
cs33

A PROGRAMMING  LANGUAGE FOR THE 360 COMPUTERS

BY

1 NIKLAUS WIRTH

TECHNICAL  REPORT CS33

DECEMBER 24, 1965

COMPUTER SC IENCE DEPARTMENT
School of Humanities  and Sciences

STANFORD  UN IVERS ITY

.



The ~~360 compiler on the I35500 computer.

The compiler is a syntax directed one pass compiler designed according

to the principles outlined in Technical Report CS20. The following rules

and restrictions apply to the version-of Dec. 1, 1965:

1. The length of the significant part of identifiers is 6 characters,

20 No real numbers and no strings are available.

3. Base regisfer assignment is fixed: Registers RA - RF are used as

base address registers and should therefore not be used within the

program.

4, Every program must be terminated by an @ character.

50 Composite basic symbols, such as begin, end, etc., are written as

BEGIN, END, etc., i.e., have the form of identifiers and may therefore

not be used as such. Note: goto is written as GOT0 without space

between GO and TO.

6" No blank spaces may occur within numbers and identifiers.

7" The compiler is on the USE tape and is called by the ALGOL statement

ZLP("-PL'~~o-", "MCP-USE")

8. The following function identifiers are defined in the compiler:

'LA, EX, CVB, CVD, STM, LM, MVI, MVC, TR, ED,

. IC, STC, SRDA, SRDL, SLDA, SLDL, SVC, SPM



A Programming Language for the 360 Computers

Table of Contents

Introduction .......................................... 1

1. Definitions, Notation .. ..e..................~ ......... 3

2. Basic Symbols ......................................... 5

39 Identifiers ........................................... 6

4. Quantities, Values, and Types ......................... .

. 4.1. Numbers ........................................ 8

4.2. Strings ooeoe0..9..0......e.e.e....e*..e......ae 9
--.

5* Declarations oeae.oa....a.........ee.,..*.......ee.e...  0 10

5A Variable Declarations . . ..0.**.oo..e.*.........e 10

5.2. Procedure Declarations . . ..*e*..O..............Oll

6. Variables and Primaries . . . . ..*........*.a............. 12

7, Simple Statements .oos.e........*e....p.*..............  1-3

7A Assignment Statements . . . . . . . ..a......e..*...... 13

7.2. Branch Statements ..e..e.....e...,...............  1-3

7.3 0 Blocks 0.ODOOOD*.*...0**.~0~~~~.~.~~.~~.~~~~.*~~  16

7.4. Procedure Statements .e.e*.eo........D..*.e..e..~  18

'7-50 Function Statements .0..0e...0*.*...00...*..*..0 18

: 8, Statements . ..o.ee............a.....e.e*...e.........e. 20

801. If Statements ..~000*~00...Q.~..D..~..*.*~..~*.~ 20

8.2. Case Statements
a

*0*0.e.e..e...c.*0..e.~e.....¶.~.. 21

8.3. Iterative Statements 0ee..0..0.e.*.....e..o*.eo. 22



A Programming Language for the 360 Computers*

bY

Niklaus-Wirth

Introduction

This paper is a preliminary definition of a programming language

which is specifically designed for use on IBM 360 computers, and is

therefore appropriately called ~~360.

The intention is to present a programming tool which (a) closely

reflects the particular structure of the 360 computer, and b) is a

superior notation to present Assembly Codes with respect to presentation

and documentation of algorithms. As a consequence of (a), it enables

a programmer to design programs mentioning explicitly features of this

machine in a degree impossible in "higher level" languages.

It is also felt that a highly structured language is most appro-

priate (a) to promote the intelligibility of texts for the human user

and (b) to encourage this user to properly structure his algorithms

not on paper only, but in his mind as well. The language is therefore

a phrase structure language containing many constructions which quite

: obviously correspond to a single 360 machine instruction (cf. cl]).

Moreover, it is hoped that through certain conventions (not men-

tioned in this preliminary paper) concerning the use of general registers

as base address registers , programs written in ~~360 can be efficiently

run under a time-sharing monitor without requiring the presence of ad-

ditional sophisticated relocation hardware (Model 67).

y This work was partially supported by the National Science Foundation
(GP 4053) and the Computation Center of Stanford University.,



Presently, a compiler for ~~360 is available on the B5500 computer.

This compiler is mainly intended to serve as a temporary tool for a boot-

strapping process: The compiler is being rewritten in its own language

and then becomes automatically available on the 360 computer. Indeed,

the primary purpose of this project is to obtain a convenient tool for

the development of other compilers (in particular ALGOL X) and monitor

systems, where a considerable degree of machine-orientation and -dependence

is desirable, 'but where an adequate standard of program documentation is

of no less importance.

Reference:

[l] IBM System/360  Principles of operation. IBM Systems Reference
Library, ~22-6821-1.

2



1, Definitions, Notation

The structure of the language ~~360 is defined by a phrase structure

system. Its productions have the general form

(A> : := x1 x2 l * *I I I xn

which is an abbreviation for the set of productions

(A) ::= xl

(A) ::= x
2

. . .

--. (A) ::= x
n

and where (A) is a single nonterminal symbol, and x.
1

is a string

of terminal and nonterminal symbols.

Terminal symbols of the phrase structure system are either so-called

basic symbols or character strings. Basic symbols may consist of one or

more characters, i.e., typographical entities of a lower order than basic

symbols; the set of characters and the decompositions of basic symbols

into characters are not defined here, and may depend on the hardware

available to a particular implementation. Character strings are se-

quences of characters delineated by string quotes.

. The set of basic symbols is defined in section 2.

Nonterminal symbols, sometimes also called "syntactic entities",

are denoted by letter strings enclosed by the brackets ( and > e

In addition to these letter strings, the script letters r, 2(, and v

may occur; a production containing one or more of these letters stands

for the set of productions in each of which this letter has been replaced

by a terminal word produced from this letter according to the following

syntax:
3



'If ::= ulbyte

u ::= integerllong integerlrealllong  real

jr::= generallfloatinglfloating double
-.

If the same letter occurs more than once in the production, then all

occurrences of the letter have to be replaced by the same terminal word.

Example:

The production

(v variable) ::= (vvariable identifier)

(cf, section 6) stands for the five productions--.

(integer variable) ::= (integer variable identifier)

(long integer variable) ::= (long integer variable identifier)

(real variable) ::- (real variable identifier)

(long real variable) ::= (long real variable identifier)

(byte variable) ::= (byte variable identifier)

In order to provide explanations for the meaning (semantics) of ~~360

texts, the letter sequences denoting syntactic entities (nonterminal

symbols) have been chosen to be English words describing approximately

the nature of that entity. Where words which have appeared in this

manner are used elsewhere in the text, they refer to the corresponding

syntactic definition.

Definition: A sequence of basic symbols (and character strings) is a

~~360 program, if and only if it can be produced from the symbol

(block) by the productions listed in sections 3-8, and a meaning can

be attributed to it by the accompanying semantic explanations.



2. Basic Svmbols

&44dl4fldhl’I *I I I I I I I I I I I I I I I I I1Jklmnop~qrstuvwxyz

01~12l314l5l6l718191

+I-l*l/landlorlxorlshllshr(shlllshrlI- - - - - - -

<~~~=~~~~~~~:=~ne~~abs~

goto~if~then~else~while~do(for&g&nt~l~case~of~m-p - - - - - -

b@bN)l ,I*l;l:l
integerIreallbyteIlon@;IarrayIprocedureI

overflowl#l-



3. Identifiers

3.1. Syntax

(letter) ::= AbkbblFbbbl JIKIL~MINlolPlQl~ls~T~U~V~W~X~Y~Z~

~I~l~l~l~l~l~l~l~~~l~l~l m n o p q r s t u v w x y zI I I I I I I I I I I I I
(identifier) ::= (letter)l(identifier)(letter)(  (identifier)(digit)

(v identifier) ::= (identifier)

(gregister) ::= (identifier)

(procedure identifier) ::= (identifier)

(function identifier) ::= (identifier)

--.
3.2. Semantics

Identifiers have no inherent meaning, but serve for the identification

of registers, variables, procedures and labels. They may be chosen

freely, with the exception of

RO,Rl,R2,R3,R~,R5,R6,~,R8,R9,RA,RB,RC,RD,RE,RF

which designate the 16 general registers, and

FO,F2,F4,F6,FOl,F23,Fk5,F67

which designate the floating- and floating double registers respectively.

Every identifier in a program must be defined. If it designates

a register, definition is implied; if it designates a variable or a

procedure, then this occurs through appropriate declarations (cf. sec-

tion 5), or if it designates a label, then it occurs through a label

definition (cf. 7.3.).

The applicability of the rules given in the syntax (cf. 3.1.) de-

pends upon the definition of the identifier under consideration as

follows:



f

(a) If the identifier is Rn, where n is either 0,1,2,..., 9,

A9...) F, it designates the n'th general register (the letters

A . . . F have to be understood as numbers in hexadecimal notation,

i.e., 10 . . . 15). Otherwise,

(b) if the identifier is Fn, where n = 0,2,4, or 6, then it

designates the n'th floating register. Otherwise,

(c) if the identifier is Fnm, where n = 0,2,4, or 6, and m = n+l,

then it designates the n'th floating double register. Otherwise,

(d) if the identifier has been defined in a p variable declaration

in the smallest block embracing the given occurrence, then it

identifies that v variable and is said to be a vvariable iden-

tifier; otherwise, if it has been defined in a procedure heading

in that block, then it identifies that procedure and is said to be

a procedure identifier; otherwise, the rules

considering the smallest block embracing the

block, if there exists one. Otherwise,

under (d) are applied

previously considered

(e) if the identifier occurs in the listing of function identifiers

(cf. 7.5.), then it identifies that function.

3.3. Examples:

. P

cat

RO

7



4. Quantities, values, and types.

The following kinds of quantities are distinguished: registers,

variables, and constants. Every quantity is said to possess a value.
. .

The value of a constant is determined by its denotation. (cf. 4.l.v4.2.).

The value of a register or a variable is the one most recently assigned

to it. Every value is said to be of a certain type. The following types

are distinguished:

integer , long integer : the value is an integer,

real , long real : the value is a real number,

byte *. the value is a character.

In the computer, every value is represented by a number of binary digits

in a suitably encoded manner (cf. [l]). The number of bits used in the

representation of the different types of values is given as follows:

integer 16 (half word)

i n t e g e rlmq 32 (wofi >
real 32 (word)

r e a llong 64 (double word)

byte 8 ibyte >

Subsequently, the denotation of constants is defined.

4.1. Numbers

* 4.1.1. syntax

{digit) ::= 0'111213141516171819

(unsigned integer) ::= (digit) 1 (unsigned integer)(digit)

(decimal integer) ::= (unsigned integer)1 _ (unsigned integer)

(hexadecimal digit) ::= (digit)lAlB(CIDIEIF

(hexadecimal integer) ::= #(hexadecimal digit)(

(hexadecimal integer)(hexadecim.al  digit)

8



(integer number) ::= (decimal integer)((hexadecimal  integer)

(fraction) ::= . (unsigned integer)

(unscaled real) ::= (unsigned integer)(fraction)l(fraction)

(scale factor 1) : := E(decima1  integer)

(unsigned real) ::= (unscaled real)\{unscaled real)(scale factor l)I

(unsigned integer)(scale factor 1)

(real number) ::= (unsigned real)1 _ (unsigned real)

(scale factor 2) ::= D(decima1  integer)

(long unsigned real) ::= (unscaled real)(( unscaled real)(scale factor 2)l

(unsigned integer)(scale factor 2)

(long real-number) ::= (long unsigned real)\ (long unsigned real)

4.1.2. Semantics

Integers have either decimal or hexadecimal notation. Real and

long real numbers use decimal notation only. _ denotes a monadic minus

sign. The scale factor is expressed as an integral power of 10.

4.1.3. Examples:
*

0 lE8

1066 5.3786128goomo

3.1416 #?AB3

4.2. Strings

4.2.1. syntax

(string) ::= (sequence $of characters enclosed by string quotes)

9



5. Declarations

5.1. Variable Declarations

5.1.1. Syntax

(0 simple type) ::= integerllonq  integerlrealllong  reallbyte

(Wty-pe) ::= (U simple type>1

array ((unsigned integer)) (u simple type)

('lj variable declaration) ::= (7)type)(identifier)I

('0 variable declaration) , (identifier)1

@variable declaration) (('Unumber))

('!?variable  declaration)((string))

5.1.2. Semant3cs

A variable declaration associates an identifier and a type with

one or several quantities. If the type of the declaration is a simple

type, then one quantity is declared, otherwise the unsigned integer

between parentheses following the symbol array indicates the number of

declared quantities of the specified simple type. The individual quan-

tities can then be identified by subscripts (cf. 6.2.). The ensemble

of the quantities is called an array. If a declaration is followed by

one or several parenthesized numbers, then this implies that the de-

clared quantity be initialized with the given number(s). The type of

. these numbers must be identical to the type of the declaration, This

initial assignment of values is understood to take place only upon the

first time the block in which the declaration occurs is entered.

10



5.1.3. Examples:

integer i,j

long integer m,n,q

real x,y

long real z,w

integer i(1)

array (100) integer

array (5) integer I

a

(21)(0)(8)(17)(3’9)

5.2. , Procedure Declarations

5.2.1. Syntax'

(procedure heading) ::= procedure (identifier) ((general register));

(procedure declaration) ::= (procedure heading)(statement)

5.2.2. Semantics

Execution of the statement following a procedure heading is invoked

by procedure statements (cf. 7.4.). The procedure identifier defined by

the procedure heading is assumed to be unknown within the procedure

declaration. Moreover, the value of the register designated in the pro-

cedure heading must not be altered during the execution of the statement

: following the procedure heading.

5a2.3. Examples

procedure P (RO); Rl := Rl+x

procedure swap02 (RF);

begin long real t; t := FOl; FOl := F23; F23 := t; end

11



6. Variables and Primaries

6.1. syntax

(u variable) ::= (ZTvariable identifier)1

(Wvariable identifier) ((unsigned integer))

(vvariable identifier) ((general register))

(Uprimary) ::= ('Uvariable)l(U number)

6.2. Semantics

(vvariable)  designates a declared quantity of type v. If the

variable identifier is followed by an unsigned integer or a general
--.

register within parentheses, called a subscript, then the identifier

must designate an array, and the integer or the current value of the

register identify the individual element of the array. The subscript

values designating the elements must be

(a) positive multiples of 2, if the array is of type integer,

(b) positive multiples of 4, if the array is of type long integer

or real,

(c) positive multiples of 8, if the array is of type long real,

(d) positive integers, if the array is of type byte.

The first element of any array is designated by a subscript value 0.

. Register RO must not be used as a subscript. The values of variables

may be changed by means of assignment statements (cf. 7.1.).

A primary denotes a quantity, either a variable, or a constant.

6.3. Examples:

Variables: i

I(3)

4R5)

12



70 Simple Statements

Syntax

(simple statement) ::= (assignment statement)1 (branch statement)1

(block)1 (procedure statement)l(&nction statement)

7.L Assignment Statements

7 .l.l. Syntax

(simple Y register assignment) ::= (Yregister)  := (ILprimary)I

(Tregister) := (39egister)) (Cegister) := neg (Fregister

(Fregister) := abs (fregister)

(arithmet& operator) ::= +~-~*~/~++~--

{logical operator) ::= andlor)xorPm-

(shift operator) ::= shllshrlshlllshrlP-P-

(Tregister assignment) ::= (simple T register assignment)1

(T register assignment)(arithmetic operator)(Uprimary)I

(g register assignment)(arithmetic operator)($register)I

(general register assignment) : :=

(general register assignment)(logical operator)(long integer primary)1

(general register assignment)(logical  operator)(general  register)1

(general register assignment)(shift operator)(unsigned  integer)/

(general register assignment)(shift operator)(general  register)

(variable assignment) ::= (Uvariable)  := @@register)

(assignment statement) ::= (rregister assignment)l(variable assignment)

7.1.2. Semantics

Execution of an assignment statement causes a new value to be assigned

to the quantity designated on the left of the assignment operator (:=)e

13



In the case of a simple register assignment, this value is the current

value of a primary, a register, or the negative or the absolute value of

a register. The types ?L of primaries which may be assigned to a register
. .

of type 9' are marked in the following Table 1:

Table 1

The arithmetic, logical and shift operators +, -:, *, /, ++, --, and,

or, xor (exclusive or), shl, shr (shift left/right), shll, shrl (shift- - - -

left/right logical) designate operations which are described in detail

in Reference [l]. The operators ++ and -- designate unnormalized

addition and subtraction if applied to floating registers, "logical'

. addition/subtraction if applied to general registers (cf. also cl]).

Execution of a register assignment containing one of the arithmetic

or logical operators causes the designated operation to be performed on

two operands and the result to be assigned to the first operand. The

first operand is the register which occurs to the left of the assign-

ment operator, and the second operand is the primary or register fol-

lowing the operator. In the case of a (unary) shifting operation, the

operand is the designated first operand, and the number of bit positions

it has to be shifted is determined either by the number, or by the current

14



value of the general register following the shift operator.

The types of a register (n and of a primary (71) which may si-

multaneously be operands of an arithmetic operator are defined in the
-.

following Table 2 (the type of a register assignment is said to be the

type of the register occurring to the left of its assignment operator):

Table 2

Note (1): The combination of general register and integer primary is only

permissible in the connection with the operators +, -, and * .

Execution of a variable assignment causes the current value of the

designated register to be assigned to a variable. The types of the

a variable (U) to which the value of a register of type s' may be

assigned, are designated in Table 1.

7.L3. Examples

Register assignments:

Rl := R3

Rl := 5
RF := i+j-m+a(Rl)

R9 := R9 and RlO shll 8 or Rl- -
- F2 := B + 3.1416

FOl := z%?+w

15



Variable assignments:

i := RO

X := Fo

W := IF23

a(R1) := RF -a

7.2. Branch Statements

j;2,1. Syntax

(branch statement) ::= poto (identifier)

7.2.2. Semantics

A branching statement determinesthat  execution of the program be

continued at the place of the definition of the identifier foliowing

the symbol poto . This definition  is identified by the following rules:

(1) If some label definition  (cf. 7.3 .) within the smallest block

embracing the branch statement contains that identifier, then this

label definition designates the place where execution has to be

continued. Otherwise,

(2) Rule (1) is applied considering  the smallest block embracing the

previously  considered block.

I 7.3. Blocks

7.3.1. syntax

(block heading) ::= begin)(block heading)&variable  declaration);(

(block heading)(procedure  declaration);

(label definition) i:= (identifier):

(block body) ::= (block heading)1 (block heading)(statement);l

(block heading)(label definition)(statement);

(block) ::= (block body) endl(blo'tlk bodyi)(Babel  definition) end

16



f

7.3.2, Semantics

A block introduces a new level of nomenclature: identifiers defined

in variable declarations or procedure headings in the block heading or

in label definitions in the block body are said to be local to that

block.

Execution of a block begins with the execution of the first statement

following the block heading. Upon termination of the execution of a

statement, the next statement in textual sequence is executed (except

in the case of a goto statement).

--.

7 -3 03 0 Examples

Innerproduct program with summation in double precision:

begin long real s; array (100) real x, y;

FOl := ODO;

for Rl := 0 step 4 until 396 do

begin F23 := x(R1) * y(R1); FOl := FOl + F23;

end;

S := FOl

end

Bubble sorting program:

begin array (100) real a;

for Rl := 396 step -4 until 0 do- H

begin R5 := Rl - 4;

for R2 := 0 step 4 until R5 do

beginR 6 :== R2+4; FO := a(R2); F2 := a(R6);

if FO > F6 then

begin a(R2) := F2; a(R6) := FO;

end;

end;

end;

end

17



7.40 Procedure Statements

7.4.1. syntax

(procedure statement) ::= (procedure identifier)
. .

7.4.2. Semantics

Execution of a procedure statement consists of the execution of the

statement which, together with the procedure heading in which the pro-

cedure identifier is defined, consititutes  a procedure declaration

(cf, 5.2.). The value of the general register specified in that proce-

dure heading is altered by the procedure statement.
--_

L5. Functions

7.501. Syntax

{function) ::= (function identifier)]

(function) ((integer number))1 (function)((T register))1

(function) (@'variable))

7e5.20 Semantics

The instruction set of the system/360 processor contains instructions

which cannot be expressed by any of the statements of this language

(except the function statement). In order that the language be able to

express the individual functions corresponding to these instructions in

one single simple statement, the function statement is introduced. The

individual instructions falling into this class are listed below, They '

are described in Reference [l].

18



Fixed or Floating Point Arithmetic:

Load Negative

Load and Test

Halve

Convert to Binary

Convert to Decimal

Load Multiple

Store Multiple

Logical and Branching:

Compare

Load Address

Insert Character

Store Character

Furthermore, all instructions with SI and SS format belong to this

category, as well as all status switching instructions.

The parameters of the function statement correspond in the order from
--.

left to right to the operand fields of an instruction.

It is suggested that the mnemonic instruction codes as defined in [l]

be used as function identifiers.

7*5.3* Examples:

svc(0) SPM(R5 >

IC(RO)(A(Rl)) CVB(RF)(N)

EX(O)(instruction) SLDL(R4)(16)

MVI&U?)(code)

19



8. Statements

syntax

(statement) ::= (simple statement)1  (if statement)1

(case statement)1 (iterative statement)

8.1. If Statements

8.1.1. syntax:

(relational operator) ::= <~C~=~+~>

(condition) ::= (r register){ 1 tre a ional operator)(Uprimary))

(s7 register)(relational  operator)($register))overflow

(if clause) ::= if (condition) then

(true part) ::= (simple Ftatement)  else

(if statement) ::= (if clause)(statement)l

(if clause)(true  part)(statement)

8.1.2. Semantics:

A condition is said to be met, if the relation indicated by the

relational operator holds between the two operands. The types r and

u of the operands which may simultaneously be operands of relational

operators are defined in Table 2 of section 7.1.2.

. The symbol overflow designates a condition which may be met after

the occurrence of a result of arithmetic operations which cannot be

accepted by the computer.

The if statement expresses that execution of certain statements be

dependent on certain conditions. In the construction

(if clause)(statement)

20



the statement is executed only if the condition contained in the if clause

is met. In the construction

(if clause)(true  part)(statement)

the simple statement of the true part is executed and the statement

following the true part is skipped, if the condition specified by the

if clause is met. Otherwise, the true part is skipped, and the state-

ment following it is executed.

8.1.3. Examples

if RO > 5 then goto L

if FO < FT. then FO := FO + 1.5

if RA = RB then RO := RO or Rl e&se RO := RO and Rl

if RO = 1 then FOl := w+z e,lse

if RO = 3 then F4 := x+y else got0 L

8.2. Case Statements

8.2.1. Syntax

(case clause) ::= case (general register) of

(case sequence) ::= (case clause) begin1 (case sequence)(statement);

(case statement, ::= (case sequence) end

: 8.2.2. Semantics

Execution of the case statement

case (register-k) of

begin {statement-l); . . . ; (statement-i); . . . ; (statement-n); end

consists of the execution of the i-th statement in the case sequence,

where i is the current value of the general register specified by the

21



case clause. This value is supposed to be the ordinal number of some

statement in the case sequence. The general register of the case clause

must not be RO, and its value becomes undefined through the execution
. .

of the case statement.

8.2.3, Example:

begin RO := 100; F2 := x; P; goto L; end

8.3. Iterative Statements

8.3.1. Syntax
--.

(while clause) ::= while (condition) do

(step until) ::= stepcinteger  number) until (general register)!

step (integer number) until (integer primary)

(for clause) ::= for (general register assignment)(step until) do

(iterative statement-) ::= (while clause)(statement)l

(for clause)(statement)

8.3.2. Semantics

a. An iterative statement of the form

while (condition) do (statement)

is equivalent to

L: g (condition) then begin (statement); goto L; end

b. An iterative statement of the form

for (general register) := (initial value) step (increment)

until (limit)

is equivalent to

?2



K:

L:

(general register) := (initial value);

if (general register)

7-t t

1 (limit) then goto, L;

s a ement);

(general register) := (general register) + (increment);
-.

goto K;

The > sign applies, if (increment) is a positive integer, <

applies, if it is a negative integer.

8.303a Examples

while Rl 1 a(R1) Rl := Rl + 1;

for Rl := 0 step 4 until n RO := RO + a(R1);

for m :e 1 step 1 until k do- m
begin R2 := Rl/RB; Rl := Rl - 1;

end

23




