CS 65

ON CERTA IN BAS IC CONCEPTS OF
PROGRAMMING LANGUAGES

BY

NIKLAUS W IRTH

TECHNICAL REPORT NO. CS 65
MAY 1, 1967

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

L

—

—

r— r— {— r—

— r— r

r——

rm\

—

r~—

On Certain Basic Concepts of Programmng Languages

By

~ Ni klaus Wrth

May 1, 1967

Conput er Science Depart nent
Stanford University

Stanford, California

r-%»‘\

On Certain Basic Concepts of Progranm ng Languages

Content s

On Data Structures .

1. Type Definitions
2. Cell Declarations
3. Cell Designations
4. Cells Wthout Explicit Names
Bl ockstructure

6. The "Elimnation" of References
7. _ lnput -output
8. Qperations on Defined Types
9. Summary

On Program Structures

Statements and Expressions

2. Program Verification and Efficiency

3. Subscript Ranges

4. Anbi guous References
Procedures as Data Elements

6. Loops

Ref erences .

12
15
17
18
19

20
20
22
25
2k
25

a7

30

Recent devel opments of progranmng |anguages have led to the ener-
gence of |anguages whose growth showed cancerous synptons: the prolif-
eration of new elenents defied every control exercised by the designers,
and the nature of the new cells often proved to be inconmpatible with the
existing body. In order that a l|anguage be free from such synptons, it
Is necessary that it be built upon basic concepts which are sound and
nutual Iy independent. The rules governing the |anguage nust be sinple
general |y applicable and consistent.

In order that sinplicity and consistency can be achieved, the funda-
mental concepts of a | anguage nust be well-chosen and defined wth utnost
clarity.

In practice, it turns out that there exists an optinumin the number
of basic concepts, below which not only inplenentability of these concepts
on actual computers, but also their appeal to human intuition becones
questionabl e because of their high degree of generalization. The foll ow
ing informal notes do not abound wth ready-made solutions, but it is
hoped they shed some |ight on several related subjects and inherent diffi-
culties. They are intended to summarize and interrelate various ideas
which are partly present in existing | anguages, partly debated within
the IFIP Wrking Goup 2.1, and partly new.

Wiile enphasis is put on clarification of conceptual issues, consid-
eration of notation cannot be ignored, However, no formal or concise
definitions of notation (syntax) will be given or used; the concepts wll
instead be illustrated by exanples, using notation based on Algol as far
as possible.

— r

[. On Data Structures

The elenmentary concepts of conputing processes are

o There exist certain quantities, to be called "values", and el ementary
classes or types (possibly onfy one) of values anong whose el ements
given elenmentary relationships hold. These relationships or nappings
are represented in a conputer by its operations which generate a new
value (called result) which has the specified relationship to the
given value(s) (called operands).

¢ There exist cells (usually called "variables") which are able to con-
tain a value, and which have a nane. That nanme serves to refer to the
cont ai ned val ue.

© There exists an operator for the assignment of a new value to a cell.

The vocabul ary used for describing processes nust contain at |east one
denotation for each elenent in the universe of values, and at |east one
for each relationship among values in each class. Wile the universe of
(elementary) values is usually given in a programmng |anguage, the set

of cells involved in a process is particular to that process and nust be
defined in its description. Therefore, also names to designate those
cells must be individually introduced (declared). A necessary rule is
that either cell nanmes nust be distinguishable from denotations of values
(and rel ationships), or otherwise a chosen cell nane identical with a
val ue denotation may no longer be used (directly) to denote that value

It is inportant that groups of elementary val ues can be conbi ned and
consi dered as a conposite or structured value. It is customary to denote
such a value by listing its conponents, separated by a separator (e.g
comma) and delimted by brackets (e.g. parentheses). The name of the cell
hol ding a structured value is then used to denote the entirety of the

conponent val ues.

This conceptual |y appealing and sinple solution has been realized
in the |anguage EULER [w and W]. [Its practicability, however, turns out
to be rather doubtful for the follow ng reasons:

i

{V .

—

rr r— ¢ o £ T o Lo

1. Since a cell may hold any value, and therefore also a conposite
one, its physical size in terms of conputer menmorycells is not fixed.
I npl enentation of this scheme requires the use of indirect referencing
and dynam ¢ storage allocation to an extent which nakes the use of such
a language unattractive for many applications.

2. The very dynamicism and |ack of redundancy of the |anguage nakes
it difficult for the programer to verify the correctness of a witten

program

3. Assuming that individual elements of a conposite value can be
referenced by the name of the holding cell followed by an index, it
imediately follows that the same notation should be used in assignnent
statenments to alter elements of the structure. Since assignnents can
only be nade to cells (and not to values), the cell holding a conposite
val ue must be considered as a structured cell. It follows that the cre-
ation of cells is a highly inplicit action, since assigrnnent of an n-ary
value inplies the creation of n cells. The conclusion to be drawn is
that a programm ng | anguage shoul d not contain the notion of a structured
value, but rather the one of a structured cell. Positional relation-
shi ps between val ues then exist only by virtue of the structure of their
containing cells.

1. Type Definitions

These difficulties and drawbacks can be overcone by attributing to
each cell a fixed structure, when the cell is introduced. For practica
purposes this turns out to be hardly a restriction at all, since in nost
applications a program involves only a few different types of structures,
while many used cells are of one and the sane structure. One may con-
sider the given elenmentary classes or types of values to be of elementary
(degenerate) structure. A cell may then be declared to be of a given
el enentary type, and hence it can hold only values of that type. This
is achieved by the type declarations in Algol 60. Further, nore conplex
structures can be considered as conpositions of elementary structures
and in order that a name can be attributed to that structure, also to be

— ¢ T e o

called a "type", a new construct called a "type definition" has to be
introduced. It may assume a formas illustrated by the follow ng exanple

type Person (Integer age; Boolean nale; Real weight)

"Person" is the name of the new structure, which is conposed of three
elements (called "fields") which are of elenentary structure; |nteger
Bool ean, and Real respectively. The type definition is nmoreover used to
attribute names to the individual fields, and corresponds to the record
class declaration in [Wand H. It can be assuned that the elenentary
types-are introduced by fixed type definitions in the environnent of the
program In fact, the elementary types are usually thensel ves conposed
of bits, and their substructure is dependent on particular inplementations
and machi nes,

It is sufficient to let the type definition consist of a linear |ist
of constituents, if the constituents thenselves can be of any type
Exanpl es:

type Medicalrecord (Integer bloodtype, heart condition;
Bool ean di abeti c)

type Patient (Integer age; Boolean male; Medicalrecord health)

Oten it is desirable to give nuneric names to fields of structures, which
in turn can be conputed. An exanple is

type A (Real 1,2,3,4)
for which we inmediately introduce the abbreviation
type A (Real [1:4])

wi thout further explanation. Such a structure is called a (one-dinmen-
sional) array, and the field names are called indices; all elements are

L

r

e o o teor

of the same type. Milti-dinensional arrays, whose elements are designated
by more than one index, could be defined as follows:

type B (Real 1,2,3]1,2,3,4) .

Above abbreviation leads to the short form

type B (Real [1:31][1:4]) .

The distinction of this structure and the one defined by
typel:31])

lies in the. fact that the 12 elenents of B are of type Real, while
C consists of 3elements of type A which in turn consists of 4 ele-
ments of type Real. |If Bis considered to be a matrix, then its rows
and colums are not explicitly designated and appear on the sane footing,
while Cis considered to be a linear structure of rows.

The foregoing notation has the effect of making explicit the sim-
larity of the concepts of arrays and records [Wand H]. It automatically
introduces array structured fields:

type Account (Integer number; Real balance; A deposit)

2. Cell Declarations

The introduction of cells (variables, records) is required to con-
tain an indication of the type of the cell along with the nane to be asso-
ciated with the new cell.

Exampl es: *

new (Integer) i
new (A) a, al

*In order to facilitate reading of subsequent exanples, names of cells
begin with [ower case letters, names of types with capital letters.

5

L
L

- — r—

new (B) b, bl, b2

new (C) ¢

new (Person) jack, jill
new (Patient) smth
.hew (Accbunt) ac

The synbol new is chosen to indicate that a new cell of a given type
is introduced. Instead of new, cell or var mght have been chosen to
enphasi ze the creation of a cell or variable. In ternms of an inplenenta-
tion, this declaration causes storage to be allocated,

In Algol 60
~ new (Integer) i
is abbreviated to

integer i

and this convention holds for all elenentary types. |If the |anguage
rules are such that in the place of the type identifier the type defini-
tion itself can occur, then the exanple
new (A) a
can also assune the form
new (Real [1:4]) a
or abbreviated

real [1l:4] a

from which the analogy to Algol 60's array declaration

L

rrn @9m6@ "~ - ™~ %™$©$«$$"r. *r~-r—rnr—r

real array a[1:4]

becones evi dent.

3. Cell Designations

Various notations are now presented to denote cells and conponents
of structured cells:

o B Y &
(2] a.2 2 of a 2(a)
[2,3] b.2,3 2,5 of b 2,3 (b)
| ack[age] j ack. age age of jack age(j ack)
mith[health] smith.health heal th of smith|health(snith)
[2] c.2 2 of c 2(c)
(2[3]] c.2.3 3 of 2 of ¢ 3(2(c))
mith[health[smith.health. di abetic of diabetic (health(
di abetic di abetic heal th of smith|snith))
c[principal] ac. princi pal principal of ac|principal(ac)
c[deposit[3]] ac. deposit.3 3 of deposit % (deposit(ac))

of ac

At this point it seens appropriate to examne the results of the previous
unification of concepts, and to conpare the resulting notation with con-
structs present in existing |anguages. Notation a coincides with Al gal
60 in the form of "subscripted variables". g appears in PL/I and COBQOL,
(only applied to fixed, i.e. non-conputable nanes). y coincides wth
the notation of field designators in [vwW] and & with that of [Wand H],
in both cases used only in connection with non-conputable field nanes,

At places where conputabl enames occur, expressions should be permssible,
which quickly leads to syntactic abom nations in all cases except ¢« .

For the use of cells wth alphabetic (non-conputable) field names, nota-
tion & seens nore natural because of its analogy to the conventional
notation for functions and predicates, as which field names can be under-
stood. One concludes from the foregoing that a unification of homgeneous

r— — r— &

structures with conputable field names (indices) and inhonogeneous struc-
tures with nonconputable ones (identifiers) is not desirable, mainly for
reasons of notational tradition. It is even nuch |ess desirable from
the standpoint of inplenentation, since conputed indexing over an array
of fields with different size is-necessarily a difficult and inefficient
process.

A relatively appealing solution to this dilemma consists of (a.)
restricting conputability to numeric field names (indices), (b.) enclosing
them in distinguishable brackets, and (c.) to use conventional postfix
notation (a) for indices and prefix notation (6) for field designa-
tions with al phabetic names.

Exanpl es:

al2]

b[2,3]

age (j ack)

health (smth)
cl[2]

c[2[3]]

deposit (ac) [3]

4, Cells Wthout Explicit Names

So far, the assunption was nade that in a program every cell to be
invol ved was explicitly denoted by a name attributed to the cell by its
declaration. In certain problems of data processing, however, the nunber
of involved cells is not known a priori, nor is it necessary that all
cells be available from beginning to end of the process, A facility
becomes desirable to create cells at any tinme (i.e., dynamcally).

Once a cell is created, there nust be a way to refer to it. Since
its name is not introduced into the program explicitly (e.g., as an
identifier), it becomes necessary to consider names as objects which can
be used to refer to cells. The cell creation then not only allocates a
cell, but also yields the nane of the allocated cell. That name is to be

8

called a reference, and is to be treated as an elenentary value of type
Reference . The dynam c cell creation can be denoted by

r .= Person

which results in the assignment of the reference to the new cell to r
The form

r := Person [21, false, 101 51

can be used if the new fields are to be assigned initial values at the
same time. The declaration of r is denoted by "ref r" which stands
as an abbreviation of

new (Reference) r

It turns out to be a significant advantage to inplementation, if it is
required that the type of object to which a reference value assigned to
a given reference cell may refer, be unique. This type can be specified
as follows along with the declaration of the reference cell

ref [Person] r
ref [Integer] k

The reasons for binding reference cells to a specific class were given
in [Wand H.

It should be noted that the type specified with a reference cel
declaration does not denote a substructure of the reference cell itself,
which is elenentary, i.e. wthout substructure. |t instead denotes the
structure of the referenced quantity.

Ref erences can now be used to express functional relationships
between the objects represented by cells. |f a reference valued field
f of a cell x holds a value refering to a cell y, then y is said

rr—r r r— r

to have relationship f to x . The following is an exanple of a piece
of a program using the facility of dynamc cell creation:

type Person(Reference [Person] son; Integer age; . ..).
ref [Person] b, q;
L: p := Person; son(p) := q;

q:=p; qo,_tolL

The piece of program describes the creation of an infinite number of cells
of type Person. At L, the value of g refers to the "youngest" nenber
of the chain of descendents. Pictorially, the set of created cells nmay
be described as follows:

Each pointer represents a value of the class "Reference” which is held in
a field of that type, called "son".

The above exanple al so suggests a convention for denoting the
value of given fields of dynamcally created records, which is in con-
formty with the notations presented above. |If in place of the name of
a cell, one of whose subfields is to be designated, the name of a refer-
ence cell occurs, then it is inplicitly assumed that the field of the
indirectly referenced cell is denoted.

Exanpl e:

age (jack) jack = nane of a person

age (P)

son (P) } P = nane of a reference to a person

This conventions seems perfectly natural and raises no problens, since

10

reference cells are not thenselves structured and a field designation
therefore undisputably nmust refer to a field of the referenced cell
However, a dilenmma arises when the entire cell, and not one of its fields,
is to be designated:

o

P [F—

Does p now denote the reference value referring to @, or o itself?
Two possible solutions are offered here:
a. p- denotes the reference to o, the notation person(P) is
used to denote o .

P:i=q
then denotes the copying of a reference, while
Person(p) := Person(p)

denotes the copying of the values of a cell of type Person.

b. the exact neaning of p is determned by context, (e.g. corre-
spondence of types) such that in

p denotes the reference value to o, while in
Jack :=p

p denotes the Person cell o itself.
The latter solution, which is adopted in [vW], obviously leads to further

11

L
L
L

problems when p has values referring to cells which are thensel ves of
the class Reference

It is only possible to denote either the reference value held by p, or
the person cell which constitutes the end of the reference chain, but no
internediate reference values. Apart from the conceptual intricacies

whi ch woul d make a program using such constructs rather difficult to
understand;, certain well-founded doubts about their practical usefulness
suggest that the dynamc creation of cells of type Reference (and el enen-
tary types in general) should not be included in a programmng |anguage.
Anot her aspect of this topic is presented in the next section.

5. Blockstructure

Bl ockstructure was introduced into Algol160to delimt the scope of
nanes (identifiers). Since names are attached to quantities by their
decl aration and are not thensel ves manipul atabl e values, a cell itself
becones unaccessible as soon as the scope of its nane is left. The
storage space allocated for a cell can therefore be released at the sanme
time.

Dynamical |y created objects do not have a nanme which appears in the
program but can only be reached via internally created references whose
"lifetime" is not bound to any scope limtations (in the same sense as con-
stants do not have a limted scope). Release of storage space reserved
for a dynamcally created cell can therefore not be initiated on exit of
control froma given block, but only by unspecified events at a time when
no references to that cell can be nmade either directly or indirectly from
cell's which have a given explicit nanme (in [vW] called "appellation").
However, because of the convention that reference cell declarations nust

12

L
t
L

be acconpani ed by a specification of the type of referenced cells, such
a declaration cannot be made outside the scope of the pertinent type
definition. Consequently, the existence of accessible reference values
is restricted to the scope of that type definition, and all cells of that
given type become unaccessible upon exit fromits scope, at which tinme a
storage release can be initiated

So far, references (i.e. reference values) could only enter into a
process through the dynamc creation of cells. In particular, references
pointing to explicitly named quantities have so far not been considered,
However, they are an integral part of the |anguage EUIER, as well as the
Al gol successor proposedin[vW and they call for further investigation

In EULER a reference value referring to a quantity named x is
denoted as @ . In [vW] the reference to a quantity x is denoted
sinply by x; context decides whether the value of quantity x is neant,
or the reference to that quantity, nmuch in the same way as context deter-
nmnes the neaning of "age(Jack)" and "age(p)" in the exanple above. This
Is possible, because unlike in EULER fixed types are associated with al
named quantities. At this point, however, a contradiction is introduced,
if all assunptions given in this paragraph are retained: while reference
values are not subject to limted scopes, the explicit nanme which occurs
in the program text (the appellation) does have a fixed scope. This fact
| eads to calam tous situations unless the neaning of the A gol block struc-
ture is revised, as the follow ng exanmple shows:

begin ref [Integer] k; integer j;

begin integer i; i :=1;
o K =i
B end;
Y J =k

At «, according to the fact that k is of type ref, the reference
pointing to the cell i is assigned to k . At B, the scope of i
ends, and according to Algol tradition, the storage space occupied by

13

(
L
L

i isreleased. At vy, the value of the cell referenced by k (stil

i ?) is assigned to j . It becones necessary to revise the definition
of Algol 60 to the effect that the rules of scope apply to names (appel-
| ations) only, but not to the named quantities themselves. This seens
to defeat the very aim of blockstructure, In fact, the postulate is
equivalent to requiring that all storage be allocated in the same way as
for dynamcally allocated cells described above

The only plausible solution seems to be to disallowthe declaration
of reference cells bound to explicitly named quantities.

Bef ore the consequences of such a restriction are discussed, a few
considerations of inplementation are appropriate. As noted above, there
exist cells of elenmentary type9 and those of conposite structure. Most
conputers are capable to copy and assign any el enentary val ue equal |y
efficiently as a reference value (address). It is therefore advisable
always to deal with the considered value itself, and not with a refer-
ence to it. After all, the ultimte access to a value will always be
nore elaborate, if it has to be made via an indirect reference. It is
felt that a |anguage should do its best to discourage the use of indirect

addresses in such cases.

Conposite structures, on the other hand, are not as easily manipu-
| ated as references. Mreover, since the size of conposite structures
can usually be conputed (arrays in Al gol 60), their allocation nust be
made dynanmically, and their access nust then necessarily be indirect.

It follows that conposite structures inplicitly use a reference cell as
described above, whether it is requested by the programmer or not. An
Algol 60 array declaration is indeed nore precisely described by the
explicit steps

type o (Real 1:n);
ref [a] a;
A =«

than nerely by

14

real array a[l:n],

and the occurrence of a in a program should be understood as the deno-
tation of the reference value pointing to the dynamcally allocated array
cells. It follows that conpoéite cells should not be explicitly

naned, or if this is allowed in the language, it should be understood to
be an abbreviation in the above sense. In cases where the type definition

is given in the sane block as the reference declaration (or in the abbrevi-

ated version even together), the effect on storage allocation is the sane
as that of Algol 60 array declarations: storage can be released on exit
from the bl ock.

These consi derations of usage and inplenentation of elenentary and
composite cells al so apply to their treatnment as procedure paranmeters,
in spite of the fact that proponents of references to named quantities
use the parameter mechanism as their nmotivation.

The quintessence of the foregoing three paragraphs then is that
o Cells of elenentary type are always declared and thus have explicit
nanes (appel | ations);

© Cells of conposition are always created dynamically, and their struc-
ture is known through explicit type definition;

© Reference cells are of elenmentary type and their values are always
bound to refer to quantities of a given type. As a consequence,
references can refer to conposite cells only.

The postulated restriction does in fact not limt the power of a
| anguage, since it is always possible to define a structure (type) con-
sisting of a single field only.

6. The "Elim nati on" of References

In a language where it is understood that conposite records are
always referenced indirectly, the role of the symbol ref reduces to that
of a reminder of this convention. Effectively, it could be onitted, i.e

15

r— - r— r

r‘» -

S

the notation
ref [T] a,b
could be replaced by the shorter”
Tab

where T is an identifier introduced by a type definition. This has
been done in the AED |anguage [R]. It nust then be clearly understood
t hat

denotes the copying of a reference, and not of the referenced structures
thensel ves. A somewhat confusing consequence is illustrated by the piece
of program bel ow whose | ast statenent does not only alter the age of p,

but also that of q .

new (Person)p, q;

p := Person; age(p) := 10;
q =P

age (p) := age(p) +1

Wet her that abbreviation is used nmay be a matter of taste, but the
point of view that the coexistence of both

new (T) r
and

ref [T]r
may contribute nmore to the conceptual conplexity of a |anguage than to
its usefulness, is justified.

16

— rrf e T

i TR T TN e R T L T TR SRR e A T T AT RAm MRS e v

7. [lnput - Qutput

I nput - output operations are assignnments of values (usually conpos-
ite structures) held on one storage mediumto cells allocated on another
medium If input - output handling is to be an integral part of a lan-
guage, then the rules governing input - output activities must be con-
sistent with the rules governing other activities. The sinplest way of
choosing consistent rules is taking the same rules. This inplies that
data to be input or output nmust be declared on the "external" nedia as
they are on the "internal" one. As a matter of fact, the specification
of the storage medium together with the declaration of cells may be con-
sidered as an inplementation dependent coment.

Exanpl e:

ref [T] a,b [disk
ref [T] c,d [tape,]
ref [T] x,y [core

Assignnents such as

can then be understood as denoting input and output operations respectively.

Note that in this case it does not suffice to copy the reference only,
since the references are supposed to point to cells in the specified
storage medi um

The reduction of input - output operations to nere assignments invites
for heavy msues of the -0 capabilities of presently known secondary stor-
age media, unless certain natural restrictions on the kind of structures

are introduced, which take the inherent nature of such devices into account.

In order to express a proposal on some such restrictions, a structure clas-
sification is introduced:

© A structure whose nunber of fields is fixed by the type definition is
called a static structure.

L7

e e

e A structure whose fields are all of the same type is called an
array structure. (Its field names are usually conputed indices.)

© A structure without fields which hold (references to) other structures
is called a basic structure.

|f assignments are made which necessitate a transfer of information
between different storage media, and if these transfers are to be achiev-
able with a mninum of admnistrative overhead, then they ought to be
restricted to arrays of static basic structures. Such a restriction does
indeed not affect all applications which make use of what are usually
called record files, i.e. linear sequences of records of data which
contain no cross-references anong each other. The restriction can be
somewhat relaxed by nerely requiring that possible reference fields
contain the value null upon assignments.

The notation of a file is here introduced in the sense of what is
more specifically called a serial file or a tape, and it is defined as a
linear array of static structures (as above). The file differs, however,
fromthe nmore general array in the restrictive manner in which access
can be made to its elements: Wth a serial file is associated an inplicit
i ndex which designates the one currently accessible element. Each assign-
ment to or fromthe file automatically increments this index by unity,
Moreover, certain standard operations on files are introduced which make
it possible to change that index.

This notion of a file seens to be necessary and sufficient to include
in a satisfactory manner the handling of storage devices with an inherently
serial access node, such as tapes, line printers, card readers and punches.

8. Qperations on Defined Types

Al gol 60specifies only operations on what are here called val ues of
el enentary type. These are the operations present in the hardware of
computers. Operations on values of structured type are usually expressed
in terms of sequences of operations on components. A facility for con-
veni ently abbreviating such sequences is the procedure in Al gol 60.A

18

L
I
L
L
{
L
]
1
L
L
L
L
L
L
L
L

r—

r”

modi fication of this concept which makes the usual infix notation appli-
cable is obtained by extending the meaning of elementary operations to
structured ones by declaring that the operations apply elenentwise to the
constituents of the structure. This nodification is called "overloading"
(cf. also [H]) and applies to array structures. In the previous chapters,
this principle has already been applied to the assignnent operation.

9. Summary

o There exists a given set of elenentary data types w thout substructure.
This set includes the type reference

(]

A type definition introduces a structured data type and associates an

identifier with it. The structure of this type is specified as either
a sequence of fields, each designated by a field identifier and each
being of a fixed type, or of a single or multidinensional array of

el ements of homogeneous type which are designated by conputable indices

Variables, here called cells, have a fixed type, i.e. can store only
val ues of that given type.

Cells of elenentary type are introduced by declarations. The scope of
their nane (appellation) and the lifetime of the cells thenselves, is
determ ned by blockstructure.

Cells of structured type are introduced "dynam cally". They have no
appel lation; instead, they are accessed indirectly via a reference
which is the value of a cell of type reference

Decl arations of cells of type reference always specify the type of
the cells to which the reference may refer

If areference r points to a cell C of type T, the notations r
and T(r) are used to designate the reference itself and the referenced
cell C respectively. The neaning of cell designators is context
i ndependent .

In declarations of reference cells, it is possible to specify the
storage medium to be used for storing the referenced cells.

19

i
I
L

r— rrr rrc

r

[I. On Program Structures

1. Statenments and Expressions

The fundamental notion in program structures is that ofan(assignment)
statement. It indicates a "closed action", by which is meant that after
its execution the effect of the performed actions are entirely represented
by the values of the cells participating in the process. Executing a
program wi th paper and pencil, one can dispose of any internediate results
(scratch paper) after each statenment. This is a conceptually nost
appealing situation which is appreciated in particular when one is con-
fronted with the task of verifying a program In Algol, the execution of
an (assignment) statement consists of the evaluation of an expression,
fol lowed by the assignment of the obtained result to one or several cells
(Note that all statements in Algol, except the go to "non-statement”, can
essentially be reduced to the assignnment statement or sequences thereof.)
The expression is the part which is evaluated with the possible aid of
scratch paper, and the fact that the scratch paper can be discarded after
each statenent is contained in the syntax, where (expression) can be a
constituent of (statement), but not vice versa. This schene is
destroyed in Algol by the fact that it is possible to use a function pro-
cedure (whose body consists of statements) as a constituent of an expres-
sion. Wat is not visible in the syntax is achieved by application of
the "copy rule": (statement) becomes a constituent of (expression)

The consequences of this situation have been hotly debated on many occa-
sions and are collected under the subject "side-effects". They are as
undesirabl e as nuch as perspicuity of prograns is desirable; it turns out;,
however, that in certain mld and disguised forns they can be quite use-
ful. And if a facility is useful in some instances, it becomes nost
difficult to dispose of it just for the sake of sound principles.

Neverthel ess, the question arises whether side-effects should be
enbraced as an integral part of a language, or whether they should be
extermnated entirely.

20

The fornmer solution is realized by elimnating the distinction
between statements and expressions, and by recognizing the assignnent
expressi on

as the identity operation on e with the side-effect of assigning the
value of e to v . This philosophy has been adopted in EULER [Wand W],
and in [vW]. Constructs such as

a :=b+(c :=dxe)-f
are now as legal as Algol 60's

real procedure g ; g:=¢C :=d X e;

a:=b+g-fa

As a consequence, every (formerly called) statement has now a value, and
the execution of a sequence of n statenments results in the piling up of
n values (on scratch paper). To remedy this, the statenent separator
"'y which in Algol 60has nerely syntactical functions, becones an active
operator charged with the duty to discard the value of the last conputed
value. Consequently, blocks have a value, and so do proper procedures

E. g.

begin a := 1, b :=atl; Cc := b+l end

nust be attributed the value 3. It becones necessary to introduce the
notion of partial functions, since no value can be attributed to the
dummy st at enent .

The latter solution, nanely the elimnation of side-effects, is
real i zed by redefining the body of type procedures to be an expression
instead of a statement (which includes at |east one peculiar kind of
assignnent to the procedure identifier in Algol 60). This solution is

21

L
L
L
L
L
L
L
L
L

r

e

as radical as the former, and its consequences are also far-reaching
Because of the conceptual inportance of the pure statement and its role
in facilitating program verification, it should not be ignored

2. Program Verification and Efficiency

When devel oping a program one automatically constructs a verification
of its correctness. The fact that (all too often) |apses occur in the
design is due to the lack of a systematic (I do not say "formal") verifi-
cation method. Only recently have attenpts been made at establishing
more rigid guidelines for such a method [N], and the fact that they are
not widely used is partly due to the lack of |anguages whose designers
have recognized this problem sufficiently clearly. Verification nethods
are sinplified, if a language has an appropriate structure, and if certain
constructs are anmenable to fixed verification rules.

Here verification means the deduction of the truth of certain asser-
tions about a program strictly on the basis of the program text, i.e.
without its evaluation. A verification nust therefore depend on informa-
tion which is just as well available to the conpiler, and which indeed
may be used by the conpiler to perform certain (partial) verifications
automatically. Conditions which can be verified in this way do not have
to be checked at execution tine, which contributes to the efficient
execution of a program In this light, the interests of efficiency and
program perspicuity energe as identical.

A first exanple of a language facility aimed at these two goals is
the association of a fixed type to all variables in Al gol 60. The relax-
ation of this rule for formal paraneters contributes heavily to ineffi-
ciencies of executed progranms. A simlar step is the binding of reference
variables to a specific record class in [Wand H, which contributes to
both clarity and efficiency of prograns in a way that without it the
entire record handling feature would appear as unattractive. Another
exanple, also in [Wand H, is the for-statement which is defined differ-
ently fromthat in Algol 609 to the effect that the control value depends
on the for clause alone, and cannot be altered through "side-effects”

22

r

— r—

—

r

r— r— r—

fromthe iterated statements. This exanple illustrates clearly how
certain language structures with appropriate definitions can facilitate
verification nethods.

Iwo other instances of similar facilities with the same aimare to
be outlined below. They both refer to the for statenent as defined in
[w and H], as opposed to that of Algol 60.

3. Subscript Ranges

If one considers it essential that at least during execution of a
program undefined situations be detected--and anyone concerned with the
question of reliability of conmputed results should--then it becomes
necessary to test whether conputed indices lie within the declared sub-
script ranée. This testing, which in general can only be performed at
run time, is costly and mekes the use of arrays unattractive conpared
with the use of records in [Wand H], where access to fields does not
require any checking, since it can be verified from the program text
alone. It is thus highly desirable to introduce a notation for certain
conmon situations where the subscript checking can be perforned by the
conpiler. The for statement appears as most appropriate: for an index
being a control value, run time checking can be omtted if the conpiler
can deduce that the range of the control value does not exceed the range
of the subscript.

Exanpl e:

real array a[l:n];
for i :=1_step 1 until n do s := A[i] + s

For such a verification in this exanple the conpiler (and the human veri-
fier) nust have the ability to conpare synbolic quantities (here n) and
to establish the fact that no assignment to n occurred between declara-
tion and for statement. This task could be drastically sinplified by a
facility which makes it possible to associate a name (identifier) with a
range.

23

. T

rr— r—

r—

Exanpl e:

range R = 1:n
real array al[R];

for i :=Rstep 1 do s := A[i] + s

Mre generally, the facility to specify a given range with the declaration

of a variable could be introduced and each assignment to this variable
woul d include a range check:

integer (R) i

4. Anbi guous References

Each -facility designed toward conpile-time verifyability introduces
sone sort of restriction. It is essential to assert that the restriction
is not a handicap but rather an aid to the progranmmer. The nature of the
rule that every reference be bound to a certain type ("record class" in
[Wand H) is in that sense anmbiguous. It is often desirable that refer-
ence fields of structures be able to point to structures of several types.
This problemis discussed in [H], and the very plausible concept of record
sub-cl asses is presented, which here mght be called "categories" (of a
certain "type"). A type definition may now assune the form

type Person (integer age; ref (Person) father, nother;

category Man (integer draftcardnunber;
ref (Person) youngest child, spouse),

Wnan (Bool ean pregnant; ref (Person) spouse),
Chi | d)

Fields common to all categories are listed first;then the categories
are introduced, each followed by a (possibly enpty) list of "private"
fields.

A reference assigned to a cell declared as

ref (Person) r

oL

L
L
L

r r r— QO 7T o

r— - - r—

P

can now point at either a cell of category Man, Wman, or Child (which

are all said to belong to the type Person). Wether a field designator
such as

prégnant (r)

is valid can only be determined at run time. O course, a programrer
uses this field designator only where he (maybe m stakenly) assumes that

r always points to a Wman. Usually, he uses a test to predeternine
this fact explicitly, such as

if ris Wnan then ... pregnant (r) .

A language should express this comon situation in a way that
an inplicit check connected with the field designator can be avoi ded.
A construction where this is possible nust necessarily resenble the one
used for avoiding subscript range checking and use the concept of a quan-
tity to which no assignnent can occur within a certain scope. The fol | ow
ing notation is adopted from[H] in a slightly nodified form

for t :=r when Man do S1
when Wonman do_ S2
when Child do S3

Here r is a reference expression, 81, S2, S3are statenents, and
tis alocal quantity inplicitly declared like i in the previous exanple.

| npl enentations on multi-register conputers can take advantage of
this construction by holding the quantity t, which is nost likely often
to be used in S1, S2, 83, in a register.

5. Procedures as Data El enents

In Algol, procedures are static in nature and distinct from data.
Procedures cannot 'be manipulated; they can only be executed. The phenomena.

25

L
L
L
L
t
L
L
L
L
L
L

r— r—

of "renote activation" by procedure statenent, and of "passing on"
of a procedure as a name paranmeter, are explained through textual sub-
stitution (copy rule).

Wth EULER the notation of-a mani pul atabl e procedure was inpl emented
so that procedures can be referenced indirectly through references which
in turn can be assigned to variables. This solution unifies in a nost
appeal ing way the two concepts of procedure and name paraneter of A gol 60.
The denotation of a literal procedure consists of the procedure text
enclosed in quote marks and is therefore called a quotation. 1In a lan-
guage like Algol, an elenentary value type procedure has to be defined to
express this situation as follows:

A: procedure p;
B: P := 'x = x+17;
C: P

The neaning of this piece of text is the following: at A a
variable (cell) p is introduced, at B, a quotation is assigned to
p, and at C the occurrence of p denotes the execution of that quota-
tion. A notation which is nore consistent with the one of the previous
chapter is the follow ng

A: ref [Procedure] p, q;

B: P := Procedure (X := x+l);
C ex p;

D: q :=PpP

This notation nakes possible the assignnment of procedure references
to variables of the appropriate type without inplying the execution of
the denoted procedure.

As in the case of references in the previous chapter, the concept of
an assignabl e programtext in coexistence wth blockstructure unfortunately
causes irreconcilable difficulties. This is here even nore apparent

26

r rm— r—

because a programtext may obviously contain names (identifiers) with
limted scopes, and hence be assigned to quantities outside that scope
Exanpl e:

begin procedure p; integer i, k;
i = 100;
begi n integer i,j;

P = ¢k := 1+j’;

I =] :=10; P
end;
P
end

Wil e the first occurrence of p appears as entirely legitimte
the second is highly problematic.

6. LOOPS

A loop is an extremely frequently occurring programstructure, and
it should be representable by a sinple, yet flexible notation. Program
mers which are used to conceive their algorithnms in terns of flowcharts
and then transliterate flowharts into sequential |anguage, are apt to
frequently enploy the go to statenment. It is contended here that |oop
structures should be expressible through programstructures rather than
the cumbersonme use of |abels which not only tend to overly increase the
amount of needed identifiers, but also constitute a strong tenptation to
construct puzzling nazes of program paths

In [Wand H] the following sinple construct for a sinple loop is
suggest ed

whi | e (Bool ean expression) d

(statement)

corresponding to the flowchart

27

L
]
L
L
L
]
L
L

This construct is considered to be superior to Algol 60's for statenent
with while element, because of its sinplicity and obviousness. However,
it is somewhat rigid in that it requires that the test for loop ternina-
tion is made before the statenent is ever executed. Burroughs Extended
Al gol (B5500) has renedied this situation by offering a simlar construct,
which inplies that the test is made after the first execution of the
statenent!--,

do (statenment) until (Bool ean expression)

<>

It appears that this is only a partial renedy., |In fact, one usually ends
up writing program pieces of the follow ng 'kind

Sl; while BE do begin S2; S3 end
go to L; do begin S2; 1:s3 end until BE
where 81 and S3 are identical sequences of statenents. The topol ogi -

cal simlarity of these constructs suggests that a ternary construction
i S needed*, consisting of two statements and a test for |oop termnation,

*The idea was raised by Don Kunth in connection with PL 360. It is also
present in the JUWP QUT statenent of B5500 Stream Procedures.

28

r

r ro— r— - M r— rmMme

separated by adequately chosen delimters. The following i s suggested
here.

bepeatg i n
S1;
when BE exit;
s2

end
-
S|

G>

The former while and until statenents can be represented as repeat
statenents with either S2 or S1 being a dumy statenent,

An alternative selection of delimters results in:

turn on begin

S1;
when BE drop out
S2
end
29

L
L
L
L
L
L
L
L

r—

Ref er ences

[H]

(n]

[R]

[vw]

[Wand H]

(W and W]

C A . R Hoare, "Record Handling," |
Sunmer School on Progranming, 1966.

=- iiv1 at Nato
6 4

D. T. Ross, "AED Language," Electronic Systens Lab., MIT.

P. Naur, Proof of Agorithms by General Snapshots
(1966)p . 310 - 316.

A. van Wjngaarden, Proposal for a Successor to Al gol, Wrking
Docunent "Warsaw 2", I FIP WG 2. 1.

N. Wrth and C A R Hoare, "A Contribution to the Devel op-

- ment of ALGOL," Comm ACM 9/6 (June 1966).

N. Wrth and H Wber, "EULER A Generalization of ALGO,"
Comm ACM 9/1-2 (Jan./Feb. 1966).

30

