
AUTOMATIC GRADING PROGRAMS

.

BY

GEORGE E. FORSMHE and’ NIKLAUS WIRTH

TECHNICAL REPORT (37

FEBRUARY 12, 1965

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

i

i
i

‘;
L

!

i
!

i

i

i

L

ii
i

ic

AUTOMATIC GRADING PROGRAMS *f

bY

George E. Forsythe and Niklaus Wirth /
**

Abstract

The ALGOL grader programs are-presented for the computer evaluation

of student ALGOL programs. One is for a beginner's program; it furnishes

random data and checks answers. The other provides a searching test of

the reliability and efficiency of a rootfinding procedure. There is a

statement of the essential properties of a computer system, in order that

grader programs can be effectively used.

f* Reproduction in Whole or in Part is permitted for any Purpose of
the United States government. This report was supported in part
by Office of Naval Research Contract Nonr-225(37) (NR 044-211) at
Stanford University.

Presented to the national meeting of the Association for Computing
Machinery, Philadelphia, 27 August 1964, under the title "Automatic
machine grading programs". The Stanford computers used for pro-
gram tests are partially supported by the National Science Founda-
tion under Grant No. GP-948.

i
L.

Discussion

In connection with introductory programming and numerical analysis

courses at Stanford University, grading programs have been used inter-

mittently since 1961, Our programs furnish data, check student perfor-

mance in various ways, sometimes keep track of running time, and keep a

"grade book" for the problems.

The Stanford routines are written separately for each problem.

The most flexible and useful system for elementary classes was used with

the Burroughs 220 computer in the BALGOL language, a dialect of ALGOL

58, and will be described first. Each grader program was written as a

BALGOL-language procedure. It was then compiled together with a proce-

dure called BUTTERFLY, written by Roger Moore. The result was a

relocatable machine-language procedure, with a mechanism for equating

its variables to variables of any BALGOL program, in just the form of

the BALGOL compiler's own machine-language library procedures (SIN,

WRITE, READ, etc.). Finally, the grader program was added to the

compiler library tape for the duration of its use.

The use of a powerful algebraic language and system made it easy

for an instructor to write grader programs with sophistication appro-

priate to the problem. . The student needed only furnish one or two

procedure statements to call a grader; we often furnished him cards to

decrease the chance of error. Since each grader was precompiled on the

library tape, little time was lost in adding it to each student's program

at compile time. A simple handcoded mechanism made it easy for the

operator to rescue a program from a run-time loop and send it into the

-10

I

i .

L
r-

I

c_
r‘

next case without dismissing the program entirely,, It was possible to

have several different graders concurrently on the library tape, to

take care of different classes

This powerful grading mechanism was possible only because of the

BALGOL compiler with its own compiler-with-library generator, and because

BUTTERFLY could generate relocatable machine-language programs. Neither

our IBM 7090 BALGOL system nor our Burroughs B5000 ALGOL system has been

so well adapted to the grading problem, to our regret, and we have had

to make do with less desirable expedients. What these newer systems

lack is an easy means of producing a machine-language library procedure

which is fully equivalent to a source-language procedure with several

parameters.

We recommend grading programs to all who teach programming and

numerical analysis to masses of students, but the prospective user should

first carefully investigate the systems available to him,

We give below a typical grading program,' GRADER2, which was used

in connection with an early problem in a beginning programming course.

GRADEFQ is suitable for grading a student9s program which is written as

a block. It has been translated into ALGOL and is given as part of a

block containing one or more student programso

In ALGOL there is a practical difficulty in putting many beginner

programs into the same block with GRADER2--a syntactical error in just

one student program may upset the compiler and prevent the testing of

any program0 It would be better if we could have GRADER2 precompiled

into a system library and called separately by each student.

The student's problem is this: Given the integer N (0 < N < 10)

and the real array elements ALO], o-0 ,ACN], BCOI, l a, BCN], to write

a program which makes MAX the maximum of A[O], o.O, A[N] and which

computes the numbers cm, eooj Cc2 x N] defined by the polynomial

multiplication

'5 C[k]tk - (; A[k]tk) 0 (E B[k]tk) 0
k=O k=O k=O

The student is told that he must arrange his program in the form:

begin

<all declarations> -

GRADER2 (<student number>, 1, N, MAX, A, B, C, START, FIN);

START: -11 statements of his solution>

GRADER2 (<student number>, 2, N, MAX, A, B, C, START, FIN);

FIN:

end;

Note that the subprocedure SET UP of GRADER2 goes to great trouble

to be sure that no student will get the same data at different times,

and that no two students will get the same data. This was intended to

be sure that a student could not get correct answers from GRADER2 on one

run, and use them for another run. We doubt the value of such pre-

cautions,

Observe that GRADER2 evaluates the correctness of the student

answers, but in no way evaluates the running speed of the program nor

the amount of storage used. This is appropriate for a beginning student

of programming.

L
i

Iii
c
i

I
L
L
i

I
I
I
L
i

*
L

A more advanced student should have his performance examined more

critically. As an example of this, we give a second grader program

called Test, to be used in a numerical analysis class whose members can

already program in ALGOL.

The procedure Test listed below is designed to examine rootfinding

procedures. The students are asked to write an ALGOL procedure which

finds an approximation to a 'root' x (i.e., point of sign-change) of a

(not necessarily continuous) function f in the interval [a, b]. To be

precise, x is any number such that

f(xo) 5 0 - f(xl) 2 0 -(in the sense of ALGOL 60)

and

a_<xo<x<-xl<b

and

where f, a, b, and e are given parameters. Such an x always exists,

if f(a) 5 0 - f(b) > 0 o Each student is asked to submit an ALGOL

program containing his procedure declaration and a single statement of

the form

Test (rootfinder, ‘student name))

As with GRADER2, all submitted programs are then enclosed together in.

an outer block, whose head contains the declaration of the procedure

Test. Thus no use of library tapes is required. The block structure

of ALGOL plays the very important role that all identifiers used by

the student, including the name of his rootfinder, are strictly local

to his program. They can therefore be chosen freely and cannot interfere

ts -4-

with identifiers in any other program. Nor can an identifier of the

procedure Test interfere with any student's program0 Of course this

technique requires that the contributions be syntactically correct, but

this is considered to be the minimum requirement for acceptance of a

program from students at this level

In order to obtain an estimate of the quality of the programs,

one would like to know the accuracy of the answers, the number of

evaluations of the function f it took to find the root (with the

possibility of terminating the test, if a limit is exceeded), and per-

haps also the time it took to find-the root. It is furthermore desirable

to check that the limits a and b and the tolerance F. were not

changed during a test (this might occur, for example, if these para-

meters were called by name instead of by value), and whether the argument

of f always remained within the interval [a, b],

The following description of the procedure Test explains the

methods of achieving these goals within the framework of an ALGOL program.

The declaration of Test contains the following variable-declarations:'

grade represents the student% grade; it is cumulated during

execution of several partial tests of one student%

program0

m denotes his number of-successful tests

X is a real variable used as abscissa for the evaluation of f.,

t records the time spent by the rootfinder.

A procedure P declared inside Test is the heart of the entire grader.

The body of Test contains a series of calls of P; each call of P

contains as actual parameters the data for one test example. E.g,, the

-5-&

,

i

t
L

i
1
L.

L

I
L

A‘
i
L

,
IL

i

L
I
L

7
I
L

t
L

f
i

i

i

1
L

i

t
i

call

~(0,2,~~-5,1,1 - X, true, 20, 1)

would cause the testing of the student9s program with the function f:

f(x) = 1 - x in the interval a = 0, b = 2, with a desired accuracy

of lo-5o The expected result (=l) is the fourth parameter to P.

The sixth parameter indicates that a solution exists, the seventh is a

limit for the number of evaluations of f, and the eighth indicates the

number of the test case.

The procedure P subsequently calls the rootfinder (which is a

formal parameter to Test) with the given parameters as data0 However,

P does not furnish the function f directly to the rootfinder, but

rather substitutes a function procedure Q, which is declared in the

head of PO Each call of Q then serves to increment the counter of

calls of f and is also used to examine whether the argument of f

lies within the prescribed interval.

The grader program has been used on the 7090 computer. In order

to measure the time spent by the rootfinder and to recover from a

possible error in the logic of the student's program, two code procedures

have been introduced which cannot be described in ALGOL:

procedure Setime (n,L); integer n; label L;

initializes the core-clock to trap after n msec and to transfer control

to L. Also,

procedure Reset (t); integer t;

disables the trap and assigns to t the number of msec spent since

initialization of the clock0 These procedures protect the entir$ grading

run from failure due to one particular examinee's inability to solve

I
i

i

a certain test problem0

-6

The authors

on the efficiency

The choice of the

feel that particular emphasis should be put not only

of the student's contribution, but also on its reliability.

test data reflects the possibilities of this grading

method, since "wildly behaving" functions are used which are not likely

to be foreseen by a careless programmer.
.

The program Test is believed to mark a further step in the auto-

mation of grading. Whereas GRADER2 bases its grade only on the binary

answer "correct" or "wrong", Test also evaluates a program's quality

i.e., reliability and effectiveness. It thus relieves the teacher from

long and tedious grading work., Last, but not least, the machine may be

more objective in grading than the human, because of its notable lack of

prejudice and its inability to become bored.

The authors wish to acknowledge valuable suggestions made by A0

J. Perlis and P. Naur in regard to grader programs.

-7-

An elementary grader program

begin

procedure GRADER2 (STUDENT, ENTRY, N, MAX, A, B, C, START, FIN);

value STUDENT, mTRY; integer STUDENT, ENTRY, N; real MAX;

real array A,- - B, C; label START, FIN;

comment We assume the existence of a library real procedure

TIME which produces the time of day as an integer in the

interval [O, 23591;

begin

real procedure RANDOM;

begin

comment The value of RANDOM ateach call is a different

pseudo-random number from a flat distribution in the

interval [0, 11. The body is not written here 0D0 ;

end RANDOM;

own real array CC[O:lO];e--

real S; own real MMPX;- -

integer B3, Bk, J, K;

own integer TALLY, Bl, B2;

switch JUMP := Ll, L2;

procedure SET UP (CASE, N);

value CASE; integer CASE, N;

comment SET UP furnishes the student's data, which depend on

the student's number, the time of day, and a pseudo-random

number SET UP also solves the case for the use of EVALUATE;

-8-

.,.-,. .
t

L begin

for K := 0 step 1 until N do- -

begin

A[K] := RANDOM + (STUDENT + TIME) x lo-4;

B[K] := RANDOM x sign(RANDOM - 0.5)

end;

comment Now the student is messaged on the line-printer what

data have been generated for him;

outstring (1, 'FOR uCASE'); outinteger (1, CASE);

outstring (1, ‘GRADER2uFURNISHES uSTUDENT'); outinteger(1,

STUDENT); outstring (1,‘THEu FOLLOWINGuDATA: u u A ~1s~);

for K := 0 step 1 until N do outreal (1, A[K]);

outstring (1, 'Bu IS');

for K := 0 step 1 until N do outreal (1; B[K]);- - -

comment Now GRADER2 solves the student's case for itself.

GRADER2 does not use A[K] or B[K] for any values of K

outside 0 < K < N;

MMAX := A[Ol;

for K := 1 step 1 until N do- -

if A[K] > MMAX then MMAX := A[K];

for K := 0 step l-until N dov- P -

begin

s 0;:=

for J := 0 step 1 until K do S := S + A[J] x B[K-J];- -

CC[K] := S

end;

for K := N+l step 1 until 2xN do

-9-

I L

.
~ i
I L

i

i

L

L.

begin

s := 0;

for J := K-N step 1 until N E S := S + A[J] x B[&J];

CC[K] := S

end;

comment Now SET UP has solved the problem, and we exit

to START, the entry to the student's solution, The

next call of GRADER2 will bring us back to EVALUATE;

TALLY := TALLY + 1;

end SET UP;

procedure EVALUATE (CASE, N);

value CASE; integer CASE, N;

begin

B3 := 1;

comment EVALUATE examines the student's answers, writing

them and its own answers, with comments on the student's

performance, all on the line-printer;

outstring (1, ‘FOR -CASE'); outinteger (1, CASE);

outstring (1, (STUDENT'); outinteger (1, STUDENT);

outstring (1, 'COMPUTES-C ~TOUBE');

for J := 0 step 1 until 2 X N outreal (1, C[J]);

outstring (1, ‘GRADER2uC0MPUTES IC uTO-BE');

for J := 0 step 1 until 2 X N outreal (1, CC[J]);

for K := 0 step 1 until 2 X N do

if abs(C[K] - CC[K]) > lC-4 then B3 := 0;

-lO-

I
I
i

if B3 = 1 then outstring (1, ‘C wIS uACCEFTABLE')

else outstring (1, ‘C uIS tiNOT uACCEFTABLE');

comment A large tolerance was allowed for possible

differences in the solutions because of different

rounding off;

i
I
i

IL

L
L
i
i

L

I

i

f
L

t
L

‘i
L

I
c

i
L

B 4 := 0;

if MAX = MWX then

begin

B4 := 1;

outstring (1, ‘MAX uISuCORRECT")

end

else outstring (1, ‘MAXu IS uINCORRECT');

end EVALUATE;
s

comment Now come the statements of GRADER2 itself;

if ENTRY = 1 then TALLY := 0 else go to JUMP[TALLY];- - -

comment On the first call of GRADER2 by each student,

ENTRY is 1. On the later calls it is 2. This and

TALLY provide the mechanism for permitting different

entries to GRADER2 on different calls;

N :=_5;

SET UP (1, 5);

Ll: EVALUATE (1, 5);

Bl := B 3 ; E2 := B 4 ;

N := 4;

SET UP (2, 4);

L -ll-

!
i

f

i

i

f
L
:

L
!

i

IL

i
i
i

i
i

L

i
L

i

!
I
i

L2: EVALUATE (2,4);

comment Case 2 is now complete, and GRADER2 punches a

card for the "grade book!';

for K := STUDENT, 2, Bl, B2, B3, B4 do outinteger (2, K);

comment GRADER2 now summarizes the situation for the

student's line-printer listing;

outstring (1, ‘STUDENT'); outinteger (1, STUDENT);

outstring (1, ‘SCORES'); outinteger (1, Bl+B2+Bj+B&);

outstring (1, ‘OUTL~OF~~~ONUPROBLEMU~. ~L~IFuSCOREUISU

LESSuTlXAN~4, uPLEASE~SUBMIT~-IREVISED~PROGRAMLILATER.');

comment Now the program exits to the conclusion of the

student's solution;

go to FIN- -

end GRADER2;

comment Now follow the students' programs;

begin

comment Here, for example, is the program for student

number 515, with its calls on GRADER2;

real array A, B, C [0:25];- -

real S, MAX;

integer J, K, N;

GRADER2 (515, 1, N, MAX, A, B, C, START, FINISH);

START: for J := N+l step 1 until 25 do A[J] := B[J] := 0;

MAX := ACNI;

for K := N-l step -1 until 0 do

if MAX < A[K] then MAX := A[K];

-l2-

L
i

IL

i
t
I
L

for K := 0 step 1 until 2xN do

begin

s :=o;

for J := 0 step 1 until K do S := S + A[J]xB[K-J];- v

C[K] := S

end;

GRADER2 (515, 2, N, MAX, A, B, C, START, FINISH);

FINISH:

end program of student 515; I

begin

comment Program of another student . . . ;

end

i

end tests of all student programs

L
L

i

I
L

L

f
i

-13-

i

!
1
L
L
i
t

An advanced grader program

begin comment grader program for root-finding procedures;

procedure Test (Rootfinder, Name); procedure Rootfinder; string Name
;

begin real x; integer m, grade, time;

procedure P (low, up, eps, root, f, is root inter&ion limit
7 t

problem no);

value low, up, eps, root, is root, iteration limit, problem no;

real low, up9 eps, root, fe>

integer iteration limit, problem no;

Boolean is root;

begin real low 1, up 1, eps 1, root 1;

integer n, t; Boolean is root 1;

procedure Setime (n, L); integer n; label L; code;

procedure Reset (t); integer t; code;

procedure error (text, charge);

value charge; integer charge; string text*9

begin outstring (text); grade := grade - charge;

if grade < 0 then -- - -

begin outstring (‘grade = 0');

gos'rexit -

end

end error;

real procedure Q(y); value y; real y;

begin if y < low 1 V y > up 1 then- -

begin error (‘Argumentboutside -interval', 10);

Reset(t); QO -& P exit

-14.

t\ ’

I

I
i

i

IL

L
L
L
L
i
L
I
L
1
L
I
L
L
I
L

end;

n := n + 1; if n > iteration limit then

begin error (‘Convergence

Reset(t); go to P exit- -

end;

X := y; Q := f

Q;end

low1 := 10~; UP 1 := up; eps 1 :=

uis ~too~slaw ', 5) ;

eps; n := 0;

outstring (‘problem -no. ='); outreal (problem no);

Setime(lOO, fail);

Rootfinder (low 1, up 1, eps 1, &, root 1, is root 1);

Reset(t); time := time + t;

if

if

if

low 1 # 1~ Vup 1 # up then

error (‘boundamuwas ualtered', 3);

eps 1 # eps then

7 is root then

begin if is root- -

error (‘toleranceuwastialtered', 5);

1 then

error (‘solution:ufound Uwhereu none u exists', 5)

else beg-in outstring ('corrects reactionuforuno urootj);

m :=m-l-1

end .

end

else

begin real tol; to1 := abs (root - root 1);- -

if tol'> eps then error ('incorrect uroot?, 5)

,else begin outstring (‘correcturoot ufound'); m :* mtl

end; .

-15-

outstring (‘no.~ ofuiterations =.'); outreal (n);

end;

E to P exit;

fail: error (‘failure', 10);

P exit:

end P;

m := 0; grade := 100; time := 0; outstring (Name);

PC-2, 2, -6, -1, x+1, true,10 10, 1);

PC-1, 1, 6, -1, x+1, true,lo- 10, 2);

p(-1, 1, -6, 1, x-l, true,10 IO, 3);

p(2, 5, 10-6, 0, x-l, false, 10, 4);

H-2, 3@5, lo-5, 2, XT3 - x X 3 - 2-lo-20, true, 30, 5);

p(lo -3, 9909, 10 -5, 0.01, x + l/x - 100.01, true, 50, 6);

p(-19 2, 10-5, 0, sign(x), true, 30, 7);

p(-3, 10% 10 -4, 0, exp(-x) -1, true, 50, 8);

pub 2% 10 -4, 0.95, (x + 0.05) f OJ - 1, true, 30, 9);

P(0, 100, x C 1 then x-1 else lo-lO, true, 30, 10);

~(-2.4, 4.2, lo-4, 3, ((((x-3)x x+5) x x-15) x x+4) x x-12,

true, 50 , 11);

p(510 -3, 1, 5,,-3, 0~265, if x < 0.02122 then -1 else

if x > 0.03183 then l-else cos(l/x), true, 30, 3.2);
L

outstring (‘enduofutest. uNo. u of u correct- problems =');

outreal (m); outstring (‘time ='); outreal (time);

outstring ('grade ='); outreal (grade);

T exit:

end T;

-169

comment Subsequently follow the students' programs, each containing

a procedure declaration and a call of Test enclosed in a block;

begin

procedure Bisect (x0, xl, tol, func, result, is result);

real x0, xl, tol, result;

real procedure func;

Boolean is result;

beginOD...

00*0......0

‘t

i

i
i

i

,I
L

end Bisect;

Test (Bisect, ‘Tom~Jones~)

end;

.e.....

comment further students* programs follow here;

e..ee...e...

end Grader program

-17-

