CS53

A PROGRAMMI NG LANGUAGE FOR THE 360 COMPUTERS
BY

NIKLAUS W IRTH

TECHNICAL REPORT NO. CS53
DECEMBER 20, 1966

o

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY







A PROGRAMMING LANGUAGE FOR THE 360 COMPUTERS

by

Niklaus Wirth

December 20, 1966






Abstract

A progranm ng | anguage for the 1BM 360 conputers and

is inplementation are described. The |anguage, called
PI360, provides the facilities of a synbolic machine

| anguage, but displays a structure defined by a recur-
sive syntax. The conpiler, consisting of a precedence
syntax analyser and a set of interpretation rules wth
strict one-to-one correspondence to the set of syntactic
rules directly reflects the definition of the |anguage.

k-th syntax rule k-th interpretation rule

Sg ii= 8.85...8 Vg 1= fk(Vl,Vg,..., Vn)

PI360 was designed to inprove the readability of prograns
whi ch must take into account specific characteristics

and limtations of a particular conputer. It represents
an attenpt to further the state of the art of program

m ng by encouraging and even forcing the programmer to
improve his style of exposition and his principles and
discipline in programorgani zation, and not by nerely
providing a multitude of "new' features and facilities.
The language is therefore particularly well suited for
tutorial purposes.

The attenpt to present a conmputer as a systematically
organi zed entity is also hoped to be of interest to
designers of future conputers.






A Progranm ng Language for the 360 Conputers

Contents

ITI.

IV.

VI

VII.

-VITT.

Page
Introduction, aimand purpose . . . . . . . . . . ... 1
Definition of the language . . . . . . . . . . . . . .. L
1. Termnol ogy, notation, and basic definitions . ... 5
2, Data manipulation facilities . . . . . . . . . . .. 11
3. Control facilities . . . . . . . . .. ... .... 22
Exanples . . . . . . . . . . . . . ... ... ... .29
The object code . . . . . . . . . . . . ... ..... 3k
Addressing and segnentation . . . . . . . . . . . . .. 38
1. Program segmentation . . . . . . . . . . . . . . .. 39
2. Data segnentation . . . . . . . . . ... ... ... Lo
3. Program loading . . . . . . . . . . . . . ... .. b1
4. Problens connected with input-output programming . . Ll
Compiler nmethodology . . . . . . . . . . . . . . .. .. Lz
1. Ceneral organization . . . . . . . . . . . ... .. 43
2. ldentifier tables . . . . . . . . . . . ... ... L
3. Handling of syntactic errors . . . . . . . . . . .. L6
The devel opnent of the compiler . . . . . . . . . . .. 54
Performance. ... ... ... ....... e el 5T
Refl ections on the 360 architecture . . , . . . . . . . 58
How to use the PL360 system. . . . . . . . . . . . ., 60
Acknowl edgments . . . . . . . . .. .. ... ..... &

References . . . . . . . . . . . . . ..., 8







. Introduction, Ains and Purpose

In an era of feverish and prolific activity in the design of nore
and nore sophisticated and intricate progranmng aids, the proposal of
a machine |anguage may seem anachronistic to some readers. This report
describes an attenpt to provide a tool for those applications where it
Is essential to conceive the programas closely as possible in ternms of
an existing conputer in order to directly take into account its particular
capabilities and limtations. Sophistication has not been an aimin this
attenpt, but enphasis was rather put on a clear and conceptual ly syste-
matic exposition of the available facilities. The result is reliability
on the part of the inplenmented systemas well as on the part of the user
who is not subject to m sunderstandings about the nature of conplicated
and ill-defined--facilities. None of these objectives should be called
anachronistic.

In the sumer of 1965, the author decided to undertake efforts to
i npl ement the proposed successor to ALGOL described in [2] on the |BM
360 conputer which at that tine had been chosen as Stanford's next genera-
tion machine. It was felt that the evolving project should be conducted
in a thorough and systematic manner, worthy of an academ ¢ endeavour, and
maki ng use of the best available nethods on conpiler construction known.
The results shoul d consist of a well-organized system whose structure and
principles were sound and precisely understood, and which was intelligibly
docunent ed

After many years of experience with ALGOL, it was clearly recognized
that a conpiler witten in 360 Assenbly Language woul d neither be able
to neet the desired docunentation standards, nor constitute a sufficiently
convenient programming tool. The only other |anguage available on the
360, FORTRAN, was not deenmed adequate either. Against the strong argu-
ments of the undesirability of the large amount of additional efforts re-
quired to produce a new | anguage and its conpiler, it was decided to
devel op a tool which woul d:

1. allowfull use of the facilities provided by the 360 hardware,

2. provide convenience in witing and correcting prograns, and

3. encourage the user to wite in a clear and conprehensible style.

1




As a consequence of 3., it was felt that programs should not be able
to nodify themselves. The |anguage should have the facilities necessary
to express conpiler and control programs, and the programer should be
able to determne every detailed machine' operation. |n this respect, the
| anguage features the property of a conventional assenbly code. Inits
appearance, however, it resenbles a high level programm ng |anguage due
to the presence of structure. Being specifically tailored for the 360
computer, the |anguage was appropriately named PL360.

Chapter Il is the definition of the language. It is given in terns
of a syntax, and the semantic explanations of the individual syntactic
constructions.  Know edge about the nature of the 360 architecture is
prerequisite (cf. [1]); however, the definition does not require faniliar-
ity with the 360 Assenbly Language. A few self-explanatory exanples of
prograns are listed in Chapter I11I.

The following two chapters are devoted to the inplenmentation of
PL360. They exhibit the code which the conpiler generates corresponding
to various |anguage statements, and the method of segnmentation and addres-
sing. Chapter VI gives an account of the organization of the conpiler,
which relies on a rigorous syntax analysis of the text while at the sane
time generating the target code. The conpiler constitutes a |arge scale
practical exanple for the application of the techniques described in [3],
whi ch have been extended to process incorrectly constructed texts and to
- meaningfull'y diagnose errors. The success of this facility is considered
to be a major contribution to nake predecence grammars useful in practica
applications.

* The nmethods enployed in producing the conpiler are described in Chap-
ter VII. A bootstrapping technique was used to nmake the conpiler available
on the 360 conputer without prior use of any of the |anguages existing on
that machine. Programming the conpiler in its own |anguage provided a
thorough test for the adequacy of the language to its anticipated purpose

Chapter VIII gives a brief account of the size and the perfornance

of the translator on a 360/50 conputer. Concluding remarks about the
| anguage and its inplenentation lead to a brief examnation of the appro-
priateness of the 360 architecture for this experinent.

2










[I. Definition of the Language

Contents

1. Termnology, notation, and basic definitions

1.1
1.2
1.3,
1.k,
1.5.
1.6.

The conputer

Rel ati onshi ps

The program

Synt ax

Syntactic entities

The vocabul ary of basic synbols

2. Data manipulation facilities

2.1,

2. 2.

2.3,
2.4,
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.

.1.

W W W W W W N W
™ 9 00w WP

ldentifiers
Nunbers and strings
Regi ster declarations

Cell declarations . . . . . . . . . ..

Cel | designators

Regi ster assignnments
Cel | assignnents
Function declarations
Function statenents
Synonym decl arations

Segnent base declarations .

Control facilities

If statenments

Case statements

Wi le statenents

For statements

Bl ocks

Goto statenents
Procedure declarations
Procedure statenents

Page

O N N o

10

11
11
11
13
1k
15
16
18
19
20
21
22




1.  Terminology, notation, and basic definitions

The language is defined in terns of a (/360) conputer which conprises
a number of processing units and a finite set of storage elenents. Each

of the storage elements holds a content, also called value. At any given
tinme, certain significant relationships may hold between storage elenents
and values. These rel ationships may be recognized and al tered, and new

val ues may be created by the processing units. The actions taken by the
processors are deternmined by a program The set of possible prograns
form the |anguage. A programis conposed of, and can therefore be decom
posed into elenmentary constructions according to the rules of a syntax,

or grammar. To each el ementary construction corresponds an el enentary

action specified as a semantic rule of the language. The action denoted
by a programis defined as the sequence of elenentary actions corres-
ponding to the el ementary constructions which are obtai ned when the pro-
gram i s deconposed (parsed) by reading fromleft to right.

1.1.  The conputer

According to their specific capabilities, processing units are divided
into central processing units (CPU), input-output processing units (chan-
nel's), and input-output devices. At any tine, the status of a unit is
described by a sequence of bits, called the programstatus word (PSW for
CPUs and the channel status word (CSW for channels. A status word con-
tains, anong other information, a pointer to the currently executed in-

‘struction. In particular, the program status word also contains a quan-
tity which is called condition code

Storage el enents are classified into registers and core menory cells,
simply called cells. Registers are divided into three kinds according to
their size and the operations which can be performed on their val ues.

The kinds of registers are:

a. integer or logical (a sequence of 32 bits)
b. real (a sequence of 32 bits)

¢. long real (a sequence of 64 bits)




Cells are classified into seven types according to their size and the
type of value which they may contain. A cell may be structured or sinple
The types of sinple values and sinple cells are:

a. byte, or character ( a sequence of 8 bits),

b. short integer ( a sequence of 16 bits, usually interpreted as an
integer in two's conplement binary notation),

¢c. integer or logical (a sequence of 32 bits, usually interpreted
as an integer in two's conplenment binary notation),

d. real (a sequence of 32 bits to be interpreted as a floating point
bi nary nunber),

e. long real (a sequence of 64 bits to be interpreted as a floating
poi nt binary nunber),

f. command (a sequence of 64 bits, wusually interpreted as a data
channel command).

1.2. Relationships

The nost fundanental relationship is that which holds between a cel
and its value. It is known as containnent; the cell is said to contain
t he val ue.

Anot her relationship holds between the cells which are the conponents
of a structured cell, called an array, and the structured cell itself.
It is known as subordination. Structured cells are regarded as contai ning
the Cartesian product of the values of the conponent cells. The conponent
cells themselves are well-ordered

A set of relationships between values is defined by nonadi c and dyadic
functions or operations, which the processors are able to evaluate or per-
form The relationships are defined by mappings between values (or pairs
of values) known as the operands and val ues known as the results of the
evaluation. These mappings are not to be precisely defined in this report
instead, references will be given to their definition in official publica-
tions on the /360 conputer [4].




1.3. The program

A program contains declarations and statements. Declarations serve
to list the quantities which are involved in the algorithmdenoted by the
program and to associate a name, a so-called identifier, with each quan-
tity. Statements specify the operations to be performed on these quanti-
ties, to which they refer through use of the identifiers

A program is a sequence of tokens, which are basic synbols, strings
or conments. Every token is itself a sequence of characters. The follow
ing conventions are used in the notation of the present article:

a. basic synbols constitute the basic vocabulary of the |anguage
(cf. 1.6.). They are either single non-al phanuneric characters
or underlined letter sequences;

b. strings are}sequences of characters enclosed in quote marks (");

c. conments are sequences of characters (not containing a senicolon)
preceded by the basic synbol conment and foll owed by a semicol on
(3). I't is understood that during execution of a program all
comrents are ignored

In order that a sequence of tokens be an executable program it must be
constructed according to the rules of the syntax.

1.4, Syntax

_ A sequence of tokens constitutes an instance of a syntactic entity
(or construct), if that entity can be derived fromthe sequence by one or
nore applications of syntactic substitution rules. In each such appli-
cation, the sequence equal to the right side of the rule is replaced by
the “symbol which is its left side.

Syntactic entities (cf. 1.5.) are denoted by English words enclosed
inthe brackets ( and ) . These words describe approximately the
nature of the syntactic entity, and where these words are used el sewhere
in the text, they refer to that syntactic entity. For reasons of nota-
tional convenience and brevity, the script letters ¥ and T are al so
used in the denotation of syntactic entities. They are understood to




stand for any kind of register or type of cell, possibly subject to re-
strictions nentioned in the acconpanying text of the paragraph.

Syntactic rules are of the form

(A) ::= &

where (A) is a syntactic entity (called the left side) and ¢is a
finite sequence of tokens and syntactic entities (called the right side
of the rule). The notation

W) o= gleg o g

is used as an abbreviation for the n syntactic rules

S Ee (A Ty (A gy

If in the denotations of constituents of the rule the script letters ¥

or T occur nore than once, they nust be replaced consistently. As an
exanpl e, the syntactic rule

(K register) ::= (X register identifier)

is an abbreviation for the set of rules

(integer register) ::= (integer register identifier)
(real register) ::= (real register identifier)
(long real register) ::= (long real register identifier)




1.5.

Syntactic Entities

(arithmetic operator)
(base declaration)
(bl ock body)
(bl ock head)
(bl ock)
(case clause)
(case sequence)
(case statenent)
(condi tion)
(decimal digit)
(deci mal integer nunber)
(decimal scale factor)
(decl aration)
(for clause heading)
(for clause)
(for statement)
(fractional nunber)
(function declaration)
(function heading)
(function identifier)
(function nane)
(function statement)
(got0 statenent)
(hexadeci mal nunber)
(if clause)
(if ﬁmemm)
pnuemm

regi ster assignment)
(K register declaration head)
(K register declaration)
(X register identifier)
(¥ register)
(1 abel definition)
(limt)
(1 ogi cal operator)
(monadi ¢ operator)
(procedure declaration)
(procedure head)
(procedure heading)
(procedure identifier)
(procedure nane)
gprocedure st at ement)
program
(relational operator)
(shift operator)
(sinple ¥ register assignnent)
(sinple statenent)
(sinple T type)
(statenent)
(string)

N .

N W [\)\Nr\)l\)\N\N\N\N!\)WW\NI\)r\)\N\N{\)!\)I\)[\)I\)\N\NW!\)\Nmr\)!\)r\)r\)!\)\N\N\N\N !\)!\)!\)\N\N\N\N\N\N\N!\)r\)
N FUV OO HFWMOIRP U0 FUOnPWWOAFE RN OFRP 0N EERFEANNON L DO POV

=

(continued)




1.6.

(T cell assignnent)

(T cell declaration)

(T cell designator)

(T cell identifier)

(T nunber)

(7 subcel | desi gnat or)

(T synonym decl arati on)

(T type)

(7 val ue)

(true part)

(unsigned integer nunber)
(unsigned long real nunber)
(unsigned real nunber)
(
(

o.

whi l e clause)
while statenent)

DI O PO WO DN DN
VWP RoFEaN PG E

Basi ¢ synbol s

als|c|o|elr|e|n|z|s|k|L|M|w]o]|pla|r|s|T|UlvIW|x|¥|Z]|
alolclalelflgln|i]slxl1lm|nlolplalxis|tlulviwlx|y|z]
ol1|2|3]4]5]6]|78]9]

=P/ I<l=l>1= 2=l 1 1D el |

andlg;lxor|abs]not|shl£Ishrllsh!alshral

iﬁlthenlelse|gase|g£lwhile|gg|for|step|until|

begin|end|goto|comment|null|

integer‘real|logical”arrayh@racter‘longlshort

commandlfunctionlprocedure]registerl§¥g

segmentlbase

10



2. Data manipulation facilities.
2.1. ldentifiers

(letter) ::= Al|B|c|p|E|F|c|a]|I|o|k|n]M|w|o|P|a|R|s|T|Ulv|w|x|Y|Z]
alplclalelflglnlilslxt1imidolplqizisitlulviwix]y|z

(identifier) ::= {letter)|(identifier)(letter)|(identifier){digit)

(¥ register identifier) ::= (identifier)

(T cell identifier) ::= (identifier)

(procedure identifier) ::= (identifier)

(function identifier) ::= (identifier)

An identifier is a X register-, T cell-, procedure-, or function

identifier if it has respectively been associated with a ¥ register,

T cell, procedure, or function (called a quantity) in one of the blocks
surrounding its occurrence. This association is achieved by an appro-
priate declaration. The identifier is said to designate the associated
quantity. If the sane identifier is associated to nore than one quantity,
then the considered occurrence designates the quantity to which it was
associated in the smallest block enbracing the considered occurrence. In
any one block, an identifier nust be associated to exactly one quantity.
In the parse of a program that association deterni nes which of the rules
gi ven above applies.

Any processing conputer can be considered to provide an environnent
in which the programis enmbedded, and in which some identifiers are per-
manent|y declared. Sone identifiers are assuned to be known in every
environment; they are called standard identifiers, and are listed in the
respective paragraphs on declarations.

2.2.  Nunbers and strings

(decimal digit) ::= o|1|e|z|4]|5]6]|7]8]9

(deci mal integer nunber) ::= (decimal digit)|
(deci mal integer number){decimal digit)
(unsigned integer nunber) ::= (decimal integer number)
(fractional nunber) ::= (decimal integer nunmber)) . (decimal digit)|

(fractional number)(decimal digit)

11




(decimal scale factor) ::= (decimal integer number)]
(deci mal integer nunber)

(unsigned real number) ::= (fractional number)|
(fractional nunber) E (decimal scale factor)|
(decimal integer nunber) E (deci mal scale factor)

(unsigned long real number) ::=
(fractional nunber) D (decimal scale factor)|
(decimal integer nunber) D (decimal scale factor)

(T nunber) ::= (unsigned T number)| (unsigned T nunber)

(hexadecimal digit) ::= (decinmal digit)|a|B|c|p|E|F|

Here T stands for any one of
i nt eger
real
| ong real

(hexadeci mal nunmber) ::= #(hexadeci ml digit)|
(hexadeci mal number)(hexadecimal digit)
(integer nunber) ::= (hexadecinmal nunber)

Nunbers have their conventional meaning. They can either be given in
decimal or hexadeci mal notation. The scale factor signifies that the
preceding number be nultiplied by the indicated power of ten. The symbol _
stands for a mnus sign.

A string is any sequence of characters enclosed by quote marks, with-
in which a single quote mark (") is always denoted by a pair of adjacent
quote marks (""). Exanpl es:

"ABC' denotes the sequence ABC
"A""z" denotes the sequence A"Z
"AMT denotes the sequence "A"

Exanpl es:
i nteger nunbers
0 1066 _5 #A #FOO

real numbers
1.0 0.1 -3.1416 2.7E5 1E10

12



long real nunbers
5.37861289D0 _1p10 8.9D 5

strings
"A STRING IS A CHARACTER- SEQUENCE"
"DATE: 29/9/ 1966"

2.3. Register declarations

In the following rules, the letter ¥ nust be replaced by any one
of the following words (or word pairs):

I nt eger
real
| ong real
(X register declaration head) ::=
(sinple ¥ type) REQ STER (identifier)|
(K register declaration),{identifier)
(K register declaration) ::=
(¥ register declaration head)({integer number))

Every identifier in a ¥ register declaration is associated with the ¥

regi ster specified by the integer nunber enclosed in parentheses follow ng
the identifier. It herewith becones a ¥ register identifier. This

number nust designate one of the existing integer (or logical) registers
numbered O-15, or one of the existing real or long real registers numbered
0, 2, 4, and 6.

Exanpl es:
integer register count(l), m2), n(3)
‘long real register sum(4), product (O

The following are standard register identifiers:
RO R,..., R, RA ..., RF
designating the 16 integer registers, and
FO, F2, F4, F6, Fol, F23, F45, Fé7
designating the 4 real and long real registers respectively.

13




2.4, Cell declarations

(sinple integer type) ::= integer|logical

(simple short integer type) ::= short integer
(sinple real type) ::= yeal
(
(
(

sinple long real type) ::= long rea

sinple byte type) ::= byte|character
sinple command type) ::= conmmand
(T type) ::= (sinple T type)|
array ( (integer' nunber) ) (simple T type)
(T cell declaration) ::= (T type)(identifier)|

(T cell declaration) , (identifier)\
(T, cell declaration) ( (Tl nunber) )|
(cha[§cter cell declaration) ( (string) )

Every identifier occurring in a cell declaration is associated to
one unique cell of the indicated type, if that type is sinple, or other-
wise to a unique array of cells of the indicated type. The nunber of
cells in an array is given by the nunber enclosed in parentheses follow ng

the synbol array .

If a cell declaration is followed by one or nore numbers or Strings
within parentheses, then the cell is declared to contain those nunbers
or strings as its values. TO and T, nust either be identical, or

1
be selected from the follow ng conbinations

T T

0 1
short integer I nt eger
byte I nt eger
command I nt eger

The number of such val ues nust not exceed the nunber of declared el ements
inthe array. A string can only be assigned to a character cell, and the
number of characters must not exceed the nunber of indicated array ele-
nents.  This assignment of values must be understood to take place only
upon the first time the block, in which the cell declaration occurs, is
entered

1k



Exanpl es:

bytle a ¢
short integer i, j

integer, age(2l), hight(68)

long real x, y, Z

array (3) integer size(36)(23)(37)
array (1000) real quant, price
array (8)byte flags

array (132) character line("")

Note :  The synbols integer and |ogical, and byte and character are treated
as synonynous in the |anguage.

2.5. Cell designators

(7 subcel | designator) ::= (T cell identifier)({integer nunber))

(T cell designator) ::= (T cell identifier)|(T subcell designator)|
(T cell identifier) ( (integer register) ) |
(T subcel | designator) ((integer register) )

A cell identifier which is followed by a nunber or an integer regis-
ter enclosed in parentheses (called a subscript), nust designate an array
of cells. Wen n is the subscript (number or current value of register),
then the construct designates that cell of the array which is located n
memory unit positions (1) fromthe beginning of the array, if the sub-
-seript IS preceded by the cell identifier, or (2) fromthe designated
position, if the subscript is preceded by a subcell designator. The num
ber of menory units occupied by cells of various types are: character (1),
byte (1), shortinteger (2), integer (&), logical (&), real (&%), long
real (8). The subscript used to designate any el enent of an array nust
therefore be a nultiple of the appropriate nunber

Note: A subscript nust not specify register 0 .

Exanpl es of cell designators:

age
si ze(2)
prize(R1l)
line(16)(R2)

15




2.6. Register assignnents

(¥ register) ::= (X register identifier)
(T value) ::= (7 number)|(T cell designator)
(integer value) ::= (string) .-

A X register designates the value contained in the identified register.
A value is either a constant, i.e., a nunber or a string, or the content
of a designated cell. In the case of a logical value being a string,
that string must consist of not nmore than 4 characters. If it consists
of fewer than 4 characters, the string is extended to the left with nul
characters. The bit representation of characters is defined in [1]

(esCol Q).

(sinple ¥ register assignnent) ::=

(1) (K register identifier) := (T value)]
(X register identifier) := (X register)|
(2) (K register identifier) := (nmonadic operator)(JY val ue)
(K register identifier) := (monadic operator)(¥ register)

A sinple register assignment is said to specify a register, namely
the one designated by the register identifier to the left of the assign-
ment operator (:=). To this register is assigned the -value designated
by the construct to the right of the assignnent synbol. That designated
val ue may be obtained through execution of a nonadic operation specified
by a monadic operator

The followi ng are legal conbinations of kinds and types to be sub-
stituted respectively for the letters ¥ and T in the rules (1) and (2):

X T
i nt eger i nt eger
i nt eger short integer
i nt eger conmand
real rea
| ong real _ rea
| ong real long rea

16




(monadi ¢ operator) ::=_abs | neg | neg abs

The nonadi ¢ operations are those of taking the absolute value, of sign
inversion, and of sign inversion after taking the absolute val ue.

Exanpl es of sinple register assignments:

RO := |

R2 = RA

R6 := age

FO := quant(Rl)
F23 1=x

F45 := neg FOL

RD := abs hight
FO := neg abs F6

(X register assignment) ::= (sinple ¥ register assignment)|
(3) (K register assignment){arithmetic operator)(T value)|
(¥ register assignment){arithmetic operator) (¥ register)l
(integer register assignment){logical operator) {integer value) |
(integer register assignment)(logical operator){integer register)|
(integer register assignment)(shift operator){unsigned integer number)|
(integer register assignment){shift operator){integer register identifier)

A register assignment specifies a register, namely the one which is spe-
cified by the sinple register assignnent or the register assignment from
which it is derived. To this register is assigned the value obtained by
applying a dyadic operator to the current value of that specified register
and the value designated by the construct followi ng the operator. The
operations are the arithnetic operations of addition (+), subtraction (-),
mul tiplication (¥), and division (/), the logical operations of conjunction
(and), exclusive and inclusive disjunction (xor, or), and those of shifting
to the left and right, as inplenented in the /360 system The operators ++
and -- denote "logical" or unnornalized addition and subtraction when
applied to integer or real registers respectively.

(arithnetic operator) ::= +|=|*|/|+]--
(1 ogical operator) ::=_and|or|xor
(shift operator) ::= shff|shfa|shrt |shra

17




In the syntactic rule (3), the sane combinations of ¥ and T gre

permtted as specified for rules (1) and (2).

Exanpl es of register assignments:

RO = R3
RL :=10
RA :=1 + age - R + size(Rl)

R9 :=R8 and Ry shf{80r RE
F2 :=3.1416

FO := quant(Rl) * price(Rl)
F45 := F45 + FOL

Note :  The syntax inplies that sequences of operators (including assign-
ment) are executed strictly in sequence from left to right. Thus

RL = R +RL
Is not equivalent to

Rl =Rl + R
but rather to the two statenments

Rl := R2; Rl := Rl + Rl

2.7. Cell Assignnments

(T cell assignment) ::=
(T cell designator) := (¥ register)

The value of the designated ¥ register is assigned to the desig-
nated T cell. The allowable conbinations of cell-type and register
kind are indicated in the table of section 26.

Exanpl es of cell assignments:

i = RO
price(Rl) := FO
x := F67

18



2 . &unction declarations

(function name) ::=function (identifier)]

(function declaration) , (identifier)
(function heading) ::= (function name)({integer nunber))
(function declaration) ::= (function heading)({integer nunber))

There exist various data manipulation facilities in the 360conputer
whi ch cannot be expressed by an assignment. To nake these facilities
amenabl e to the language, the function statement is introduced (cf. 2.9.),
whi ch uses an identifier to designate an individual conmputer instruction.
The function declaration serves to associate this identifier, which there-
by becomes a function identifier, with the desired conputer instruction
code, and to define the neanings of the parameters of the function, i.e.
to specify the format of the instruction. Wile the nunber in the func-
tion heading specifies the format (cf. table below) and is called the
format code, the nunmber in the function declaration specifies the first
two bytes of the instruction code. In the follow ng exanples, the identi-
fiers were chosen to be the synbolic codes used in (4], and they are
standard identifiers.

Exanpl es

function MVI(4 )(#9200), CLI(4)(#9500),
MVC (5) (#D200), CcLC (5)(#D500),
STM(3 ) (#9000), IM(3 ) (#9800),
SRDL(9) (#8C00), SLDL(9) (#8D00),
1C(2) (#4300), STC(2) (#+200),
LA(2) (#+100), TEST (8 )(#95FF ),
SET(8) (#92FF), RESET(8) (#9200),

VD(2) (4+E00), UNPK (10) (4#F300),

ED(5) (#DE00), EX(2) (#4+400)

19




For mat No. of Assignment of fields

Code par amet er in instruction
fields in
function
. 2 12|
2 2 IS S 2
3 3 11(2 3
4 2 1 3 3
5 3 1 J
6 1 1] ]
7 1 L |
8 1 1
9 2. 1 2
10 4 1|2 3 4
0 3 16 32

2.9. Function statenents

(function statenent) ::= (function identifier))
(function statement) ((integer number))]
(function statement)({X register identifier))|
(function statement)({T cel|l designator))|
(function statement)((string))

A function statement represents the conputer instruction designated
by the function identifier. The sequence of quantities enclosed in paren-

theses specifies the paraneter‘fields of the function Statenentin accor-
“dance W th its format, to which the fields nust conply.

Exanpl es
SET(f1 ag)
RESET(f1 ag)
LA(RL1)(1line)
MVC(15)(1line ) (buffer)
STM RO (RF) (save)
MVI("*")(1line)
IC(RO) (flags(R1))

20



2.10.  Synonym decl arati ons

(T, synonym decl aration) ::=
(TO type) (identifier) syn (T, cell designator) |
<70 type)(identifier) syn (i nteger number) |
(T, synonym declaration) , (identifier) syn (7, cell

desi gnator))

(TO synonym declaration) , (identifier) syn (integer nunber)

A synonym decl aration serves to associate identifiers with the cell
which is designated immediately follow ng the symbol syn, either by a
previously established cell designator or by an integer nunber representing

its absolute address in the conputer's core nenory.
Exanpl es:

i nteger xlow syn x(4)

array (32768) integer nmemsyn 0
| ogi cal CAWsyn 72

i nteger Bl syn nen(R1)

Note: The synonym decl aration can be used to associate several different
types with a single cell. Each type is connected with a distinct

i dentifier.

Exanpl e:
| ong real x(#+E00000000000000)
i nt eger xlow syn x(4)

- A conversion operation froma nunber of type integer contained in regis-

ter ROto a nunber of type long real contained in register
now be denoted by

xlow := RO FOl := X

and a conversion vice-versa by
FOL := FOl ++ zero; X := FOl; RO := x| ow

No initialization can be achieved by a synonym declaration.

21

ol can




2.11. Segnent base:declarations
(segnent base declaration) ::= segment base (integer register identifier)

A base declaration causes the conpiler to reference the specified
regi ster as a base address for all cells subsequently declared in the
block in which the base declarationoccurs. Upon entrance to this block,
the appropriate base address is assigned to the specified register.

(cf. v.2).

3. Control facilities

3.1. If statements
(relational operator) ::= =|==|<|<=|>=]|>
(condition) ::= (X register)(relational operator)(T value)l

(K register)(relational operator) @ register)|

(rel ational operator) Ioverflow

The 360 conputer records one of four possible states in the so-
called condition code. A condition specifies one or nore of these states,
which are nunbered o0, 1, 2, 3. The relational operators and the sym
bol overflow designate the follow ng states:

oper at or states
= 0
-= 1,2
< 1
< = 0,1
> = 0,2
> 2
overfl ow 3

22




If a relational operator is enclosed by two operands, then those
operands are conpared, and the condition code is set to state 0, if equal-
ity holds, to state 1 if the first operand is nunerically smaller, and to
state 2 if it is greater than the second operand.

(if clause) if (condition) then
(true part) <sinple statenent) else
(if statement) ::= (if clause)(statement)|

(i f clause)(true part)(statement)
The if statenent permits the conditional execution of statements:

1. (if clause)(statement)
The statenent is executed if and only if the condition code is in
one of the states designated by the condition in the if clause.

2. (if clause){true part){statement)

The sinple statenent in the true part is executed and the statenent
~following it is ignored, if and only if the condition code is in one
of the states designated by the condition in the if clause; other-
wi se the true part is ignored and the statement following it is

execut ed.

Exanpl es
if RO<10 then Rl :=1
if FO>= F2 then F2 := FO else FO := F2
if < _then sET(flags(0)) else
if = then SET(flags(1)) el se SET(flags(2))
Note: if the condition consists of a relational operator without operands,

then the decision is nmade on the basis of the condition code as
determned by a previous instruction.

Exanpl e:
CLc(15)(a)(b); if = then ...

————

23




3.2. Case statenents

(case clause) ::= case (integer register) of
(case sequence) ::= (case clause) begin l

(case sequence)(statement;

(case statement) ::= (case sequence) end

Case statenments permt the selection of one of a sequence of state-
ments according to the current value of the integer register (other than
regi ster 0) specified in the case clause. The statenent whose ordinal
number is equal to the register value is selected for execution, and the
other statenents in the sequence are ignored. The value of that register
is thereby multiplied by 4.

Exanpl e:
case RL of begin
Rl := R
R = R3
R3 = R4;
R4 1= R5;
end
3.3. Wile statenents
(while clause) ::= while (condition) do
(while statenent) ::= (while clause)(statement)

The while statement specifies the repeated execution of a statenent
as long as the condition code is in one of the states specified by the
~condition in the while clause.

Exanpl es:
while FO < prize(Rl) do RL := Rl + 4
while >= do
begin RO := RO+ 1; Rl := RL - R2;
end

Note that in the second exanple the condition code is set by the subtrac-
tion operation and then tested for being in states 0 or 2 .

2k




3.4. For statenents

(for clause heading) ::= for (integer register assignnent)
(increment) ::=step (integer nunber)

(linmt) ::= until (integer registery| until (I val ue)

(for clause) ::= (for heading)(increment)(limit) do

(for statenment) ::= (for clause)(statement)

T

nmust be replaced by either of the types

I nt eger
short integer

The for statenment specifies the repeated execution of a statenent,
while the content of the integer register specified by the for heading
takes on the values of an arithnetic progression. That register is
call ed the control register. The execution of a for statement occurs in
the follow ng steps:

1. the register assignment in the for heading is executed,

2. if the nunber specifying the increnent is not negative/negative,
then if the value of the control register is not greaterhot |ess
than the value specified as the limt, then the process continues
with step 3, otherwise the execution of the for statement is termn-
ated;

3. the statement following the for clause is executed,

"4, the increment is added to the control register, and the process

resumes with step 2.

Exanpl es:
| for RL:= 0 step 1 until n do STC(".")(line(R1))
for R2 := RL step _4 until RO do
F23in := quant (R2) * price(R2);
FOl := FOL + F23;

end

25



3.5. Blocks

(declaration) ::= (K register declaration)| (T cell declaration)|
(function declaration)|{procedure declaration)]
(synonym declaration)|( segment base decl aration)

(sinple statenment) ::= (X register assignment)|(J cell assignment)]
(function)|({procedure statement)|(case statement)|(block)]

(goto statement)| nul |

(statement) ::= (sinple statement)| (if statement)]
(whil e statement)| (for statenent)
(label definition) ::= (identifier)

(block head) ::= begin
Degin
(bl ock head){declaration);

(block body) ::= (block head)| (bl ock body){statement);|
(block body){label definition)
(block) ::= (block body) end

(program) ::= (block) @

A block has the form
beginD; D, ... ;D S S ... ;S end

where the Ds stand for declarations and the S's for statements.
The two main purposes of a block are:

1. To enbrace a sequence of statements into a structural unit which
as a whole is classified as a sinple statement. The constituent
statements are executed in sequence from left to right.

2. To introduce new quantities and associate identifiers with them
These identifiers may bé used to refer to these quantities in any of
the declarations and statements within the block, but are not known
outside the bl ock.

Label definitions serve to label certain points in a block. The
identifier of the label definition is said to designate the point in the
bl ock where the |abel definition occurs. Go to statements nay refer to
such points. The identifier can be chosen freely, with the restriction
that no two points in the-sane block nust be designated by the same iden-
tifier.

26




The synbol
at all.

nul |

Exanpl e:
begi n integer bucket

TEST(flag); if = then

denotes a sinple statement which inplies no action

begi n bucket := RO RO := Rl; Rl := R2;
R2 := bucket;

end el se

begi n bucket := R2; R2 := Rl; Rl := RO
RO := bucket;

end;

RESET(fl ag);

end

3.6.C to statenents

(go to statenent) ::=

goto_(identifier)

The interpretation of a goto statement proceeds in the follow ng

steps:

1. Consider the snallest block containing the goto statenent.

2. If the identifier designates a program point within the considered
bl ock, then program execution resumes at that point. O herw se,
execution of the block is regarded as termnated and the smallest
bl ock surrounding it is considered, Step 2 is then repeated

3.7. Procedure declarations

(procedure nane)

segnent

.. = procedure (identifier)
procedure (identifier)

(procedure headi ng)
(procedure head)
(procedure decl aration)

::= (procedure heading);
1= (procedure head)(statement)

::= (procedure name)({integer register identifier))

A procedure declaration serves to associate an identifier, which

thereby becomes a procedure identifier
is called procedure body.

27

with a statement (cf. 3.5.) which

This identifier can then be used as an



abbreviation for the procedure body anywhere within the scope of the
declaration. The integer register specified in the procedure heading

is assigned the return address of control when the statement is invoked
by such an abbreviation (procedure statement). It must not be register 0

If the synbol procedure is preceded by the synbol segnent, the pro-
cedure body is conpiled as a separate program segment (cf. chapter Vv.1).
It has no influence on the meaning of the program

Exanpl es
procedure P(Rl); RO:= RO+ 1

procedure SWAP(RA);
begin long real t;
t := FOl; FOL := F23; FOL := t;
end

Note: The code corresponding to a procedure body is followed by a branch
instruction taking the program address from the register specified
in the procedure heading, where the invoking procedure statenment
had deposited the return address. Thus, the programer nust either
not use that register within the procedure, or explicitly store
and reload its value in the beginning and end of the procedure body.

3.8. Procedure statenents

(procedure statenent) ::= (procedure identifier)

The procedure statenent invokes the execution of the procedure body
- designated by the procedure identifier. A return control address is
assigned to the register specified in the heading of the designated pro-
cedure declaration.

28







[11.  Exanpl es

procedure magi csquare(R6);
comment This procedure establishes a magic square of order n, if n
is odd, and 1 < n <16. X is the matrix in linearized form
Regi sters 0...6 are used, and register O initially contains
the paraneter n . Al gorithm 118(Comm. ACM Aug. 1962);
begin_short integer nsqr;
integer, register n(O, i(l), j(2), k(5);

nsqr = n; Rl := n*nsqr; nsqr := R1;
I :=n+1shrl 1, ] 1=
for k :=1step 1 until nsqr do
Begin 3 := i_shif6;R4 :=j shit 2 + R3; R3 := X(R4)
if RS —=0 then
begini :=i - 1; j =] -2
if i <1theni :=k+n;
if j <1lthenj :=j +n
R3 :=1i _shif6; B+ :=| shil 2 + R3;
end;
X(R4) := k;
i :=k+ 1, if i >n_theni :=1i -n;
jJi=j+1 if j>n then j : =] - n;
end;

procedure inreal (R4);

coment This procedure reads characters formng a real number according
to the PL360 syntax. A procedure "nextchar" is used to obtain,
the next character in sequence in register 0 . The result is

left in the_long real register FO1 . Registers 0 ... 4 and
all real registers are used,

29




byte sign, exposign; short integer ten (10);

| ong real fconl(#E00000000000000), feon?2 (F#4700000000000000);
i nteger fconlfow syn fconl (4);

function SRDL(9)(#8Cc00), LTR(1)(#1200);

while RO < "0" do

begin f RO = "-"then SET(sign) else RESET(sign); nextchar,
end;

coment Accumul ate the integral part in Rl;

Rl := RO and #F; nextchar;

while RO >="0" do

Begin O := ROand #F Rl := RL * ten + RO nextchar,

end;

R2 :=0; comment R2 is the decimal scale factor;

fconllow = Rl; FOL := fconl + ODO conment FOL := Rl;
begimme nt Process fraction. Accunulate nunber in FOl;
next char;

while RO >= 0" do
begin RO := RO shff 4; STC(RO)(fcon2(k));
FO1 := FO1 * 10D0 + fcon2; R2 := R2 - 1; nextchar;
end,
end;
if RO="E" then
begin coment Add the scale factor to R2;
nextchar; if RO = "-" then
begi n SET(exposign); nextchar,
end el se RESET(exposign);
Rl := RO and #F, nextchar;
while RO >= "0" do
begin RO := RO and #F; Rl := Rl * ten + RO nextchar,
end;
TEST( exposi gn);
if =then R2 := R2 -Rl else R2 := R2 + Rl;

end;
if RR =~=0 then

30



begi n conment Conpute F45 := 10 t R2;
if R2 <0 then
begin R2 := abs R2; SET(exposign);
end el se RESET(exposign); _
F23 .= 10D0; F45 := 1D0; Fé67 . = F45;
while R2 -1= 0 do
begi n SRDL(R2)(1); F23 := F23 * F67; FE7 := F23;
LTR(R3)(R3); if < then F45 := F45 * F23;

end,

TEST( exposi gn);

if = then FO1L := FO1/F45 el se FOl := FO1 * F45;
end;
TEST(sign); if = then FO1 .= neg FOl;

nd

procedure Binary Search (R8);

coment A binary search is performed for an identifier in a table via an
al phabetical ly ordered directory containing for each entry the
length (no. of characters) of the identifier, the address of the
actual identifier, and a code nunber. The global declarations

array integer directory

()

array ( ) short integer tag syn directory (0)
()
()

array short integer length syn directory (2)
array integer address. syn directory (4)
i nteger n

are assumed. Upon entry, Rl contains the length of the given
identifier, R2 contains its address. Upon exit, R3 contains
the code nunber, if a match is found in the table, 0O otherwise.
Regi sters 1-8 are used;
begin integer register £(1), tow(3), i(4), high(5), x(6), m(7);
array (3)short integer conpare (#D500)(#2000)(#6000);
high :=n; fow :=8,comment index step in directory is 8;

51



whil e fow <= high do

begin i := Row + high_shri 4 sheg 3; x = address(i);
if 2 =1length(i) then
EX(2) (compare); if = then goto found;
if <then high := i-8else tow :=i+8;
end el se
if t<length(i) then
El(ﬂ(compare);
if <=then high := i8else | ow :=i+8;
end el se
begin := length(i); EX(m(conpare);
if <then high := i-8else Low := it+8;
end;
% -
i := 03

found: R3 := tag(i);

end

Assenbly Language Code corresponding to the procedure'Magic squar e’

exanpl e):

MAGICSQR STH 0, NSQR
LR 1,0
MH 1, NSQR
STH 1, NSQR
LR 1,0
A 1, NE
SRL 1,1
LR 2,0
L 5, ONE
B L7

L1 LR 3,0NE
SLL 3,6
LR 4,2
SLL 4,2
AR 4,3
L 3,%X(4)
C 3,ZERD
BC 8,1k
S 1,NE
S 2, WP
C 1, 0NE
BC  11,I2

32

(first




L2

L3

L5

L6
L7

AR

BC
AR
LR

SIL

LR
SLL

33

h,2

- e e

&

-

=
1

.

&

.

=
[e)

AN - -
O OO OBXWND

-

OO R

o]
—
A\

~

2

o =
1\)
=
'_l







V. The object code

Two principal postulates were used as guidelines in the design of
the |anguage.

1. Statenents which express operations on data nust in an obvious
way correspond to machine instructions. Their structure nust be
such that they deconpose into structural elements, each corres-
ponding directly to a single instruction

2. The control of sequencing should be expressible inplicitly by
the structure of certain statements. (e.g., through prefixing
themw th clauses indicating their conditional or iterative execu-
tion).

Regi ster assignnents, cell assignnents, and function statenents
strictly coanyAto postulate 1, as illustrated by the follow ng exanple
(cf. also II.2.h, II.2.6.):

RA := 1 + AGE - R3 + SIZE(R1l)

Code: LH 10,1
A 10, AGE
SR 10,3
A 10,SIZE(1)

The follow ng sections serve to exhibit the target code corresponding to
constructions classified as "control facilities" in the definition of
the |anguage. The code is described in terns of 360 synbolic assenbly

| anguage
1. Construct: if (condition) then (statement)
Code: code for condition

BC c,L
code for statenent

¢ is determined by the form of the condition, whose corresponding code
may be enpty or consisting of a C or CR instruction.

34




Exanpl e:

2. Construct:
Code :

3. Construct:
Code:

if Rl < R2 then RO :=

L

BC

IR 0,3

code for

BC c,I1

code for sinple statenent

B L2
L1 code for
L2 . ..

10, L

condi tion

st at ement

case Rm of Dbegin
(statenment-1);
(statenment-2);

(statenment-n);

end

SLL m,2

B

L(m)

L1 code for

L2 code for statenent-2

Ln code for statenent-n

L

LX. ..

B

LX

B LX

B

B
B
é.

LX
L1
L2

Ln

st at ement - |

35

R3

if (condition) then (sinple statement) else (statement)




4. Construct: while (condition) do (statenent)

Code: L1 code for condition
BC c,IL2
code for statenent
B Ll
L2. ..

¢ is determned by the formof the condition, whose code nay either
be enpty or a Cor CRinstruction. Note that the condition is es-
tabli shed before the statenment is ever executed.

5. Construct: for (integer register assignnent)
step (integer nunber) until (integer value) do
(statenent)

The correspondi ng code depends on the sign of the nunber follow ng
the symbol step. That number will be denoted by i below, and the
assunption is nade that the assignment after the synbol for spe-
cifies register m.

Code: (1 >0)
code for assignnent
I1 C mV
BC 2,12
code for statenent
LA mi(m
B Ll
2. ..
Code: (1<0)
code for assignnent
I1 C mV
BC 4,12
code for statenent
Smi
B 11
2. ..

Note : The instruction labeled L1 is a CRinstruction, if a
register is specified as limting value; V denotes the cell con-
taining the lint value, | denotes the cell containing the decre-
ment i

36



The BXH and BXLE instructions were not used in the construction.
The intricate rules about register assignment for control-, increnent-,
and limt values were considered to be too restrictive, and furthernore
these instructions do not permt the testing of the initial value with
the limt without altering the initial control value. They are entirely
i nappropriate for the case i< 0.

6. Construct:  procedure (identifier)(Rn); (statenent)

Code: P code for statenent
BR n
7. Construct: (procedure identifier)
Code: B BAL n, P or
L 15, newsegnent base
BAL n,P

L 15, ol dsegnent base

where n and P are specified by the procedure declaration.

37




V. Addressing and segnentation

The addressing mechani sm of the 360 conputers is such that instruc-
tions can indicate addresses only relative to a base address contained
inaregister. The programmer nust -insure that

1. every address in his program specifies a "base"-register;

2. the specified register contains the appropriate base address

whenever an instruction is executed which contains an address

3. the difference d between the desired absolute address and the

avail abl e base address satisfies

0< d < koo6

This places a heavy burden upon the progranmer, and it was consid-
ered to be unquestionably the duty of a conpiler to ease the difficult
task, and to provide certain checking facilities against errors.

The solution adopted here was that of program segmentation. The
program i s subdivided into individual parts, so-called segnents. Every
quantity defined within the programis known by the nunber of the segnent
in which it occurs and by its address relative to the origin of that
segnent, which serves as its base address. The problem then consists
of subdividing the program and choosing base registers in such a way that
a. the conpiler can reference the appropriate register automatically when
it conpiles addresses, b. the conpiler can assure that each base regis-
ter contains the desired base address during execution, and c. the num
ber of times base addresses are reloaded into registers is reasonably
smal |

First, it nust be decided whether the process of subdividing the
program shoul d be performed by the programmer or by the conpiler. |In the
latter case, a fixed number of registers nust be set aside to serve as
base registers which the conpiler has freely at its disposal. This was
considered undesirable. Furthernmore, a program using a nunber of segnents
much | arger than that of available base registers would be subject to
consi derabl e inefficiencies due to the necessity of |oading base addres-
ses very frequently. It was therefore decided that the programrer should

38




designate the parts of his program which were to constitute segments
He has then the possibility of organizing the programin a way which
mnimzes the nunber of crossreferences between segnents

It should be noted that the programmer's know edge about segnent
sizes and occurrences of crossreferences.is quite different in the cases
of programand data. In the latter case he is exactly aware of the
amount of storage needed for the declared quantities, and he knows pre-
cisely in what places of the program references to a specific data seg-
ment occur. In the former case, his know edge about the eventual size
of a conpiled program section is only vague, and he is in general unaware
of the occurrence of branch instructions inplicit in certain constructs
of the language. It was therefore decided to treat programs and data
differently, and this decision was also in confornmty with the desira-
bility of keeping program and data apart as separate entities.

1. Program segnentation

Due to the fact that the | anguage does not allow programs to nodify
t hensel ves, branches are the only instructions referring to |ocations
within program segnents. Since control lies by its very nature in exactly
one segnent at any instant, it seemed appropriate to designate one fixed
register to hold the base address of the program segment currently under
execution. A branch |eading into another segment must then always be
preceded by an instruction loading that register with the base address
of the destination segment. Register 15 was chosen for this purpose.

An obvi ous approach to the problemof segmentation requires the
conpiler to automatically generate a new segment, when the currently
generated segnent's length exceeds 4096 bytes. This solution was re-
jected because of two reasons:

1. The programmer is not aware of the position of segment boundari es,

and therefore has no way to mninize branches fromone to anot her

segnent

2. In nost cases, the destination of an inplicit branch (in if-

case-, while-, for statements) is not known to the conpiler at the

time of its generation. Therefore it is not known whether it wll
consist of one or two machine instructions.

39




The approach taken consists in connecting segnment structure with the
obvious program structure. The natural unit for a program segnent is
the procedure. The only way to enter a procedure is via a procedure
statement, and the only way to leave-it is at its end or by an explicit
go to statement. The fact that no inplicitly generated instruction can
ever lead control outside of a procedure nminimzes the nunber of cross-
references in a natural way. Since only relatively large procedure
bodi es should constitute segments, a facility was provided to designate
such procedures explicitly: a procedure to be conpiled as a program
segment nust contain the synbol segnent in its heading. In practice

the requirenent that such procedures be explicitly designated has proven
to be no handicap. It is relatively easy for a programer to guess which
procedure exceeds the prescribed size, or otherwise to insert the synbol
segnent after the conpiler has provided an appropriate conment in the
first conpilation attenpt, Qbviously, the outermost block is always
conpi led as a segnent.

2. Data segnentation

In the case of data, the programmer is precisely aware of the amount
of allocated menory as well as of the instances where reference is nmade
to these quantities. A base declaration was therefore introduced which
inplies that all quantities declared thereafter, but still within the

sane bl ock and precedi ng another base declaration, refer to the speci-
fied register as their base. These quantities forma data segnent. At
the place of the base declaration code is conpiled which ensures that

the register is loaded with the appropriate segnent address. However
~its previous contents are neither saved nor restored upon exit from the
bl ock.

A base declaration is inplicit in the heading of the outernost bl ock.
It always designates register k.

Qoviously, data segnents declared in parallel (i.e., not nested)
bl ocks, can safely refer to the same base register. Data segnents de-
clared within nested blocks should refer to different base registers

Lo



If they do not, it is the programmer's responsiblity to ensure that the
register is appropriately loaded when data in either of the segnents is
accessed.

There is no limt to the size of data segnents. Al cell designa-
tors must, however, refer to cells whose addresses differ from the seg-
nment base address by less than 4096. |f they don't, the conpiler can
provide an appropriate indication.

3. Program | oadi ng

A scheme using program and data segnents as described above results
in an extrenely sinple relocating |oader program since the segments can
be |oaded without nodification. It was felt that this benefit provided
by a conputer incorporating a base register scheme should be put to ful
advantage. Al though the 360 conputer still nmakes use of absol ute addresses
in a few instances (program status words, data channel commands), it
was decided, not to allow for absolute addresses in a program  They
can, however, be generated at execution time. Consequently, the func-
tions of the |oader are reduced to:

a. reading program and data segments into menory,

h. assigning the origin address of each segnent to an entry in
the segment address table, and

c. transfering control to the program segment representing the
out ermost bl ock.

The base address table nust be available from any point in the pro-
gram It was therefore placed in the low end of the first data segment,
whose origin address is contained in register 1k.

4. Probl ens connected wth |nput-output progranmmi ng

The direct programming of input-output operations in PI360 is im
practical in the scheme described so far for the follow ng reasons

1. Input-output operations on the 360 are designed to use the
interrupt mechanism to signal termnation of processes perforned
by data channels and devices in parallel with CPU operations

41




In order to use the interrupt feature, it is necessary to create
program status words (PSW and store themin certain fixed |ocations
of menory. A PSWcontains the absolute address of a point in the
program which is a quantity that cannot be generated by a PL360
program

2. Particularly in routines servicing interrupts, but also in sone
other cases, it is desirable to be able to dispense of a program
base register. This could be done by locating these routines wth-
inthe first 4096 bytes of core menory. The |oader described above
however, chooses the absolute location of a segment on its own.

These two shortcom ngs can be overcome in many ways. The following is
suggest ed

1 A facility is introduced to designate a segnent as an interrupt
service routine, with the effect that the conpiler supplies infor-
mation to the |oader, causing the |oader to assign the segnent's
base address to the appropriate PSWcell instead of the segnent
address table. The conpiler itself termnates this segnent with
an LPSWinstead of a BR instruction (cf. V.6.). This approach
forces a programmer to nake explicit the fact that an interrupt
routine is conceptually a closed segment, and it circunvents the
undesirabl e introduction of a facility to generate |abels as nmani pu-
| at abl e obj ects.

2. A provision is introduced to cause the conpiler not to refer to a
base regi ster in the branch instructions contained in the interrupt
service segnent. The loader is at the same tine instructed to al-
| ocate this segment within the first 4096 bytes of core menory.

Usual Iy, however, these facilities are not needed, because the
programis executed in the environment of an operating system (whose
choice is normally not up to the individual programer) which executes
prograns in the program node where input-output instructions are not
executable. The form which statements conmmunicating with such an en-
vironnent assune is determned by that particular environnent and can-
not be defined as part of the |anguage proper.

L2







VI.  Conpiler nethodol ogy

1. Ceneral organization

The conpiler is a strictly syntax directed one-pass translator.
Its design served as a major test for the applicability of the techniques
described in [53] to practical programming |anguages. The |anguage was
designed to conformto the rules of sinple precedence grammars as postu-
lated in [3]. The devel opnent of a precedence syntax to whose individua
rul es the neaning of the [ anguage could be properly attached was no easy
task. Interestingly enough, however, this design process provided many
insights into the nature of various conceptual elements, led to their
clarification and often sinplification, and contributed a great deal to
the systematic structure of the resulting |anguage

The algorithmfor syntactic analysis constitutes the core of the
conpiler. It operates on the basis of a table containing the rules of
syntax and a table containing the precedence relations anong input tokens
and evokes the execution of an interpretation rule whenever a parsing
step is taken. The input tokens are obtained by calling a procedure

g Anal yser

Interpretation
Precedence Rul es

Rel ati ons

Synt ax
Rul es

called "insynbol", which scans the sequence of input characters in the
manner of a finite state machine, and yields as a result either a basic
synbol of the language, an identifier, a nunber, or a string. It auto-
matically suppresses comrents. It should be noted, that in the inple-
ment ed | anguage no equival ent for the underlining of basic synbols is

¥3




provided, and that therefore a sequence of letters and digits, starting
with a letter and not containing blanks, may constitute a basic synbol
Any such sequence nust be matched by the insymbol routine against a table
containing the representations of all "letter-synbols". If a matchis
found, the result is a basic synbol, otherwise an identifier. As a con-
sequence, identifiers could not be constructed by the syntax anal yser
itself upon receiving nmerely a sequence of letters and digits. The con-
sideration of nunbers as tokens, on the other hand, was not a necessity
but rather a convenience

The syntax anal yser makes use of a stack (called "symbol stack")
to store not yet reduced synbols. Whenever a reduction takes place, the
interpretation rule corresponding to the applied syntactic rule is acti-
vated.  These interpretation rules make use of a second stack (called
"val ue stack") to store information about each syntactic entity occurring
in the reduction process. To each entry in the symbol stack corresponds
an entry in the value stack, and vice-versa. |ldeally, an interpretation
rule should exclusively reference data in those entries of the value
stack which correspond to symbols in the synbol stack being reduced by
the applying syntactic rule. This principle has been followed in the
sinple exanple presented in [3]. Here, however, a deviation fromit
was made by the introduction of conventional identifier tables, one con-
taining identifiers denoting program points (labels), one for all de-
clared identifiers.

2. ldentifier tables

The presence of identifer tables sinplifies the search for identifiers
and el imnates the need for the specific right recursive definition of
the declaration structure used in [3]. The separation of the table into
one containing declared identifiers and one containing |abels has its
reason in the fact that |abels are the only identifiers which can occur
in a statement before being defined in the program and nust therefore
be treated differently as discussed bel ow.

It should first be noted that the presence of the syntax rules
(1) (T cell identifier) ::= (identifier)

bl




(2) (function identifier) ::= (identifier)
(3) (procedure identifier) ::= (identifier)
etc.

constitutes a violation of the requirenent that in an unambi guous prece-
dence grammar no two rules should have identical right parts. This

violation required a slight conplication of the analysis algorithmwth
the effect that an interpretation rule my cause an otherw se applicable

syntactic rule to be rejected. |In the given exanple, the interpretation
rules specify that the considered identifier be located in the identifier
table. If location is successful,ten rule 1 is rejected unless the

table indicates that the identifier indeed designates a T cell, rule 2

Is rejected unless it designates a function, etc. This decision of the
applicability of a syntactic rule on grounds of essentially semantic
information reflects the argunent that "Al gol-like |anguages" are strictly
speaking not context free, i.e., cannot be described by a phrase structure
grammar al one

The above identifier search inplies that the entire bl ock-structured
identifier table be searched. The followi ng program denonstrates that
| abel s cannot be subjected to the same process, and that therefore

(4) (label) ::= (identifier)

nmust not be a rule of the |anguage.

A hegin
B: begi n goto L;
L:
end;
end

In this exanple, rule 4 applying to L after the symbol goto would
detect L as present in the identifier table, because L was defined
as a label in the outer block (A). This would, however, be an erroneous
assunption, since a local L is defined later in the inner block (B)
to which goto L should refer. Consequently, searches for |abels must

45




be confined to the innermost block, and such a restricted search nust
be represented by an interpretation rule connected with a distinct syn-
tactic rule with a different right part. In the [anguage, that rule is

(go to statement) ::= goto (identifier)

ldentifiers in the label table are marked as either defined or not
yet defined. Upon exit of a block, all undefined : éntries- are. col-
lected and considered as entries in the outer block, where some of them
may be found as already defined. This process made the use of a separate
| abel table desirable.

The conpiler is designed to read the source program from cards or
tape; it produces (optionally) a listing, each line containing a corres-
pondi ng target program address. The code is conpiled into core nenory,
and as soon as a segment is closed, it is witten onto secondary storage
The segnment is preceded by a record indicating the kind of the segnment
(programor data), its nunber, and its length. The program |oader |ater
collects the segments from the secondary storage, |ists the  base
address which it assigns to each segment, and assigns it to the corres-
ponding entry in the segnent address table.

5. Hapdling: ofiisyntacticerrors

The syntax analysis algorithm described in [3] makes the assunp-

tion that analysed programs are syntactically valid. This assunption

is not tenable in the practical world of conputer programming. Syntactic
errors are detected by the fact that for some string recognized as re-
ducible there is no matching entry in the table of productions. After

an error has been encountered, it is in nost cases desirable to continue
conpilation in order that subsequent errors may be located and indicated.
A method has to be devised to |let the analysis algorithmproceed after
having nade some assunption about the nature of the error.

This is in general a rather hopeless task. An investigation of a
| arge number of programs containing syntactic errors reveals, however
that nost of the conmtted errors exhibit strong simlarities and can be
di agnosed by a relatively simple algorithm In nost cases, syntactic

46



errors are due to omission or wong use of synbols nerely conveying

i nformation about structural properties of the program such as inter-
punctuation symbols and the various kinds of brackets. Onission of ele-
nments explicitly stating program activities, such as operators and oper-
ands, are rare. |

A second inportant consideration is that an incorrect construction
shoul d be detected as early as possible, i.e., before further steps are
taken on the basis of the incorrect text. The precedence grammar tech-
nique is an excellent schene in this respect, because it is based upon
rel ations existing anmong symbol pairs. That none of the relations de-
noted by <, =, 3 exists between two symbols inplies the inpossibility
of these two synbols being adjacent in any sentence of the |anguage.

The enpty relation (denoted by ©) shall be defined as hol ding whenever
none of the others hold. On a left-to-right scan, its encounter consti-
tutes the earliest possible detection of an erroneous construction.

It should be noted that the use of two precedence functions instead
of the precedence relations inplies that the analysis algorithmis based
on a condensation of the information contained in the matrix of relations
This condensation relies on the assunption that enpty relations can sim
ply be ignored. The above considerations lead to the conclusion that
for practical reasons it is advantageous to have the relation matrix at
the disposal of the analyser rather than the functions

The al gorithm for diagnosing of and recovery fromerrors descri bed
subsequently is a heuristic solution rather than one based on rigorous
theoretical principles. It is contended here that any such scheme nust

make a very drastic selection fromall the possible forms which errors
may assume. The inportant aspect is that those situations are mastered
intelligently which are likely to occur often,, Since a frequency sta-
tistic of errors reflects the behavior of the human users, such a selec-
tion nust by definition be based on heuristics

There exist two places in the analysis process, where illegal con-
structions may be detected (cf. [ 3], p. 18):

47




1. The enpty relation holds between the synbol on top of the stack

and the incomng synbol:
©
Si Pk )

In this case a list | of insertion synbols is scanned. [f for
soqe L @ I, and I @ P, then Iy is inserted into the scanned
string in front of Pk . Since this insertion my lead to a correct
program (in about 90% of the tested cases it did), an according comment

nmust be delivered to the programer.

If for nom s, o) I and T ) P, then the synbol P _is

st acked

2. The value of the function

Leftpart(Sj o si) .
is undefined (Q), i.e., there exists no syntactic rule whose rightpart
is Sj S, - This situation may occur even if for all k (j <k <1i)
Sk ? Sk+l :

In this case a table of erroneous productions is scanned for a right-
part identical to S, ... Si . If a mtch is found, an error message
corresponding to that rule can be printed, and the analysis can proceed

with the statenent

S, := Leftpart (S, S.
5 p(J. )

1

48




The augnented al gorithmfor syntactic analysis is then described

as foll ows:

procedure Invalid pair;
begin integer m m:= 1;
while m<n A (s_.CD%1 v ImOPk) do m := m+l;

if m<nthen(p . .. PZ+1):=Imc£Pk. .. P)

end;

s

ile Pk# ".L" d_O_
begin i := j := j+l; S. := P ; K := k+l;
J

k)
while Sjo>oPkd_q
. . o H H .
begin if SJ. P then Invalid pair;
i 0 ie= L
while S, ) =©8. doi:= L

3
S, = Leftpart(S, . . . 8);i :=j
j P (j =

end
end

In the specific case of the PL360 | anguage, the selected insertion sym
bol s 1, are

; ()

49



The following are the selected erroneous productions

0

o N o F W

10
11

12

13
14

n

(¥ register assignnent) ::
(T cell designator) := (T val ue)
(¥ register assignnent) ::
(T cell designator) :
(X register assignnent) ::

(monadi ¢ operator)(T val ue)

n

(T cell designator := (nonadic operator)(T register)
(bl ockbody) ::= (blockbody){statement); el se
(case sequence) ::= (case sequence)(statement); el se
(function statement) ::= (function statenent))
(T cell designator) ::= (T cell designator))
(procedure head) ::= (procedure nane);
(condition) ::=
(T cell identifier)(relational operator)(T val ue)
(condition) ::= (T cell identifier){relational operator)(¥ register)
(bl ock head) := (bl ock body){declaration);

(T cell designator) ::=
(T cell designator)({J nunber))
(sinple T type) ::=
(sinple T type) array ((integer nunber))
(procedure identifier) := (procedure identifier)@register))
(statement) ::= {blockbody)(statement)

50




The following table of nessages acconpani es the erroneous produc-
tions. |If some erroneous production is found to be applicable, the
corresponding nessage is transnmitted to the programer.

0,1,2 Assignnent nust occur either to or froma register.

3,4 el se nust not be preceded by a semicolon.

5,6 ) without matching (

7 A register specification is mssing in the procedure heading.

8,9 The first conparand nust be a register.

10 A statenent cannot be followed by a declaration.

11 Wite "(cell designator)({integer number))({integer register))"
i nstead of

"(cell designator)({integer register))({integer number))"

12 array should be the first synbol in the declaration.
13 Procedure statement nust not have a paraneter.
14 The synbol end is nissing.

Wth these linmted facilities, the syntax analyser was able to parse
and correctly diagnose the texts in which the follow ng erroneous con-
structions were contained. The produced diagnostic messages are indi-
cated by their number enclosed in parentheses at the right margin, while
arrows indicate the position where the anal yser detected and di agnosed
the error:

51




begin real x; RO:= a en? mssing ;
begin real x RO := a; end mssing ;
1
if RL =a then R :=b; else R :=¢ (3)
— E— t
P; P(R1);, (13)
LA(RO( R1); IA(RO)(R1)); m ssing )
t ! (5)
array (5) integer m (12)(23) 34)(45(56); missing (
tt mssing )
RO := Rl; real x, y; (10)
a :=b; ar=abs b; a:=abs RO b := neg Rl;T (0)(1)(2)(2)
t t t
x(RL)) : = b; (6)(0)
tot
begin if a = b then goto L; (8)
if a<Rl thenTgoto 1} el se goto1K1end (9)(3)
m ssi ng

As can be seen fromthe |ater examples, the analyser is able to correctly
- di agnose even nested errors and relate themto their context. The diag-
nosti ¢ messages are neaningful, because the analyser has found applicable
an erroneous production which was anticipated by the conpiler designer,
who in turn was able to associate an appropriate coment, know ng the
reasons why human programmers inadvertantly use such a construction. It
was found to be helpful to let the conpiler 1list,in addition to the mes-
sage, the symbols currently in the parsing stack. They represent al

the unfinished syntactical entities in the parse, and give the programer
val uabl e gui dance toward understandi ng of his msuse of the syntax.

The choice of the appropriate insertion synbols and erroneous pro-
ductions requires a thorough-understanding of the analysis algorithmon

52



on the part of the conpiler designer, as well as a subtle feeling to
anticipate frequent msuses of the syntax. O course, further insertion
synbol s and productions can easily be added to the tables in order to
increase the diagnostic capabilities. of the analyser. |f a conpiler is
capable of gathering statistical information about encountered erroneous
situations, this information could be evaluated fromtine to time in
order to expand the tables. As a result the conpiler would truly seem
to adapt itself to its inperfect human environnent in order to gradually
becone a better and better teacher.

23







VI1. The devel opnent of the conpiler

At the time when the project to develop a conpiler for PI360 was
started, no 360 conputer was available to the author, nor did the facili-
ties promsed with the forthcomng machine [ook too enticing to use
It was therefore decided to use the available Burroughs B5500 conputer
for the design and testing of the conpiler, which was conpleted by the
author within two months of part tinme work. |t accepted a prelininary
version of PI360 as described in [5] which contained the basic fea-
tures of the presently described |anguage.

The conpiler was then reprogrammed in its own |anguage. Through
a | oader and supervisor program (witten in assenbly code), the program
reconpi l ed on the B5500, became inmediately available on the 360 conputer

The experinent of describing the conpiling algorithmin PL360 itself
proved to be the nmost effective test on the useful ness and appropriate-
ness of the language, and it influenced the subsequent devel opment of
the | anguage considerably. During this process, several features which
seemed desirable were added to the |anguage, and many were dropped again
after having proved to be either dubious in value,, inconsistent with the
design criteria, or too involved and |eading to msconceptions. The
| eading principle and guideline was to produce a conceptually sinple
| anguage and to keep the nunber of features and facilities mninal. The
"boot strapping" method in conbination with the described conpiling tech-
nique proved to be very successful for experinentation with and altera-
tion of the language. The process of incorporation of a new feature
consists of representing the new feature in the syntax of the |anguage
and of defining the conpiler actions corresponding to the new constructs
inthe formof additional interpretation rules. These rules nust of
‘course be denoted in ternms of previously available facilities.

In general, a significant drawback of the bootstrapping technique
is the fact that programmng errors are easily proliferated. However,
t he conbi nation of the bootstrapping nethod with the rigorous approach
to systematic conpiler organization by neans of strict syntax analysis
proved to be very successful, since the latter constitutes an enornous
step towards reliability, which can never be achieved by comon heuristic
met hods of conpiler design.

5k



Compiler

v
PI360 PL360
Conpi | er > Conpi | er
(A1gol) B5500 (binary)
PI360 PI360
Conpi | er ~Conpi | er
(PL360) \ B5500 (binary cards)
Prograns
(PL360) > out put
360

Process of bootstrapping initial version of P1360 Conpiler

from B5500 to 360 conmputer.

55




Synt ax
Processor

Synt ax
of '\ Preced
_— o rﬁpglence
ygf P1360 > B5500 ——— Tables
PI560" 360 PI560™"
New
Rul es

repl ace

Tablles PL360"
Conpi | er

P1360 Synt ax
Conpi | er < Analyser
(P1360)

Semantic
n+1l

Rulesn > | > PL56Q
PI360 Conpller

360 (bi nary)
New

Rules J
-

Process of bootstrapping conpiler version
n into version n+l .

56






VIIl. Performance

The devel opnent of a job control and supervisor programwas under -
taken in parallel with the construction of the conpiler. The follow ng
performance figures reflect the operation of the conpiler under that
supervisor. It should be noted that the supervisor considers the com
piler in the same way as a regular user's program

Size (in bytes)

Super vi sor 3 500
Job control 3 700
7 200
Conpi | er program 12 700
Various conpiler data _5 400 18 100
I dentifier tables 14 400
Qutput area 2k 600
30 000 39 000
64 300
Timng

The processing of a job consists of the follow ng steps, described
interms of the present inplementation on a %60/50 conputer:

1. Loading of the conpiler from tape

2. Conpilation, with input fromcards or tape, and output to
tape (and optionally to cards)

3. Loading of the conpiled program from tape (or cards)

4. Execution of the program

Steps 1 and 3, constituting what is usually called "overhead", take
4.7 secs. execution tinme. Conpilation proceeds at the speed of
the card reader (1000 cpm). If the source programis read from tape
and the program listing is suppressed, the conpiler (about 1500 card
records) reconpiles itself in 39 secs (Wth listing in 109 secs). The
tine required to load the systeminitially is 2 secs.

57







IX. Reflections on the 360 architecture

Based on the experiences drawn fromthe conpiler devel opnent, it
can be concluded that the objective to make direct machine programmi ng
more convenient by providing a tool which is superior to conmon assenbly
codes with respect to readability and witability, is comendable and
inportant. It can also be concluded that PL360 is fairly successful in
neeting this objective. The decisive factor, in the author's opinion,
is the sinplicity, frugality, and coherence of the language. A linmiting
factor to this is the architecture of the underlying nachine. In this
respect, the question "how well is the conputer suited for this kind of
| anguage?" becomes nore significant than the opposite question "how
well is the language suited for the machine?'. The author feels indeed
strongly about this point, and recomrends future hardware designers to
confront themsel ves seriously with the first question, before yielding
to the well-known policy of answering every problemw th the comon and
omi potent reply: "There is a bit sonewhere".

As a matter of fact, the relatively systematic architecture of the
360 conputer series provided a strong encouragement to devise a tool in
the sense of PI360. |t seens nevertheless worth while to locate sone
of its less fortunate features

1. The idea of a "two-dinensional instruction set" with one coordinate
specifying the operation, the other the type of operand, is.very com-
mendabl e, and is properly reflected in PL360. But, the better a
principle is, the worse are its violations. There exist operands
of type full word integer, half word integer, full word |ogical
short and long floating point, and byte in the 360 system  (perations
on them are nore or less grouped into colums in the matrix of instruc-
tions. However, instructions on logical and full word integer oper-
ands occur in the sane colum, certain operations are nissing in the
hal f word format, and operations on bytes differ radically fromal
others. A striking exanple is the inconsistency of the LH and STH
instructions, the first of which perforns the function of assigning
an integer to a register, the second one that of assigning a half-
word logical quantity to a nemory cell. This is not merely an unfor-
tunate feature, but a conceptual flaw

58




The fact that many instructions are indexable only through m suse
of the base register field is very unfortunate. It is one reason
why none of those instructions fits into the schene of the PL360
assi gnment statenent.

The nore conplex a single instruction,the nore debatabl e becones
the choice of its detailed form The BCT, BXLE, BXH are good
exanpl es, none of which fitted into the schene of PL360 structures.

The 360instructions exhibit a remarkable consistency in the schene
of condition code setting, with the very peculiar exception of the
TMinstruction

This short list of architectural msfits is by no neans complete.

It omts,e.g., nentioning some dismal properties of the floating point
arithmetic and of the input-output mechanism  However, these have no
i mmedi ate effect on the structure of the PL360 | anguage.

59



X. How to use PI360

This chapter is intended to serve as a reference manual for the
user of the PL360 |anguage as inplemented on the GSG/SRD 360/50 conputer
at SLAC. It describes the facilities and the usage of the conpiler and
operating system version Nov. 1966.

The operating system consists of a batch processing jobcontro
program and a set of elenmentary input output service routines with
associated interrupt prograns. The jobcontrol program incorporates a
| oader, reading binary prograns fromeither tape or cards, and it treats
programs to be executed, including the PL360 conpiler itself, as sub-
routines.

JOBCONTROL

service
routines

The jobcontrol programand the service routines are executed in the
supervisor node and are storage protected. Together they occupy the
first 8000 bytes of core nenory.

1.  The |anguage

The inplenented | anguage is that described in Chapter II,I wi th

the follow ng symbol representations, restrictions, and extension:

a) Synbol representation

Only capital letters are available. Basic synbols which are de-
noted by underlined letter sequence in Chapter Il are denoted by the
sane sequence of capital letters. Such sequences may not be used as
identifiers. They are tabulated in X.8.

60



b) Restrictions

No go-to statement may refer to a label in a segment different from
the one where the goto statenent occurs.

Oniy the first 10 characters of identifiers are significant.
c) Extension

To facilitate program debugging, a dunp statement has been intro-

duced
Synt ax
(sinple statenment) ::= (dunmp statement)
(dunp statement) ::= (dunp heading)({length part))
(dunp heading) ::= dunp ({T cell designator))
(length part) ::= (integer register) | (integer cel | desi gnator)\

(short integer cell designator)|(integer number)

The dunp statenent causes the listing in hexadecimal formof the
values of the n consecutive nmenory cells (-bytes), the first of which
is designated by the T cell designator. n is the value of the length
part.

d) Additional standard functions

A set of standard functions is defined as supervisor calls for
el enentary input and output operations. The referenced supervisor rou-
tines make use of parameter registers as specified below They set the
condition code to 0, wunless otherwise specified. Input-output devices
are designated by logical unit nunbers (cf. Xx.8.).

READ Read a card, assign the 80 character record to the
mermory area designated by the address in register 0,
Set the condition code to 1, if the end of the card
file is encountered.

READO26 Same as READ, with the addition of a character code
translation as specified in section X.8. The transla-
tion maps 026 punched characters into their 029
equi val ents. *

61



WRI TE

PUNCH

READTAFE

V\RI TETAPE

PAGE

Wite the record of 132 characters designated by the
address in register 0 on the line printer. Set the

condition code to 1, if the next line to be printed

appears on the top of a new page.

Punch the record of 80 characters designated by the
address in register 0 on the card punch.

Read a record fromthe tape unit specified by the |ogi-
cal unit nunber is register 2 . The length of the
record in bytes in specified by register 1, and it is
assigned to the nenory area designated by the address
in register 0 . Set the condition code to 1, if a
tape mark is encountered, Register 1 is assigned

the number of bytes actually read.

Wite a record on the tape unit specified by the |ogica
unit number in register 2 . The length of the witten
record in bytes is specified by register 1; the record
is designated by the address in register 0 .

Skip to the next page on the line printer

The following are tape handling functions. They affect the tape unit
specified by the logical unit nunber in register 2 .

MARKTAPE
REW ND:
BSPREC.
FSPREC.
BSPTM
FSPTM

Wite a tape mark

Rewi nd the tape

Backspace one record.

Forwar dspace one record.

Backspace to the previous tape mark
Forwar dspace to the next tape mark

A programinterruption (cf. X.5.) due to arithmetic operations records
the interruption code in the byte cell FPI. This cell, being part of

the supervisor

program directly.

FPI RESET:

is menory protected, and cannot be reset by the user's

Reset the value of the cell FPI to O

62




2.  Conpil er instructions

The conpil er accepts instructions occurring anywhere in the sequence

of input records.

A conpiler instruction card is marked by a $ charac-

ter in colum 1, and an instruction in ¢olumns 2-4. Col ums 5-80 of such

a record are ignored.

$026

$029

$LIST
$NOLIST
$PUNCH
$PAGE
$0

$1

$2

$TAPEN

3. Conmpiler

The conpiler assumes subsequent source cards to be
punched on 026 keypunches.

The conpiler assumes subsequent source cards to be
punched on 029 keypunches.

Subsequent source records are listed on the printer
Subsequent source records are not |isted

Ebnputed program and data segments are punched on cards.
A page is skipped in the listing.

No trace output is listed

The relative address of all variables and procedures
are listed when they are declared.

Addresses are listed as after $1, and the produced
machine code is listed in hexadeci mal notation.

The subsequent source records are read from the tape
unit with logical number n .

error _nessages

Errors are indicated by the conpiler with a message and a bar bel ow
the character which was read |ast.

Error No.
00

01

Message Meani ng
SYNTAX The source program viol ates the PL360

syntax. Analysis continues with the next
statenent,

VAR ASS TYPES The type of operands in a variable assign-

ment are inconpatible.

63



Error No. Message
02 FOR PARAMETER
03 REG ASS TYPES
04 BIN OP TYPES
05 SHFT CP
06 COVPARE TYPES
o7 REG TYPE OR #
08 UNBEFINED | D
09 MULT LAB DEF
10 EXC INL VALUE
11 NOT | NDEXABLE
12 DATA OVERFLOWN
13 NO QF ARGS
14 | LLEGAL CHAR
15 MULTIPLE ID
16 PROGRAM OFLOW
17 I NI TI AL OFLOW

Meaning
A real register instead of an integer reg-

ister is specified in a for clause

The types of operands in a register assign-
ment are inconpatible.

The types of operands of an arithnetic or
| ogi cal operator, are incompatible.

A real instead of an integer register is
specified in a shift operation

The types of conparands are inconpatible.
Incorrect register specification.

An undeclared identifier is encountered

The sane identifier is defined as a | abe
nmore than once in.the sanme bl ock.

The nunber of initializing val ues exceeds
the nunber of elenments in the array.

The function argument does not allow for
an index register.

The address of the declared variable in
the data segnment exceeds L4095.

An incorrect number of arguments is used
for a function.

An illegal character was encountered; it
I's skipped.

The same identifier is declared nore than
once in the same bl ock.

The current program segment is too |arge

The area of initialized data in the conpiler
is full. This can be circunvented by suit-

abl e segnentation.

64



Error No. Message Meani ng

18 ADDRESS OFLOW The nunber used as index is such that the
resulting address cannot be accommodat ed.

19 | NTEGER OFLOW The integer number is too large in magni-
t ude.

20 M SSING e An end of file has been read before a
programtermnating @ was encounter ed.

21 STRING LENGTH The length of a string is either 0 or
> 256 .

22 DUMP TYPE The length part does not specify an inte-
ger.

23 FUNC DEF NO. The format nunber in a function declaration
is illegal

At the end of each program segnent, undefined |abels are |isted with
an indication where they occurred.

4. Johcontrol instructions, the formof input card decks

Cards containing a o0-2-8punch in colum 1 are recognized by the
"READ' and "READO26" supervisor routines as jobcontrol cards, and give
rise to an end of file indication. [Information contained in colums
-2-9 (left adjusted) of such cards is interpreted by the job control rou-
tine as follows:

PL360 Control is given to the conpiler to process the subsequent
source program

DATA Control is given to the previously conpiled and/or |oaded
program If the preceding conpilation detected any errors,
the subsequent data cards are skipped.

LOAD Control is given to the loader routine, which |oads subse-
quent "binary" program cards.

PAUSE The operator is notified, and the system waits for the opera-
tor's instructions given via the operator console typewiter

(cf. x6).
65



Q her control cards are recogni zed and may be used to activate library
prograns, which are not described in this Report.

Typi cal card deck conpositions are:

data

I
source progrank-:jsz/; [IDATA
O

|
1PL36O \\
0
2

g may contain
"conpil er
i nstructions”

Conpi lation and execution

data}/
"bi nary" cards—ij!’/' Eﬁgﬁg:ﬁ \

o w ﬁ 1’

Loading and execution

66




5. Program execution errors

The followi ng error conditions can occur:
A "programcheck" interruption occurred. This is indicated by the
nmessage

tad

PRG PSW X2C0aaaOaaaiaaX

If interruption occurred due to an arithnetic operation, the inter-
ruption code is stored in the byte cell FPI (floating point interrup-
tion), and control is returned to the interrupted progran? O herw se,
control is given to the job control routine.

b. An attenpt is made to read beyond a control card. The nessage
=0 SR EA\VD:0:0:0.0.0:0'0:0:0.0.0:0.0.0.0:
I's printed, and control is returned to the job control routine.

c. Anillegal logical unit nunber has been used for an input-output
operation. The message

D2 VANE\ITD:0:6:0:0:0:0:0:0:0.0.0.0:0:0.0.¢
is printed, and control is returned to the job control routine.
d. The operator intervenes by causing an external interrupt. The message
EXT PSW 0000000000000

appears on the line printer and the operator console. (cf. X.6.).

6.Mninal configuration reauirenments

Core menory: 65K bytes, protection feature
-1 card reader/punch (2540)

1 line printer (1403)

2 tape units (2401-3)

1 console typewiter (1052) (dev. addr. 009)

*Such interrupts are counted, and the counts are listed (if £ 0) after
the end of program execution.

67



7. Loading and operating the system

The process of initial |oading consists of the follow ng steps:

Reset system

Mount system tape on any 9-track unit (usually device 282

Stack jobs on the card reader

Make card reader, line printer, and tape 5(used by the conpiler)

L

ready.
Select the unit carrying the systemtape on the Load Unit Switches'
f. Press the Load Key

Execution of the job sequence stacked on the card reader is imre-
diately started. Control is returned to the operator when either

a. a PAUSE control card is encountered, or
b. the operator presses the external interrupt key.

The conputer then accepts instructions fromthe operator via type-
witer. Each message nust be termnated with an ECB (end of bl ock)
character. The following free-field instructions are accepted:

a.  dunp XXXXXX, NNNNNN' EOB
dunp NNNMNNNT ECB
dunp ECB

The values of the registers and of the (NNNNNN byteicells istarting at
the initial;address XXXXXX' are liyted in hexadecimal form. ~If the.
initial address is omitted, 'it:is taken as the beginning -of the user's
data'segment area, and~if She count is omitted, it 1s taken as the length
of' the user’ s data, segment area . Sy

b. device XX EOB

Devi ces are designated by |ogical nunbers, The correspondence be-
tween |ogical nunbers and actual device addresses is established by the
device table (cf. X.8). The above command causes the address AAA of

the device with logical unit nunber XX to be typed out. Subsequent
typing of the device address BBB causes that device to be assigned the
| ogical unit number XX, and the device with address AAA to be given
the logical unit nunber -YY, which previously designated device BBB

68




(if any). As a result, every device in the systemw Il always be
designated by at nost one logical unit number.

bef ore after
XX : AAA XX . BBB
YY : BBB YY : AAA

c. E®B
Processing resumes with the next job in sequence.

The operator is informed about abnormal conditions encountered
by the error analysis routines of the elenentary input - output
programs contained in the supervisor. The follow ng nmessages are
t yped:

a. XX YYY NOT RDY

b. XX YYY NOT COP

c. XX YYY |/0O ERROR CCCC DDDD
d. XX YYY DEV END CCCC DDDD

XX represents the |ogical number of the afflicted device, YYY its
physical address, CCCC the encountered channel status, and DDDD
the device status.

Message a. is given when a device is not ready. Execution
resunmes when the device is put into the ready state. Messages b.,
c., and d., are respectively given when a device is not operating,
when a mal function is encountered, or when an error is discovered
upon device end interrupt caused by the reader, punch, or printer.
The operator nust reply wth one of the follow ng nessages:

a. ignore EOCB

. exit EOB (resune processing with next job)

c. EOB (retry the operation after |/O ERROR, ignore the DEV
END condition)

Note that if a storage dunp is desired before processing the

next job, then the interrupt key nust be pressed first. If the
operator response is not recognized by the system then "RETRY" is
typed out. In order to cancel a response, the CANCEL character nust

be typed before typing EOB. In either case a correct response should

then be typed by the operator.
69




8. Tabl es

Character code translation table (used in READO26)

holes 026 --- 029 hex
12-3-8 . . 4B
12-6-8 < < 4c
0-4-8 ( ( 4D
12-5-8 [ ( 4D
12 + + LE
0-6-8 < \ LF
12-0 & 50
11-3-8 $ $ 5B
11-4-8 * * 5C
12-4-8 ) ) 5D
11-5-8 | ) 5D
u-6-8 H R 5E
- 6-8 X 1 S5F
11 60
0-1 / / 61
0-3-8 s s 6B
11-7-8 % 6C
0-5-8 - _ 6D
11-0 > 6E
5-8 TA
12'7"8 # TB
0-7-8 @ 7C
7-8 ! 7D
5'—8 = = 7E
L-8 ! " 7F

Letters and digits are represented by the same hol e conbinations
on cards punched on either the 026or the 029 keypunches, and do there-
fore not undergo any translation. The colum designated "026" lists the
characters printed by the Stanford extended 026 keypunches.

70



BASK SYMBOLS

_ {

+ %

- /

< '

> a
Do XOR SHLA WHILE
| F BASE SHLL COMMAND
OF BYTE SHRA INTEGER
OR CASE SHRL LOGICAL
AB S DUMP STEP SEGMENT
AND ELSE THEN FUNCTION
END 6070 ARRAY OVERFLCwW
FOR LONG BECIN REGISTER
NEG NULL SHORT CHARACTER
SYN REAL UNTIL PROCEDURE

NOTE: THESELETTERSEQUENCESMUST NOTBEUSED ASIDENTIFIFRS.

STANDARD | DENT IF | ERS.

ARRAY (})INTEGER MEN SYNO-

BYTE FPI SYN 43 .,

INTEGER Bl SYN MEM(R1)
INTEGER B2S Y N MEM{R2)
INTEGER 8 3 SYN MEM{R3)
INTEGER 84 SYNMEMIR4)
INTEGER 85 S Y NMEM(R5)
INTEGER 86 SYNMEM{RS)
INTEGER B7S Y N MEM{RT)
INTEGER B8 SYN MEM{RSB)
INTEGER B9S Y NMEM{R9)
INTEGER B ASYNMEMIRA)
INTEGER BBS Y N MEM(RB)
INTEGER BC SYNMEM(RC)
INTEGER BDS Y N MEM(RD)

71



INTEGER REGISTER RO (O)
INTEGER REGISTER it (1)
INTEGER REGISTER R2 (2}
INTEGER REGISTER K3 (2)
INTEGER REGISTEK R3 (3)
INTEGER REGISTER R4 (4)
INTEGER REGISTER RS (5)
INTEGER REGISTER R6 (6)
INTEGER REGISTER R7 (7)
INTEGER REGISTER R8 (8)
INTEGER REGISTER R9 (9)
INTEGER REGISTER RA (A}
INTEGER REGISTER RB (B}
INTEGER REGISTER RC {C)
INTEGER REGISTEK RD (D)
REAL REGISTER FO {0)
REAL REGISTER r-2  (0)
REAL REGISTER F2 (2)
REAL REGISTER Fa  (4)
REAL REGISTER F6 (6)

LCNGH E A LREGISTERFOL1(O0)
LCNGREAL REGISTER F231(2)
LONG REAL REGISTERF45(4)

LCNGREAL REGISTER F&7 (6)
FUNCTION LA (2)(#4100)
FUNCTION MVI (4)(#9200)
FUNCTIUN MVC {5)(#D200)
FUNCTION CLI (4) (#9500)
FUhCT ION cLC {S5){#D500)
FUNCTION LM {3)149800)
FUNCTION STM (3)(49000)
FUNCTIGN SLODL (9) (#8D00)
FUNCTION SROL {9) (#8C00)
FUNCTION IC {2)(#4300)
FURCT ION  STC (2){#4200)
FUNCT ION CVD {2)( #4E00)
FUhCT ION UNPK {10)(#F300)
FUNCTIUN to (5) (4DE0O)
FUNCTION EX {2)(#4400)
FUNCTION SET (8) (H92FF)
FUNCTION RESET (8)(#9200)
FURCT ION TEST (8)(#95FF)
FUNCTION READ (0){ #0A00)
FUNCTION RfA0026 {C)U#0AOL)
FUhCT [OUN WRITE (0)(40A02)
FUNCT ION  PUNCH (0)(#0A03)
FUNCTION READTAPE (0)(H#0A06)
FUNCTION WRITETAPE {0)(H#OAO7)
FUNCT ION REWIND (0) (#0A08)

FUNCTIUNMARKTAPE
FUNCTIONFSPTM

{0) (#0A09)
{C) (#0A0A)

FUNCT TON FSPREC (C)(#OAOB)
FUNCTION BSPTM (CY(#0A0C)
FUNCTION BSPREC (C)H{#0ADD)
FUNCTION PAGE ({CY{#0A0QE)
FUNCTION FPIRESET (C){H#OAOF?

72



SYNTAX

<K REG*> $3= <ID>
<7 CELL 10> =::= <ID>
<FRCC ID> zs= <ID>
<FUNC ID> ss= <10
<K REG> 232 <K REG*D
<T CELL®> 22=<TCELL ID> (<7 NUMBER> )
<TCELL> 33=<TCELL 10>
KT CELL 10> ( <K REG*> ) |
< TCELL* [
<T CELL¥> { <K REG*> )
<TVALUE> t2= <T NUMBER> |
<TCELL> |
<STRING>
<KSIASS> 13= <K REG*> 3= <T VALUE> |
<K REG#%*> := <K REG> 1
< K REG*> := <UNARY 0OP> <TVALUE>
<K REG*> = <UNARY OP> <K REG>
<UNARY CP> ::= ABS |
NEG |
NEGA B S
ARITH CP> I |
)
* |
/ |
+ o+ ]
<LGCG CP> s:= AND |
CR |
X0R
<SHIFTOP> 22=SHLA |
SHRA |
SHLL |
SHRL

¢€KREG ASS*>3:=<KSIASS> |
€K REG ASS*> CARITHOP>XTVALUE> |
<K HEG ASS*:> C AR I THOP><KREG> |
<KREGASS*> < L O GOP><TVALUE> |
<KREG ASS*><KLUOGGOP> <K REG> |
KKREGASS*> <KSHIFTOP><XTNUMBER > |
CKREG ASS*><SHIFTCP> <K REG*>

<KREG ASS> 3:3= <KREG ASS*>

<FUNCTION> $2= <FUNC ID> |

KFUNCTIGNY> (LT NUMBER> ) |

<FUNCTICAN> ( <K REG¥> )

KFUNCTION> ( <T CELL> ) |

<FUNCTION> ( <STRING> )

DUMP (<T CELL> )

C A S EXKREG*>0 f BEGIN

<CASESEQ><STATEMENT> %

<CUMP HEAL> 22
<CASE SEC> ER

<SIMPLEST> 23= <KTCELL>%= <K REG> 1
<K REG ASS> |
NULL |
6oTa  <ID> |
CPRGC ID> |
<DUMP HEAD> ( <T NUMBER> ) |
<OUMP HEAD> ( <K REG¥*> } i
<DUMP HEAC> ({ <T CELL> ) }
<FUNCTION>
< CASESEQEND |
<BLOCK>

13



<REL GCP> I

VAV IEA

- =
<CONC ITICN> 33= <K REG%*> CRELOP>XTVALUE> |
<K REG¥> <REL 0OP> <K REG> |

CVERFLOW |
<REL OP>
KIF CL> 33= | F<CONCITION>T H E N
<TRUE PART> 82:= <SIMPLEST>ELSE
<WHILED 2= WHILE
<CCND DODD :2= <CCNDITICN> D O
<FORHEAD> 23=FCR<KREG ASS>
<INCREM> 12= S T E P<TNUMBER>
<LIMIT> 2:= UNTIL KKREG*> |
UNTILKTCELL > |
UNTIL <T NUMBER>
<C0G> tt= CC
CSTATEMENT#®> :3=<SIMPLES T > |
<IF CL> <STATEMENT*>
<IFCL> <TRUE PART> <STATEMENT*>
<WHILE> <COND DO> <STATEMENT*> 1
<FOR HEAD> <INCREM> <LIMIT> <DO> <STATEMENT*>
<STATEMENT> 23=<STATEMENT*>
K<SITTYPE> $t= SHORT INTEGER
INTEGER ]
LOGICAL |
REAL |
LCNG REAL |
BYTE |
CHARACTER |
COMMAND
<TTYPE> 2:=<SITTYPE> |
ARRAY( <TNUMBER3 )<SI T TYPE>
<Y CECL*> e« *=KTTYPE><ID> |

<T DECL> s <ID>
<T DECL> ( <T NUMBER> ) |
CT BECL> | <STRING> )
<T CECL> 2= KT DECL#*>
<K REG CC*> 32= <SITTYPE> REGISTER <ID> 1
<K REG DC> , KID>
<KREGC C > $:= <K REG DC*»> ( <T NUMBER> )
CFUNC DECL*> 23:3= FUNCTION <ID> |
<FUNC DECL> 4 KID>
C<FUNCCECL-> 33= <FUNC DECL¥*> <TNUMBER>)
<FUNC DECL> 3= <FUNC DECL-> { <T NUMBERD> )
<SYN CECL> ::3=<TTYPE> <|O0> SYN <TCELL> |
<Y TYPE> <|ID> S Y N<TNUMBER>
<SYN DECL> <ID> SYN KT CELLD> }
<SYN DECL> ¢ <ID> SYN KT NUMBERD>
<CECL> 2= <T QDECLD> |
<KR E GDC> |
<FUNC DECL> |
<SYN DECL> |
SEGMENT BASE <K REG>
<PRCC NAME> ::= PKCCEDURE <ID> |
SEGMENT PROCEDURE <ID>
KPRCCHEAD*> ::3=<PRCCNAME> { <K REG*> )

T4




<FRGC hEALS
<LABEL DEF>
<BLOGCKHEAD>

<BLCCKBCLCY>

<BLCCK>
<FRCGRAM>

"
oo

e 8 O

(1]

DEVICE TABLE

LCG.NO.

—
CVO~NOWVMPWNMKO

o o o
[SUN S )

KPRCC HEAC*> 3

<ID> =3
BEGIN |
<BLCCKHEALC>

<BLOCKHEAD> <PROC HEAD> <STATEMENT>

<CECL> 3

<BLOCKHEAD> 1

<BLCCKBCDY> <STATEMENT> 3 |
<BLOCKBODY> <LABEL DEF>
<BLCCKBGDY> END
a <BLOCK> @
DEVICE ADDRESS
TYPEWRITER (1052) 009
PRINTER {1403) OOE
CARCREADER (2540) 00C
CARDPUNCH 1{2540) 00D
SYS TAPE {2401) 282
TAPE {2401) 181 (7 TRACK)
TAPE (2401) 182
TAPE {2401) 183
TAPE (2401) 184
TAPE (2401) 283
DISK {2311) 190
DISK ({2311) 191
DISK (2311) 192
DISPLAY (2250) 2EO

75




PRGCEDURE INREAL (R9);

BEGIN COMMENT READ CHARACTERS VIA "NEXTCHAR", RESULT IN FO13

LCNG REAL FCON1 (#4ECCCOGCO0000000), FCON2 (#4700000000000300) 3

INTEGER FCONLILOW SYN FCCN1(4)3
SHCRT INTEGER TEN (10); BYTE SIGN, EXPOSIGN;
WHILE RQ < "Q" CC

BEGIN IF RO = "-% THEN SET(SIGN) FLSE RESET(SIGN); NEXTCHAR;

ENC ;
BEGIN COMMENT 3EAC THE INTEGRAL PART;
Rl := RO ANo #F; NEXTCHAR;
wHILE RO > ®0" pC
BEGIN RO :¥ RO AND #F3; R1 := Rl * TEN + RO; NEXTCHAR;
END ;
COMMENT INTEGER IN Rl, NEXT CHARACTER IN RO;
R2 1= 03 C<MMENT R2 IS THE DECIMAL SCALE FACTOR;
FCCNILGW := R1; FCL := FCONL+ODC3 COMMENT FOL :
IF RO = ".n THEN A “
BEGIN CCMMANT PROCESS FRACTION. BUILD NUMBER .IN FOIl;
~NEXTCHA®;
WHILE RO >= #0" CO
BEGIN R := RO SHLL 4: STC(RO)(FCON2(4));
FO1 e= FOl #* 10D. . FCON2; R2 1= R2-1; NEXTCHAR;
ENC 3
END 3
IF RO = "E" THEN
BEGIN COMMENT ACD THE SCALEFACTOR TO R2;
NEXTCHAR; IF RO = "=" THEN
BEGIN SET{EXPCSIGN); NEXTCHAR;
END ELSE RESET(EXPGSIGN);
R1 2= RO AND #F; NEXTCHAR;
WHILE RO >= "0" 0O

- R1:

BEGIN RO := RO AND #F; R1 := Rl * TEN + RO3; NEXTCHAR;

END 5
TESTIEXPOSICGN)
IF = THEN R2 :
ENo 3 o
IF R2 ~= 0 THEN
BEGIN COMMENT CGMPUTE F45 := 10 *%* R2;
IF R2 < O THEN | o
BEGIN R2 = ABS R235 SET{EXROSIGN)j: -
ENC ELSE RESET(EXPOSIGN); B
F23 3= 10003 F45 := 1D03 F67 3= F45;
WHILE R2 -= 0 DGO
BEGIN SRDLI{RZ)(1); F23 := F23%F67; F67 ==
LTR(R3){R3)s IF < THEN F45 := F45%F233
END 3 :
TESTIEXPOSIGN);
IF = THEN FOl = FOL/F45 ELSE FOl := FOL¥F45;
END 3
TEST(SIGN); IF = THEN FO1 := NEG FO1;
END 3
END 3

H e

R2-R1 ELSE R2 1= R2+R13;

F2=:

76



FRCCECURE CUTREAL (RSG)3
REGIN CCMYMENT NUMBER IN FOl. ACDRESS OF OUTPUT IN R13

END

LCNG REAL X, FCCN1 {#4ECOC0O0CC2C0O0001)3

INTECER XKIGH SYN X3 IRTEGER XLOWw SYN X(4)3

SHCRT INTEGER Q (3C7)5 BYTE _SIGNS

ARRAY (4) LCGICAL PAYTERN
(#4040214B)(#20202020)(#20204F21)(#20200000)5

ARRAY (14) CHARACTER ZERO (" O "y

IF FCLl = 000 THEN MYC{13)(BIY(ZERQ) ELSE
BEGIN IF FIOL < CLO THEN SET(SIGN) ELSE RESET(SIGN)S
FOLl := AES FCls3 X := FO13
RC : XIHIGH SHRL 24 - 64 * Q3 ir < THEN RO = RO +
RC 3= RO SKRA & - 13 R2 := ABS RO;
CCMMENT  CCMPUTE F45 := 10%%R2; ,
F23 = 10D0; F45 1= 1D0; F6T = F45;
WHILE R2 == C UC
BEGIN SROL{(RZ2)(1); F23 := F23%F67; F6T = f2
LTR{R2)(R3); IF < THEN F45 := F45%F23;
END 3
IF RO < O THEN
BEGIN FOLl 3= FCLl*F45;
WHILE F01 < 1COC OO
BEGIN FOL := FO1%1000; RO := RO-13
R7 2= R7+1;

]

[N
(S
L]
.o

'
i
-r

1t

END 3
tNC ELSE _
BECIN FQl = FCL/F45;
WHILE FOL1 >= 10C0 DO
BEGIN FO1 = FO1%0.1D0; RO := RO+1;
R8 := RB8+1;3
END 3
END 3

FOL 2= FOL % 2D6& ++ FCON1l; X := FQOls R3 . := XLOW SHRL 1;
IF R3 >= 100C0O000 THEN
BEGIN R2 2= R2 / 1C3; RO = RO+13
END 3
CVDIR3) (X3 MVC{LI3)(BLI(PATTERN); ED(9)(B1)(X{4))3
TEST(SIGN_; IF = THEN MVI(v"=")(B1{1));
CVOIRO) (X, 3 EC(3)(BLL1O0)I(X(6))}
IF RC € O THEN MVI(®"=")(BLC11)) ELSE MVI{"+")(R1(11))3
END 3

.

i

]

7




BEGIN COMMENT BINARY 10 SEARCH;
INTEGER M3 LONG REAL DECS :
DERAY (3) SKFCRT INTEGER ¥oVE (#0200 (440001 (#6009);
ARRAY (6) BYTE PATTERN (#40) (#20) (42010420 1#20)0(420)5
CCMMENT EACH ENTRY IN THE DIRECTCRY CONSISTS OF A TAGs LENGTH,
ANLC ABSOLUTE ACCRESS OF THE IDENTIFIER; '
AKRAY (1CC) INTCGER DIRECTORY;
ARRAY {100) SHFURT INTEGER TAG SYN DIRECTORY(O)3
ARKAY (1C0) SHGrRT IATEGER tN  SYN DIRECTORY(2);
ARRAY (1CC) INTECER ADR SYN DIRECTCRY(4)3
AKKAY (132) CHARACTER BUF (" ")3
ARRAY (1000) CHARACTER ID 3

BrCCELURE SEARCHF(RF )
BEGIN COMMENT PARKANMETERS:R1 =L E
CF IDENTIF1ER. RESULT:R3 =
RECISTERS USEC: 0 —- 8 :
INTEGERR E G I S TERLII)yLOWIZ)yI{4) s HIGH(5) s X(6)yM(T);
ARRAY (3) SFORT INTEGER CUMP (#D500)(#2000)(#6000)%
CCPMENT CUNMPARE CHARACTER INSTRUCTION;
HI1G L s =N LChse=
WHILE LOW <= HICF DD
BEGIN I 2= LCw t RIGH SHHC 4 SHLL 3 X :=ADR{I);
IF L = LN(l) THEN
BEGINEX(L)(CCMPYSIF
IF < THEN HIGH :
ENDELSC
I f -L <LN{I)THEN
BEGIN EX(LI{CCNMP);
IF <= THEN RIGH :=]-8ELSE LOW=:=[+83

G T HOFIDENTIFIER, R2 = ADDRESS

N
T A G{OI FNOTLGCATED).

THEN GOTO OUT:
I-R ELSE LOW :=1+83

o

ENCELSE
BEGIN M = LN{T)s EX(M)I(COMP);
IF < THRENFIGH:=1-RELSE LQW=:=1+8;

END

END;

I := 0

LUT:R 3 = TAG(1);
END

EL(131) (BUF)Y(EUER) S LALRO)IIBUFY; R6 3= RO3 COMMENT RLANKBUFFERS
R1 := 0 ;LA(R4}(ID);

CUMMENTREACICENTIFIERSAND ENTER THEMINTABLES;
Ll READC2¢: CLI(WEM"){BUF)3 1 F == THEN
BEGIN R1 3= R1+48; TAC(R1): =R13
RZ 3= (3 R3 3= R2Z;
L2: IC(R3){BUFIR2));5 1 F R3~=""THEN
BEGINR2:=R2+1;G0TCOL2;

END:;
EX (R2) (MCVE )3 ACR(RL) 3= R4;
R4 3= Ra+icy R2 . = R2-1% LN{R1) 2= R23;
GeTo 1.1
ENE
h @ =xrl;

COCMMENTREAC ANICENTIFIERAND SEARCH TITIN THE TABLES
L3: READUZ6: |- = THEN
3EGIN R1: = 0 ;R3 1= Rl; LA(R2)(BUF);

78



L4z IC(R3){BUF(RL));IFR 3-=""T H E N
BEGIN R1: =R1+1l; GCTO L4;
ENC :
R1 := R1-13 SEARCH; .
CVC{R3){LCEC); MVCU(5)(BUF(36))IPATTERN);
ED(S) (BUF(36))Y(CEC(S))3WRITE: COMMENT WRITE IDENTIFIER ANDTAG;
GOTO L3;
ENC
ENC @

BEGCINCOMMENTM A G | C SQUARE GENERATOR]
ARRAY (132) CHARACTER LINE (¥ ®);
ARRAY (8) BYTE PATTERN (#40)(#20){#20){#20)(#21)(#21);
LCNG KEAL DEC3
ARRAY (256) INTEGER X ;

PRCCECURE MACICSQUARE (R6) 3
BEGIN SHGRT INTEGER NSQR;
INTEGER REGISTERN{O) s ILL)yJ(2)9K(5);
NSGQR NiRIL N*ASQR; NSQR 3= R1j;
| ¢=N+1 SHRL 13 J = N;
FOR K 1 STEP 1 UNTILNSQGROO
BEGIN R3 :=ISKLL 6 R4 J  SHLL
IF R3 ¢ THEN

.
s =

= 2 + R3 R3 :=X{R4})3

-

BEGIN |
IF
IF
R3
END3
X{R4) :=
I+

J

| =
J
END 3

D =d+l;

2= |-l
1< 1 THEN
<1 TtEN J

1 SkHLL 6

SHLL 2 +

R3;

I-N3
J-h;

IE | > N THENT
IF J > N THEN J 1=

13

ENC 3

PRGCECURE GETANCPR I N T
BEGINR 2:= FGR S
MAGICSQUARL: R6: R O ;LA(RO)Y(LINED;
FORR1:= 1 STEP 1 UNTIL Ré6DO
BEGIN R4 =Rl SHLL 6 +4; LA(RS)(LINE(4))3
FUR R2:= 1STEP 1 UNTIL RS 00
BEGIN MVC(S)(LS){PATTERNY R3 = X(R4)$ CVDIR3)Y{DEC)S
ED(S) (B85 (I EC(B) ) R4 = R4+43 RS 1= R5+7;
ENG 3
WRITE;
END
ED(LI31MILINE)(LINE)YS WRITE:
ENE

R8)3
1 2=

(
R 0 TEP 4 UNTIL1020DOX(RI):=R23

ED(131)(LINEYILINE); COMMENTBLANK LINE;

RO := 3 ; GETANDPRINT;

AC := 5 ; GETANDPRINT;

KC :=7 ;GETANDPRINT;
ENE a

79



[NCREN o JE N

11
18
25

Z2
31
4C
49

11
2¢C

ol

10
12
15
21

21
23
32
41
43

12

23

14
16

14
16
25
34
36
45

17 -
24
15
46
17
26
35
37

80

38
a7

18
27
29

30
39
48

10
19
28




Acknow edgnent s

The author wi shes to express his sincere thanks to M. J. W Wlls
for his indispensable assistance. M. \Wlls recoded the conpiler in its
own |anguage, and devel oped the supporting monitor system Thanks are
also due to the GSG group at the Stanford Linear Accelerator Center for
their generous providing of conputer time under favourable conditions.
And finally, the support of the National Science Foundation under grant
GP 4053 is gratefully acknow edged.

Ref er ences

1. G M Andahl, G A Blaauw, F. P. Brook, Jr. : "Architecture of
the | BM System/360", IBMJ. of Res. and Dev. 8, No. 2, 87-101
(April 1964+), and

G A.Blaauw, et al.: "The structure of System/360". | BM Sys. J.
3, No. 2 119-164 (1964).

2. N Wrth and C. A R Hoare, "A contribution to the devel opment of
Algol", Comm. AcM 9/6, 413-432 (June 1966).

3. N Wrth and H Weber, "Euler: A generalization of Algol, and its

formal definition: Part |", Comm. ACM 9/1, 13-23 (Jan. 1966).
4. "1BM System/360 principles of operation", IBM Sys. Ref. Lib.
A22-6821-2.

5. N Wrth: "A programm ng |anguage for the 360conputers”, Tech.
Report CS 33, Stanford U, Dec. 1965.

81





