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Abstract

A programming language for the IBM 360 computers and

is implementation are described. The language, called

~~360, provides the facilities of a symbolic machine

language, but displays a structure defined by a recur-

sive syntax. The compiler, consisting of a precedence

syntax analyser and a set of interpretation rules with

strict one-to-one correspondence to the set of syntactic

rules directly reflects the definition of the language.

k-th syntax rule

so t,:= SlS2".Sn

k&h interpretation rule

vO
:= fk(vl,V2,**.' v,,

~~360 was designed to improve the readability of programs

which must take into account specific characteristics

and limitations of a particular computer. It represents

an attempt to further the state of the art of program-

ming by encouraging and even forcing the programmer to

improve his style of exposition and his principles and

discipline in program organization, and not by merely

providing a multitude of "new" features and facilities.

The language is therefore particularly well suited for

tutorial purposes.

The attempt to present a computer as a systematically

organized entity is also hoped to be of interest to

designers of future computers.
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I. Introduction, Aims and Purpose

r

In an era of feverish and prolific activity in the design of more

and more sophisticated and intricate programming aids, the proposal of

a machine language may seem anachronistic to some readers. This report

describes an attempt to provide a tool for those applications where it

is essential to conceive the program as closely as possible in terms of

an existing computer in order to directly take into account its particular

capabilities and limitations. Sophistication has not been an aim in this

attempt, but emphasis was rather put on a clear and conceptually syste-

matic exposition of the available facilities. The result is reliability

on the part of the implemented system as well as on the part of the user

who is not subject to misunderstandings about the nature of complicated

and ill-defined--facilities. None of these objectives should be called

anachronistic.

In the summer of 1965, the author decided to undertake efforts to

implement the proposed successor to ALGOL described in [2] on the IBM

360 computer which at that time had been chosen as Stanford's next genera-

tion machine. It was felt that the evolving project should be conducted

in a thorough and systematic manner, worthy of an academic endeavour, and

making use of the best available methods on compiler construction known.

The results should consist of a well-organized system whose structure and

principles were sound and precisely understood, and which was intelligibly

documented.a

After many years of experience with ALGOL, it was clearly recognized

that a compiler written in 360 Assembly Language would neither be able

to meet the desired documentation standards, nor constitute a sufficiently

convenient programming tool. The only other language available on the

360, FORTRAN, was not deemed adequate either. Against the strong argu-

ments of the undesirability of the large amount of additional efforts re-

quired to produce a new language and its compiler, it was decided to

develop a tool which would:

1. allow full use of the facilities provided by the 360 hardware,

2. provide convenience in writing and correcting programs, and

3* encourage the user to write in a clear and comprehensible style.
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As a consequence of 3., it was felt that programs should not be able

to modify themselves. The language should have the facilities necessary

to express compiler and control programs, and the programmer should be

able to determine every detailed machine' operation. In this respect, the

language features the property of a conventional assembly code. In its

appearance, however, it resembles a high level programming language due

to the presence of structure. Being specifically tailored for the 360

computer, the language was appropriately named ~~360.

Chapter II is the definition of the language. It is given in terms

of a syntax, and the semantic explanations of the individual syntactic

constructions. Knowledge about the nature of the 360 architecture is

prerequisite (cf. [l]); however, the definition does not require familiar-

ity with the 360 Assembly Language. A few self-explanatory examples of

programs are listed in Chapter III.

The following two chapters are devoted to the implementation of

~~360. They exhibit the code which the compiler generates corresponding

to various language statements, and the method of segmentation and addres-

sing. Chapter VI gives an account of the organization of the compiler,

which relies on a rigorous syntax analysis of the text while at the same

time generating the target code. The compiler constitutes a large scale

practical example for the application of the techniques described in [3],

which have been extended to process incorrectly constructed texts and to

* meaningfully diagnose errors. The success of this facility is considered

to be a major contribution to make predecence grammars useful in practical

applications.

: The methods employed in producing the compiler are described in Chap-

ter VII. A bootstrapping technique was used to make the compiler available

on the 360 computer without prior use of any of the languages existing on

that machine. Programming the compiler in its own language provided a

thorough test for the adequacy of the language to its anticipated purpose.

Chapter VIII gives a brief account of the size and the performance

of the translator on a 360/50 computer. Concluding remarks about the

language and its implementation lead to a brief examination of the appro-

priateness of the 360 architecture for this experiment.
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1. Terminology, notation, and basic definitions

The language is defined in terms of a (/360) computer which comprises

a number of processing units and a finite set of storage elements. Each

of the storage elements holds a content, also called value. At any given. .
time, certain significant relationships may hold between storage elements

and values. These relationships may be recognized and altered, and new

values may be created by the processing units. The actions taken by the

processors are determined by a program. The set of possible programs

form the language. A program is composed of, and can therefore be decom-

posed into elementary constructions according to the rules of a syntax,

or grammar. To each elementary construction corresponds an elementary

action specified as a semantic rule of the language. The action denoted

by a program is defined as the sequence of elementary actions corres-

ponding to the elementary constructions which are obtained when the pro-

gram is decomposed (parsed) by reading from left to right.

1.1. The computer

According to their specific capabilities, precessing units are divided

into central processing units (CPU), input-output processing units (chan-

nels), and input-output devices. At any time, the status of a unit is

described by a sequence of bits, called the program status word (PSW) for

CPUs and the channel status word (CSW) for channels. A status word con-

tains, among other information, a pointer to the currently executed in-

3ruction. In particular, the program status word also contains a quan-

tity which is called condition code.

-Storage  elements are classified into registers and core memory cells,

simply called cells. Registers are divided into three kinds according to

their size and the operations which can be performed on their values.

The kinds of registers are:

a. integer or logical (a sequence of 32 bits)

b. real (a sequence of 32 bits)

c. long real (a sequence of 64 bits)
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Cells are classified into seven types according to their size and the

type of value which they may contain. A cell may be structured or simple.

The types of simple values and simple cells are:

a. byte, or character ( a sequence of 8 bits),

b. short integer ( a sequence of 1.6 bits, usually interpreted as an

integer in two's complement binary notation),

c. integer or logical (a sequence of 32 bits, usually interpreted

as an integer in two's complement binary notation),

d. real (a sequence of 32 bits to be interpreted as a floating point

binary number),

e. long real (a sequence of 64 bits to be interpreted as a floating

point binary number),

f. command (a sequence of 64 bits, usually interpreted as a data--.
channel command).

1.2. RelationshiDs

The most fundamental relationship is that which holds between a cell

and its value. It is known a's containment; the cell is said to contain

the value.

Another relationship holds between the cells which are the components

of a structured cell, called an array, and the structured cell itself.

It is known as subordination. Structured cells are regarded as containing

. the Cartesian product of the values of the component cells. The component

cells themselves are well-ordered.

A set of relationships between values is defined by monadic and dyadic

functions or operations, which the processors are able to evaluate or per-

form. The relationships are defined by mappings between values (or pairs

of values) known as the operands and values known as the results of the

evaluation. These mappings are not to be precisely defined in this report;

instead, references will be given to their definition in official publica-

tions on the /360 computer CL].
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1.3. The program

A program contains declarations and statements. Declarations serve

to list the quantities which are involved in the algorithm denoted by the

program, and to associate a name, a so-called identifier, with each quan-

tity. Statements specify the operations to be performed on these quanti-

ties, to which they refer through use of the identifiers.

A program is a sequence of tokens, which are basic symbols, strings,

or comments. Every token is itself a sequence of characters. The follow-

ing conventions are used in the notation of the present article:

a. basic symbols constitute the basic vocabulary of the language

(cf. 1.6.). They are either single non-alphanumeric characters

or underlined letter sequences;
-v.

b. strings are sequences of characters enclosed in quote marks (I');

C. comments are sequences of characters (not containing a semicolon)

preceded by the basic symbol comment and followed by a semicolon

(;). It is understood that during execution of a program, all

comments are ignored.

In order that a sequence of tokens be an executable program, it must be

constructed according to the rules of the syntax.

1.4. Syntax

A sequence of tokens constitutes an instance of a syntactic entity.
(or construct), if that entity can be derived from the sequence by one or

more applications of syntactic substitution rules. In each such appli-

cation, the sequence equal to the right side of the rule is replaced by

the :symbol which is its left side.

Syntactic entities (cf. 1.5.) are denoted by English words enclosed

in the brackets ( and ) . These words describe approximately the

nature of the syntactic entity, and where these words are used elsewhere

in the text, they refer to that syntactic entity. For reasons of nota-

tional convenience and brevity, the script letters )(I and 9 are also

used in the denotation of syntactic entities. They are understood to

7



stand for any sind of register or zype of cell, possibly subject to re-

strictions mentioned in the accompanying text of the paragraph.

Syntactic rules are of the form

(A) ::= E

where (A> is a syntactic entity (called the left side) and e is a

finite sequence of tokens and syntactic entities (called the right side

of the rule). The notation

(A> . .=. . $I[ I2 . . . Ikn

is used as an abbreviation for the n syntactic rules

--. (A) ::= El, (A) ::= E,, . . . , (A) ::= 5
n l

If in the denotations of constituents of the rule the script letters K

or 7 occur more than once, they must be replaced consistently. As an

example, the syntactic rule

(x register) ::= (K register identifier)

is an abbreviation for the set of rules

(integer register) ::= (integer register identifier)

(real register) ::= (real register identifier)

(long real register) ::= (long real register identifier)
.'

8



1.5. Syntactic Entities

(arithmetic operator)
(base declaration)
(block body)
(block head) . .

(block)
(case clause)
(case sequence)
(case statement)
(condition)
(decimal digit)
(decimal integer number)
(decimal scale factor)
(declaration)
(for clause heading)
(for clause)
(for statement)
(fractional number)
(function declar&tion)
(function heading)
(function identifier)
(function name)
(function statement)
(got0 statement)
(hexadecimal number)
(if clause)
(if statement)
(increment)
(K register assignment)
(s register declaration head)
(K register declaration)
(K register identifier)
(K register)
(label definition).
(limit)
(logical operator)
(monadic operator)
(procedure declaration)

- (procedure head)
* (procedure heading)
(procedure identifier)
(procedure name)
(procedure statement)
(program)
(relational operator)
(shift operator)
(simple K register assignment)
(simple statement)
(simple 7 type)
(statement)
(string)

2.6.
2.11.
3.5*
395-
3.5.
3.2.
3.2.
3.2.
3.1.
2.2.
2.2.
2.2.

x
3:4:
3.4.
2.2.
2.8.
2.8.
2.1.
2.8.
2.9.
3.6.
2.2.
3.1.
3.1.
3.4.
2.6.
2.3.
2.3.
2.1.
2.6.
3.5.
3.4.
2.6.
2.6.
3-7.
3 07 l

3 -7.
2.1.

? l;I. .

3.5.
3.1.
2.6.
2.6.

3
3:5:
2.2 (continued)

9



(7 cell assignment)
(T cell declaration)
(r cell designator)
(7 cell identifier)
(7 number)
(y subcell designator)
(T synonym declaration)
(J type)
V value)
(true part)
(unsigned integer number)
(unsigned long real number)
(unsigned real number)
(while clause)
(while statement)

2 . 7 .
2.4,
2 . 5 .
2.1.
2.2,
2 . 5 .
2.10.
2.4.
2 . 6 .
3.1.
2.2.
2.2.

::::
3.3.

1 . 6 . Basic symbols

A~B~CIDIE~~G~HIIIJ~~~L~M~N~O~P~Q~R~S~T~U~V~W~X~Y~~~

~ldklhd&lplsl~ I

8191

:=l,l.l;l:l~l>l@l~l
andlor)xor\abslnotlsh8l(sbrelshPalshra(--w-----v
iflthenlelselcase)oflwhile(do)forIstepIuntil\--- - - - - -
begin(end)gotolcomment)null(

integer)realllogical~byteIcharacter~long~shortlarr+y(

commandlfunctionlprocedurelregisterlsyn

segmentlbase

10



2. Data manipulation facilities.

2.1. Identifiers

(letter) ::= ~~~\~~~I~I~I~I~I~I~I~l~l~l~l~l~l~l~l~l~l~l~l~l~l~l~l

albl4dl4fldhl-l’I I I I I I I I I I I I I I I IlJklmnopqrstuvwxyz

(identifier) ::= (letter)l(identifier)(letter)l(identifier)(digit)

(x register identifier) ::= (identifier)

(T cell identifier) ::= (identifier)

(procedure identifier) ::= (identifier)

(function identifier) ::= (identifier)

An identifier is a % register-, 7' cell-, procedure-, or function

identifier if it has respectively been associated with a % register,

5 cell, procedure, or function (called a quantity) in one of the blocks

surrounding its occurrence. This association is achieved by an appro-

priate declaration. The identifier is said to designate the associated

quantity. If the same identifier is associated to more than one quantity,

then the considered occurrence designates the quantity to which it was

associated in the smallest block embracing the considered occurrence. In

any one block, an identifier must be associated to exactly one quantity.

In the parse of a program, that association determines which of the rules

given above applies.

Any processing computer can be considered to provide an environment

in which the program is embedded, and in which some identifiers are per-

. manently declared. Some identifiers are assumed to be known in every

environment; they are called standard identifiers, and are listed in the

respective paragraphs on declarations.

2.2. Numbers and strings

(decimal digit) ::= ol~l43lwd7l819
(decimal integer number) ::= (decimal digit)1

(decimal integer number)(decimal  digit)

(unsigned integer number) ::= (decimal integer number)

(fractional number) ::= (decimal integer number) . (decimal digit

(fractional number)(decimal  digit)

)I
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(decimal scale factor) ::= (decimal integer number)1

(decimal integer number)

(unsigned real number) ::= (fractional number)\

(fractional number) E (decimal scale factor)1. .
(decimal integer number) E (decimal scale factor)

(unsigned long real number) ::=

(fractional number) D (decimal scale factor)\

(decimal integer number) D (decimal scale factor)

(y number) ::= (unsigned 7' number)I-(unsigned ?' number)

(hexadecimal digit) ::= (decimal digit)lAIBICIDIEIFI

Here T stands for any one of

integer

real

long real

(hexadecimal number) ::= #(hexadecimal digit)1

(hexadecimal number)(hexadecimal  digit)

(integer number) ::= (hexadecimal number)

Numbers have their conventional meaning. They can either be given in

decimal or hexadecimal notation. The scale factor signifies that the

preceding number be multiplied by the indicated power of ten. The symbol-

stands for a minus sign.

A string is any sequence of characters enclosed by quote marks, with-
. in which a single quote mark (") is always denoted by a pair of adjacent

quote marks ("I'). Examples:

"ABC" denotes the sequence ABC

"A""Z" denotes the sequence A"Z
1' 1111 A """ denotes the sequence "A"

Examples:

integer numbers

0 1066 -5 #A #FOO

real numbers

1.0 0.1 - 3 . 1 4 1 6 2.735 lEl0

12



long real numbers

5 .y 86128gDo IDlO 8.9D-5

strings

"A STRING IS A CHARACTER-SEQUENCE"

"DATE: 29/g/ w66"

2 . 3 . Register declarations

In the following rules, the letter x must be replaced by any one

of the following words (or word pairs):

integer

real

long real

(x register declaration head) ::=

(simple K type) REGISTER (identifier)1

(N register declaration),(identifier)

(x register declaration) ::=

(x register declaration head)((integer  number))

Every identifier in a x register declaration is associated with the K

register specified by the integer number enclosed in parentheses following

the identifier. It herewith becomes a K register identifier. This

number must designate one of the existing integer (or logical) registers

nwnbered O-15, or one of the existing real or long real registers numbered

0, 2, 4, and 6 .

Examples:

integer register count(l), m(2), n(3)

:long real register sum(4), product(O)

The following are standard register identifiers:

RO, Rl,..., Rg, RA,..., RF

designating the 1.6 integer registers, and

FO, F2, F4, F6, FOl, F23, F45, ~67

designating the 4 real and long real registers respectively. .

13



2.4. Cell declarations

(simple integer type) ::= integer(logica1

(simple short integer type) ::= short integer

(simple real type) ::= real..

(simple long real type) ::= long real

(simple byte type) ::= bytelcharacter

(simple command type) ::= command

V type) ::= (simple T type>1

array ( (integer'number) ) (simple"T type)

(7 cell declaration) ::= (?' type)(identifier)l

@' cell declaration) , (identifier)\

(To cell declaration) ( (J1 number) >I

(character cell declaration) ( (string) )--.

Every identifier occurring in a cell declaration is associated to

one unique cell of the indicated type, if that type is simple, or other-

wise to a unique array of cells of the indicated type. The number of

cells in an array is given by the number enclosed in parentheses following

the symbol array .

If a cell declaration is followed by one or more numbers or strings

within parentheses, then the cell is declared to contain those numbers

or strings as its values. 7
0 and T

1
must either be identical, or

be selected from the following combinations:

short integer integer
.

byte integer

command integer

The number of such values must not exceed the number of declared elements

in the array. A string can only be assigned to a character cell, and the

number of characters must not exceed the number of indicated array ele-

ments. This assignment of values must be understood to take place only

upon the first time the block, in which the cell declaration occurs, is

entered.

14



Examples:

bytef l a g

short integer i, j

integer, age(21), hight(68).  .

long rea,l x, y, z

array (3) integer size(36)(23)(37)

array (1000) real quant, price

array (8) byte flags

array (132) character line(" ")

Note : The symbols integer and logical, and byte and character are treated

as synonymous in the language.

2 . 5 . Cell designators

(T subcell designator) ::= (y cell identifier)((integer  number))

(T cell designator) ::= (T cell identifier)l(y  subcell designator)1

(7 cell identifier) ( (integer register) ) I

(7 subcell designator) ((integer register) )

A cell identifier which is followed by a number or an integer regis-

ter enclosed in parentheses (called a subscript), must designate an array

of cells. When n is the subscript (nwnber or current value of register),

then the construct designates that cell of the array which is located n

memory unit positions (1) from the beginning of the array, if the sub-

*script is preceded by the cell identifier, or (2) from the designated

position, if the subscript is preceded by a subcell designator. The num-

ber of memory units occupied by cells of various types are: character (l),

byte (l), shortinteger (2), integer (4), logical (4), real (4), long

real (8). The subscript used to designate any element of an array must

therefore be a multiple of the appropriate number.

Note: A subscript must not specify register 0 .

Examples of cell designators:

age
size(2)
prize(R1)
line(l6)(R2)

15



2.6. Register assignments

(K register) ::= (K register identifier)

(T value) ::= (T number)/@' cell designator)

(integer value) ::= (string) .,*. . ',

A % register designates the value contained in the identified register.

A value is either a constant, i.e., a number or a string, or the content

of a designated cell. In the case of a logical value being a string,

that string must consist of not more than 4 characters. If it consists

of fewer than 4 characters, the string is extended to the left with null

characters. The bit representation of characters is defined in [1]

(EBCDIC).

(simple x register assignment) ::=
--

(1)

(2)

(x register identifier) := (T value)/

(;tc register identifier) := (x register)1

()I register identifier) := (monadic operator)(g value)

(8 register identifier) := (monadic operator)(g  register)

A simple register assignment is said to specify a register, namely

the one designated by the register identifier to the left of the assign-

ment operator (:=) . To this register is assigned the -value designated

by the construct to the right of the assignment symbol. That designated

value may be obtained through execution of a monadic operation specified

by a monadic operator.

The following are legal combinations of kinds and types to be sub-

stituted respectively for the letters )6 and T in the rules (1) and (2):

K T

integer

integer

integer

real

long real

long real

integer

short integer

command

real

real

long real

16



(monadic operator) ::= abs I neg I neg abs

The monadic operations are those of taking the absolute value, of sign

inversion, and of sign inversion after taking the absolute value.

Examples of simple register assignments:

RO := i

R2 := RA

R6 := age

FO := quant(R1)

~23 := x

F45 := neg FOl

RD := abs hight

FO := neg abs F6

(3 >

(K register assignment) ::= (simple x register assignment)1

(x register assignment)(arithmetic operator)(T  value)1

(x register assignment)(arithmetic operator)@ register)1

(integer register assignmentJ(logica1  0perator)Cinteger value)1

(integer register assignment)(logical  operator)(integer  register)1

(integer register assignment)(shift operator)(unsigned integer number)1

(integer register assignment)(shift  operator)(integer  register identifier)

A register assignment specifies a register, namely the one which is spe-

cified by the simple register assignment or the register assignment from

which it is derived.a To this register is assigned the value obtained by

applying a dyadic operator to the current value of that specified register

and the value designated by the construct following the operator. The

operations are the arithmetic operations of addition (+), subtraction (-),
.

multiplication (*), and division (/), the logical operations of conjunction

(-4an 9 exclusive and inclusive disjunction (xor, or>, and those of shifting

to the left and right, as implemented in the /360 system. The operators ++

and -- denote "logical" or unnormalized addition and subtraction when

applied to integer or real registers respectively.

(arithmetic operator) ::= +~-~*~/~++~--

(logical operator) ::= and(orlxor- - -
(shift operator) ::= shHishRa)shrl  lshraP-P-
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In the syntactic rule (3), the same combinations of +% and Y' are

permitted as specified for rules (1) and (2). 5 /
.

Examples of register assignments:

RO := R3

Rl := 10

RA := i + age - R3 + size(R1)

R9 := R8 and R7 shal 8 or R6- -
F2 :=j.lG

FO := quant(R1) * price(R1)

F45 := F45 + FOl

Note : The syntax implies that sequences of operators (including assign-
--.

ment) are executed strictly in sequence from left to right. Thus

Rl := R2 + Rl

is not equivalent to

Rl := Rl + R2

but rather to the two statements

Rl := R2; Rl := Rl + Rl

2 . 7 . Cell Assignments

@ cell assignment) ::=

(7 cell designator) := ()I register)

The value of the designated x register is assigned to the desig-

nated y cell. The allowable combinations of cell-type and register

kind are indicated in the table of section 2.6.

Examples of cell assignments:

. := RO
crice(R1) := FO
X := ~67
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2 . 8 .Function declarations

(function name) ::= function (identifier)1

(function declaration) , (identifier)

(function heading) ::= (function name)((integer  number))

(function declaration) ::= (function heading)((integer  number))

There exist various data manipulation facilities in the 360 computer

which cannot be expressed by an assignment. To make these facilities

amenable to the language, the function statement is introduced (cf. 2.9.),

which uses an identifier to designate an individual computer instruction.

The function declaration serves to associate this identifier, which there-

by becomes a function identifier, with the desired computer instruction

code, and to define the meanings of the parameters of the function, i.e.,

to specify the format of the instruction. While the number in the func-

tion heading specifies the format (cf. table below) and is called the

format code, the number in the function declaration specifies the first

two bytes of the instruction code. In the following examples, the identi-

fiers were chosen to be the symbolic codes used in [4], and they are

standard identifiers.

Examples

function Mm+ > (#9200),

MVC (5 > (#D200),

STM(3 > (#9000),a
smL(g)(+8coo),

IC(2)(@t300),

L.M) M4lOO),

SET(8)(#92@

Cm@) #+EOO),

ED(5)(7fDEOO),

CLI (4 ) (#9500 1,

CLC (5 > (#D500  1,

LM(3 ) (#9800),

S~L(9)(#8DOO),
STC(2)(#4200),

TEST (8 > (#95FF 1,

mSET(8)(#9200),

UNPK(lO)(~~OO),

EX@)  (++400)



Format No. of Assignment of fields
Code parameter in instruction

fields in
function

1
2
(

2 2 11.. 2--- ..-_. . -.-.._-

3 3 1 2 3

4 2 1 2

5 3 2 3

'

1
6 1 I-+---,

7 1 lIzEl

8 1 1

9 2 --. 1 2

10 4 3 4
0 8 16 32

2.9. Function statements

(function statement) ::= (function identifier))

(function statement) ((integer number))1

(function statement)((K register identifier))1

(function statement)((T cell designator))1

(function statement)((string))

A function statement represents the computer instruction designated

by the function identifier. The sequence of quantities enclosed in paren-

theses specifies the parameter‘fields of the"function statementin accor-

~dance with its format, to which the fields must comply.

Examples

SET(flag)

RESET(flag)

LA(Rl)(line)

MVC(15)(line)(buffer)

STM(RO)(RF)(save)

MVI("*")(line)

IC(RO)(flags(Rl))
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2.10. Synonym declarations

(Jo synonym declaration) ::=

(To type)(identifier) syn (rl cell designator)1

(To type)(identifier)  syn (integer number)\

(7 o synonym declaration) , (identifier) syn (rl cell designator))

(To synonym declaration) , (identifier) syn (integer number)

A synonym declaration serves to associate identifiers with the cell

which is designated immediately following the symbol s,yn, either by a

previously established cell designator or by an integer number representing

its absolute address in the computer's core memory.

Examples:

integer xlow syn x(4)
--

array (32768) integer mem syn 0

logical CAW syn 72

integer Bl syn mem(R1)

Note: The synonym declaration can be used to associate several different

types with a single cell. Each type is connected with a distinct

identifier.

Example:

long real x(#EOOOOOOOOOOOOOO)

integer xlow syn x(4)

e A conversion operation from a number of type integer contained in regis-

ter RO to a number of type long real contained in register IF01 can

now be denoted by

.
xlow := RO; FOl := x

and a conversion vice-versa by

FOl := FOl ++ zero; x := FOl; RO := xlow

No initialization can be achieved by a synonym declaration.
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2.11. Segment base:,declarations

(segment base declaration) ::F segme,nt  b,ase (integer register identifier)
',

A base declaration causes the compiler to reference the specified

register as a base address for all cells subsequently declared in the

block in which the base declarationoccurs. Upon entrance to this block,

the appropriate base address is assigned to the specified register.

(cf. v.2).

3. Control facilities

3.1. If statements

(relational operator) ::= = 1 7= I < I f= I >= I >

(condition) ::= ()I registerNrelationa1 operator)(r value)!

o(; register)(relational  operator)@ register)1

(relational 0perator)Ioverflow

The 360 computer records one of four possible states in the so-
. called condition code. A condition specifies one or more of these states,

which are numbered 0, 1, 2, 3 l The relational operators and the sym-

bol overflow designate the following states:

operator 1 states

=

1=

<

<=

> =

>

overflow

! 0

192
1

091

092

2

3
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If a relational operator is enclosed by two operands, then those

operands are compared, and the condition code is set to state 0, if equal-

ity holds, to state 1 if the first operand is numerically smaller, and to

state 2 if it is greater than the second operand.. .

(if clause) ::= if (condition) then

(true part) ::= <simple statement) else

(if statement) ::= (if clause)(statement)l

(if clause)(true  part)(statement)

The if statement permits the conditional execution of statements:

1.

2.

(if clause)(statement)

The statement is executed if and only if the condition code is in

one of the states designated by the condition in the if clause.
--.

(if clause)&-ue  part)(statement)

The simple statement in the true part is executed and the statement

following it is ignored, if and only if the condition code is in one.
of the states designated by the condition in the if clause; other-

wise the true part is ignored and the statement following it is

executed.

Examples

if RO < 10 then RI := 1

if FO>= F2 then F2 := FO *else FO := F2

if < then SET(flags(0)) else- -
if = then SET(flags(1)) else SET(flags(2))- -

Note: if the condition consists of a relational operator without operands,

. then the decision is made on the basis of the condition code as

determined by a previous instruction.

Example:

CLC(15)(a)(b); if = then .-.- -
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3 . 2 . Case statements

(case clause) ::= case (integer register) of

(case sequence) ::= (case clause) begin I

(case sequence)(statementS;

(case statement) ::= (case sequence) end

Case statements permit the selection of one of a sequence of state-

ments according to the current value of the integer register (other than

register 0) specified in the case clause. The statement whose ordinal

number is equal to the register value is selected for execution, and the

other statements in the sequence are ignored. The value of that register

is thereby multiplied by 4.

Example:

case Rl of begin

Rl := R2;

R2 := R3;

R3 := R4;

R4 := R5;

end

3.3 l While statements

(while clause) ::= while (condition) do

(while statement) ::= (while clause)(statement)

The while statement specifies the repeated execution of a statement

as long as the condition code is in one of the states specified by the

- condition in the while clause.

Examples:

while FO < prize(R1) do Rl := Rl + 4

while >= do

begin RO := RO + 1; Rl := Rl - R2;

end

Note that in the second example the condition code is set by the subtrac-

tion operation and then tested for being in states 0 or 2 .
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3 . 4 . For statements

(for clause heading) ::= for (integer register assignment)

(increment) ::= step (integer number)

(limit) ;:= unti,l (integer register+/ until 0 value)

(for clause) ::= (for heading)(increment)(limit)  do

(for statement) ::= (for clause)(statement)

[r must be replaced :by either of the types

integer

short integer

The for statement specifies the repeated execution of a statement,

while the content of the integer register specified by the for heading
--.

takes on the values of an arithmetic progression. That register is

called the control register. The execution of a for statement occurs in

the following steps:

1. the register assignment in the for heading is executed;

2. if the number specifying the increment is not negative/negative,\
then if the value of the control register is not greaterhot less

than the value specified as the limit, then the process continues

with step 3, otherwise the execution of the for statement is termin-

ated;

3. the statement following the for clause is executed;

*4. the increment is added to the control register, and the process

resumes with step 2.

Examples:
.

for Rl := 0 step 1 until n do STC(".")(line(Rl))

for R2 := Rl step
0

beginF23 := quant(R2) * price(R2);

FOl := FOl + F23;

end
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3*5. Blocks

(declaration) ::= (K register declaration)1 (r cell declaration)1

(function declaration)l(procedure  declaration)1

(synonym declaration)I(-segment,.base  declaration)

(simple statement) ::= (K register assignment)l(T  cell assignment)1

(function)l(procedure  statement)l(case  statement)l(block)l

(got0 statement)1 null

(statement) ::= (simple statement)1 (if st8tement)l

(while statement)1  (for statement)

(label definition) ::= (identifier) :

(block head) ::= begin I

(block head)(declaration);

(block body) ::= (block head)1 (block body)(statement);l

(bloc‘k  body)(label definition)

(block) ::= (block body) end

(program) ::= (block) @

A block has the form

begin D; D; . . . ; D; S; S; . . . ; S; end

where the D's stand for declarations and the S's for statements.

The two main purposes of a block are:

1. To embrace a sequence of statements into a structural unit which
a

as a whole is classified as a simple statement. The constituent

statements are executed in sequence from left to right.

2. To introduce new quantities and associate identifiers with them.
.

These identifiers may bo used to refer to these quantities in any of

the declarations and statements within the block, but are not known

outside the block.

Label definitions serve to label certain points in a block. The

identifier of the label definition is said to designate the point in the

block where the label definition occurs. Go to statements may refer to

such points. The identifier can be chosen freely, with the restriction

that no two points in the-same block must be designated by the same iden-

tifier.
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The symbol null denotes a simple statement which implies no action

at all.

Example:

begin intege,r bucket;~

TEST(flag); if = then

begin bucket := RO; RO := Rl; Rl := R2;

R2 := bucket;

end else- -
begin bucket := R2; R2 := Rl; Rl :Z RO;

RO := bucket;

end;

RESET(flag);

end
--.

3.6. Go to statements

(go. to statement) ::= goto (identifier)

The interpretation of a goto statement proceeds in the following

steps:

1. Consider the smallest block containing the goto statement.

2. If the identifier designates a program point within the considered

block, then program execution resumes at that point. Otherwise,

execution of the block is regarded as terminated and the smallest
* block surrounding it is considered, Step 2 is then repeated.

3 07 ’ Procedure declarations

. (procedure name) ::= procedure (identifier)1

segment procedure (identifier)

(procedure heading) ::= (procedure name)((integer register identifier))

(procedure head) ::= (procedure heading);

(procedure declaration) ::= (procedure head)(statement)

A procedure declaration serves to associate an identifier, which

thereby becomes a procedure identifier, with a statement (cf. 3.5.) which

is called procedure body. This identifier can then be used as an



abbreviation for the procedure body anywhere within the scope of the

declaration. The integer register specified in the procedure heading

is assigned the return address of control when the statement is invoked

by such an abbreviation (procedure statement). It must not be register 0.. .

If the symbol procedure is preceded by the symbol segment, the pro-

cedure body is compiled as a separate program segment (cf. chapter V.1).

It has no influence on the meaning of the program.

Examples

procedure P(R1); RO := RO + 1

procedure SWAP(RA);

begin long real t;

-=. t :c FOl; FOl := ~23; ~01 := t;

end

Note: The code corresponding to a procedure body is followed by a branch

instruction taking the program address from the register specified

in the procedure heading, where the invoking procedure statement

had deposited the return address. Thus, the programmer must either

not use that register within the procedure, or explicitly store

and reload its value in the beginning and end of the procedure body.

3 . 8 . Procedure statements
a

(procedure statement) ::= (procedure identifier)

The procedure statement invokes the execution of the procedure body

- designated by the procedure identifier. A return control address is

assigned to the register specified in the heading of the designated pro-

cedure declaration.
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III. Examples

procedure magicsquare(R6);

comment This procedure establishes a magic square of order n, if n. .
is odd, and 1 < n < 16. X is the matrix in linearized form.

Registers 0...6 are used, and register 0 initially contains

the parameter n . Algorithm 118 (COKLIL ACM, Aug. 1962);

begin short integer nsqr;

integer, register n(O), i(l), j(2), k(5);

nsqr := n; Rl := n"nsqr; nsqr := Rl;

i := n + 1 shr!, 1; j := n;

for k := 1 step 1 until nsqr do

R 3begin := i s,hU 6; R4 :=; j shla 2 + R3; R3 := X(R4);

if &'7=0 then

begin i := i - 1; j := j - 2;

if i < 1 then i := k + n;

if j C 1 then j := j + n;

R3 := i shR1  6; R4 :F j shRl 2 + R3;

end;

X(R4) := k;

i := k + 1; if i > n then i := i - n;

3 := j + 1; ifj>nthenj :=j -n;

end;

procedure inreal(R4);.
comment This procedure reads characters forming a real number according

to the ~~360 syntax. A procedure %extchar" is used to obtain,

the next character in sequence in register 0 . The result is

left in the long real register FOl . Registers 0 .,. 4 and

all real registers are used;
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byte sign, exposign; short integer ten (10);

long real fconl(#%E00000000000OOO),  fcon2(#4700000000000000);

integer

function

while RO

i fbegin

end;

comment

Rl := RO

while RO

beginR O

end;

R2 := 0;

fconl&w.

fconUow syn fconl(4);

s~(9)(#8coo), LTR(l)(#WO);
< "0" do

RO = "-" then SET(sign) else RESET(sign); nextchar;

Accumulate the integral part in Rl;

and #F; nextchar;

>= "0" do

:= RO and #F; Rl := Rl * ten + RO; nextchar;

comment R2 is the decimal scale factor;
--.

:= Rl; FOl := fconl + ODO; comment FOl := RI;

RO = "." then

c o m m e n tbegin Process fraction. Accumulate number in FOl;

nextchar;

while RO >= "0" do

begin RO := RO shll 4; STC(RO)(fcon2(4));

FOl := FOl * lOD0 + fcon2; R2 := R2 - 1; nextchar;

end;

end;

if RO = "E" then

. begin comment Add the scale factor to R2;

nextchar; if RO = "-" then

begin SET(exposign); nextchar;

end else RESET(exposign);- -
Rl := RO and #F; nextchar;

while RO >= "0" do

begin RO := RO and #F; Rl := Rl * ten + RO; nextchar;

end;

TEST(exposign);

if = then R2 := R2 - Rl else R2 := R2 + Rl;

end;

if R2 7= 0 then
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begin comment Compute F45 := 10 t R2;

R2 < 0 then

begin R2 := abs R2; SET(exposign);

end else RESET(exposign);-.VP

F23 := lODO; F45 := 1DO; ~67 := F45;

while R2 -I= 0 do

begin SRDL(R~)(~); F23 := F23 * ~67; ~67 := ~23;

LTR(R3)(R3); if < then F45 := F45 * F23;

end;

TEST(exposign);

if = then FOl := FOl/F45 else FOl := FOl * F45;

end;

TEST(sign); if = then FOl := neg FOl;
--.

end

procedure Binary Search (~8);

comment A binary search is performed for an identifier in a table via an

alphabetically ordered directory containing for each entry the

length (no. of characters) of the identifier, the address of the

actual identifier, and a code number. The global declarations

array ( ) integer directory

array ( ) short integer tag syn directory (0)

array ( ) short integer length syn directory (2)

array ( ) integer address. syn directory (4)

integer n

are assumed. Upon entry, 111 contains the length of the given

identifier, R2 contains its address. Upon exit, R3 contains

the code number, if a match is found in the table, 0 otherwise.

Registers 1-8 are used;

begin integer register a(l), iow(3), i(4), high(5),  x(6), m(7);
array (3) short integer compare (#D500)(#2000)(#6000);

high := n; low := 8; comment index step in directory is 8 ;
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while low <= high do

begin i := Row + high shr&

if 1 = length(i) then

beginEX(L)(compare);

if < then high :=- -
end else- -
if a < length(i) then

beginEX(a)(compare);

4 shal  3; x := address(i);

if = then goto found;
. .

i-8 else tow := i+8;

if <=-then high := i-8 else low := i+8;

end else- -
beginm := length(i); EX(m)(compare);

if < then high := i-8 else Low := i+8;

end;

end; --.

i := 0;

found: R3 := tag(i);

end

Assembly Language Code corresponding to the procedure'Magic  square' (first

example):

MAGICSQ,R STH
LR
MH
STH
LR*
A
SRL
LR
L
B

Ll LR
SLL
LR
SLL
AR
L
C
BC
S
S
C
BC

0, NW3
190
1, NSQR
1, NW3
LO
l,pNE
191
%O
5,pNE
L7
;Jp

(2
42
493
3,x(4)
;9Z$)

L:pm
WW
Mm
ll,L2
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L3

L5

~6
--. L7

AR
C
BC
AR
LR
SLL . .
LR
SLL
AR
ST
A
CR
BC
SR
A
CR
BC
SR
LA
CH
BC
BR

DC H
DC F"0"
DC F"1"
DC F"2"

190
2,fim
11, L3
290
391
396
492
492
493
5,x(4)
b%-
190
13J5
190
2,fiN.E
%O
13~6
290
5A5)
5,NSQB
12,Ll
6
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IV. The object code

Two principal postulates were used as guidelines in the design of

the language.

1, Statements which express operations on data must in an obvious

way correspond to machine instructions. Their structure must be

such that they decompose into structural elements, each corres-

ponding directly to a single instruction.

2. The control of sequencing should be expressible implicitly by

the structure of certain statements. (e.g., through prefixing

them with clauses indicating their conditional or iterative execu-

tion).

Register assignments, cell assignments, and function statements
--.

strictly comply to postulate 1, as illustrated by the following example

(cf. also 11.2.4, 11.2.6.):

RA := I f AGE - R3 + SIZE(R1)

Code:

The following

constructions

. the language.

language.

LH 10,I
A 10,AGE
SR 10,3
A lO,SIZE(l)

sections serve to exhibit the target code corresponding to

classified as "control facilities" in the definition of

The code is described in terms of 360 symbolic assembly

1. Construct: -if (condition) then (statement)

Code: code for condition
BC c,L
code for statement

T

J-l . . .

C is determined by the form of the condition, whose corresponding code

may be empty or consisting of a C or CRinstruction.
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Example:

ifRl<R2thenRO  :=R3

CR 1,2
BC 10,L e.
LR 0,3

L . . .

2. Construct: g (condition) then (simple statement) else (statement)

Code : code for condition
BC c,Ll
code for simple statement
B L2

Ll code for statement
L2 . . .

3. Construct: case Rm of begin

(statement-l);

(statement-2);

. . . . l . . .

(statement-n);

end

Code: SLL m,2
B Lb)

Ll code for statement-l
B LX

L2 code for statement-2
B LX
. . . . .

Ln code for statement-n
L B LX

B Ll
B L2
. . .
B Ln

LX . . .
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4. Construct: while (condition) do (statement)

Code: Ll code for condition
BC c,L2
code for statement
B Ll ..

L2 . . .

C is determined by the form of the condition, whose code may either

be empty or a C or CR instruction. Note that the condition is es-

tablished before the statement is ever .executed.

5. Construct: for (integer register assignment)

step (integer number) until (integer value) do

(statement)

The corresponding code depends on the sign of the number following

the symbol step. That number will be denoted by i below, and the

assumption is made that the assignment after the symbol for spe-

cifies register m .

Code: (i > 0)
code for assignment

Ll C m,V
BC 2,L2
code for statement
LA m,i(m)
B Ll

L2 . . .

Code: (i< 0)
code for assignment

Ll C m,V
BC 4,L2
code for statement
S m,I
B Ll

L2 . . .

Note : The instruction labeled Ll is a CR instruction, if a

register is specified as limiting value; V denotes the cell con-

taining the limit value, I denotes the cell containing the decre-

ment i .
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The BXH and BXLE instructions were not used in the construction.

The intricate rules about registirassignment for control-, increment-,

and limit values were considered to be too restrictive, and furthermore

these instructions do not permit the testing of the initial value with. .
the limit without altering the initial control value. They are entirely

inappropriate for the case i<O.

6. Construct: procedure (identifier)(Rn);  (statement)

Code: P code for statement
BR .n

7* Construct: (procedure identifier)

Code: BAL n,P or

II 15, newsegmentbase
BAL n,P,
L 15, oldsegmentbase

where n and P are specified by the procedure declaration.
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v. Addressing and segmentation

The addressing mechanism of the 360 computers is such that instruc-

tions can indicate addresses only relative to a base address contained

in a register. The programmer must -insure that

1. every address in his program specifies a "base"-register;

2. the specified register contains the appropriate base address

whenever an instruction is executed which contains an address;

3. the difference d between the desired absolute address and the

available base address satisfies

Otd<4096 .

This places a heavy burden upon the programmer, and it was consid-

ered to be unquestionably the duty of a compiler to ease the difficult

task, and to provide certain checking facilities against errors.

The solution adopted here was that of program segmentation. The

program is subdivided into individual parts, so-called segments. Every

quantity defined within the program is known by the number of the segment

in which it occurs and by its address relative to the origin of that

segment, which serves as its base address. The problem then consists

of subdividing the program and choosing base registers in such a way that

a. the compiler can reference the appropriate register automatically when

it compiles addresses, b. the compiler can assure that each base regis-

w ter contains the desired base address during execution, and c. the num-

ber of times base addresses are reloaded into registers is reasonably

small.

. First, it must be decided whether the process of subdividing the

program should be performed by the programmer or by the compiler. In the

latter case, a fixed number of registers must be set aside to serve as

base registers which the compiler has freely at its disposal. This was

considered undesirable. Furthermore, a program using a number of segments

much larger than that of available base registers would be subject to

considerable inefficiencies due to the necessity of loading base addres-

ses very frequently. It was therefore decided that the programmer should
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designate the parts of his program which were to constitute segments.

He has then the possibility of organizing the program in a way which

minimizes the number of crossreferences between segments.

It should be noted that the programmer's knowledge about segment. .
sizes and occurrences of crossreferences is quite different in the cases

of program and data. In the latter case he is exactly aware of the

amount of storage needed for the declared quantities, and he knows pre-

cisely in what places of the program references to a specific data seg-

ment occur. In the former case, his knowledge about the eventual size

of a compiled program section is only vague, and he is in general unaware

of the occurrence of branch instructions implicit in certain constructs

of the language. It was therefore decided to treat programs and data

differently, and this decision was also in conformity with the desira-

bility of keeping program and data apart as separate entities.

1. Program segmentation

Due to the fact that the language does not allow programs to modify

themselves, branches are the only instructions referring to locations

within program segments. Since control lies by its very nature in exactly

one segment at any instant, it seemed appropriate to designate one fixed

register to hold the base address of the program segment currently under

execution. A b.ranch leading into another segment must then always be

preceded by an instruction loading that register with the base address

'of the destination segment. Register 15 was chosen for this purpose.

An obvious approach to the problem of segmentation requires the

compiler to automatically generate a new segment, when the currently

generated segment's length exceeds 4096 bytes. This solution was re-

jected because of two reasons:

1. The programmer is not aware of the position of segment boundaries,

and therefore has no way to minimize branches from one to another

segment.

2. In most cases, the destination of an implicit branch (in if-,

case-, while-, for statements) is not known to the compiler at the

time of its generation. Therefore it is not known whether it will

consist of one or two machine instructions.

39



The approach taken consists in connecting segment structure with the

obvious program structure. The natural unit for a program segment is

the procedure. The only way to enter a procedure is via a procedure

statement, and the only way to leave-it is at its end or by an explicit

go to statement. The fact that no implicitly generated instruction can

ever lead control outside of a procedure minimizes the number of cross-

references in a natural way. Since only relatively large procedure

bodies should constitute segments, a facility was provided to designate

such procedures explicitly: a procedure to be compiled as a program

segment must contain the symbol segment in its heading. In practice,

the requirement that such procedures be explicitly designated has proven

to be no handicap. It is relatively easy for a programmer to guess which

procedure exceeds the prescribed size, or otherwise to insert the symbol

segment after <he compiler has provided an appropriate comment in the

first compilation attempt, Obviously, the outermost block is always

compiled as a segment.

2. Data segmentation

In the case of data, the programmer is precisely aware of the amount

of allocated memory as well as of the instances where reference is made

to these quantities. A base declaration was therefore introduced which

implies that all quantities declared thereafter, but still within the

same block and preceding another base declaration, refer to the speci-
.

fied register as their base. These quantities form a data segment. At

the place of the base declaration code is compiled which ensures that

the register is loaded with the appropriate segment address. However

. its previous contents are neither saved nor restored upon exit from the

block.

A base declaration is implicit in the heading of the outermost block.

It always designates register 14.

Obviously, data segments declared in parallel (i.e., not nested)

blocks, can safely refer to the same base register. Data segments de-

clared within nested blocks should refer to different base registers.
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If they do not, it is the programmer's responsiblity to ensure that the

register is appropriately loaded when data in either of the segments is

accessed.

There is no limit to the size of data segments. All cell designa-

tors must, however, refer to cells whose addresses differ from the seg-

ment base address by less than 4096. If they don't, the compiler can

provide an appropriate indication.

3* Program loading

A scheme using program and data segments as described above results

in an extremely simple relocating loader program, since the segments can

be loaded without modification. It was felt that this benefit provided

by a computer incorporating a base register scheme should be put to full

advantage. Although the 360 computer still makes use of absolute addresses

in a few instances (program status words, data channel commands), it

was decided, not to allow for absolute addresses in a program. They

can, however, be generated at execution time. Consequently, the func-

tions of the loader are reduced to:

a. reading program and data segments into memory,

b. assigning the origin address of each segment to an entry in

the segment address table, and

c. transfering control to the program segment representing the

a outermost block.

The base address table must be available from any point in the pro-

gram. It was therefore placed in the low end of the first data segment,

whose origin address is contained in register 14.

4. Problems connected with Input-output programming

The direct programming of input-output operations in ~~360 is im-

practical in the scheme described so far for the following reasons:

1. Input-output operations on the 360 are designed to use the

interrupt mechanism to signal termination of processes performed

by data channels and devices in parallel with CPU operations,
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In order to use the interrupt feature, it is necessary to create

program status words (PSW) and store them in certain fixed locations

of memory. A PSW contains the absolute address of a point in the

program, which is a quantity that cannot be generated by a ~~360

program.

2. Particularly in routines servicing interrupts, but also in some

other cases, it is desirable to be able to dispense of a program

base register. This could be done by locating these routines with-

in the first 4096 bytes of core memory. The loader described above,

however, chooses the absolute location of a segment on its own.

These two shortcomings can be overcome in many ways. The following is

suggested:

1. A facility is introduced to designate a segment as an interrupt

service routine, with the effect that the compiler supplies infor-

mation to the loader, causing the loader to assign the segment's

base address to the appropriate PSW cell instead of the segment

address table. The compiler itself terminates this segment with

an LPSW instead of a BR instruction (cf. ~6.). "This approach

forces a programmer to make explicit the fact that an interrupt

routine is conceptually a closed segment, and it circumvents the

undesirable introduction of a facility to generate labels as manipu-

latable objects.

1 2. A provision is introduced to cause the compiler not to refer to a

base register in the branch instructions contained in the interrupt

service segment. The loader is at the same time instructed to al-

locate this segment within the first 4096 bytes of core memory.

Usually, however, these facilities are not needed, because the

program is executed in the environment of an operating system (whose

choice is normally not up to the individual programmer) which executes

programs in the program-mode where input-output instructions are not

executable. The form which statements communicating with such an en-

vironment assume is determined by that particular environment and can-

not be defined as part of the language proper.
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VI. Compiler methodology

1. General organization

The compiler is a strictly syntax directed one-pass translator.

Its design served as a major test for-the applicability of the techniques

described in [3 ] to practical programming languages. The language was

designed to conform to the rules of simple precedence grammars as postu-

lated in [3 1. The development of a precedence syntax to whose individual

rules the meaning of the language could be properly attached was no easy

task. Interestingly enough, however, this design process provided many

insights into the nature of various conceptual elements, led to their

clarification and often simplification, and contributed a great deal to

the systematic structure of the resulting language.

The algorithm for syntactic analysis constitutes the core of the

compiler. It operates on the basis of a table containing the rules of

syntax and a table containing the precedence relations among input tokens,

and evokes the execution of an interpretation rule whenever a parsing

step is taken. The input tokens are obtained by calling a procedure

,
.

LAnalyser L r

I

I 1
Syntax
Rules Precedence

Relations

Interpretation
Rules

called "insymbol", which scans the sequence of input characters in the

manner of a finite state machine, and yields as a result either a basic

symbol of the language, an identifier, a number, or a string. It auto-

matically suppresses comments. It should be noted, that in the imple-

mented language no equivalent for the underlining of basic symbols is
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provided, and that therefore a sequence of letters and digits, starting

with a letter and not containing blanks, may constitute a basic symbol.

Any such sequence must be matched by the insymbol routine against a table

containing the representations of all "letter-symbols". If a match is

found, the result is a basic symbol, otherwise an identifier. As a con-

sequence, identifiers could not be constructed by the syntax analyser

itself upon receiving merely a sequence of letters and digits. The con-

sideration of numbers as tokens, on the other hand, was not a necessity

but rather a convenience.

The syntax analyser makes use of a stack (called "symbol stack")

to store not yet reduced symbols. Whenever a reduction takes place, the

interpretation rule corresponding to the applied syntactic rule is acti-

vated. These interpretation rules make use of a second stack (called--.
"value stack") to store information about each syntactic entity occurring

in the reduction process. To each entry in the symbol stack corresponds

an entry in the value stack, and vice-versa. Ideally, an interpretation

rule should exclusively reference data in those entries of the value

stack which correspond to symbols in the symbol stack being reduced by

the applying syntactic rule. This principle has been followed in the

simple example presented in [3 1. Here, however, a deviation from it

was made by the introduction of conventional identifier tables, one con-

taining identifiers denoting program points (labels), one for all de-

clared identifiers.

2. Identifier tables

The presence of identifer tables simplifies the search for identifiers

and eliminates the need for the specific right recursive definition of

the declaration structure used in [3 1. The separation of the table into

one containing declared identifiers and one containing labels has its

reason in the fact that labels are the only identifiers which can occur

in a statement before being defined in the program, and must therefore

be treated differently as discussed below.

It should first be noted that the presence of the syntax rules

(1) (T cell identifier) ::= (identifier)
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(2) (function identifier) ::= (identifier)

(3) (procedure identifier) ::= (identifier)

etc.

constitutes a violation of the requirement that in an unambiguous prece-

dence grammar no two rules should have identical right parts. This

violation required a slight complication of the analysis algorithm with

the effect that an interpretation rule may cause an otherwise applicable

syntactic rule to be rejected. In the given example, the interpretation

rules specify that the considered identifier be located in the identifier

table. If location is successful,then  rule 1 is rejected unless the

table indicates that the identifier indeed designates a 7 cell, rule 2

is rejected unless it designates a function, etc. This decision of the

applicability o-f a syntactic rule on grounds of essentially semantic

information reflects the argument that "Algol-like languages" are strictly

speaking not context free, i.e., cannot be described by a phrase structure

grammar alone.

The above identifier search implies that the entire block-structured

identifier table be searched. The following program demonstrates that

labels cannot be subjected to the same process, and that therefore

(4) (label) ::= (identifier)

must not be a rule of the language.

1 A: L: . . .begin

B: begin goto L;

. a .

L:

end;

end

In this example, rule 4 applying to L after the symbolgoto would

detect L as present in the identifier table, because L was defined

as a label in the outer block (A). This would, however, be an erroneous

assumption, since a local L is defined later in the inner block (B),

to which poto L should refer. Consequently, searches for labels must
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be confined to the innermost block, and such a restricted search must

be represented by an interpretation rule connected with a distinct syn-

tactic rule with a different right part. In the language, that rule is

(go to statement) ::= goto (identifier)

Identifiers in the label table are marked as either defined or not

yet defined. Upon exit of a block, all undefined ~.&ntr:ies; are. col-

lected and considered as entries in the outer block, where some of them

may be found as already defined. This process made the use of a separate

label table desirable.

The compiler is designed to read the

tape; it produces (optionally) a listing,

ponding target program address. The code

and as soon as a segment is closed, it is

source program from cards or

each line containing a corres-

is compiled into core memory,

written onto secondary storage.

The segment is preceded by a record indicating the kind of the segment

(program or data), its number, and its length. The program loader later

collects the segments from the secondary storage, lists the, base

address which it assigns to each segment, and assigns it to the corres-

ponding entry in the segment address table.

The syntax analysis algorithm described in [3 ] makes the assump-

tion that analysed programs are syntactically valid. This assumption

is not tenable in the practical world of computer programming. Syntactic

errors are detected by the fact that for some string recognized as re-

ducible there is no matching entry in the table of productions. After

an error has been encountered, it is in most cases desirable to continue

compilation in order that subsequent errors may be located and indicated.

A method has to be devised to let the analysis algorithm proceed after

having made some assumption about the nature of the error.

This is in general a rather hopeless task. An investigation of a

large number of programs containing syntactic errors reveals, however,

that most of the committed errors exhibit strong similarities and can be

diagnosed by a relatively simble algorithm. In most cases, syntactic
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errors are due to omission or wrong use of symbols merely conveying

information about structural properties of the program, such as inter-

punctuation symbols and the various kinds of brackets. Omission of ele-

ments explicitly stating program activities, such as operators and oper-. .
ands, are rare.

A second important consideration is that an incorrect construction

should be detected as early as possible, i.e., before further steps are

taken on the basis of the incorrect text. The precedence grammar tech-

nique is an excellent scheme in this respect, because it is based upon

relations existing among symbol pairs. That none of the relations de-

noted by +, 4, 3 exists between two symbols implies the impossibility

of these two symbols being adjacent in any sentence of the language.

The empty relation (denoted by 0) shall be defined as holding whenever
-m.

none of the others hold. On a left-to-right scan, its encounter consti-

tutes the earliest possible detection of an erroneous construction.

It should be noted that the use of two precedence functions instead

of the precedence relations implies that the analysis algorithm is based

on a condensation of the information contained in the matrix of relations.

This condensation relies on the assumption that empty relations can sim-

ply be ignored. The above considerations lead to the conclusion that

for practical reasons it is advantageous to have the relation matrix at

the disposal of the analyser rather than the functions.

The algorithm for diagnosing of and recovery from errors described

subsequently is a heuristic solution rather than one based on rigorous

theoretical principles. It is contended here that any such scheme must

make a very drastic selection from all the possible forms which errors

may assume. The important aspect is that those situations are mastered

intelligently which are likely to occur often,, Since a frequency sta-

tistic of errors reflects the behavior of the human users, such a selec-

tion must by definition be based on heuristics.

There exist two places in the analysis process, where illegal con-

structions may be detected (cf. [ 31, p. 18):
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1. The empty relation holds between the symbol on top of the stack

and the incoming symbol:

In this case a list I of insertion symbols is scanned. If for

some m, 'i P I and Im p Pk, then I is inserted into the scannedm m
string in front of P

k*
Since this insertion may lead to a correct

program (in about 9d of the tested cases it did), an according comment'

must be delivered to the programmer.

If for no m, 'i P Im and Irn f) 'k' then the symbol Pk is

stacked.

2 . The value of the function

Leftpart(S
j l *�

'i) *

is undefined (Q> 9 i.e., there exists no syntactic rule whose rightpart

is S
j l *�

si l This situation may occur even if for all k (j < k < i)

In this case a table of erroneous productions is scanned for a right-

part identical to S
J

. . . S
i' If a match is found, an error message

corresponding to that rule can be printed, and the analysis can proceed

with the statement

S
3

:= Leftpart(S
3 l **

'i) '
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The augmented algorithm for syntactic analysis is then described

as follows:

procedure Invalid pair;

begin integer m; m := 1; -.

while m < n A (S.01 v Im@Pk)
J m

if m 5 n then (Pk . . . Pz+l) := Im cat (Pk . . . Pz)

end;

while

begin i := j := j+l; S. := Pk; k := k+l;
3

while Sj l >o Pk

Sj@Pk then Invalid pair;

while S- - .  j-1 &a S. do j := j-1;
3-

Sc 3
:= Leftpart(S

j
. . . S,>; i := j

end

end

In the specific case of the ~~360 language, the selected insertion sym-

bols Im are
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The following are the selected erroneous productions:

0

1

2

9
10

11

12

13
14

Oc register assignment) ::=

(r cell designator) := (5 value)

OI register assignment) ::= --

(r cell designator) := (monadic operator)(T value)

(s register assignment) ::=

(y cell designator := (monadic operator)(y register)

(blockbody) ::= (blockbody)(statement);  else

(case sequence) ::= (case SequenceHstatement);  else

(function statement) ::= (function statement))

(y cell designator) ::= (y cell designator))

(procedure head) ::= (procedure name);

(condition) ::=--.
(T cell identifier)(relational  operator)(T value)

(condition) ::= (T cell identifier)(relational  operator)@ register)

(block head) := (block body)(declaration);

(r cell designator) ::=

(y cell designator)((J number))

(simple 7 type) ::=

(simple T type) array ((integer number))

(procedure identifier) := (procedure identifier)@ register))

(statement) ::= (blockbody)(statement)
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The following table of messages accompanies the erroneous produc-

tions. If some erroneous production is found to be applicable, the

corresponding message is transmitted to the programmer.

w,2

314

576

7

899
10

11

12

13
14

Assignment must occur either to or from a register.

else must not be preceded by a semicolon.

> without matching ( .

A register specification is missing in the procedure heading.

The first comparand must be a register.

A statement cannot be followed by a declaration.

Write "(cell designator)((integer  number))((integer  register))"

instead of

"(cell designator)((integer  register))((integer  number))"
--.

array should be the first symbol in the declaration.

Procedure statement must not have a parameter.

The symbol end is missing.

With these limited facilities, the syntax analyser was able to parse

and correctly diagnose the texts in which the following erroneous con-

structions were contained. The produced diagnostic messages are indi-

cated by their number enclosed in parentheses at the right margin, while

arrows indicate the position where the analyser detected and diagnosed

the error:
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begin real x; RO := a end
t

missing ;

begin real x Ry := a; end missing ;

if RI = a then Rl := b; else Rl := c (3 >
t

P; P(Rlht (13)

LA(RO( Rl); LA(RO)(Rl)); missing )
t t (5)

array (5) integer m (12)(23) 34)(45{56);

RO := Rl; real x, y;
t

a := b; a ?= abs b; a := abs RO; b := neg Rl;
t - t - t t

missing (
missing )

(10)

x(R1)) := b;
t t

(6) (0)

begin if a = b then goto L;

a<.Rl then poto L:
-t

else goto K end
t t-

(8)

(9>(3>
missing;

As can be seen from the later exam@les, the analyser is able to correctly

- diagnose even nested errors and relate them to their context. The diag-

nostic messages are meaningful, because the analyser has found applicable

an erroneous production which was anticipated by the compiler designer,

who in turn was able to associate an appropriate comment, knowing the

reasons why human programmers inadvertantly use suc.h a construction. It

was found to be helpful to let the compiler 1istJ.n .addition to the mes-

sage, the symbols currently in the parsing stack. They represent all

the unfinished syntactical entities in the pa.rse, and give the programmer

valuable guidance toward understanding of his misuse of the syntax.

The choice of the appropriate insertion symbols and erroneous pro-

ductions requires a thorough-understanding of the analysis algorithm on
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on the part of the compiler designer, as well as a subtle feeling to

anticipate frequent misuses of the syntax. Of course, further insertion

symbols and productions can easily be added to the tables in order to

increase the diagnostic capabilities. of the analyser. If a compiler is

capable of gathering statistical information about encountered erroneous

situations, this information could be evaluated from time to time in

order to expand the tables. As a result the compiler would truly seem

to adapt itself to its imperfect human environment in order to gradually

become a better and better teacher.
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VII. The development of the compiler

At the time when the project to develop a compiler for ~~360 was

started, no 360 computer was available to the author, nor did the facili-

ties promised with the forthcoming machine look too enticing to use.

It was therefore decided to use the available Burroughs Bj'yOO computer

for the design and testing of the compiler, which was completed by the

author within two months of part time work. It accepted a preliminary

version of ~~360 as described in [5 ] which contained the basic fea-

tures of the presently described language.

The compiler was then reprogrammed in its own language. Through

a loader and supervisor program (written in assembly code), the program,

recompiled on the B5500, became immediately available on the 360 computer.

The experiment of describing the compiling algorithm in ~~360 itself

proved to be the most effective test on the usefulness and appropriate-

ness of the language, and it influenced the subsequent development of

the language considerably. During this process, several features which

seemed desirable were added to the language, and many were dropped again

after having proved to be either dubious in value,, inconsistent with the

design criteria, or too involved and leading to misconceptions. The

leading principle and guideline was to produce a conceptually simple

language and to keep the number of features and facilities minimal. The

"bootstrapping" method in combination with the described compiling tech-

nique proved to be very successful for experimentation with and altera-

tion of the language.. The process of incorporation of a new feature

consists of representing the new feature in the syntax of the language,

and of defining the compiler actions corresponding to the new constructs

in the form of additional interpretation rules. These rules must of

'course be denoted in terms of previously available facilities.

In general, a significant drawback of the bootstrapping technique

is the fact that programming errors are easily proliferated. However,

the combination of the bootstrapping method with the rigorous approach

to systematic compiler organization by means of strict syntax analysis

proved to be very successful, since the latter constitutes an enormous

step towards reliability, which can never be achieved by common heuristic

methods of compiler design.
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VIII. Performance

The development of a job control and supervisor program was under-

taken in parallel with the construction of the compiler. The following

performance figures reflect the operation of the compiler under that

supervisor. It should be noted that the supervisor considers the com-

piler in the same way as a regular user's program.

Size (in bytes)

Supervisor

Job control

3 500

3 700

7 200

Compiler program 12 700

Various compiler data 5 400 18 loo

Identifier tables 14 400

Output area 24 600

30 000 39 000

64 300

Timing

The processing of a job consists of the following steps, described

in terms of the present implementation on a 360/50 computer:

.

1. Loading of the compiler from tape

2. Compilation, with input from cards or tape, and output to

tape (and optionally to cards)

3* Loading of the compiled program from tape (or cards)

4. Execution of the program.

Steps 1 and 3, constituting what is usually called "overhead", take

4.7 sets. execution time. Compilation proceeds at the speed of

the card reader (1000 cpm). If the source program is read from tape

and the program listing is suppressed, the compiler (about 1500 card

records) recompiles itself in 39 sets (with listing in 109 sets). The

time required to load the system initially is 2 sets.
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IX. Reflections on the 360 architecture

Based on the experiences drawn from the compiler development, it

can be concluded that the objective to make direct machine programming

more convenient by providing a tool which is superior to common assembly

codes with respect to readability and writability, is commendable and

important. It can also be concluded that ~~360 is fairly successful in

meeting this objective. The decisive factor, in the author's opinion,

is the simplicity, frugality, and coherence of the language. A limiting

factor to this is the architecture of the underlying machine. In this

respect, the question "how well is the computer suited for this kind of

language?" becomes more significant than the opposite question "how

well is the language suited for the machine?". The author feels indeed

strongly about this point, and recommends future hardware designers to

confront themselves seriously with the first question, before yielding

to the well-known policy of answering every problem with the common and

omnipotent reply: "There is a bit somewhere".

As a matter of fact, the relatively systematic architecture of the

360 computer series provided a strong encouragement to devise a tool in

the sense of ~~360. It seems nevertheless worth while to locate some

of its less fortunate features:

1. The idea of a "two-dimensional instruction set" with one coordinate

specifying the operation, the other the type of operand, isvery come

mendable, and is properly reflected in ~~360. But, the better a

principle is, the worse are its violations. There exist operands

of type full word integer, half word integer, full word logical,

short and long floating point, and byte in the 360 system. Operations

on them are more or less grouped into columns in the matrix of instruc-

tions. However, instructions on logical and full word integer oper-

ands occur in the same column, certain operations are missing in the

half word format, and operations on bytes differ radically from all

others. A striking example is the inconsistency of the LH and STH

instructions, the first of which performs the function of assigliing

an integer to a register, the second one that of assigning a half-

word logical quantity to a memory cell. This is not merely an unfor-

tunate feature, but a conceptual flaw.
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2.

3.

4.

The fact that many instructions are indexable only through misuse

of the base register field is very unfortunate. It is one reason

why none of those instructions fits into the scheme of the ~~360

assignment statement. . .

The more complex a single instruction,the more debatable becomes

the choice of its detailed form. The BCT, BXLE, BXH are good

examples, none of which fitted into the scheme of ~~360 structures.

The 360 instructions exhibit a remarkable consistency in the scheme

of condition code setting, with the very peculiar exception of the

TM instruction.

This short list of architectural misfits is by no means complete,,

It omits,e.g., mentioning some dismal properties of the floating point

arithmetic and of the input-output mechanism. However, these have no

immediate effect on the structure of the ~~360 language.
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x. HOW to use ~~360

This chapter is intended to serve as a reference manual for the

user of the ~1,360 language as implemented on the GSG/SRD 360/$0 computer

at SLAC. It describes the facilities and the usage of the compiler and

operating system, version Nov. 1966.

The operating system consists of a batch processing jobcontrol

program, and a set of elementary input output service routines with

associated interrupt programs. The jobcontrol program incorporates a

loader, reading binary programs from either tape or cards, and it treats

programs to be executed, including the ~~360 compiler itself, as sub-

routines.
7

JOBCONTROL

The jobcontrol program and the service routines are executed in the

supervisor mode and are storage protected. Together they occupy the

. first*8000 bytes of core memory.

1. The language

The implemented language is that described in Chapter II, with
I

the following symbol representations, restrictions, and extension:

a> Symbol representation

Only capital letters are available. Basic symbols which are de-

noted by underlined letter sequence in Chapter II are denoted by the

same sequence of capital letters. Such sequences may not be used as

identifiers. They are tabulated in x.8.
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b) Restrictions

No go-to statement may refer to a label in a segment different from

the one where the goto statement occurs.
. .

Oniy the first 10 characters of identifiers are significant.

c) Extension

To facilitate program debugging, a dump statement has been intro-

duced.

Syntax:

(simple statement) ::= (dump statement)

(dump statement) ::= (dump heading)((length part))

(dump heading) ::= dump ((r cell designator))

(length gart) ::= (integer register)l(iriteger cell designator)\

(short integer cell designator))(integer  number)

The dump statement causes the listing in hexadecimal form of the

values of the n consecutive memory cells (-bytes), the first of which

is designated by the 7 cell designator. n is the value of the length

part.

d) Additional standard functions

A set of standard functions is defined as supervisor calls for

elementary input and output operations. The referenced supervisor rou-

tines make use of parameter registers as specified below. They set the

condition code to 0, unless otherwise specified. Input-output devices

are designated by logical unit numbers (cf. x.8.).

Read a card, assign the 80 character record to the

memory area designated by the address in register 0 ,

Set the condition code to 1, if the end of the card

file is encountered.

READOUT Same as READ, with the addition of a character code

translation as specified in section x.8. The transla-

tion maps 026 punched characters into their 029

equivalents.*
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WRITE

PUNCH

READTAPE

--

WRITETAPE

PAGE

Write the record of 132 characters designated by the

address in register 0 on the line printer. Set the

condition code to 1, if the next line to be printed

appears on the top of a8 new page.. .

Punch the record of 80 characters designated by the

address in register 0 on the card punch.

Read a record from the tape unit specified by the logi-

cal unit number is register 2 . The length of the

record in bytes in specified by register 1, and it is

assigned to the memory area designated by the address

in register 0 . Set the condition code to 1, if a

tape mark is encountered, Register 1 is assigned

-number of bytes actually read.

Write a record on the tape unit specified by the logical

unit number in register 2 . The length of the written

record in bytes is specified by register 1; the record

is designated by the address in register 0 .

Skip to the next page on the line printer.

The following are tape handling functions. They affect the tape unit

specified by the logical unit number in register 2 .

MARKTAPE:

REWIND:

BSPREC:

FSPREC:

BSPTM:.
FSPTM:

Write a tape mark.

Rewind the tape.

Backspace one record.

Forwardspace one record.

Backspace to the previous tape mark,

Forwardspace to the next tape mark.

A program interruption (cf. X.5.) due to arithmetic operations records

the interruption cod&n the byte cell FPI. This cell, being part of

the supervisor, is memory protected, and cannot be reset by the user's

.program directly.

FPIRESET: Reset the value of the cell FPI to 0 .
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2. Compiler instructions

The compiler accepts instructions occurring anywhere in the sequence

of input records. A compiler instruction card is marked by a $ charac-

ter in column 1, and an instruction in isolumns  2-4. Columns 5-80 of such

a record are ignored.

$026

$029

$LIST

$N@LIST

$PUNCH

$PAGE

$0

$1

$2

$TAPEn

The compiler assumes subsequent source cards to be

punched on 026 keypunches.

The compiler assumes subsequent source cards to be

punched on 029 keypunches.

Subsequent source records are listed on the printer.

Subsequent source records are not listed.
--.
Computed program and data segments are punched on cards.

A page is skipped in the listing.

No trace output is listed.

The relative address of all variables and procedures

are listed when they are declared.

Addresses are listed as after $1, and the produced

machine code is listed in hexadecimal notation.

The subsequent source records are read from the tape

unit with logical number n .

3* Compiler error messages

. Errors are indicated by the compiler with a message and a bar below

the character which was read last.

Error No. Message Meaning

00 SYNTAX The source program violates the ~~360

syntax. Analysis continues with the next

statement,

01 VAR ASS TYPES The type of operands in a variable assign-

ment are incompatible.
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Error No.

02

03

04

05

06 COMPARE TYPES

cr7 REG TYPE OR #

08 UNBEFINED ID

09 MULT LAB DEF

10

11

12

. 13

14

15

16

17

Mes&g,e

FOR PARAMETER

REG ASS TYPES

BIN OP TYPES

SHIFT OP

EXC IN1 VALUE

NOT INDEXABLE

DATA OVERFLOW

NO OF ARGS

ILLEGAL CHAR

MULTIPLE ID

PROGRAMOFLCW

INITIAL OFLOW

Meaning
A real register instead of an integer reg-

ister is specified in a for clause.

The types of operands in a register assign-

ment are incompatible.

The types of operands of an arithmetic or

logical operator, are irmmpatibk.

A real instead of an integer register is

specified in a shift operation.

The types of comparands are incompatible.

Incorrect register specification.

An undeclared identifier is encountered.

The same identifier is defined as a label

more than once inthe same block.

The number of initializing values exceeds

the number of elements in the array.

The function argument does not allow for

an index register.

The address of the declared variable in

the data segment exceeds 4095.

An incorrect nwnber of arguments is used

for a function.

An illegal character was encountered; it

is skipped.

The same identifier is declared more than

once in the

The current

The area of

same block.

program segment is too large.

initialized data in the compiler

is full. This can be circumvented by suit-

able segmentation.‘
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Error No.

18

19 INTEGER OFLOW

20

21

22

23

Message

ADDRESS OFLOW

MISSING @

STRING LENGTH

DUMPTYPE

FUNC DEF NO.

Meaning

The number used as index is such that the

resulting address cannot be accommodated.

The integer number is too large in magni-

tude.

An end of file has been read before a

program terminating @ was encountered.

The length of a string is either 0 or

> 256 .

The length part does not specify an inte-

ger.

The format number in a function declaration

is illegal.

At the end of each program segment, undefined labels are listed with

an indication where they occurred.

4. Jobcontrol instructions, the form of input card decks

Cards containing a o-2-8 punch in column 1 are recognized by the

"READ" and “READOUT” supervisor routines as jobcontrol cards, and give

rise to an end of file indication. Information contained in columns
a 2-g (left adjusted) of such cards is interpreted by the job control rou-

tine as follows:

~~360 Control is given to the compiler to process the subsequent

source program.

DATA Control is given to the previously compiled and/or loaded

program. If the preceding compilation detected any errors,

the subsequent data cards are skipped.

LOAD Control is given to the loader routine, which loads subse-

quent "binary" program cards,

PAUSE The operator is notified, and the system waits for the opera-

tor's instructions given via the operator console typewriter

(cf. x.6.).
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Other control cards are recognized and may be used to activate library

programs, which are not described in this Report.

Typical card deck compositions are:

source program

Compilation and execution

may contain
"compiler
instructions"

"binary" cards

Loading and execution '
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5. Program execution errors

The following error conditions can occur:

a. A "program-check" interruption occurred. This is indicated by the

message . .

PRG PSW m

If interruption occurred due to an arithmetic operation, the inter-

ruption code is stored in the byte cell FPI (floating point interrup-

tion), and control is returned to the interrupted program? Otherwise,

control is given to the job control routine.

b. An attempt is made to read beyond a control card. The message

EOF PSW XXX)MXX3CXXXXXXXX

is printed, a;d control is returned to the job control routine.

C. An illegal logical unit number has been used for an input-output

operation. The messa,ge

DEV PSW XXXXXMCXXXXXXXXX

is printed, and control is returned to the job control routine.

d. The operator intervenes by causing an external interrupt. The message

EXT PSWXXXXXXXMCMLXXXXX

appears on the line printer and the operator console. (cf. x.6.).

6. Minimal configuration reauirements-

Core memory: 65 K bytes, protection feature

: 1 card reader/punch (2540)

1 line printer (1403)

2 tape units (2401-3)

1 console typewriter (1052) (dev. addr. 009)

.

-x-
Such interrupts are counted, and the counts are listed (if / 0) after

the end of program execution.
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7s Loading and operating the system

The process of initial loading consists of the following steps:

a. Reset system

b. Mount system tape on any 942ack unit (usually device 282)

c. Stack jobs on the card reader

d. Make card reader, line printer, and tape 5 (used by the compiler)

ready.

e. Select the unit carrying the system tape on the Load Unit Switches‘

f. Press the Load Key

Execution of the job sequence stacked on the card reader is imme-

diately

a.

b.

The

writer.

started. Control is returned to the operator when either

a PAUSE control card is encountered, or

the operator presses the external interrupt key.

computer then accepts instructions from the operator via type-

Each message must be terminated with an EOB (end of block)

character. The following free-field instructions are accepted:

a. dump XXXXXX,m-EOB

dump NWXJW- EOB

dump EOB

.

The values of the registers and of the 4IXNNlW byte;;aeXls  starting at,

.the'~nit~al;;add~ess'~~~'  are l~‘Sbted3n hex&dec:imal!form.~  -Xf the. I

Init=lal address is omitted, lit'& taBen as the begknning ;of;the user%

da$a*segment  area,',and-if She count is'omitted$, it i.s taken as the'kength

of' the use?? s data, segmenti  area ., 1; v/ , : 1.1, 2

b. device XX EOB

Devices are designated by logical numbers, The correspondence be-

tween logical numbers and actual device addresses is established by the

device table (cf. x.8). The above command causes the address AAA of

the device with logical unit number XX to be typed out. Subsequent

typing of the device address BBB causes that device to be assigned the

logical unit number XX, and the device with address AAA to be given

the logical unit number -YY, which previously designated device BBB
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(if any). As a result, every device in the system will always be

designated by at most one logical unit nwnber.

\
before after

a: AAA xx : BBB

YY : BBB ..YY :AAA

C. EOB

Processing resumes with the next job in sequence.

The operator is informed about abnormal conditions encountered

by the error analysis routines of the elementary input - output

programs contained in the supervisor. The following messages are

typed:

a. XX YYY NOT RDY

b. Xx YYY'NOT OP

C. XX YYY I/O ERROR CCCC DDDD

d. XX YYY DEV END CCCC DDDD

XX represents the logical number of the afflicted device, YYY its

physical address, CCCC the encountered channel status, and DDDD

the device status.

Message a. is given when a device is not ready. Execution

resumes when the device is put into the ready state. Messages b.,

C ., and d., are respectively given when a device is not operating,

when a malfunction is encountered, or when an error is discovered

upon device end interrupt caused by the reader, punch, or printer.

The operator must reply with one of the following messages:

a. ignore EOB

b. exit EOB (resume processing with next job)

c. EOB (retry the operation after I/O ERROR; ignore the DEV

END condition)

Note that if a storage dump is desired before processing the

next job, then the interrupt key must be pressed first. If the

operator response is not recognized by the system, then "RETRY" is

typed out. In order to cancel a response, the CANCEL character must

be typed before typing EOB. In either case a correct response should

then be typed by the operator.
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8. Tables

Character code translation table (used in ~~~026)

holes 026 - - -

1 2 - 3 - 8
1 2 - 6 - 8

o - 4 - 8
1 2 - 5 - 8

12
o - 6 - 8

12-o
1 1 - 3 - 8
11-4-8
1 2 - 4 - 8
1 1 - 5 - 8
u - 6 - 8

--. 6 - 8
11

o-1
o - 3 - 8

11-7-8
o - 5 - 8

11-o
5 - 8

12-7-8
o - 7 - 8

;
(
[
+
<

$
*
>
1
;
X

/
7
t

:

=
?

029 hex.

;
(
(
+

I
&
$
SC
>
>
;
1

I

f

"I0

T
..

#

@
t

=
'I

48
4c
4D
41,
4E
4F
50
5J3
5c
5D
SD
5E
5F
60
61
6~
6c
6~
6~
7A
7B
7c
7D
7E
7F

Letters and digits are represented by the same hole combinations

on cards punched on either the 026 or the 029 keypunches, and do there-

fore not undergo any translation. The column designated fro26rr lists the

characters printed by the Stanford extended 026 key-punches.
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B A S K  S Y M B O L S

DO
I F
OF
OR
AB S --’
PND
END
FOR
NEG
SYN

X-OR
BASE
UYlE
CASE
DUMP
ELSE
GOT0
LQhG
I\ULL
HEAL

ShLA HHILE
Sk1.L COMMAND
ShRA IhTEGER
ShRL lOGICAL
S T E P SEGMENT
THEN FUNCTION
ARRPY O~EHFCCW
BEGIN REGISTEH
SHOPT CHARACTEft
U N T I L FROCEDUHE

N O T E : Y)-IESE LtTTkR SEGUEhCES  M U S T  N O T  BE U S E D  A S  IDENTIFIERSb

STANDARD I DENT IF I E R S ,

A R R A Y  ( ) I N T E G E R
B Y T E
1NTEGER
I N T E G E R
I N T E G E R
IkfEGER
XWEGEA
I N T E G E R
I N T E G E R
I N T E G E R
I N T E G E R
I N T E G E R
INJtGER
ItdTEGER
I N T E G E R

M E N  S Y N  0,
F P I  S Y N  4 3
61 SYN MEMiRl)
82 S Y N  MEMtR2)
8 3  SYN MEM(R3)
8 4  S Y N  MEH(R4t
8 5  S Y N  MEMtR5)
8 6  S Y N  MEWRb)
87 S Y N  MEMJR7)
08 S Y N  MEMIRB)
69 S Y N  MEMtR9)
B A  SYN MEMIRA)
f3B S Y N  MEMtRBl
B C  S Y N  MEMtRC)
BD S Y N  MEMtRD)
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IATCGEK dEGISTL1K
I i\TtGLd Kt-GISTEK
IhTkGi-l? riEGIST”,K
IhTEGfK  KLGISTEK
INTEGEK  R E G I S T E K
I N T E G E R  R E G I S T E R
IhTEGCK  REGISTER
1hTkGEI-t  KtGISlER
IkTEGER  ilEGISTEP
IkTEGEK  KEGISTER
IhTEGER  R E G I S T E R
I N T E G E R  R E G I S T E R
IhTEGER REGISTER
IhTtGtK  R E G I S T E R
IhTiiGEK REGISTEK
REAL REGISTER
R E A L  R E G I S T E R
R E A L  R E G I S T E R
HfAL MGISTER
R E A L  R E G I S T E R

._

KU (3)
ii 1 11)
R2 (2)
K3 (2)
R3 (31
R4 (4)
KS (5)
R6 (6)
R 7 (7)
K8 (8)
R 9 (9)
RA (Al
HB (81
RC (C)
RD ID)
FO (0)
r - 2 (0)
r-2 (2)
F 4 (41
Fb (6)

--. LCkG  H E A L  HEGISTEK FOl IO)
LChG R E A L  R E G I S T E R  F 2 3  (21
L O N G  R E A L  R E G I S T E R  F45 (41
LChG R E A L

FL&CT  ION
FUbCT  ION
FUhCT  IUN
F U N C T I O N
F U h C T  I O N
FUhCTION
FUhCTIClN
FUkCT  IQN
FUhCTION
FUhCT  ION
F U h C T  I O N

F U N C T  I0N
F U h C T  I O N
FbfuCT  ION
FUfvCTION
FLkCTIDN
FLiNCTION
FUhCT ION
FLILCTIUN
FUNCTXON
F U h C T  IUN
FlJhtCT  ION

L A
MVl
MVC
CL1
CLC
LM
S T M
SLOL
S R O L
IC
STC
C V D
U N P K
t o
E X
S E T
R E S E T
TES‘f
R E A D
R f A 0 0 2 6
W R I T E
PUNCH

(2)(#4100)
(4)(#9200)
(fi)(#D200)
(4) (#9500)
tS)(#D500)
(3)l#9800)
(31 (k40001
(9)(##8DOO)
(9)(#XOO)
12)(#4300)
(21tH4200)
(7) (#i4ft00)
(10) 1 #F-s001
(5l(#tlEOO)
(2)(#4400)
(8)(#92FF)
(8)(#9200)
(8)(#95FF)
(O)(#OAOO)
lC)I#OAOl.)
IO)(#OAO2)
(O)(#OAO3)

f(rhCT I O N READTAPE (0) (#OAOb)
FUFUCT  ION hKITETAPE  (O)(#OA07)
F U N C T  iOh REhlNU ~O)(#OA08~
F U N C T  iON MARKTAPE (01 (dOA
FUkCT  ION F S P T M (0) (#OAOAb
FUhCT  IOh FS,PREC (O)I#OAOBI
FUhCTIDN  i3SPTM (C)(#OAOC)
FLhCJIOlV BSPREC (O)(#OAOO)
FI;hCTILlN P A G E fC)I#OAOE)
FUhCTiUN  )LPIilESET CiJ 1 t #OAOf J

R E G I S T E R F67 (6)



S Y N T A X

<K PEG*‘)
<l CELL IO>
<PRGC 10)
<FUhC ID>
<K REG>
<l CELL*>
<‘I C E L L >

<T V A L U E >

CK SI A S S >

<UhAAY  CP>

<AHITh  GP>

<LCG  CP>

< S H I F T  OP>

::= <IO>
: := <IO>
:g= (iID>
::= ,<IO>
::= <K REG+>
::= <T C E L L  I D >
::= CT C E L L  I O >

<T C E L L  I O >
< T  CELL*>
<T CELL*>  t

: :’ <T N U M B E R >
<T C E L L >
<SIRING>

::= <K REG*> t=

<K HEG*>  :=
< K  REG*>  :=
<K REG*> :=

::= ABS I
AEG I
NEG  A B S

::= + I

f
1
1

+ + I
- -

::= AK0 I
CR I
3OR

:t= S H L A I
ShRA I
S H L L I
SHRL

. .

( <T NUMBER> 1
I

( <K REC*>  1 I
I
<K REG+>  1

I
I

< T  V A L U E > !
<K REG> 1
<UNARY  GP> <T V A L U E >
CUNARY  OP> <K REG>

I

<K R E G  A S S * >  ::= <K SJ A S S > I
<K R E G  A S S * >  C A R I T H  OP> <T V A L U E > I
<K H E G  A S S * : > C A R I T H  QP> <K REG> I
<K R E G  ASS*> < L O G  OP> <T VALUE> I
<K R E G  A S S * >  <LOG  OP> <K REG> I
<K R E G  ASS*) <SHIFT  Of’> <T N U M B E R > I
<K R E G  A S S * >  <SHIFT  GP> kK REG+>

<K R E G  A S S > : := <K R E G  A S S * >
<FUhCTION> ;: :’ <FUkC  IO> I

<FUrvCTZGh> ( <T NUMBER> ) I
<FUhCTIGh> ( <K REG*>  1
<FUhCTION> ( <T CELL> 1 I
<FUNClIUN> ( <STRING>  1

<CbCP  HEAC> ::= D U M P t <T CELL> 1
< C A S E  S E C > t:= C A S E  (K REG*>  O f B E G I N I

< C A S E  SEQ> < S T A T E M E N T >  ;
<SIMPLE S T > ::t <T C E L L >  := <K REG> 1

<K R E G  A S S > I
N U L L I
GOT0  <XC> I
C P R G C  JO> I
<DUMP  HEAD> t <T NUMBER>  1 I
<CHJMP  HiiAO> ( <K KEG+>  1
<DUMP  HEAC>
< F U N C T I O N > ( lgT CELL’ ’
< C A S E  SEQ> EN0 I
<HCOCK>
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<REL GP>

<CUhC  IT IGN>

<If CL>
<JR&E P A R T >
ChtiILE>
CCChD  DO>
<FOR  H E A D >
<INCREl!>
<LIMIT>

<co>
<STATtMEhT*>

< S T A T E M E N T >
CSI T T Y P E >

<J T Y P E >

<T CECL*>

<T CECl>
< K  R E G  C C * >

<K RtG C C >
<fLhC  GECL*>

: := < I

;
I
I

< = I
> = I . .=

::= ;K REG*> C R E L  OP> <T V A L U E > I
<K RtG*> <REL OP> <K REG> I
GVERFLDh I
<HEL  OP>

:g= I F  <CClhGITION>  T H E N
::= < S I M P L E  ST>  E L S E
:f= W H I L E
: := <CChOIJ  ICh> D O
::= F C R  <K R E G  A S S >
a.=. . S T E P  CT hUMBER>
::’ U N T I L  <K REG*> I

UhJIL <T C E L L > I
UhTIL <J hUMBER>

::= CC
::= <SIMPLE S T > I

< I F  C L >  < S T A T E M E N T * > I
< I F  C L >  < T R U E  PAHT> < S T A T E M E N T * > I
< W H I L E >  <COND  D O >  < S T A T E M E N T * > I
< F O R  H E A D > <?NCREM> < L I M I T > <DO> < S T A T E M E N T * >

::= < S T A T E M E N T * >
: 2s SHORT INTEGER I

I N T E G E R I
LOG ICAL I
REAL I
LSAG REAL I
B Y T E I
CHAsrcPCTER I
COMMAND

::= <SI T T Y P E > I
A R R A Y  ( <T N U M B E R 3 1 <SI T TYPE>

l * =  <T T Y P E >  <ID>,* I
<T CtCL> < I D > I
<T DECL> ; <T NUMBER>  1 I
CT DECL> ( <STRING> 1

::= CT DECL*>
:f= <SI T T Y P E > R E G I S T E R <ID> 1

<K REG DC> t <IC>
: := <K REG DC*> ( XT NUMRER>  1
::= FUhCTXOh < I D > I

<FUhC  DECL> v <IO>
::= <FUhC  DECL*>  ( <T N U M B E R >  1
::= <FUhC  DECL-> ( <T NUMBER>  1
::= <T T Y P E > < I O > SYN <T C E L L > I

<T’ T Y P E > < I D > S Y N  <T hUMHfR> I
<SYN  DtCL> ) <IG> SYh CT CELL> I
CSYN rlfCL>  9 <ID> SYN <T NUMBER>

::= <T DECL> I
<K R E G  CC> I
<FUNC  DECt> I
CSYh  DECL> I
SEGMEW BASE <K FUZG>

::= PKCCEDURE <ID> I
SEGMENT PROCtDURE  <ID>

::= <PROC N A M E > ( <K REG*>  1

<fUhC  C E C L - >
<FUhC  DtCl>
<SYh CECL>

<CtCL>

<PKC!C hAME>

<PKCC  H E A D * >



<F)iGC NiPC>
<LABEL  CEF>
<BlQCKHEdD>

<BLCCKBCCY>

tBLCCK>
<FRGGRAM>

::= <PRGC  HEAG*>  ;
:: = <ID>  =
::= BEGIk I

<BLCCKHEAC> <C&XL>  ; I
<BlOCKHEAD> <PROC HEAD>  <STATEMENT>  ’ ;

::-- <BLOCKHEAD>  ‘f
<BLCCKBCDY>  <STATEMENT>  ; I
<BLOCKBODY>  <LABEL  DEW

..-. m- <BLCCKBQDY> END

..=.* a <BLOCK>  3

DEVICE TAL!lSv

LULNO. OEVICE ADDRESS

0
1
2
3
4
5
6
7
8
9

10
11

s 12
13

TYPEWRITER (10552) 009
PRINTER { 1403) OOE
CARCREADER 125401 ooc
CAROPUNCH (: 2540) 000
SYS TAPE t 2401) 282
TAPE (2401) 181 (7 TRACK)
TAPE (2401) 182
TAPE (2401) 183
TAPE (2401) 184
TAPE (2401) 203 ’
DISK (2311) 190
DISK (2311d 191
DISK (2.311) I.92
DISPLAY (2250) 2E0
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F;.CCf-[;l,i’I”  ‘jf cIf<Ct-  ( R F ! )  ;
tikGil\i  CLPHEP,r  F’AhA~tfERS:  R1 = L E N G T H  LYF IUliNTIFIER~ 12.2 .= ADllRFSS

CF IDkkTIFlFk. RESULT:  FC3  = T A G  10 I F  NOT LDCATED).
F(EGISTERS  CISEC:  0 - 8  ;
INJEGEH  R E G I S T E R  L(l), LOW(31,  I(4). tiIGH(‘j), X(6), M(7);
AKt!clY (3) St-OKT  IhTEGEK CilMP ~#0~00~~~2000,~~~000~;
CC‘Wf~T r.Crt’ARE  CkARACJtZP  TNSTfJUCTION;
l-1 1 G 1-i : = ;‘1 ; 1. c h : - 8 ;
~“t-iILE  LUkd <= tiICJ- DO
tjtGIIL  i := LCh  t hIGH SHHC 4 SHLL  3: X := AWif I);

IF L = L/i(i) T!-IEIV
Ot:GIh  EX(LI(CCRP);  I F  =  T H E N  G O T 0  O U T :

fF < ThEhI  hICH := I - R  E L S E  L O W  : =  ItO;
FhG  E L S C
I f -  L < Lr<(I)  TkEh
BLGIN  E-X(L)dCCCP);

IF <= TkEfv bIGH : =  I-8 E L S E  L O W  := I+R;
Ehc: E L S E
dtCIF\i  b? := Lhtl); I.X(M)ICntiP);

IF < Tt-EN t-IGh := I - R  E L S E  L Q W  := T+tz;
EhC ;

E N D  ;
I 0;:E

CUT: R 3 :‘= TAG(I);
Et/r7 ;

Ei,(ljl)  (;il,F)(t’ilf-1; LP(KO)(GUF~;  R6 := R0; C O M M E N T  bt ANK HIIf-F  ER ;
H1 := 0 ;  LA(R4)(10);

CCk’VkhT  Kt-AI! ICENTIFIERS  A N D  E N T E R  T H E M  1N T A B L E S ;
. i-1: kEADL;i?t; CLI(“$“)(QbF); I F  ‘I= THEN

L\f-GIN  Hl := kl+B; TPG(Rl)  : =  Kl;
KZ t= c; H3 := fi?f

L2: IC(R3)tBUFIE2));  I F  R 3  -,= ” ” T H E N
B E G I N  H2 := R2tl;  GCTO  L2;
E N D  ;
Eh (ri2) (MCVF  1; A6[:ii(Rl)  := K4;
H4 := t?+*C;;; 22 : =  HZ-1; LN/Kl)  := R2;
(i1.J r li 1. A ;

tnc ;
h : =  v1;

CCPPENT REAr3 bfi; ICE.r\iTIFIf’R A N D  S E A R C H  1’1 I N  T H E  TABLE;
L3: PkAOc)2b;  I f -  =  Tt$h

StGIN  dl : =  0 ;  83 := Rl; LAIKZ)/EUFl;  c



L4: 1C(ti3)(~~jf(%1));  if R 3  -= ” ” T H E N
BEGIN R1 : =  Kl+l; GCTO C4;
ENC ;
Kl := Rl-1; SEAPCt-;
CVC(H3)tCEC): ~vCls)(HuF~3~)~(PATTERN);
~0(5)(euF(36l)(CEC(S))i  W R I T E ; C O M M E N T  W R I T E  I D E N T I F I E R  AN0 TAG:
GUT0  13;

EhC ;
EhC  cr”

BEGIh  COCi”EhT  M A G I C  SGilJARE GENERATOY;
AFRAY  (132) CbARACTER  LINE (” “1;
ARRbY  ( 8 )  B Y T E  P A T T E R N  (#40)(#20)(#20)~#20)(#211(#211;
LChG h(fAL  QEC;
A R R A Y  ( 2 5 6 )  IATEGER  X ;

.

PHCCEGURE  MAGICSCUAHE  (Rb)  ;
BkGIN StiGRT IhTFGER  hSCK;

I N T E G E R  R E G I S T E R  h(O)rI(1),3(2),K(5li
hSCH := Nu; RI := I\*hSCR;  fVSQR t= Rl;
I := h;+l  SHRL 1; J := N;
f-UK K := 1  S T E P  1  U N T I L  NSQR  0 0
dtGIr\c  R3 := I $l-LL  6; H4 := 3 SHLL 2 + R3; R3 :’ X(R4);

IF R3 -,= C THEN
OtGlN I := I-l; J := J-7;

IF J < 1 TbEbJ I z= l+rJ;
IF J < 1 Tt-EN J := J+h;
R3 := 1 SJ-LL  6; R4 := J SHLL 2 + R3;

E N D  ;
X(P4)  := K ;
I := ltl; IF I > N ThEhi I := 1-k;;
J : =  Jtl; IF J > N ThEN J t= J-h;

END ;
EhC ;

PHGCECUKE  GETAhCPR  I N T  (R8)  ;
BLGIN  R 2  := 0 ;  F G R  PL := 0  S T E P  4  U N T I L  1020  Di-J  X(Rl) := K2;

~AGICSG~~JAHL;  H6 : =  R O ;  LALRO)(LINk);
F O R  Rl : = 1 STEP 1 UNTIL Kh DCI

. BkGIN H4 : =  Hl SPLL 6 +4;  LA(RSI(LINEi4));
F U R  R 2  := 1 STFP  1 UNTIL 36 00
BCGlN  MVC(S)([.~)(PATTERN);  R3 := X(R413 CVD(R31IDEC);

fD(5)(1!5)liFC(5));  44 : =  K4+4;  R5 := RSt7;
ENG ;
kRITE;

LND ;
F0~13lJ(LIhE)(LIhE);  WRITE:

EhC ;

EO(l$l)(LINE)(LINE); CQMEL.EbiT  t)LANK  L I N E ;
RO := 3 ;  GETAhDPR  INT;
AC := 5 ;  GETAhCPRIhl;
KC := 7 ;  GETAhDPRlhT;

IrhC ii
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4 3 d
5 5 1
2 7 6

11
lti
25

2
5

22
31
4c
49

2
11
2c

10 4
12 6
19 13
2L 2c

3 22

2 .l 13
23 15
32 24
41 33
43 42

3 44
12 4

23 17 --
5 24
7 1

14 8
14 15

5 46 338 30
14 6 47 39
16 8 7 48
25 17 9 1
34 26 18 10
36 3s 27 19
45 37 29 28
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