
PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 1/9

Niklaus Wirth

Program Development by Stepwise Refinement
Источник: Communications of the ACM, Vol. 14, No. 4, April 1971, pp. 221-227.

The creative activity of programming — to be distinguished from coding — is usually taught by
examples serving to exhibit certain techniques. It is here considered as a sequence of design decisions
concerning the decomposition of tasks into subtasks and of data into data structures. The process of
successive refinement of specifications is illustrated by a short but nontrivial example, from which a
number of conclusions are drawn regarding the art and the instruction of programming.

Key Words and Phrases: education in programming, programming techniques, stepwise program
construction.

1. Introduction

Programming is usually taught by examples. Experience shows that the success of a programming course
critically depends on the choice of these examples. Unfortunately, they are too often selected with the
prime intent to demonstrate what a computer can do. Instead, a main criterion for selection should be their
suitability to exhibit certain widely applicable techniques. Furthermore, examples of programs are
commonly presented as finished "products" followed by explanations of their purpose and their linguistic
details. But active programming consists of the design of new programs, rather than contemplation of old
programs. As a consequence of these teaching methods, the student obtains the impression that
programming consists mainly of mastering a language (with all the peculiarities and intricacies so abundant
in modern PL's) and relying on one's intuition to somehow transform ideas into finished programs. Clearly,
programming courses should teach methods of design and construction, and the selected examples should
be such that a gradual development can be nicely demonstrated.

This paper deals with a single example chosen with these two purposes in mind. Some well-known
techniques are briefly demonstrated and motivated (strategy of preselection, stepwise construction of
trial solutions, introduction of auxiliary data, recursion), and the program is gradually developed in a
sequence of refinement steps.

In each step, one or several instructions of the given program are decomposed into more detailed
instructions. This successive decomposition or refinement of specifications terminates when all
instructions are expressed in terms of an underlying computer or programming language, and must
therefore be guided by the facilities available on that computer or language. The result of the
execution of a program is expressed in terms of data, and it may be necessary to introduce further
data for communication between the obtained subtasks or instructions. As tasks are refined, so the
data may have to be refined, decomposed, or structured, and it is natural to refine program and data
specifications in parallel.

Every refinement step implies some design decisions. It is important that these decision be made
explicit, and that the programmer be aware of the underlying criteria and of the existence of
alternative solutions. The possible solutions to a given problem emerge as the leaves of a tree, each
node representing a point of deliberation and decision. Subtrees may be considered as families of
solutions with certain common characteristics and structures. The notion of such a tree may be
particularly helpful in the situation of changing purpose and environment to which a program may
sometime have to be adapted.

A guideline in the process of stepwise refinement should be the principle to decompose decisions as
much as possible, to untangle aspects which are only seemingly interdependent, and to defer those
decisions which concern details of representation as long as possible. This ferent environments
(languages and computers), where different representations may be required.

The chosen sample problem is formulated at the beginning of section 3. The reader is strongly urged
to try to find a solution by himself before embarking on the paper which-of course-presents only one
of many possible solutions.

PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 2/9

2. Notation

For the description of programs, a slightly augmented Algol 60 notation will be used. In order to express
repetition of statements in a more lucid way than by use of labels and jumps, a statement of the form

repeat (statement sequence)
until (boolean expression)

is introduced, meaning that the statement sequence is to be repeated until the boolean expression has
obtained the value true.

3. The 8-Queens Problem and an Approach to Its Solution

Given are an 8 X 8 chessboard and 8 queens which are hostile to each other. Find a position for each
queen (a configuration) such that no queen may be taken by any other queen (i.e. such that every
row, column, and diagonal contains at most one queen).

This problem is characteristic for the rather frequent situation where an analytical solution is not
known, and where one has to resort to the method of trial and error. Typically, there exists a set A of
candidates for solutions, among which one is to be selected which satisfies a certain condition p. Thus
a solution is characterized as an x such that (x A) p(x).

A straightforward program to find a solution is:

repeat Generate the next element of A and call it x
until p(x) V (no more elements in A);
if p(x) then x = solution

The difficulty with this sort of problem usually is the sheer size of A, which forbids an exhaustive
generation of candidates on the grounds of efficiency considerations. In the present example, A
consists of 64!/(56! X 8!) = 2^32 elements (board configurations). Under the assumption that
generation and test of each configuration consumes 100 microseconds, it would roughly take 7 hours
to find a solution. It is obviously necessary to invent a "shortcut," a method which eliminates a large
number of "obviously" disqualified contenders. This strategy of preselection is characterized as
follows: Find a representation of p in the form p = q r. Then let Br = {x | (x A) r(x)}. Obviously
Br A. Instead of generating elements of A, only elements of B are produced and tested on condition q
instead of p. Suitable the following requirements:

1. Br is much smaller than A.

2. elements of B are easily generated.

3. Condition q is easier to test than condition p.

The corresponding program then is:

repeat Generate the next element of B and call it x
until q(x) V (no more elements in B);
if q(x) then x = solution

A suitable condition r in the 8-queens problem is the rule that in every column of the board there must
be exactly one queen. Condition q then merely specifies that there be at most one queen in every row
and in every diagonal, which is evidently somewhat easier to test than p. The set Br, (configurations
with one queen in every column) contains "only" 8^8 = 2^24 elements. They are generated by
restricting the movement of queens to columns. Thus all of the above conditions are satisfied.

PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 3/9

Assuming again a time of 100 ,us for the generation and test of a potential solution, finding a solution
would now consume only 100 seconds. Having a powerful computer at one's disposal, one might easily be
content with this gain in performance. If one is less fortunate and is forced to, say, solve the problem by
hall (it, it would take 280 hours of generating and testing configurations at the rate of one per second. In
this case it might pay to spend some time finding further shortcuts. Instead of applying the same method
as before, another one is advocated here which is characterized as follows: Find a representation of trial
solutions x of the form {x1, x2, ··· , xn}, such that every trial solution can be generated in steps which
produce [x1], [x1, x2], [x1, x2, ··· , xn] respectively. The decomposition must be such that:

1. Every step (generating xj) must be considerably simpler to compute than the entire candidate
x.

2. q(x) q(x1 ··· xj) for all j < n.

Thus a full solution can never be obtained by extending a partial trial solution which does not satisfy
the predicate q. On the other hand, however, a partial trial solution satisfying q may not be extensible
into a complete solution. This method of stepwise construction of trial solutions therefore requires that
trial solutions failing at step j may have to be "shortened" again in order to try different extensions.
This technique is called backtracking and may generally be characterized by the program:

j := 1;
repeat trystep j;
 if successful then advance else regress
until (j < 1) V (j > n)

In the 8-queens example, a solution can be constructed by positioning queens in successive columns
starting with column 1 and adding a queen in the next column in each step. Obviously, a partial
configuration not satisfying the mutual nonaggression condition may never be extended by this
method into a full solution. Also, since during the jth step only j queens have to be considered and
tested for mutual nonaggression, finding a partial solution at step j requires less effort of inspeclion
than finding a complete solution under the condition that all 8 queens are on the board all the time.
Both stated criteria are therefore satisfies by the decomposition in which step j consists of finding a
safe position for the queen in the jth column.

The program subsequently to be developed is based on this method; it generates and tests 876 partial
configurations before finding a complete solution. Assuming again that each generation and test
(which is now more easily accomplished than before) consumes one second, the solution is found in
15 minutes, and with the computer taking 100 microseconds per step, in 0.09 seconds.

4. Development of the Program

We now formulate the stepwise generation of partial solutions to the 8-queens problem by the
following first version of a program:

variable board, pointer, safe;
considerfirstcolumn;
repeat trycolunm;
 if safe then
 begin setqueen; considernextcolumn
 end else regress
until lastcoldone V regressouttofirstcol

PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 4/9

This program is composed of a set of more primitive instructions (or procedures) whose actions may
be described as follows:

considerthiscolumn. The problem essentially consists of inspecting the safely of squares. A
pointer variable designates the currently inspected square. The column in which this square lies
is called the currently inspected column. This procedure initializes the pointer to denote the first
column.

trycolumun. Starting at the current square of inspection in the currently considered column,
move down the column until a safe square is found, in which case the boolean variable safe is
set to true, or until the last square is reached and is also unsafe, in which case the variable safe
is set to false.

setqueen. A queen is positioned into the last inspected square.

considernextcolumn. Advance to the next column and initialize its pointer or inspeclion.

regress. Regress to a column where it is possible to move the positioned queen rurther down,
and remove the queens positionted in the columns over which regression takes place. (Note that
we may have to regress over at most two columns. Why?)

The next step of program development was chosen to refine the descriptions of the instructions
trycolumn and regress as follows:

procedure trycolumn;
repeat advancepointer; testsquare
until safe V lastsquare
procedure regress;
 begin reconsiderpriorcolumn
 if - regressouttofirstcol then
 begin removequeen;
 if lastsquare then
 begin reconsiderpriorcolumn;
 if not regressouttofirstcol then
 removequeen
 end
 end
 end

The program is expressed in terms of the instructions:

considerfirstcolumn
cibsidernextcolumn
reconsiderpriorcolumn
advancepointer
testsquare (sets the variable <EMSAFE< EM>)
setqueen
removequeen

and of the predicates: lastsquare lastcoldone regressouttofirstcol

In order to refine these instructions and predicates further in the direction of instructions and
predicates available in common programming languages, it becomes necessary to express them in
terms of data representable in those languages. A decision on how to represent the relevant facts in
terms of data can therefore no longer be postponed. First priority in decision making is given to the
problem of how to represent the positions of the queens and of the square being currently inspected.

The most straightforward solution (i.e. the one most closely renecting a wooden chessboard occupied
by marble pieces) is to introduce a Boolean square matrix with B[i, j] = true denoting that square (i,
j) is occupied. The success of an algorithm, however, depends almost always on a suitable choice of
its data representation in the light of the ease in which this representation allows the necessary
operations to be expressed. Apart from this, consideration regarding storage requirements may be of
prime importance (although hardly in this case). A common dilliculty in program design lics in the
unfortullale fact that at the stage where decisions about data representations have to be made, it
often is still difficult to foresee the details of the necessary instructions operating on the data, and
vften quite impossible to estimate the advantages of one possible representation over another. In

PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 5/9

general, it is therefore advisable to delay decisions about data representation as long as possible (but
not until it becomes obvious that no realizable solution will suit the chosen algorithm).

In the problem presented here, it is fairly evident even at this stage that the following choice is more
suitable than a Boolean matrix in terms of simplicity of later instructions as well as of storage economy.

j is the index of the currently inspected column; (xj, j) is the coordinate of the last inspected square;
and the position of the queen in column k < j is given by the coordinate pair (xk, k) of the board. Now
the variable declarations for pointer and board are refined into:

integer j (0 <= j <= 9)
integer array x[1:8] (0 <= xi <= 8)

conditions and predicates are expressed as:

procedure considerfirstcolumn;
 begin j := 1; x[1] := 0 end

procedure considernextcolumn;
 begin j := j + 1; x[j] = 0 end

procedure reconsiderpriorcolumn;
 j := j - 1

procedure advancepointer;
 x[j] := x[j] + 1

Boolean procedure EM>lastsquare;
 lastsquare := x[j] = 8;

Boolean procedure lastcoldone;
 lastcoldone := j > 8

Boolean procedure
 regressouttofirstcol := j < 1

At this stage, the program is expressed in terms of the instructions:

testsquare
setqueen
removequeen

As a matter of fact, the instructions setqueen and removequeen may be regarded as vacuous, if we decide
that the procedure testsquare is to determine the value of the variable <EMSAFE< EM>solely on the
grounds of the values x1 ··· xj-1 which completely represent the positions of the j С 1 queens so far on thc
board. But unfortunately thc instruction testsquare is the one most frequently executed, and it is therefore
the one instruction where considerations of efficiency are not only justified but essentinl for a good solution
of the problem. Evidently a version of testsquare expressed only in terms of x1 ··· xj-1 is inefficient at
best. It should be obvious that testsquare is executed far more often than setqueen andremovequeen. The
latter procedures are executed whenever the column (j) is changed (say n times), the former whenever a
move to the next square is undertaken (i.e. EM>xj is changed, say n times). However, setqueen and
removequeen are the only procedures which affect the chessboard. Effeciency may therefore be gained by
the method of introducing auxiliary variables V(x1 ··· xj) such that:

1. Whether a square is safe can be compllted more easily from V(x) than from x directly (say in v
units of computation instead of ku units of computation).

2. The computation of V(x) from x (whenever x changes) is not too complicated (say of v
units of computation).

The introduction of V is advantageous (apart from considerations of storage economy),

If (k - 1)u > mu or (n/m)(k - 1) > (v/u),

i.e. if the gain is greater than the loss in computation units.

PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 6/9

A most straightforward solution to obtain a simple version of testsquare is to introduce a Boolean
matrix B such that B[i,j] = true signifies that square (i,j) recomputation whenever a new queen is
removed is prohibitive (why?) and will more than outweigh the gain.

The realization that the relevant condition for safety of a square is that the square must lie neither in
a row nor hl a diagonal already occupied by another queen, leads to a much more economic choice of
V. We introduce noolean arrays a, b, c with the meanings:

ak = true : no queen is positioncd in row k
<EMB< em>k = true : no queen is positioned in the /-diagonal k
ck = true : no queen is positioned in the \-diagonal k

The choice of the index ranges of these arrays is made in view of the fact that squares with equal sum
of their coordinates lie on the same /-diagonal, and those with equal difference lie on the same \-
diagonal. With row and column indices from I to 8, we obtain:

Boolean array a[1:8],b[2:16],c[-7:7]

Upon every introduction of :auxiliary data, care has to he taken of their correct initialization. Since our
algorithm starts with an empty chessboard, this fact must be represented by initially assigning the
value true to all components of the arrays a,b, and c. We can now write:

procedure testsquare;
safe := a[x[j]] b[j + x[j]] c[j - x[j]]
procedure setqueen;
 a[x[j]] := b[j + x[j]] := x[j - x[j]] := false
procedure removequeen;
 a[x[j]] := b[j + x[j]] := c[j - x[j]]

The correctness of the latter procedure is based on the fact that each queen currently on the board
had been positioned on a safe square, and that all queens positioned after the one to he removed now
had already been removed. Thus the square to be vacated becomes safe again.

A critical examination of the program obtained so far reveals that the variable x[j] occurs very often, and
in particular at those places of the program which are also executed most often. Moreover, examination of
x[j] occurs much more frequenlly than reassignment of values to j. As a consequence, the principle of
introduction of new auxiliary data can again be applied to increase efficiency: a new variable

integer i

is used to represent the value so far denoted by x[j] Consequently x[j] = i must always be executed
before j is increased, and i: = x[j] after j is decreased. This final step of program development leads
to the reformulation of some of the above procedures as follows:

procedure testsquare;
 safe := a[i] b[i + j] c[i - j]
procedure setqueen;
 a[i] := b[i + j] := c[i - j] := false
procedure removequeen;
 a[i] := b[i + j] := c[i - j] := true
procedure considerfirstcolumn;
 begin j := 1; i := 0 end
procedure advancepointer;
 i := i + 1;
procedure considernextcolumn;
 begin x[j] := i; j := j + 1; i := 0 end

Boolean procedure lastsquare
 lastsquare := i - 8

The final program, using the procedures

testsquare
setqueen
regress
removequeen

PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 7/9

and with the other procedures directly substituted, now has the form

j := 1; i := 0;
repeat
 repeat i := i + 1; testsquare
 until safe (i = 8);
 if safe then
 begin setqueen; x[j] := i; j := j + 1; i := O
 end else regress
until (j > 8) (i < 1);
if j > 8 then PRINT(x) else FAILURE

It is noteworthy that this program still displays the structure of the version designed in the first step.
Naturally other, equally valid solutions can be suggested and be developed by the same method of
stepwise program refinement. It is particularly essential to demonstrate this fact to students. One
alternative solution was suggested to the author by E. W. Dijkstra. it is based on the view that the
problem consists of a stepwise extension of the board by one column containing a safely positioned
queen, starting with a null-board and terminating with 8 columns. The process of extending the board
is formulated as a procedure, and the natural method to obtain a complete board is by recursion of
this procedure. It can easily be composed of the same set of more primitive instructions which were
used in the first solution.

procedure trycolumn
 begin integer i; i := 0;
 repeat i := i + 1; testsquare;
 if safe then
 begin setqueen; x[j] := i;
 if j < 8 then trycolumn(j+1);
 if not safe then removequeen
 end
 until safe (i = 8)
 end

The program using this procedure then is

Trycolumn(1);
if safe then PRINT(x) else FAILURE

(Note that due to the introduction of the variable i local to the recursive procedure, every column has
its own poinler of inspection i. As a consequence, the procedures

testsquare
setqueen
removequeen must be declared locally within Trycolumn too, because they rerer to the i designating
the scanned square in the current column.)

5. The Generalized 8-Queens Problem

In the practical world of computing, it is rather uncommon that a program, once it performs correctly
and satisfactorily, remains unchanged forever. Usually its users discover sooner or later that their
program does not deliver all the desired results, or worse, that the results requested were not the
ones really needed. Then either an extension or a change of the program is called for, and it is in this
case where the method of stepwise program design and systematic structuring is most valuable and
advantageous. If the structure and the program components were well cllosen, then often many of the
constituent instructions can be adopted unchanged. Thereby the effort of redesign and reverification
may be drastically reduced. As a matter of fact, the adaptability of a program to changes in its
objectives (often called maintainability) and to challges in its environment in terms of the degree to
which it is neatly structured.

It is the purpose of the subsequent section to demonstrate this advantage in view of a generalization
of the original 8-queens problem and its solution through an extension of the program components
introduced before.

The generalized problem is formulated as follows:

PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 8/9

Find all possible configurations or 8 hostile queens on an 8 X 8 chessboard, such that no queen may
be taken by any other queen.

The new problem essentially consists of two parts:

1. Finding a method to generate further solutions.

2. Determining whether all solutions were generated or not.

It is evidently necessary to generate and test candidates for solutions in some systematic manner. A
common technique is to find an ordering of candidates and a condition to identify the last candidate. If
an ordering is found, the solutions can be mapped onto the integers. A condition limiting the numeric
values associated with the solutions then yields a criterion for termination of the algorithm, if the
chosen method generates solutions strictly in increasing order. It is easy to find orderings of solutions
for the present problem. We choose for convenience the mapping

M(x) = j = 1 to 8 (xj10^(j-1)

An upper bound for possible solutions is then M(xmax) = 88888888

and the "convenience" lies in the circumstance that our earlier program generating one solution
generates the minimum solution which can be regarded as the starting point from which to proceed to
the next solution. This is due to the chosen method of testing squares strictly proceeding in increasing
order of M(x) starting with 00000000. The method for generating further solutions must now be
chosen such that starting with the configuration of a given solution, scanning proceeds in the same
order of increasing M, until either the next higher solution is found or the limit is reached.

6. The Extended Program

The technique of extending the two given programs finding a solution to the simple 8-queens problem
is based on the idea of modification of the global structure only, and of using the same building
blocks. The global structure must be changed such that upon finding a solution the algorithm will
produce an appropriate indicationСe.g. by printing the solutionСand then proceed to find the next
solution until it is found or the limit is reached. A simple condition for reaching the limit is the event
when the first queen is moved beyond row 8, in which case regression out of the first column will take
version of the nonrecursive program:

considerfirstcolumn;
 repeat trycolumn;
 if safe then
 begin setqueen; considernextcolumn;
 if lastcoldone then
 begin PRlNT(x); regress
 end
 end else regress
<STRONGUNTIL< STRONG> regressouttofirstcol

Indication of a solution being found by printing it now occurs directly at the level of detection, i.e.
before leaving the repetition clause. Then the algorithm proceeds to find a next solution whereby a
shortcut is used by directly regressing to the prior column; since a solution places one queen in each
row, there is no point in further moving the last queen within the eightth column.

The recursive program is extended with even greater ease following the same considerations:

procedure Trycolumn(j);
begin integer i;
 (declaralions of procedures testsquare, advancequeen,
 setqueen, removequeen, lastsquare)
 i := 0;
 repeat advancequeen; testsquare;
 if safe then
 begin setqueen; x[j] := i;
 if not lastcoldone then Trycolumn(i + l) else PRlNl'(x);
 removequeen
 end
 until lastsquare
end

PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT СЕНТЯБРЬ 2005

МИР ПК – ДИСК. 2005. № 9 9/9

The main program starting the algorithm then consists (apart from initialization of a, b, and c) of the
single statement Trycolumn(1) .

In concluding, it should be noted that both programs represent the same algorithm. Both determine 92
solutions in the same order by testing squares 15720 times. This yields an average of 171 tests per
solution; the maximum is 876 test for finding a next solution (the first one), and the minimum is 8. (Both
programs coded in the language Pascal were executed by a CDC 6400 computer in less than one second.)

7. Conclusions

The lessons which the described example was supposed to illustrate can be summarized by the
following points.

1. Program construction consists of a sequence of refinement steps. In each step a given task is
broken up into a number of suhtasks. Each refinement in the description of a task may be
accompanied by a refinement of the description of the data which constitute the means of
communication between the subtasks. Refinement of the description of program and data
structures should proceed in parallel.

2. The degree of modularity obtained in this way will determine the ease or difficulty with which
a program can be adapted to changes or extensions of the purpose or changes in the
environment (language, computer) in which it is executed.

3. During the process of stepwise refinement, a notation which is natural to the problem in hand
should be used as long as possible. The direction in which the notation develops during the
process of refinement is determined by the language in which the program must ultimately be
specified, i.e. with which the notation ultimately becomes identical. This language should
therefore allow us to express as naturally and clearly as possible the structure of program and
data which emerge during the design process. At the same time, it must give guidance in the
refinement process by exhibiting those basic features and structuring principles which are
natural to the machine by which programs are supposed to be executed. It is remarkable that
it would be difficult to find a language that would meet these important requirements to a
lesser degree that the one language still used most widely in teaching programming: Fortran.
Each refinement implies a number of design decisions based upon a set of design criteria.
Among these criteria are efficiency, storage economy, clarity, and regularity of structure.
Students must be taught to be conscious of the involved decisions and to critically examine
and to reject solutions, sometimes even if they are correct as far as the result is concerned;
they must learn to weigh the various aspects of design alternatives in the light of these
criteria. In particular, they must be taught to revoke earlier decisions, and to back up, if
necessary even to the top. Relatively short sample problems will often suffice to illustrate this
important point; it is not necessary to construct an operating system for this purpose.

4. The detailed elaborations on the development of even a short program form a long story,
indicating that careful programming is not a trivial subject. If this paper has helped to dispel the
widespread belief that programming is easy as long as the programming language is powerful
enough and the available computer is fast enough, then it has achieved one of its purposes.

Acknowledgments. The author gratefully acknowledges the helpful and stimulating influence of many discussions with
C.A.R. Hoare and E. W. Dijkstra.

References

The following arlicles are lisled for further reference on the subject of programming.

1. Dijkstra, E. W. A constructive approach lo the problem of program correctness. BIT 8 (1968), 174-186.

2. Dijkstra, E. W. Notes on structured programming. EWD 249 Technical U. Eindhoven, The
Netherlands, 1969.

3. Naur, P. Programming by action clusters. BIT 9 (1969) 250 - 258.

4. Wirth, N. Programming and programming languages. Proc. Internat. Comput. Symp., Bonn,
Germany, May 1970.

