition truncates

without post-normalization. Every addition is therefore compiled into

two instructions:

FXl x1+x2
Nxl x1-

add/subtract
post-normalize

If the two values

a = 1720 4o...ooB = 1.0

b = 1717 17.. .77B = 1.0-2 -48

are compared by subtraction

i .-.
I *I

FXO Xl-X2 a-b

the result is

iI
1 ’
i
I
i

/
I
i

I

.

1720 40... . ..oo/oo o

-1720 3'j'... l .77 / 40 0

1720 o ooo/bo

where the slash marks the separation between the lower and the upper

half of the 96-bit accumulator. The result is 0 although the two

operands were different.

Notice that subtracting 0.5 from both a and b , and then

computing their difference, yields

a - 0.5 = 0.5 : 1717 40... . . . 00

b - 0.5 = 0.5-2 -48 : 1716 77... . . . 76

1717 4-oo 0 / 00 0

-1717 377 7 / 00 0

1717 00Ol / 00 0

i.e., a difference which is not zero. Thus the result does not only

depend on the true result, but also on the values of the operands.

This unpleasant, property of the CDC F-arithmetic stems from the fact

that automatic post-normalization is absent.

3 .l Rounding

It was at one time hoped that this defect could be avoided by

letting the PASCAL compiler automatically generate R-instructions,

which include a certain kind of rounding. However, R-arithmetic

turned out to feature some even stranger properties, so that it was

decided not to use R-instructions. In order to point these features

cut, a brief review over R-arithmetic is necessary:

12

c

i

L

i

1

The R-instructions differ from the F-instructions only insofar

as a l-bit is appended to normalized operands before the arithmetic

operation is performed. Thus for instance the subtraction of

b = 1.0-2 -48
from a = 1.0 yields

1
1720 40... . ..00/40... . ..o

l-bits
-1720 37... ..77 / 60 . . .

appended
. .*. 0

1720 o ooo / 60 0

which of course is still zero.

The principal defect with "CD&rounding", however, is that its

effect is unpredictably either the addition of l/2 or l/4 in the

last position, because rounding takes place before instead of after

normalization (which must again be performed by a separate instruction).

The following example illustrates this, which is shown on hand of a

five-bit number representation:

16 = 10000 / 1 inserted
+17 = lOOOl/ 1>round-bits

33 = 100010 / 0
lOOOl/ 0 = 34

31 = l.ll.ll/1 -inserted round-bit
+2 = 00010 / 0

33 = 100001 / 1
10000 / 1 = 32

In the first case, the pre-rounding results in correct rounding of the

not exactly representable 33 to 34 , whereas in the second case
L

pre-rounding has no effect.

. The same phenomenon can be observed in the cases of multiplication

and division. The following example again uses a five-bit number

representation:

13

round-bit
1

15x12 = 11110 / 1 x llooo

lUlO/l*

+ ollll/o1 -!I

101101 / ll
10110 / 111

round-bit
1

18xlo = 10010 / 1 x 10100

10010 / l*

+ 100 / 101 --!l

= 176

1olll / 001 = 184

In the first case, the rounding effect is nil, leaving the inexactly

representable value 180 be an unrounded 176; in the latter case the

rounding effect transforms 180 into the value 184. (Suitable adjust-

ment of qonents is not shown here.)

A method introducing proper rounding instead of "CDC-rounding"

relies on the use of the D-instruction set [2]. Whereas the F-instructions

yield the high-order 48 bits of the 96-bit accumulator, the D-instructions

yield the low-order 48 bits with a suitably adjusted exponent, thereby

allowing access to a double precision result.

Notice that it is an ingeniously efficient method to compute a

double precision result by

1. computing the DP-result and dispose of the low half

(F-instruction), then

2. ccxnputing the same again and dispose of the high half .

(D-instruction).

14

This computer allows it to be done in no other way!

The PASCAL compiler will generate the following code for floating-

point operations, depending on the choice of the R-option:

R-option OFF ON

X+_Y

x*ty

X/Y

FXl x1+ x2
NXl x1-

Fxl Xl * x2

FXl Xl/ x2

Examples of addition/ subtraction:

FXO x1+ x2
Nxo x0 -
DXl x1+ x2
RX1 x1+ x0
l!JXl Xl

FXO x1* x2
DXl x1* x2
RX1 x1+ x0

RX1 Xl/ x2

1. 1.01.o-2-48 ;;Fy ;::: :::g (k:: ::: E
1720 37... . ..77 / 40... . . . 0

1720 oo... . ..oop+o... . ..o

= 1640 4-o... . ..oo after addition of high
and low

2. Take a = 1.0 and b = 2
-48 , then subtract a-b :

F-subtraction yields

a = 1720 40... . ..oo/oo... . ..o
b = 1720 oo... . ..00/40... . ..o

1720 37... i..77 / 40... l m. 0

which, after normalization, is

1717 77... . ..76 = 1.0-2 -47

R-subtraction inserts a l-bit after the slash in the first operand,

and thus yields the result

1720 40... . ..oo = 1.0 exactly

15

The combined use of F and D instructions yields the true result,

because the normalization instruction left shifts the high order

result to

1717 778-e

whereafter a r'rounded'f

+ 1717 009..

yielding

1717 779..

. . .76

-addition is used to add the correction

. ..Ol

-077 = 1.0-2 -48 .

1
L

3.2 Conversion from fixed to floating-point (integer to real)

Wherever a real operand is permissible, PASCAL allows the specifi-

cation of an operand of type integer as well. However, the compiler is

theh forced to generate the necessary representation conversion instruc-

tions, which are not only time-consuming, but potentially hazardous.

It is therefore recommended to avoid "mixed-mode" arithmetic expressions

wherever possible. The generated conversion instructions are
L

PXl BO,Xl
NXl

pack with zero exponent
BO,Xl normalize

The result of this conversion is wrong, whenever the integer operand

in Xl is larger or equal to 2
48

- in absolute value, since the

exponent bits are simply ignored by the P instruction. A test to verify

that the operand is within bounds could be compiled as

Bxo Xl
AXO 48
NZ X0, error

but is easily seen to be more costly than the conversion itself.

16

3.3 Conversion from floating to fixed-point (real to integer)

PASCAL does not provide for any implicit real to integer conversion.

However, the standard f'unction TRUNC(x) allows to truncate the

fractional part of a real number. The used code is:

UXl J37J1
IX1 B7,Xl
WO x0-x0

>
avoid

IX1 x1+x0 negative zero

The result of this conversion is again wrong, if 1x1 2 248 .

17

4. Boolean Operations

The standard type Boolean is defined in PASCAL as

type Boolean = (false, true)

Since the values of all scalar types are mapped onto the integers

0,1,2,... , the values false and true are represented by the numbers

0 and 1 respectively.

The operations A and v are implemented by the Boolean AND and

OR instruction, namely

BXl x1*x2 and
BXl x1+x2

Negation is performed by

Mxl 59
BXl -x0-x1

If a relation has to be assigned to a Boolean variable, e.g.

b : = x < y

then a sequence of instructions is necessary to obtain a 0 or 1

value. Again every effort is made to avoid the use of jumps. The

following code is used in the above assignment; leaving a Boolean value

in Xl .

FXl Xl-X2 x-y
Mxo 1
BXl x0*x1 Extract sign bit
lx1 1 move it to correct position

Analogous code is generated for the relations > , ,< , and 2 . But

unfortunately the equality relations cannot be reasonably implemented

without a jump; in the assignment

L

.-b x=y.-

the following instructions are generated:

18

FXO Xl-X2
B.Xl x0-x0
NZ X1,L
SXl 1

Boolean comparisons, although occurring rather infrequently, are treated

as special cases, because a simpler and shorter code is applicable:

P<q BXl -x1*x2

PLq BXl -x2*x1
Mxo 59
BXl -x0-x1 1

negation

P#q BXl Xl-X2

The remaining three relations are campiled analogously.

19

Powerset Operations

PASCAL 6000 restricts powerset types to be built only on base sets

with less than 59 components. This allows a powerset value S to be

represented by one "word", in which the i-th bit indicates the presence

(1) or absence (0) of the element i in S .

.

5.1 Generation of the Singleton Set [i]

Assume that i is loaded into register Xl, then

SB7 Xl
SXl 1
LX1 B7,Xl

Notice that the numbering of bits starts with 0 at the low order end.

This choice was made in order to be able to load powerset constants

with small valued components (less than 18) by a single SXi instruction.

5.2 Set Intersection, Union, and Difference

These three operations are implemented by

intersection BXl x1*x2

union BXl x1+x2

difference E3Xl -x2*x1

a single instruction

5.3 Set Membership (

The relation i in S is implemented by

i into the sign position which can be tested:

SB7 Xl *
AX1 B7,= s'
Iin 59

shifting the bit representing

If the expression i is in the form of a constant c , then the compiler

generates of course only the single instruction

LX1 59-c

20

5.4 Set Comparison

Sets can be compared for equality and inclusion. Equality is

tested by a Boolean subtraction

BXO Xl-X2

and a subsequent zero test. Note that the peculiar property of the

zero test to recognize a word with either 60 zero-bits or 60 one-bits

as a zero is responsible for the restriction that powersets may contain

at most 59 instead of 60 elements. If sets with 60 components were

allowed, then a full set and an empty set would not be distinguishable

by a single subtraction followed by a zero-test.

Inclusion expressed as x 5 y and meaning x ,c y , is implemented

by the single instruction

BXO -x1*x2

which is followed by a zero-test instruction. The same instruction is

used for the relation x > y , whereas strict inclusion (xc Y) is not

implemented.

21

3. Why can the instructions

Some Exercises Addressed to the CDC 6000 Expert

1. Is the following code to represent the function trunc(X1)

acceptable? If not, why?

BXO x0-x0
lx0 x0
FXl x1+x0
UXl B7,Xl
NZ B7, overflow

2. Is the following code for Xlmod X2 acceptable? If so, prove it.

F!xl Xl
Px2 x2
~1x6 x2
1~x6 x1/x6
Bxo x0
~1x6 x6+x0
DX6 x6*x2
1~x6 x1-x6
ml x6

BXO Xl-X2
ZR X0, equal

not be used to represent a comparison Xl = X2 3 Prove that

1x0 Xl-X2
ZR X0, equal

always yields the correct action.

22

6 . Irnplemcntution of Iiccursivc Procedures

The language PASCAL has been carefully designed so that dynamic

storage allocation is not required, with the following two exceptions:

1. Variables local to procedures may be allocated storage only

when the procedure is called, and

2. Components of class variables are allocated storage by calling

the standard procedure "allocrf. An area of store is allocated

to the entire class variable as soon as the procedure is

called to which the class is local.

In this section we will briefly review the well-known techniques for

handling recursive procedure calls and of allocating storage to their

local quantities, and discuss the code selected to represent the

procedure call mechanism.

Due to the first-in lastrout nature of the hierarchy of activated

procedures a stack may be used to allocate local variables. This is of

great advantage, since storage retrieval is trivial in the case of

stacks, resulting in low storage management overhead. We consider the

set of local variables of each activated procedure as a record (often

called "data segment") in the stack. Since their lengths may all be

different, the most convenient method to thread the way back through

such a stack is by constructing a chain of pointers linking the records.

Every record then contains a "header" containing

1. the link to the previous record, and

2. the (frozen) program status (counter) of the calling procedure.

Variables are addressed relative to the origin of the record of

which they are a part. The origin address is unknown at ccmpile-time,

23

and must be determined at run-time. This can be done by descending

through the link chain, until the desired record is reached. But how

is the desired record recognized'? The most straight-forward method

which interprets the scope rules of an ALGOL block structure correctly

is probably the following:

Method I:

1.

2.

3.

Define the level of an object to be 1 greater than the

level of the procedure to which it is local. The level of

the main program is 0 .

Indicate the level of each record (equal to the level of its

components) in its heading.

Whenever an object on level i has to be accessed, the record

containing it is found by descending down the chain of links

until the first occurrence of a level indicator with value i

is found.

This accessing method has the obvious drawback of inefficiency (and of

not being applicable in the case of parametric procedures). A slight

modification, however, improves efficiency and generalizes to parametric

procedures.

Method II:

Instead of indicating levels explicitly in the record headings,

a second link chain is constructed connnecting each record A with its

static ancestor, i.e., with the record B of the procedure in which A

was declared locally. In order to distinguish the two link chains, the

former is called the "dynamic link" and the latter the "static link".

An example of a state of computation is shown below for a given --

admittedly not very realistic -- program.

24

var v0;

procedure QO (procedure X);

var wl;

procedure Ql;

var w2;

begin w2 := wl+vO; x

end;

begin wl := v-0; Ql

end;

procedure PO;

var vl;

procedure Pl;

var v2;

begin v2 := vl+vO; QO(P0)

end;

begin vl := vo; Pl

end;

begin {main program) v0 := 0; PO

end.

. stack
t

T

dynamic
link

static
link

Method III:

Although the use of a high-speed index register to represent the

origin of the link chains improves access speed significantly, the

process of descending down the static chain to the record (data segment)

with the desired level is relatively time-consuming. An ingenious

device to reduce access time was introduced by Dijkstra [4] and is now

widely used in compilers for block-structured languages. The device

25

is an array of base addresses, called the Display D , which is at any

time a copy of the static chain. If an object at level i is to be

accessed, the origin address of its data sepent is quickly obtained

as Di'
The method is particularly attractive for computers with a

set of high-speed index registers which can be used as the Display.

The price for this increase in access speed -- apart from the reservation

of registers -- is the setting and updating of the Display each time a

procedure is c&Led and terminated. To be more specific, the necessary

actions are as follows:

1. if an actual procedure of level i is called, Di has to be

set;

2. if control is returned from a procedure at level i to one

at level j , (j >i) , Di...Dj have to be reassigned;_

3. if a formal procedure at level i is called fram a procedure

at level j , Di . ..Dk have to be reassigned, where k is

the level on which the static link emerging fram the calling

and the called procedures merge. Since k is not known at

the time the procedure declaration is compiled, k can be

chosen as zero without significant loss in efficiency.

This scheme was used in the implementation of PASCAL 6000. It is

described in Reference 4. Registers Bl... B5 are used as the Display,

B5 is the origin of the link chains, and B6 is the pointer to the top

of the stack. The compiled instructions are the following:

26

Procedure call of P :

SW L
E& P

L SBj B5
SA1 B5
SB(j-1) Xl I

.
SAl Xl
SBi Xl 1

Procedure entry:

SBi Xl
pF SAl Xl

SB(i-1) Xl 1
SAIL
SBl

‘PA SA7
sx7
SA7
sx7
SA7
SBi
SB5
SB6

Procedure exit:

SB6
SAl
SB5
SAl
SB7
J-P

Xl
Xl 1
B5+2;~=I
B5
B6+1
B6
B6
B6+L

B5
B5+1
Xl
~5+2
Xl
B7+0

I

I
13

1
>

save return address
and jump

update the display, if j 2 i

prolog, entry for calls
of formal procedures

update display

save return address in header

save static link

save dynamic link

new display entry
T
top of stack, L = data segment length

reset top of stack

reset T

fetch return address and jump

Notice that global variables in the main program are assigned absolute

addresses. Since BO 2 0 , they can be considered as based on BO .

27

In the first half of 1971, Prof. C. A. R. Hoare and his collaborators

modified and bootstrapped the PASCAL compiler for the ICL 1966 computer [6].

~One of the more significant alterations concerned the elimination of

the Display, due to the fact that the ICL computer has no set of index

registers that are available for a Display, and since the use of a

Display was not considered to be an advantage, in this case. During

a visit of Prof. Hoare in July lgyl, he suggested that maybe even with

a register set available for the Display, the benefits gained should be

investigated. His suggestion was certainly valid, since variables

either global or local to the most recently called procedure could be

accessed with the same speed even without a Display. Thus the gain from

a Display is limited to faster access of objects at intermediate levels,

while the price is the updating at every call regardless of whether such

objects are accessed or not. A superficial look at the PASCAL compiler

itself showed that accesses to such intermediate level objects were

indeed relatively rare, and it was decided to generate a version that

would not use a Display (Method II). This version still uses the address

register B5 as origin of the link chains (and base address of the most

local data segment) and B6 as pointer to the top of the stack. The

generated code is:

Procedure call P

* ~6 := base of environment of P
sxl L
m p

28

Procedure exbry:

SXO B5
LXO 18
m7 x7+x0
SB5 B6
SA.7 B5+1 -1
SB6 B7+L

* SA6 B5

Procedure exit:

SAl B5+1
SB6 B5
SB7 Xl
IX~ 42
SB5 Xl i
JP B7+0

pack and store
dynamic link and
return address

stack pointer
static link

fetch and unpack
dynamic link and
return address

Fetching an object x at level j from code at level i :

1) j = 0: SAl BO+x

2) j = i: SAIL E+X

3) O < j < i : SAl B 5
SILL Xl repeated i-j-l times
SAIL x1+x

A comparison of the codes generated by the two compilers shows that gains

and losses of execution speed should be measured, but also those of code

1
length. The shorter codes for procedure entry (2 - 2~ words vs.

4-G words), procedure exit (2 vs. 3 words), and procedure calls

(no updating of display) are very attractive, particularly in a compiler

where space is more on a premium than time. (It should be noted that

the instructions marked with an asterisk can be amitted in the call or

the entry code of procedures declared on the first level). Of course

it must be kept in mind that the decision about which compiler is to be

preferred depends not only on the weighting of space vs. time, but even

more on the programs to be processed. But it is obvious that if the

29

majority of these programs rarely use nested procedure declarations,

and often call procedures on the same level, then the compiler without

Display is to be preferred. The compiler itself, although featuring

nested procedure declarations, but seldom accessing intermediate level

variables, belongs to this class. Comparisons of code generated by the

two compiler versions produced the following results:

1. The efficiency of codes not using a Display is in the average

slightly higher (the compiler itself runs about 1.5% faster).

2. The size of codes not using a Display is smaller (by about

4% measured on 25 sample programs, about 64 in the case of

the compiler's code).

3. The compiler program itself is slightly less complex without

Display.

This episode where a more sophisticated method was abandoned in favor

of a simpler and more direct technique could well be added to the list

of D. Knuth's examples of adverse influences of "computer science" on

"computer usage" [51. Their common characteristic is that improved

methods are adopted without closer inspection of the nature and direction

of the improvement, and without analysis of the circumstances to be

improved. An interesting fact is that the Burroughs B5500 computer --

specifically designed for ALGOL implementation -- did contain exactly

the two base registers required to efficiently address objects at

levels 0 and i . Unfortunately, addressing of intermediate level

objects was impossible due to the software; this deficiency was

justifiably criticized. The remedy adopted in the successor ~6500 was,

however, not a correction of the deficient software, but the inclusion

of a full set of high-speed registers to serve as Display.

30

7*

1.

2.

3.

4.

59

6.

7*

Summary of the Main Trouble Spots of the CDC 6000 &chitecture

Use of one's complement arithmetic. In order to keep comparisons

simple and efficient, the occurrence of negative zeroes must be

prohibited. (Note that PL and NG test the sign bit only.) Various

optimizations are more cumbersome and less effective, because

negative zeroes must be suppressed by additional instructions.

Some instructions are themselves unsafe against the generation

of -0 !

No overflow check on fixed-point arithmetic. This lack is very

serious and may cause wrong restuls in totally unexpected

situations. Overflow check by software is prohibitive.

No compare instructions. The use of subtraction may cause wrong

results, unless expensive precautions are taken.

Use of 48-bit multiplier and divider for fixed-point 60-bit numbers

without warning of possible "overflow" of operands.

Floating-point addition and subtraction without automatic post-

normalization.

Floating-point arithmetic with rounding of operands instead of

rounding postnormalized results.

No subroutine jump instruction depositing the program counter P

in an operand register, and no return jump loading P from a general

operand register. This defect requires the use of 3 instructions

each to jump and deposit a return address, and to retrieve it and

return, whereas many other computers need only a single instruction

for these purposes.

31

Conclusions- - e--B- -.-. -

When considering these camplaints, the reader should bear in mind

that this computer9 architecture was conceived in the very early 1960%.

The CDC 6600 machine was a very advanced design for a special purpose:

fast number crunching. The design relied heavily on the use of several

arithmetic units working simultaneously ("in parallel"). Integer

arithmetic was considered as almost dispensible, and overflow interrupts

as undesirable, because of the impossibility to mirror the present state

of the entire machine by a simple program counter and of resuming compu-

tation. The use of simultaneously operating units is apparently also

made responsible for the otherwise incomprehensible absence of post-

normalization, namely because the unit for floaint-point addition does

not contain a left-shift circuitry. A few years later, the CDC 6400

(and 6500) computers were announced; they were to have the same instruction

set as the 6600, but only one conventional integrated arithmetic-logical

unit. Although the "reasons" for the absence of interrupts and post-

normalization had vanished, these "features" were retained in the name- -

of compatibility. It was apparently considered most important that__I_-

pitfall loaded programs could be transported to the new machines at no

extra cost. This policy of staying "upward compatible with all previous

mistakes" was sternly maintained when the successor to the 6000 series

was announced in 1971.

This attitude, which is by no means atypical among computer

manufacturers, makes it doubtful whether any progress toward more

reliable and more efficient computing will ever be achievable. It

does not seem so, until the computer consumers' attitudes will no longer

justify the present manufacturers' policies. They, in turn, will not

32

change before they are made aware of the hidden cost involved in using

the present equipment. I am convinced that the cost incurred by the

programmers having to discover bugs the hard way by reprogramming

repeatedly, and having to reexecute programs many times until they

were believed to be correct, is incomparably higher than the reduction

in cost due to staying compatible with outdated architectures. The

project to develop the P&CAL compiler for the CDC 6000 computer

unfortunately provided ample support for this conviction.

Acknowledgments

I am grateful to W. Kahan for pointin,D out some additional problems

with the CDC floating-point arithmetic as well as the method for obtaining

correct rounding.

33

References

[l] N. Wirth, "The programming language PASCAI& ACTA INFORMATICA,

Vol. 1, 35-68 (191).

[2] D. S. Lindsay, "A rounded arithmetic FORTRAN compiler for CDC 6000

machines", U. of California, Berkeley, Dec. 1971.

[3] B. Randell and L. Russell, rrALGOL 60 implementation", Acad. Press,

1964.

[4] N. Wirth, "The design of a PASCAL compiler", Software - Practice

and Experience, Vol. 1, 3 0 9 - 3 3 3 (1971) l

[5] D. E. Knuth, "The dangers of computer-science theory", unpublished

paper, August 1971.

[6] J. Welsh and C. Quinn, "A PASCAL compiler for ICL 1900 series

computers", Dept. of Computer Science, Queen's University,.

Belfast, Sept. 1971.

34

005001
005001
005004
005007
005010
005012
005076
005105
005112
005117
005117
005127
005127
005140
005145
005154
005154
005160
005171
005200
005210
005212
005212
005216
005223
005223

005074

005075

C$C+ fit EXPRESSIONS AND ASSIGNMEWS 3
VAR I,J,Kt INTEGER;

X,V,Za REAL;
N8 b.9999;
P,Qs BOOLEAN;

6EGIN t REAL ARITHMETIC 3
x t= 1.0; Y := x + 3.14159; 2 t= x+y + x/v;
x := x + (Y + (2 + (1.0 + x)));
x a= ASSWY); Y 8= SQR(X); 2 := -X;
;";: ~O~N~FDXR:~Ly~~ITHnETIC)

;
c INTEG ER ~RITHHETIC 3

x a= v/z;

I: t= 1; 3 := I + 100; K := I + 3; K I= I DIV 3;
u 8= f-J) MID K; 3 a= SQRU,;
I := TRUNCCX); Z a= I; X I= I/3;
C BOOLEAN ARITHMETIC 3
P 8= T R U E ; Q t= P A 'UVP);
P := x = Y; P a= I = J; Q 8= P = Q;
P := X < Y; P 8= I < 3; Q 8= P < Q;
P a= x I v; P := I I J; Q := P I Q;
Q a= ODD(I);
C OPTIHIZATION OF INTEGER ARITHHETIC 3
I a= 1+8'+ 3.10;
J := I DIV 8 - N OIV 2; K 8= I H3D 16;
N 1= I + 100

END a
005103

SA3 80+OQ5005
SA7 65+80 FX2 X2/X3
sx7 854+0 FXl x1+x2
SA? 80+005000 QO5104

NX6 60,X1
SB6 85+000001 SA6 fUisO5006
SAI 60+005225 NO

005076
6x6 Xi
SA6 60+005004
NO

005077
SAl 60+005004
SA2 BO+OO5226

005100
FXl x1+x2
NX6 80,X1
SA6 eo+oo5oo5

uo5101 *
SAI 80+005004
SA2 BO+OO5005

005102
FXl x1+x2
SA2 80+005004
NO

005105 ”
SAi
SA2

005106
SA3
SA4

005107
SA5
FX4
NX4

005110
FX3
NX3
FX2
NX2

005111
FXl
NX6
SA6

80+005004
80+005005

80+005006
80+005225

80+005004
x4+x5
609X4

x 3 + x 4
BO,X3
X2+X3
60,X2

x1+x2
t30,Xi
BO+OO5004

35

005130
SAl 60+005001 --

005112

005113

005114

005115

005116

005117

005120

005121

005122

005123

005124

005125

005126

005127

SAI 80+005005
6X0 xi
AX0 73

8x6 m-xi
SA6 60+005004
NO

sxo 80+000144
IX6 Xl+%0
NO

005131

005132

SA6 8WOO5002
SAl 80+005001

SA2 BP+005002
OX1 x1+x2
0x0 x0-x0

SAl 80+005004
FX6 XPXl
NO

_SA6 80+005005
SAl 80+005OOh

6X0 x0-x0
IX6 WI-xi
SA6 80+005006
.
SAI 80+005005
SA2 BO+OO5006

FXil x1+x2
NXO 80,X0
OX1 x1+x2
RX1 x0+x i

NX6 80,X1
SA6 80+005004
NO

005133
IX6 x1+x0
SA6 80+005003
NO

005134
SAl
SA2

B0+005001
80+005002

005135
PX2
NX2
PXl
FXI

80,X2
80,X2
60,X1
xi/x2

005136
uxi
LX1
0x0
IX6

e7,xi
B7,Xi
x0-x0
x1+x 0

005137

005140

SA6 80+005003
SAI 80+005002

SAl 80+005005
SA2 60+005006

FXO x1+x2
OX1 x1+x2
RX6 x0+x1
NO

SA6 80+005004
SAl 80+005005

SA2 80+005006
RX6 Xl/X2
NO

8X0 x0-x0
IX1 x0-x 1
SA2 80+005003

005141
PX6 BO,X2
NX6 80,X6
PXO 60,X1
FX6 x0/x E

005142
UX6 Bt,X6
LX6 87,X6
OX6 X2+X6
IX6 XI-X6

065143

005144

_SA6 80+005003
SAl 80+005002

L-

SA6 60+005004
SX6 60+000001

OX6
SA6
NO

x1+x1
90+005002SA6 80+005001

36

- -
NO

$A6 80+005OlQ
SAI 80+005001

005145

005146

005163

005164

SAl eo+oo5oo4
UXi B?,Xl
1x1 B7,Xl

SA2 80+00500 2
1x0 Xl-X2
MX6 00

0x0 x0-x0
IX6 x1+x0
SA6 BO4005001

005165

005166

005167

SAl
0X$ 2+oo5001
PX6 80,X6

NZ x0,005166.
SX6 BO+OOOODl

SA6 30+005010
SAl %0+005010

005150
NX6 80,X6
SA6 60+305006
NO SA2 60+005011

BXi Xl-X2
MXO 73

005151
SAl BO4005001
SAZ 80+005002 005170

I -- 005152 8X6 -x1-x0
SA6 BO+OO5011
NO

PX2 BO,X2
NX2 BOsX2
PXI 80,X1
NXl BO,Xl

OOSlfi

005172

SAI 80+005004
SA2 BO+OO5005

RX6 Xl/X2
SA6 80+005004
NO

FXl Xl-X2
NXO 01
%X6 xmxi
LX6 01

005154
SX6 BO+OOOOOi
SA6 80+005010 005173

SA6 BO+OO5010
SAl 80+00500 1

005155
SAl 80+005010
SA2 B0+005011 005174

SA2 BO+OO5002
1x1 Xl-X2
HXO 01

005156
SA3 BO+OO5010
0x2 X2vX3
flxo 73 005175

0X6 XfbXl
LX6 01
SA6 BO+OO5010

SAl 80+005010
SA2 80+0050 11

005157
0x2 -x2-x0
0X6 XlAX2
SA6 BO+OO5011 005176

005177

005160 -~

SAl 80+005004
SA2 80+005005

8X6 'XlAX2
SA6 80+005011
NO

005161
IX0 Xl-X2
MX6 00
NZ x0,005163

005162
SX6 eo+ooooo1
NO

37

--
005200

005201

005202

005203

SAl 60+005004
SA2 80+005005

FXl x2-x1
HXO 01
BX6 'XlAXO
LX6 01

SAb BO+OO5OiO
SAl 004005001

SA2 80+005002
1x1 x2-x 1
MXO 01

005204

005205

005206

005207

005210

BX6 'XIAXO
LX6 01
SA6 60+005010

SAl 80+005010
SA2 80+005011

BXl 'X2AX1
MXO 73
8X6 -x1-x0
NO

?A6 BO+OO5011
SAl B04005001

0x0 Xl
LX0 73
BXl Xl-X0
MXO 01

005211

005212

8X6 XOAXl
LX6 01
SA6 80+005011

SAl BO+OO5001
LX1 03
NO

005213
SAZ 60+005002
LX2 01
%X0 x2

005214
LX2 02
IX2 x24x0
IX6 x1+x2
NO

SAI- 80+00500-1
005216

AX1 03
8X0 x0-x0
1x1 x1+x0
NO

005217
SA2 804005007
AX2 01
IX6 Xl-X2

005220
SA6 80+005002
SAI 80+005001

005221
13x0 Xi
AX0 04
LX0 04
IX6 Xl-X0

005222
SA6 80+005003
SAl BO+OO500 1

005223
SX6 x14000144
SA6 B0+005007

005224
SAl BS+BO
SB7 xl+60
JP Bt+OOOOOO

005225 17204000000000000000
005226 17216220771740156064

- 005215
SA6 80+005001

38

