AUTOMATIC GRADING PROGRAMS

BY
GEORGE E. FORSYTHE and NIKLAUS WIRTH

TECHNICAL REPORT CS17
FEBRUARY 12, 1965

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

£y
N

L

r—

— — — o r—

S

AUTOVATI C GRADI NG PROGRAMS ¥

by

George E. Forsythe and Niklaus Wrth **¥/

Abstract

The ALGOL grader progranms are-presented for the conputer evaluation
of student ALGOL programs. One is for a beginner's program it furnishes
random data and checks answers. The other provides a searching test of
the reliability and efficiency of a rootfinding procedure. There is a
statement of the essential properties of a conmputer system in order that

grader prograns can be effectively used.

*/ Reproduction in Wwole or in Part is pernmtted for any Purpose of

the United States government. This report was supported in part
by Ofice of Naval Research Contract Nonr-225(37) (NR OkLk-211) at
Stanford University.

**/
Presented to the national meeting of the Association for Conputing
Machi nery, Philadel phia, 27 August 1964, under the title "Automatic
machine grading programs". The Stanford conputers used for pro-

gram tests are partially supported by the National Science Founda-

tion under G ant No. GP-948.

oy

D scussi on

In connection with introductory programming and nunerical analysis
courses at Stanford University, grading progranms have been used inter-
mttently since 1961. Qur prograns furnish data, check student perfor-
mance in various ways, sonetines keep track of running time, and keep a
"grade book" for the problens.

The Stanford routines are witten separately for each problem
The most flexible and useful system for elenmentary classes was used with
the Burroughs 220 conmputer in the BALGOL |anguage, a dialect of ALGOL
58,and will be described first. Each grader program was witten as a
BALGOL- | anguage procedure. It was then conpiled together with a proce-
dure called BUTTERFLY, witten by Roger More. The result was a
rel ocatabl e machine-language procedure, with a mechani smfor equating
its variables to variables of any BALGOL program in just the form of
the BALGOL conpiler's own nmachine-language |ibrary procedures (SIN,
WRITE, READ, etc.). Finally, the grader program was added to the
conpiler library tape for the duration of its use.

The use of a powerful algebraic |language and system nmade it easy
for an instructor to wite grader programs wth sophistication appro-
priate to the problem . The student needed only furnish one or two
procedure statenents to call a grader; we often furnished himcards to
decrease the chance of error. Since each grader was preconpiled on the
library tape, little time was lost in adding it to each student's program
at conpile time. A sinple handcoded nechanism made it easy for the

operator to rescue a program froma run-time loop and send it into the

r

—— | i

next case without disnissing the programentirely,, It was possible to

have several different graders concurrently on the library tape, to
take care of different classes.

This powerful grading nechani sm was possible only because of the
BALGOL conpiler with its own conpiler-with-library generator, and because
BUTTERFLY coul d generate rel ocatabl e machi ne-1anguage progranms. Neither
our |BM 7090 BALGOL system nor our Burroughs B5000 ALGOL system has been
so well adapted to the grading problem to our regret, and we have had
to make do with |ess desirable expedients. Wit these newer systens
lack is an easy means of producing a machine-language |ibrary procedure
which is fully equivalent to a source-language procedure with several
par anet ers.

V& recomend grading prograns to all who teach programmng and
nunerical analysis to masses of students, but the prospective user shoul d
first carefully investigate the systens available to him

V¥ give below a typical grading program' GRADER2, which was used
in connection with an early problemin a beginning programming course.
GRADER2 iS suitable for grading a student's program which is witten as
a block. It has been translated into ALGOL and is given as part of a
bl ock containing one or nmore student programs.

In ALGOL there is a practical difficulty in putting many beginner
prograns into the sane block w th GRADER2--a syntactical error in just
one student program may upset the conpiler and prevent the testing of
any program. |t would be better if we could have GRADER2 preconpiled

into a systemlibrary and called separately by each student.

D

e

The student's problemis this: Gven the integer N (0 < N < 10)
and the real array elenents A[O], ...,A[N],B[0], .« a, BIN], to wite
a program whi ch makes MAX the naxi num of A[0], ..., A[N] and which
conputes the nunbers c[0], ..., c[2 x N] defined by the polynonial
mul tiplication
i‘) AlKIES) - (‘E Blk]t5) .

2N K
2 clklt® = (
=0 k: k=0

The student is told that he nust arrange his programin the form
begi n
<all declarations> -
CGRADER2 (<student nunber>, 1, N, MAX, A B, C START, FIN);
START: <ell statements of his solution>
GRADER2 (<student number>, 2, N, MAX, A, B, C, START, FIN);
FI'N:

end;

Note that the subprocedure SET UP of GRADER2 goes to great trouble
to be sure that no student will get the same data at different tines,
and that no two students will get the same data. This was intended to
be sure that a student could not get correct answers from GRADER2 on one
run, and use them for another run. W doubt the value of such pre-
cautions,

Observe that GRADER2 eval uates the correctness of the student
answers, but in no way evaluates the running speed of the program nor
the anmount of storage used. This is appropriate for a beginning student

of progranm ng.

I
L

r—

—

— — 7 r— 7T o of

r—

—

A nore advanced student should have his performance exam ned nore
critically. As an exanple of this, we give a second grader program
called Test, to be used in a nunerical analysis class whose nenbers can
already programin ALGOL.

The procedure Test listed below is designed to exam ne rootfinding
procedures. The students are asked to wite an ALGOL procedure which
finds an approximation to a 'root' x (i.e., point of sign-change) of a
(not necessarily continuous) function f in the interval [a, b]. To be
precise, x is any nunber such that

f(x5) < 0=1£(x;) >0 -(in the sense of ALGOL 60)

1)

and

and

Ixo-xlls€ ’

where f, a, b, and € are given parameters. Such an x always exists,
if f(a) <0=f(b) >0 . Each student is asked to submt an ALGOL
program containing his procedure declaration and a single statement of
the form
Test (rootfinder, ‘student name?)

As with ‘GRADERZ, all submtted prograns are then enclosed together in
an outer block, whose head contains the declaration of the procedure
Test. Thus no use of library tapes is required. The block structure
of ALGOL plays the very inmportant role that all identifiers used by
the student, including the name of his rootfinder, are strictly local

to his program They can therefore be chosen freely and cannot interfere

with identifiers in any other program Nor can an identifier of the

procedure Test interfere with any student's program. O course this
technique requires that the contributions be syntactically correct, but
this is considered to be the mninum requirement for acceptance of a
program from students at this level.

In order to obtain an estimate of the quality of the progranms,
one would like to know the accuracy of the answers, the number of
evaluations of the function f it took to find the root (with the
possibility of termnating the test, if a limt is exceeded), and per-
haps also the time it took to find-the root. It is furthernore desirable
to check that the limts a and b and the tol erance € were not
changed during a test (this mght occur, for exanple, if these para-
meters were called by name instead of by value), and whether the argunent
of f always remained within the interval [a, bl.

The follow ng description of the procedure Test explains the
met hods of achieving these goals within the framework of an ALGOL program

The declaration of Test contains the follow ng variable-declarations:’

grade represents the student's grade; it is cumulated during

execution of several partial tests of one student's
program.

m denotes his nunmber of-successful tests

x is a real variable used as abscissa for the evaluation of f.

t records the time spent by the rootfinder.
A procedure P declared inside Test is the heart of the entire grader.
The body of Test contains a series of calls of P; each call of P

contains as actual paraneters the data for one test exanple. E.g., the

5
-

r— r

— rr— ((— r—

r

—

e

r—

r— r—

r—

r— r—

cal |
P(0,2,14-5,1,1 -, true, 20, 1)

woul d cause the testing of the student's program with the function f:
f(x) =1-x intheinterval a =0, b=2, wth a desired accuracy
of 155 The expected result (=1) is the fourth parameter to P.
The sixth paraneter indicates that a solution exists, the seventh is a
limt for the nunber of evaluations of f, and the eighth indicates the
nunber of the test case.

The procedure P subsequently calls the rootfinder (which is a
formal parameter to Test) with the given paraneters as data. However,
P does not furnish the function f directly to the rootfinder, but
rather substitutes a function procedure Q which is declared in the
head of P. Each call of Q then serves to increnent the counter of
calls of f and is also used to exam ne whether the argument of f
lies within the prescribed interval.

The grader program has been used on the 7090 conputer. In order
to nmeasure the tinme spent by the rootfinder and to recover from a
possible error in the logic of the student's program two code procedures
have been introduced which cannot be described in ALGOL:

procedure Setime (n,L); integer n; label L;

initializes the core-clock to trap after n msec and to transfer control
to L. Al so,

procedure Reset (t); integer t;

di sables the trap and assigns to t the number of msec spent since
initialization of the clock. These procedures protect the entire grading
run fromfailure due to one particul ar examinee's inability to solve

a certain test problem.

-6-

The authors feel that particular enphasis should be put not only
on the efficiency of the student's contribution, but also on its reliability.
The choice of the test data reflects the possibilities of this grading
met hod, since "wldly behaving" functions are used which are not Iikely
to be foreseen by a carel ess programrer.

The program Test is believed to mark a further step in the auto-
mation of grading. \Wereas GRADER2 bases its grade only on the binary
answer "correct" or "wrong", Test also evaluates a progranis quality
i.e., reliability and effectiveness. It thus relieves the teacher from
long and tedious grading work., Last, but not |east, the machine may be
more objective in grading than the human, because of its notable lack of
prejudice and its inability to become bored

The authors w sh to acknow edge val uabl e suggestions nmade by A.

J. Perlis and P. Naur in regard to grader prograns.

An el ementary grader program

begi n
procedure GRADER2 (STUDENT, ENTRY, N, MAX, A B, C START, FIN);
val ue STUDENT, ENTRY; integer STUDENT, ENTRY, N real MAX;
real array A, B, C label START, FIN
comment W assune the existence of a library real procedure
TIME which produces the time of day as an integer in the
interval [0, 2359];
begin

real procedure RANDOM

begi n
comment The value of RANDOM at.each call is a different
pseudo-random nunber from a flat distribution in the
interval [0, 1]. The body is not witten here ... ;
end RANDOM

own real array ccl0:10];

real sS; own real MMAX;

integer B3, B4, J, K

own integer TALLY, B1, B2
switch JUW := 11, L2;

procedure SET UP (CASE, N);
val ue CASE; integer CASE, N

comment SET UP furnishes the student's data, which depend on
the student's nunber, the tine of day, and a pseudo-random

nunber SET UP also solves the case for the use of EVALUATE;

8-

X
-

e

r— r— rr—

— r—

— r r—

r— r— 7 r—

r—

r—

begin
for K:=0 step 1 until N do

begi n
A[K] := RANDOM + (STUDENT + TI VE) xlo-u;
B[K] := RANDOM x sign(RANDOM - 0.5)

end;

comment Now the student is messaged on the line-printer what
data have been generated for him

outstring (1, 'FOR —CASE?); outinteger (1, CASE);

outstring (1, ¢GRADER? «. FURNISHES « STUDENT’); outinteger(l,
STUDENT); outstring (1,°THEws FOLLOWING t— DATA:i sy A s IS2);

for K:=0 stepl until N do outreal (1, AlK]);

outstring (1, ‘Bws IS);

for K:=0 step 1 until N do outreal (1, B[K]);

comment Now GRADER2 sol ves the student's case for itself.
GRADER2 does not use A[K] or B[x] for any values of K
outside 0 < K< N

MVAX := A[O];

for K:=1 step 1 until N do

if AlK] > MMAX then MMAX := A[X];

for K:=0 step I-until N do

begi n
s :=0;

for J:=0 step 1 until Kdo S:=S + A[J] x B[K-J];

cclk] := S
end,

for K:= N+l step 1 until 2xy do

...9_

for J:=KNstep 1 until Ndo S:= S + a[J]xB[K-J];

cclk] := S

end;

comment Now SET UP has solved the problem and we exit
to START, the entry to the student's solution, The
next call of GRADER2 will bring us back to EVALUATE;

TALLY := TALLY + 1;

— go to START;
end SET UP;
(-
L procedure EVALUATE (CASE, N);

val ue CASE; integer CASE, N

- begin
B3 =1;

—
comment EVALUATE exam nes the student's answers, writing

. themand its own answers, with comrents on the student's

performance, all on the line-printer;

bt outstring (1, ‘FOR ..CASE’); outinteger (1, CASE);
outstring (1, (STUDENT'); outinteger (1, STUDENT);

- outstring (1, ' COMPUTES-C . TO BE’);

- for J := 0 step 1 until 2 X N do outreal (1, C[J]);
outstring (1, “GRADER2. ,COMPUTES . .C ,TO, BE’);

“ for J :=0 step 1 until 2 X ¥ do outreal (1, cC[J]);
for K :=0step 1 until 2 X Ndo

if abs(Kl - cc[k]) > 1o-k_then B3:=0;

=-]10-

r—

r— r— r— r M

—

r—

Ll:

if B3= 1 then outstring (1, ‘C IS «ACCEPTABLE’)
el se outstring (1, C IS «uNOT L ACCEPTARLE®);

comment A large tolerance was allowed for possible
differences in the solutions because of different
rounding of f;

B4 :=0;

if MX = M then

begin
B4:= 1;
outstring (1, ‘MAX LuIS.JCORRECT’)

end

el se outstring (1, ‘MAX s |'S LsINCORRECT?);

end EVALUATE; .

comment Now cone the statements of GRADER2 itself;

if ENTRY = 1 then TALLY := O else_go to JUMP[TALLY];

comment On the first call of GRADER2 by each student,
ENTRY is 1. On the later calls it is 2. This and
TALLY provide the nechanism for permitting different

entries to GRADER2 on different calls;

N :=5;
SETUP (1, 5);
EVALUATE (1, 5);

Bl := B3; B2:=B4;
N :=4;

SET UP (2, 4);

-11-

1

r—

o — A

L2: EVALUATE (2,k4);
comment Case 2 is now conplete, and GRADER2 punches a
card for the "grade book!";
for K:= STUDENT, 2, Bl, B2, B3 B4 do outinteger (2, K);
comment GRADER2 now sunmarizes the situation for the
student's line-printer listing;
outstring (1, ‘STUDENT'); outinteger (1, STUDENT);
outstring (1, ‘SCORES); outinteger (1, Bl+B2+B3+BL);
outstring (1, “OUT = OF s 4 . ON ou PROBLEM ts 2. tu tu IF < SCORE et IS oy
LESS v THAN & L, 1 PLEASE « SUBMIT s REVISED s PROGRAM LATER. °);
comment Now the programexits to the conclusion of the
student's solution;
go to FIN
end GRADER?;
comment Now follow the students' prograns;
begin
coment Here, for exanple, is the program for student
nunber 515, with its calls on GRADER?;
real array A B, C[0:25];
real S, MAX
integer J, K N
GRADER2 (515, 1, N, MAX, A, B, C, START, FIN SH);

START: for J := N+l step 1 until 25 do A[J]:= B[J]:= 0;

MAX := A[N];

for K:= N1 step -1 until 0 do

if MAX < alk] then MAX := A[K];

-120-

r— r—

r—

r— s — [

for K := 0 step 1 until 2xN¥ do

begi n
S :=0;

for J :=0step 1 until Kdo S:= S + AlJIxB[K-J];

Clk] := S
end;
GRADER2 (515,2, N, MAX, A B, C, START, FINSH
FI'NI SH
end program of student 515;
begi n
conment_ Program of another student . . . ;

end

end tests of all student prograns

-13-

—

An advanced grader program

begin corment grader program for root-finding procedures;

procedure Test (Rootfinder, Name); procedure Rootfinder; string Nane

3

begin real x; integer m grade, tine;

procedure P (|l ow, up, eps, root, f, is root interation limit
’)

probl em no);
value low up, eps, root, js root, jteration linmt, problem no;
real low wup, eps, root, f:
integer iteration limt, problem no;
Bool ean is root;
begin real Tow 1, up 1, eps 1, root 1;
integer n, t; Boolean is root 1,

procedure Setime (n, L); integer n; label L; code;

procedure Reset (t); integer t; code;

procedure error (text, charge);
value charge; integer charge; string text;
begin outstring (text); grade := grade - charge;
if grade < 0 then
begin outstring (‘grade = 0%);
g0 to T exit
end
end error,

real procedure Qvy); value y; real vy;

beginif y <lowl1l Vy>up 1 then
begin error (‘Argumentt_aoutside s interval?, 10);

Reset (t); go to P exit

~1h-

|
L

end,
n:=n+1 if n>iteration linit then
begin error (‘Convergence w is too Luslow >, 5);

Reset(t); go to P exit

end;
X =Y, Qi=7f
end
| owl :=1low;up 1:=Up; eps 1 := eps; n := 0

outstring (‘problem wmo. =*); outreal (problem no);
Setime(100 fail);
Rootfinder (low 1, up 1, eps 1, Q, root 1, is root 1);

Reset(t); tine :=tinme + t;

if low 1 #low Vup 1 # up then

error (‘boundary i was LJaltered?, 3):

if eps 1 # eps then error (¢tolerance i was ' altered?, 5);

Tis root then

He
Hy

[—

begin if is root 1 then
error (‘solution:l_lfdund L where L4 none s exists', 5)
el se begin outstring (°correctw reactionuforuno uroot");
m:=m + 1
end
end

else
begin real tol; tol := abs (root - root 1);
if tol > eps then error ('incorrect «roet?,5)
else begin outstring (¢ correct o root =sfound®); m:= ntl

-15-

r—

— - r r

r—

T exit

end T,

outstring (“no..u of Ly iterations =*); outreal (n);
end;
go to P exit;
fail: error (‘failure', 10);
P exit:
end P
m:= 0; grade := 100; time := 0; outstring (Name);
P(-2, 2, 16, -1, x+1, true, 10, 1);
P(-1, 1, £--1, x+l, true, 1.0, 2);
P(-1, 1, 48, 1, x-1, true, 10, 3);
B(2, 5, 19765 05 x-1, false, 10, 4);
P(-2, 3.5, 10797 2, x*3 - x X3 - 2-4-20, true, 30, 5);
B0 -3, 9995 15 -5, 0.01, x + I/x - 100.01, true, 50, 6);
P(-1, 2, 1075, 05 sign(x), true, 30, 7);

P(-3, 100 4, 0, exp(-x) -1, true, 50, 8);

’ 10
P(0, 20, ,5-4, 0.95, (x+0.05)¢ 0.1 - 1, true, 30,9);

P(0, 100, 1079, 1, if x C1 then x-1 el se ;4,-10, true, 30,10);
~(-2.4, 4.2, 1574 3, ((((X-3)x x+5) X x-15) X x+4) X x-12,

true, 50, 11);

P(510—3, 1, 51073, 0.0265, if x < 0.02122 then -1 else

if x > 0.03183_then |-else cos(1/x),_true, 30,12);
outstring (‘end s of Lutest. wNo. s of s correct- problenms =2);
outreal (n); outstring (‘time =?); outreal (tine);

outstring ('grade =?); outreal (grade); |

=16-

ﬁ
-

—

F—

-

r

r— r— r

—

comment Subsequently follow the students' prograns, each containing
a procedure declaration and a call of Test enclosed in a block;
begi n

procedure Bisect (x0, x|, tol, func, result, is result);

real x0, x|, tol, result;

real procedure func;

Bool ean is result;

begin

end Bisect;

Test (Bisect, ¢Tomw.uJones?)

conment further students* prograns follow here;

end G ader program

-17-

