EULER : A GENERALIZATION OF ALGOL, AND ITS FORMAL DEFINITION

BY
NIKLAUSWIRTH and HELMUT WEBER

TECHNICAL REPORT CS20
APRIL 27, 1965

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences

STANFORD UN IVERS ITY

\mid

Technical Report 20

EULER: A Generalization of ALGOL, and its Formal Definition
ERRATA et ADDENDA

```
p.4, \ell4 : replace "systemizing" by "systematizing" .
    \ell21: replace "in [8]" by "here" .
p.5, \ell6 : "standard" should read "fixed" .
p.6, \ell14: underline "productive" .
    \ell16: underline "reductive" .
p.10, \ell21: replace curly braces {} by parentheses ( ).
p.Il, 110: dito
    \ellll: dito
    \elll8: add the following sentence:
    (as an alternative notation for cx we will use x.)
p.13, \ell3 : replace {,} by (,) respectively .
P-15, \ellll: after "U }->\textrm{x}\mathrm{ " insert "where" .
    \ell14: insert a space after the first z; ...z (y }->\mathrm{ z)....
    \ell17: dito
p.16, \ell2 : underline the word "sentence" .
    \ell4 : underline "simple phrase structure language" .
p.26, \ell9 : the third symbol to the right of the vertical line should be
                instead of "'" .
p.37, \ell17: change "ennumerate" into "enumerate" .
P.38, l31: underline the letter V .
    \ell34: (bottom line) dito.
p.41 : the horizontal line should be between IDENT and DIGIT instead
                                of between DIGIT and NUMBER.
p-48, \ell23: "a[l]" instead of "a[i]".
```

$$
\mid
$$

```
p.52, \ell22: "will" instead of "would" .
p.63, #4, l6 : add a semicolon (;) to the right.
    \ell8 : dito, also underline label
    \ellll: add a semicolon to the right.
p.64, #37, l2 : "P[V[j][2]\leftarrowk + l" should be "P[V[j][2]]\leftarrowk + 1" .
p.65, #50
    : "isn var" should be "isb var"
p.65, #57 : change the two occurrences of "isn" into "isu".
p.67, #114 : change "blockhead" into "blokhead"
p.70, l6 : change the colon at the right into a semicolon.
    \ell13: add the symbol "\uparrow" underneath mod .
P-71, ll2: "At i - i - l" should be "A: i \leftarrowi-1".
p.72, <4 : change "string" into "symbol".
    \ell29: add a semicolon at the right.
p.73, l14: dito
P-75, l4 : insert a semicolon in front of "x\leftarrows[l]".
p.77, l25: change "is a number" into "is not a number".
P-91, \ell22: "RESUTS" should read "RESULTS".
p-981 l17: change "13" at the left into "28".
p.110, l17: add to the right: "S[SP].ADR \leftarrowFP; COMMENT A NULL LIST;"
```


EULER : A Generalization of ALGOL, and its Formal Definition* by
 Niklaus Wirth and Helmut Weber

Abstract

: A method for defining programming languages is developed which introduces a rigorous relationship between structure and meaning. The structure of a language is defined by a phrase structure syntax, the meaning in terms of the effects which the execution of a sequence of interpretation rules exerts upon a fixed set of variables, called the Environment. There exists a one-to-one correspondence between syntactic rules and interpretation rules, and the sequence of executed interpretation rules is determined by the sequence of corresponding syntactic reductions which constitute a parse. The individual interpretation rules are explained in terms of an elementary and obvious algorithmic notation. A constructive method for evaluating a text is provided, and for certain decidable classes of languages their unambiguity is proven. As an example, a generalization of ALGOL is described in full detail to demonstrate that concepts like block-structure, procedures, parameters etc. can be defined adequately and precisely by this method.

*/ This work was partially supported by the National Science Foundation (GP 4053) and the Computation Center of Stanford University.

Abstract

It is the character of mathematics of modern times that through our language of signs and nomenclature we possess a tool whereby the most complicated arguments are reduced to a certain mechanism. Science has thereby gained infinitely, but in beauty and solidity, as the business is usually carried on, has lost so much. How often that tool is applied only mechanically, although the authorization for it in most cases implied certain silent hypotheses! I demand that in all use of calculation, in all uses of concepts, one is to remain always conscious of the original conditions.

Gauss
(in a letter to Schumacher, Sept. 1, 1850)
-
I. Introduction and Summary. 1
II. An Elementary Notation for Algorithms 9
III. Phrase Structure Programming Languages 15
A. Notation, Terminology, Basic Definitions 15
B. Precedence Phrase Structure Systems 18

1. The Parsing Algorithm for Simple Precedence Phrase Structure Langtages. 18
2. The Algorithm to Determine the
Precedence Relations. 21
3. Examples 24
4. The Uniqueness of a Parse 26
5. Precedence Functions 27
6. Higher Order Precedence Syntax. 29
C. An Example of a Simple Precedence , Phrase Structure Programming Language 35
IV. EULER: An Extension and Generalization of ALGOL 60 43
A. An Informal Description of EULER. 43
7. Variables and Constants 43
8. Expressions 50
9. Statements and Blocks 53
10. Declarations. 54
B. The Formal Definition of EULER. 56
C. Examples of Programs 75
References 81
Appendix I 83
Appendix II 92

When devising a new programming language, one inevitably becomes confronted with the question of how to define it. The necessity of a formal definitiun is twofold: the users of this language need to know its precise meaning, and also need to be assured that the automatic processing systems, i.e. the implementations of the language on computers, reflect this same meaning equally precisely. ALGOL 60 represented the first serious effort to give a formal definition of a programming language [l]. The structure of the language was defined in a formal and concise way (which, however, was not in all cases unambiguous), such that for every string of symbols it can be determined whether it belongs to the language ALGOL 60 or not. The meaning of the sentences, i.e. their effect on the computational process, was defined in terms of ordinary English with its unavoidable lack of precision. But probably the greater deficiency than certain known imprecise definitions was the incompleteness of the specifications. By this no reference is made to certain intentional omissions (like specification of real arithmetic), but to situations and constructs which simply were not anticipated and therefore not explained (e.g. dynamic own arrays or conflicts of names upon procedure calls). A method for defining a language should therefore be found which guarantees that no unintentional omissions may occur.

How should meaning be defined? It can only be explained in terms of another language which is already well understood. The method of formally deriving the meaning of one language from another makes sense, if and only if the latter is simpler in structure than the former. By a sequence of such derivations a language will ultimately be reached where it would not
be sensible to define it in terms of anything else. Recent efforts have been conducted with this principle in mind.

Böhm [3] and Landin [4][5] have chosen the h-calculus as the fundamental notation [6],[7], whose basic element is the function, i.e. a wellestablished concept. The motivation for representing a program in functional form is to avoid a commitment to a detailed sequence of basic steps representing the algorithm, and instead to define the meaning or effect of a program by the equivalence class of algorithms represented by the indicated function. Whether it is worth while to achieve such an abstract definition of meaning in the case of programming languages shall not be discussed here. The fact that a program consists basically of single steps remains, and it cannot even be hidden by a transliteration into a functional notation: the sequence is represented by the evaluations of nests of functions and their parameters. An unpleasant side-effect of this translation of ordinary programming languages into h-calculus is that simple computer concepts such as assignment and jumps transform into quite complicated constructs, this being in obvious conflict with the stated requirement that the fundamental notation should be simple.

Van Wijingaarden describes in [8] and [9] a more dynamic approach to the problem: the fundamental notation is governed by only half a dozen rules which are obvious. It is in fact so simple that it is far from being a useful programming notation whatsoever, but just capable enough to provide for the mechanism of accepting additional rules and thus expanding into any desirable programming system. This method of defining the meaning
(or, since the meaning is imperative: effect) of a language is clearly distinct from the method using functional notations, in that it explicitly makes use of algorithmic action, and thus guarantees that an evaluating algorithm exists for any sentence of the language. The essence of this algorithm consists of first scanning the ordered set of rules defining the structure of the language, and determining the applicable structural designations, i.e. performing an 'applicability scan", and then scanning the set of rules for evaluating the determined structural units, i.e. performing an ${ }^{6}$ evaluation scan'. The rules are such that they may invoke application of other rules or even themselves. The entire mechanism is highly recursive and the question remains, whether a basically subtle and intricate concept such as recursion should be used to explain other programming languages, including possibly very simple ones.

The methods described so far have in common that their basic set of fundamental semantic entities does not resemble the elementary operations performed by any computational device presently known. Since the chief aim of programming languages is their use as communication media with computers, it would seem only natural to use a basic set of semantic definitions closely reflecting the computer's elementary operators. The invaluable advantage of such an approach is that the language definition is itself a processing system and that implementations of the language on actual machines are merely adaptations to particular environmental conditions of the language definition itself. The question of correctness of an implementation will no longer be undecidable or controversial, but can be directly based on the correctness of the individual substitutions of the elementary semantic units by the elementary machine operations.

It has elsewhere been proposed (e.g. [10]) to let the processing systems themselves be the definition of the language. Considering the complexity of known compiler-systems this seems to be an unreasonable suggestion, but if it is understood as a call for systemizing such processing systems and representing them in a notation independent from any particular computer, then the suggestion appears in a different light.

The present paper reports on efforts undertaken in this direction. It seems obvious that the definition of the structure, i.e. the syntax, and the definition of the meaning should be interconnected, since structural orderings are merely an aid for understanding a sentence. In the presented proposal the analysis of a sentence proceeds in parallel with its evaluation: whenever a structural unit is discovered, a corresponding interpretation rule is found and obeyed. The syntactic aspects are defined - by a Phrase Structure System (cf. [ll], [12], [2]) which is augmented by the set of interpretation rules defining the semantic aspects. Such an augmented Phrase Structure Language is subsequently called a Phrase Structure Programming Language, implying that its meaning is strictly imperative and can thus be expressed in terms of a basic algorithmic notation whose constituents are, e.g., the fundamental operations of a computer.

Although in [8] the processes of syntactic analysis and semantic evaluation are more clearly separated, the analogies to the van Wijngaarden proposal are apparent. The parsing corresponds to the applicability scan, the execution of an interpretation rule to the evaluation scan. However, this proposal advocates the strict separation between the rules which define the language, i.e. its analysis and evaluation mechanisms, and the
rules produced by the particular program under evaluation, while the van Wijngaarden proposal does not distinguish between language definition and program. Whether the elimination of this distinction which enables-and forces --the programmer to supply his own language defining rules, is desirable or not must be left unanswered here. The original aim of this contribution being the development of a proposal for a standard language, it would have been meaningless to eliminate it.

Chapter II contains the descriptions of an algorithmic notation donsidered intuitively obvious enough not to necessitate further explanation in terms of more primitive concepts. This notation will subsequently be used for the definition of algorithms and interpretation rules, thus playing a similar role for the semantic aspects as did BNF for the syntactic aspects of ALGOL 60. The function of this notation is twofold: 1. It serves to precisely describe the analysis and evaluation mechanisms, and 2. It serves to define the basic constituents of the higher level language. E.g., this basic notation contains the elementary operators for arithmetic, and therefore the specifications of the higher level language defer their definition to the basic algorithmic notation. It is in fact assumed that the definition of integer arithmetic is below the level of what a programming language designer is concerned with, while real arithmetic shall very intentionally not be defined at all in a language standard. The concepts which are missing in the basic notation and thus will have to be defined by the evaluation mechanisms are manifold: the sequencing of operations and operands in expressions, the storage allocation, the block structure, procedure structure, recursivity, value- and name-parameters, etc.

Chapter III starts out with a list of basic formal definitions leading to the terms 'Phrase Structure System' , 'Phrase Structure Programming Language' and 'Meaning' . The notation and terminology of [12] is adopted here as far as possible. The fact that the nature of meaning of a programming language is imperative, allows the meaning of a sentence to be explained in terms of the changes which are affected on a certain set of variables by obeying the sentence. This set of variables is called the Environment of the Programming Language. The definition of the meaning with the aid of the structure, and the definition of the evaluation algorithm in terms of structural analysis of a sentence demand that emphasis be put on the development of a constructive algorithm for a syntactic analysis. Chapter III is mainly devoted to this topic. It could have been entirely avoided, had a reductive instead of a productive definition of the syntax been chosen. By a productive syntactic definition is meant a set of rules illustrating the various constructs which can be generated by a given syntactic entity. By a reductive syntactic definition is meant a set of rules directly illustrating the reductions which apply to a given sentence. A reductive syntax therefore directly describes the analyser, and recently some compilers have been constructed directly relying on a reductive syntactic description of the language. [13]. A language definition, however, is not primarily directed toward the reader (human or artificial), but toward the writer or creative user. His aim is to construct sentences to express certain concepts or ideas. The productive definition allows him to derive directly structural entities which conform to his concepts. In short, his use of the language is primarily synthetic and not analytic in nature. The reader then must apply an analytic process, which
in turn one should be able to specify given the productive syntactic definitions. One might call this a transformation of a productive into a reductive form, a synthetic into an analytic form.

The transformation method derived subsequently is largely based on earlier work by R. W. Floyd described in [14]. The grammars to which this transformation applies are called Precedence Grammars. The term 'Precedence Syntax' is, however, redefined, because the class of precedence grammars described in [14] was considered to be too restrictive, and even unnecessarily so. In particular, there is no need to define the class of precedence grammars as a subclass of the 'Operator grammars' . Several classes of precedence grammars are defined here, the order of a precedence grammar being determined by the amount of context the analysis has to recognize and memorize in order to make decisions. This classification relates to the definition of 'Structural Connectedness' described in [15], and provides a means to effectively determine the amount of connectedness for a given grammar.

Also in Chapter III, an algorithm is described which decides whether a given grammar is a precedence grammar, and if so, performs the desired transformation into data representing the reductive form of the grammar.

A proof is then provided of the unambiguity of precedence grammars, in the sense that the sequence of syntactic reductions applied to a sentence is unique for every sentence in the language. Because the sequence of interpretation rules to be obeyed is determined by the sequence of syntactic reductions, this uniqueness also guarantees the unambiguity of meaning, a crucial property for a programming language. Furthermore, the fact that all possible reductions are described exhaustively by the syntax,
and that to every syntactic rule there exists a corresponding interpretation (semantic) rule, guarantees that the definition of meaning is exhaustive. In other words, every sentence has one and only one meaning, which is well defined, if the sentence belongs to the language. Chapter III ends with a short example: The formal definition of a simple programming language containing expressions, assignment statements, declarations and blockstructure.

A formal definition of an extension and generalization of ALGOL 60 is presented in Chapter IV. It will demonstrate that the described methods are powerful enough to define adequately and concisely all features of a programming language of the scope of ALGOL 60. This generalization is
a further development of earlier work presented in [16].
II. An Elementary Notation for Algorithms.

This notation will in subsequent chapters be used as basis for the definitions of the meaning of more complicated programming languages.

A program is a sequence of imperative statements. In the following paragraphs the forms of a statement written in this elementary notation are defined and rules are given which explain its meaning. There exist two different kinds of statements:
A. the Assignment Statement, and
B. the Branching Statement.

The Assignment Statement serves to assign a new value to a variable whose old value is thereby lost. The successor of an Assignment Statement is the next statement in the sequence. The.Branching Statement serves to designate a successor explicitly. Statements may for this purpose be labelled.
A. The Assignment Statement

The (direct) Assignment Statement is of the form

$$
\mathrm{V} \leftarrow \mathrm{E} \quad .
$$

v stands for a variable and E for an expression. The meaning of this statement is that the current value of v is to be replaced by the current value of E.

An expression is a construct of either one of the following forms:

$$
x, \circ x, x \Theta y, r
$$

where $\mathbf{x , ~ y , ~ s t a n d ~ f o r ~ e i t h e r ~ v a r i a b l e s , ~ l i t e r a l s ~ o r ~ l i s t s , ~ o ~ s t a n d s ~}$ for a unary operator, Θ stands for a binary operator and r stands for a reference. The value of an expression involving an operator is obtained by applying the operator to the current value(s) of the operand(s).

A reference is written as @v, where v is the referenced variable.
The indirect Assignment Statement is written as

$$
\mathrm{V} . \leftarrow \mathrm{E}
$$

and is meant to assign the current value of the expression E to the variable, whose reference is currently assigned to the variable v .

1. Literals

A literal is an entity characterized by the property that its value is always the literal itself. There may exist several kinds of literals, e.g.'

Numbers

Logical constants (Boolean)

Symbols

Furthermore there exists the literal Ω with the meaning "undefined". Numeric constants shall be denoted in standard decimal form. The logical constants are true and false*.

A symbol or character is denoted by the symbol itself enclosed in quote marks ('). A list of symbols is usually called a string. Other types of literals may arbitrarily be introduced.
2. Lists

A list is an entity denoted by'

$$
\{E, F, . . ., G\}
$$

whose value is the ordered set of the current values of the expressions E, F, . . . , G, called the elements of the list. A list can have any number of elements (including 0), and the elements are numbered with the natural numbers starting with 1 .
the underlined (boldface) letters have to be understood as one single symbol.

3. Variables

A variable is an entity uniquely identified within a program by a name to which a value can be assigned (and reassigned) during the execution of a program. Before the first assignment to a variable, its value shall be Ω.

If the value of a variable consists of a sequence of elements, any one element may be designated by the variable name and a subscript, and thus is called a subscripted variable. The subscript is an expression, whose current value is the ordinal number of the element to be designated. Thus, after $a \leftarrow\{1,2,\{3,4,5\}, 6$,$\} , a[1] designates the element "1", a[3]$ designates the element $\{3,4,5\}$, and therefore $a[3][2]$ designates the second element of $a[3]$, i.e. "4". The notation a_{i} shall be understood equivalent to $a[i], a_{i, j}$ equivalent to $a[i][j]$ etc.

4. Unary Operators

Examples of unary operators are:

- x , yields the negative of x

C x, yields the value of the variable whose reference is currently assigned to x
abs x , yields the absolute value of x
integer x , yields x rounded to the nearest integer
tailx , yields the list x with its first element deleted;
isli x, yields true, if x is a list, false otherwise
A further set of unary operators is the set of typetest operators which determine whether the current value of a variable is a member of a certain set of literals. The resulting value is true, if the test is affirmative, false otherwise.
isn x, current value of x is a number
isb x, is a logical (Boolean) constant
isu x, \ldots. is Ω (undefined)
isy x,is a symbol

A further set of unary operators is the set of conversion operators which produce values of a certain type from a value of another type: Examples:
real x yields the number corresponding to the logical value x; logical x inverse of real (true $\leftrightarrow 1$, false $\leftrightarrow 0$ shall be assumed); Conversion operators between numbers and symbols shall not be defined here, although their existence is assumed, because the notation does not define the set of symbols which may possibly be used.

5. Binary Operators

Examples of binary operators are:

+ - X designating addition, subtraction and multiplication in the usual sense. The accuracy of the result in the case of the operands being non-integral numbers is not defined.
/ denoting division in the usual sense. The accuracy of the result is not defined here. In case of the denominator being 0, the result is Ω. denoting division between the rounded operands with the result being truncated to its integral value.
\& yields the concatenation of two lists, i.e.

$$
\{x\} \&\{y\}=\{x, y\}
$$

$=\quad$ yields true, if the two scalar operands are equal, false otherwise.
\uparrow denoting exponentiation, i.e. $\mathrm{x} \uparrow \mathrm{Y}$ stands for x^{Y}.
The classes of unary and binary operators listed here may be extended and new types of literals may be introduced along with corresponding typetest and conversion operators.
B. The Branching Statement

There are Simple and Conditional Branching Statements.

1. The Simple Branching Statement

It is of the form

bot0

where ℓ stands for a label. The meaning is that the successor of this statement is the statement with the label ℓ. Labelling of a statement is achieved by preceding it with the label and a colon (:). The label is a unique name (within a program) and designates exactly one statement of the program.
2. The Conditional Branching Statement
if E then goto ℓ
where ℓ is a label uniquely defined in the program and E is an expression. The meaning is to select as the successor to the

Branching Statement the statement with the label ℓ, if the current value of E is true, or the next statement in the sequence, if it is false. For notational convenience a statement of the form if 7 E then goto $\ell \quad(7=$ not $)$

shall be admitted and understood in the obvious sense.

Abstract

Notational standards shall not be fixed here. Thus the sequence of statements can be established by separating statements by delimiters, or by beginning a new line for every statement. The Branching Statement and the labelling of statements may be replaced by explicit arrows, thus yielding block diagrams or flow-charts.

A. Notation, Terminology, Basic Definitions

Let be a given set: the vocabulary. Elements of v are called symbols and will be denoted by capital Latin letters, S, T, U etc. Finite sequences of symbols -- including the empty sequence (\wedge) -- are called strings and will be denoted by small Latin letters -- $x, y, z, e t c$. The set of all strings over $\mathcal{V}^{\text {is }}$ denoted by \mathcal{U}^{*}. Clearly $\mathcal{V} \subseteq \vartheta^{*}$.

A simple phrase structure. system is an ordered pair (v, Φ), where \mathcal{v} is a vocabulary and Φ is a finite set of syntactic rules φ of the form

$$
\left.U \rightarrow x \quad \neq \quad=\quad U \in V, x \in V^{*}\right)
$$

For $\varphi=U \rightarrow x, U$ is called the left part and x the right part of φ.
y directly produces $z(y \dot{\rightarrow} z)$ and conversely z directly reduces into y, if and only if there exist strings u, v such that $y=u U v$ and $z=u x v$, and the rule $U \rightarrow x$ is an element of Φ.
y produces $z(y \xrightarrow{*} z)$ and conversely z reduces into y, if and only if there exist a sequence of strings x_{0}, \ldots, x_{n}, such that

A simple phrase structure syntax is an ordered quadruple $\mathcal{G}=(\mathcal{\vartheta}, \Phi, \mathcal{B}, A)$, where \mathcal{V} and Φ form a phrase structure system; \mathscr{B} is the subset of ϑ such that none of the elements of B (called basic symbols) occurs as the left part of any rule of Φ, while all elements of $\mathcal{V}-\mathcal{B}$ occur as left part of at least one rule; A is the symbol which occurs in no right part of any rule of Φ.

The letter U shall always denote some symbol $U \in \mathcal{V}-\mathcal{G H}_{3}$.
x is a sentence of \mathscr{y}, if $x \in \mathcal{V}^{*}$ (i.e. x is a string of basic symbols) and $A \xrightarrow{*} x$.

A simple phrase structure language \mathcal{L} is the set of all strings x which can be produced by (ϑ, Φ) from $A:$

$$
\mathscr{L}(G):=\left\{x \mid A \xrightarrow{*} x \wedge x \in V^{*}\right\} .
$$

Let U 3 z. A parse of the string z into the symbol U is a sequence of syntactic rules $\varphi_{1}, \varphi_{2}, \ldots \varphi_{n}$, such that φ_{j} directly reduces z_{j-I} into $z_{j}(j=1$. . . $n)$, and $z=z_{0}, z_{n}=U$.

Assume $z_{k}=U_{1} U_{2} \ldots U_{m}($ for some $1<k<n)$. Then $z_{i}(i<k)$ must be of the form $z_{i}=u_{1} u_{2 .}$ * u_{m}, where for each $\ell=1 . . . m$ either $\mathrm{U}_{\ell} \xrightarrow{*} u_{\ell}$, or $\mathrm{U}_{\ell}=u_{\ell}$. Then the canonical form of the section of the parse reducing z_{i} into z_{k} shall be $\left\{\varphi_{1}\right\}\left\{\varphi_{2}\right\}$. . $\left\{\varphi_{m}\right\}$, where the sequence $\left\{\varphi_{\ell}\right\}$ is the canonical form of the section of the parse reducing u_{ℓ} into $U_{\ell} . \operatorname{Clearly}\left\{\varphi_{\ell}\right\}$ is empty, if $U_{\ell}=u_{\ell}$, and is canonical, if it consists of 1 element only..

The canonical parse is the parse which proceeds strictly from left. to right in a sentence, and reduces a leftmost part of a sentence as far as possible before -proceeding further to the right. In general, there may exist several canonical parses for a sentence, but every parse has only one canonical form.

An unambiguous syntax is a phrase structure syntax with the property that for every string $x \in f(\})$ there exists exactly one canonical parse.

It has been show-n that there exists no algorithm which decides the ambiguity problem for any arbitrary syntax. However, a sufficient condition for a syntax to be unambiguous will subsequently be derived.

A method will be explained to determine whether a given syntax satisfies
this condition.
An environment \mathcal{E} is a set of variables whose values define the meaning of a sentence.

An interpretation rule ψ defines an action (or a sequence of actions) involving the variables of an environment \mathcal{E}.

A phrase structure programming language $\underset{p}{\mathcal{L}}(\mathcal{G}, \Psi, \mathcal{E})$ is a phrase structure language $\mathscr{L}(\mathcal{G})$, where $\mathcal{G}(\vartheta, \Phi, \mathscr{\beta}$, A) is a phrase structure syntax, Ψ is a set of (possibly empty) interpretation rules such that a'unique one to one mapping exists between elements of Ψ and Φ, and \mathcal{E} is an environment for the elements of Ψ. Instead of $\mathscr{L}_{p}(\mathcal{S}, \Psi, \mathcal{E})$ we also write $\underset{P}{\underset{\sim}{\mathcal{P}}}(\vartheta, \Phi, \mathscr{B}, A, \Psi, \mathcal{E})$.

The meaning m of a sentence $x \in \mathscr{L}_{P}$ is the effect of the execution of the sequence of interpretation rules $\psi_{1^{\prime}} \psi_{2} \ldots \psi_{n}$ on the environment \mathcal{E}, where $\varphi_{1} \varphi_{2} \cdots \varphi_{n}$ is a parse of the sentence x into the symbol A and ψ_{i} corresponds to φ_{i} for all i.

It follows immediately that a programming language will have an unambiguous meaning, if and only if its underlying syntax is unambiguous. As a consequence, every sentence of the language has a well-defined meaning.

A sentence $x_{1} \in \underset{p}{\underset{p}{\sim}}\left(G_{1}, \Psi_{1}, \mathcal{E}\right)$ is called equivalent to a sentence $\mathrm{x}_{2} \in \mathcal{L}_{p}\left(\mathscr{G}_{2}, \Psi_{2}, \mathcal{E}\right)\left(\right.$ possibly $\left.\mathscr{G}_{1}=\mathscr{G}_{2}, \Psi_{1}=\Psi_{2}\right)$, if and only if $m\left(x_{1}\right)$ is equal to $m\left(x_{2}\right)$.
A programming language $\mathscr{L}_{\mathrm{p}}\left(\mathcal{I}_{1}, \Psi_{1}, \mathcal{E}\right)$ is called equivalent to $\mathscr{L}_{p}\left(G_{2}, \Psi_{2}, \mathcal{E}\right)$, if and only if $\mathscr{L}_{p 1}=\mathscr{L}_{p 2}$ and for every sentence x, $m_{1}(x)$ according to $\left(\mathcal{C}_{1}, \Psi_{1}\right)$ is equal to $m,(x)$ according to $\left(\mathcal{G}_{2}, \Psi_{2}\right)$.
B. Precedence Phrase Structure Systems

The definition of the meaning of a sentence requires that a sentence must be parsed in order to be evaluated or obeyed. Our prime attention will therefore be directed toward a constructive method for parsing. In the present chapter, a parsing algorithm will be described. It relies on certain relations between symbols. These relations can be determined for any given syntax. A syntax for which the relation between any two symbols is unique, is called a simple precedence syntax. Obviously, the, parsing algorithm only applies to precedence phrase structure systems. It will then be shown that any parse in-such a system is unique. The class of precedence phrase structure systems is only a restricted subset among all phrase structure systems. The definition of precedence relations will subsequently be generalized with the effect that the class of prece-- dence phrase structure systems will be considerably enlarged.

1. The Parsing Algorithm for Simple Precedence Phrase Structure Languages.

In accordance with the definition of the canonical form of a generation tree or of a parse, a parsing algorithm must first detect the leftmost substring of the sentence to which a reduction is applicable. Then the reduction is to be performed and the same principle is applied to the new sentence. In order to detect the leftmost reducible substring, the algorithm to be presented here makes use of previously established noncommutative relations between symbols of ϑ which are chosen according to the following criteria:
a. The relation $\dot{\doteq}$ holds between all adjacent symbols within \dot{a} string which is directly reducible;
b. The relation < holds between the symbol immediately preceding a reducible string and the leftmost symbol of that string;
c. The relation > holds between the rightmost symbol of a reducible string and the symbol immediately following that string. The process of detecting the leftmost reducible substring now consists of scanning the sentence from left to right until the first symbol pair is found so that $S_{i}>S_{i+1}$, then to retreat back to the last symbol pair for which $S_{j-1}{ }^{〔} S_{j}$ holds. $S_{j} . . S_{i}$ is then the sought substring; it is replaced by the symbol resulting from the reduction. The process then repeats itself. At this point it must be noted that it is not necessary to start scanning at the beginning of the sentence, since all symbols S_{k} for $k<j$ have not been altered, but that the search for the next $>$ can start at the place of the previous reduction.

In the following formal description of the algorithm the original sentence is denoted by $P_{1} \ldots P_{n} . k$ is the index of the last symbol scanned. For practical reasons, all scanned symbols are copied and renamed $S_{j} \ldots S_{i}$. The reducible substring therefore will always be $S_{1} \ldots S_{i}$ for some j. Internal to the algorithm, there exists a symbol \perp initializing and terminating the process. To any symbol S of ϑ it has the relations- $\perp \lessdot S$ and $S>\perp$.

We assume that $P_{0}=P_{n+1}=\perp$.

Algorithm for Syntactic Analysis

Comments to the Algorithm:
(1) Copy the string P into S and advance until a relation $>$ is encountered;
(2) Retreat backward across the reducible substring;
(3) A reduction has been made. Resume the search for $>$.

The step denoted by "Reduce $S_{j} \ldots . S_{i}$ " requires that the reducible substring is identified in order to obtain the symbol resulting from the reduction. If the parsed sentence is to be evaluated, then the interpretation rule $\psi_{\boldsymbol{\ell}}$ corresponding to the syntactic rule $\varphi_{\boldsymbol{\ell}}$: $u \rightarrow S_{j} \ldots S_{i}$ is identified and obeyed.
2. An Algorithm to Determine the Precedence Relations.

The definition of the precedence relations can be formalized in the following way:
a. For any ordered pair of symbols $\left(S_{i}, S_{j}\right), S_{i} \doteq S_{j}$, if and only
if there exists a syntactic rule of the form $u \rightarrow X_{i} S_{j} y$, for some symbol U and some (possibly empty) strings x, y.
b. For any ordered pair of symbols ($\left.c_{i}, S_{i}\right), S .<S_{j}$, if and only if there exists a syntactic rule of the form $u \rightarrow X_{i} U_{\ell} y$, for some U, x, y, U_{ℓ}, and there exists a generation $\mathrm{U}_{\ell} \xrightarrow{*} \mathrm{~S}_{j} \mathrm{z}, \quad$ for some string z .
 only if

1. there exists a syntactic rule of the form $U \rightarrow X_{k} S_{j} y$, for some U, x, Y, U_{k}, and there exists a generation $\mathrm{U}_{\mathrm{k}} \xrightarrow{*} \mathrm{zs} \mathrm{i}_{\mathrm{i}}$ for some string z , or
2. there exists a syntactic rule of the form $U \rightarrow X_{k} U_{\ell} y$, for some U, x, y, U_{k}, U_{ℓ}, and there exist generations $\mathrm{U}_{\mathrm{k}} \xrightarrow{*} \mathrm{zS} \mathrm{i}_{\mathrm{i}}$ and $\mathrm{U}_{\boldsymbol{\ell}} \xrightarrow{*} \mathrm{~S}_{\mathrm{j}} \mathrm{W}$ for some strings z, w.

We now introduce the sets of leftmost and rightmost symbols of a non-basic symbol U by the following definitions:

$$
\begin{aligned}
& \mathscr{L}(U)=\{S \mid \exists z(U \xrightarrow{*} S z)\} \\
& \mathscr{R}(U)=\{S \mid \exists z(U \xrightarrow{*} z S)\}
\end{aligned}
$$

Now the definitions a. b. c. can be reformulated as:
a. $\quad S_{i} \doteq S_{j} \longleftrightarrow \exists \varphi\left(\varphi: U \rightarrow x S_{i} S_{j} y\right)$
b. $\quad S_{i} \lessdot S_{j} c-3 \exists \varphi\left(\varphi: U \rightarrow x S_{i} U_{\ell} y\right) \wedge S_{j} \in \mathscr{L}\left(U_{\ell}\right)$
c. $S_{i} \gtrdot S_{j} \longleftrightarrow \exists \varphi\left(\varphi: U \rightarrow \mathrm{XU}_{\mathrm{k}} \mathrm{S}_{\mathrm{j}} \mathrm{y}\right) \wedge \mathrm{S}_{\mathrm{i}} \in \mathbb{R}\left(\mathrm{U}_{\mathrm{k}}\right) \vee$

$$
\exists \varphi\left(\varphi: U \rightarrow \mathrm{XU}_{\mathrm{k}} \mathrm{U}_{\ell} \mathrm{y}\right) \wedge \mathrm{S}_{1} \in \mathscr{R}\left(\mathrm{U}_{\mathrm{k}}\right) \wedge \mathrm{S}_{j} \in \mathcal{L}\left(\mathrm{U}_{\ell}\right)
$$

- These definitions are equivalent to the definitions of the precedence relations, if Φ does not contain any rules of the form $u \rightarrow \Lambda$, where A denotes the empty string.

The definition of the sets \mathcal{L} and \mathbb{R} is such that an algorithm for effectively creating the sets is evident. A symbol S is a member of $\mathscr{L}(U), \quad i f$
a. There exists a syntactic rule φ : U 3 Sx , for some x , or
b. There exists a syntactic rule $\varphi: u \rightarrow U_{1} x$, and $S \in \mathscr{L}\left(U_{1}\right)$;
i.e.

$$
\mathscr{L}(U):\left\{S \mid \exists \varphi: \rightarrow \rightarrow \vee \exists \varphi: \cdot \rightarrow U_{1} \times \wedge S \in \mathscr{L}\left(U_{1}\right)\right\}
$$

Analogously:
$\mathscr{R}(\mathrm{U}) \cdot\left\{\mathrm{S} \mid \exists \varphi: \mathrm{U} \rightarrow \mathrm{xS} \vee \exists \varphi: \mathrm{U} \rightarrow \mathrm{xU}_{1} \wedge \mathrm{~S} \in \mathscr{R}\left(\mathrm{U}_{1}\right)\right\}$.

The algorithm for finding \mathcal{L} and \mathscr{R} for all symbols $U \in \mathscr{V} \mathcal{B}$ involves searching Φ for appropriate syntactic rules. In practice, this turns out to be a rather intricate affair, because precautions must be taken when recursive definitions are used. An algorithm is presented in Appendix I as part of an Extended ALGOL program for the Burroughs B5500 computer.

The precedence relations can be represented by a matrix \underline{M} with elements $\underline{M}_{i j}$ representing the relation between the ordered symbol pair $\left(S_{i}, S_{j}\right)$. The matrix clearly has as many rows and columns as there are symbols in the vocabulary ϑ.

Assuming that an arbitrary ordering of the symbols of \hat{V} has been made $\left(v=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}\right)$, an algorithm for the determination of the precedence matrix M can be indicated as follows:

For every element φ of Φ which is of the form

$$
U \rightarrow S_{1} S_{2} \cdot \cdots S_{m}
$$

and for every pair $S_{i}, S_{i+1}(i=1 . . . m-1)$ assign
a. \doteq to $M_{i, i+1}$;
b. < to all $M_{i, k}$ with row index k such that $S_{k} \in \mathcal{L}\left(S_{i+1}\right)$;
c. $>$ to all $M_{k}, i+1$ with column index k such that $S_{k} \in \mathbb{R}\left(S_{i}\right)$;
d. • > to all $\underline{M}_{\ell, k}$ with indices ℓ, k such that $S_{\ell} \in \mathcal{R}\left(S_{i}\right)$ and $S_{k} \in \mathscr{L}\left(S_{i+1}\right)$. Assignments under b. occur only if $s_{i+1} \in \mathcal{V}-\mathbb{S}$, under c. only if $S_{i} \in V-\mathcal{B}$, and under d. only if both $S_{i}, S_{i+1} \in \mathcal{V}-\mathcal{B}$, because $\mathscr{L}(S)$ and $\mathscr{R}(S)$ are empty sets for all SE \mathcal{B}.

This algorithm appears as part of the ALGOL program listed in Appendix I.

A syntax is a simple precedence syntax, if and only if at most one relation holds between any ordered pair of symbols.
3. Examples
a. $\mathcal{I}_{1}=\left(v_{1}, \Phi_{1}, B_{1}, S\right)$
$v_{1}=\{S, H, \lambda, "\}$
$\left.B_{1}=C A, "\right\}$
$\Phi_{1}: \quad \begin{aligned} & \mathrm{S} \\ & \mathrm{H} \rightarrow \mathrm{H}^{\prime \prime}\end{aligned}$
$\mathrm{H} \rightarrow \mathrm{H} \lambda$
$\mathrm{H} \rightarrow \mathrm{H} \mathrm{S}$
Assume that S stands for 'string' and H for'head', then this phrase structure system would define a string as consisting of a sequence of string elements enclosed in quote-marks, where an element is either λ. or another (nested) string.

U	$\mathscr{L}(\mathrm{U})$	$\mathcal{R}(\mathrm{U})$
S	$" \mathrm{H}$	$"$
H	$" H$	$" \lambda . \mathrm{S}$

M	S	H	λ	"
S	\rightarrow	\rightarrow	\rightarrow	>
H	\doteq	く	\doteq	\doteqdot
λ	\rightarrow	\rightarrow	\rightarrow	\rightarrow
"	$\stackrel{ }{ }$	>	>	\bigcirc

Since both $H \doteq "$ and $H \lessdot ", \mathcal{G}_{1}$ is not a precedence syntax. It is intuitively clear that either nested strings should be delineated by distinct opening and closing marks $\left(\Im_{2}\right)$, or that no nested strings should be allowed (\mathscr{G}_{3}).

$$
\begin{aligned}
& \begin{array}{cc|c}
6 S \gamma, & H, & H \\
6 & H, & S \\
\hline(\Omega) \delta & (\Omega) \mathscr{\&} & \Omega
\end{array}
\end{aligned}
$$

M	S	H	λ	$\prime \prime$
S				
H			$=$	$=$
λ			3	$>$
\prime			$>$	$>$

\mathcal{G}_{3} is a precedence syntax.
As an illustration for the parsing algorithm, we choose the parsing of a sentence of $\mathscr{L}\left(\mathcal{G}_{2}\right)$:

	${ }^{6} \lambda^{6} \lambda^{\prime}$, ${ }^{\text {, }}$	${ }_{4}^{6} 9{ }^{-}, 9$		
$\varphi_{2}:$	H $\lambda^{6} \lambda$, ${ }^{\text {, }}$	$\stackrel{\mathrm{H}}{\xrightarrow{4}}$		
φ_{3} :	$H^{6} \lambda$, ,	H $ـ$		
φ_{2} :	HH λ, ,	H		
φ_{3} :	H H ${ }^{\text {, }}$,	${ }^{\mathrm{H}}$		
φ_{1} :	H S ${ }^{\text {9 }}$	$\begin{array}{r} S \\ \hline \end{array}$		
φ_{4} :	H ${ }^{\prime}$	H		
$\varphi_{1}:$	S		S	

4. The Uniqueness of a Parse.

The three previous examples suggest that the property of unique precedence relationship between all symbol pairs be connected with uniqueness of a parse for any sentence of a language. This relationship is established by the following theorem:

Theorem: The given parsing algorithm yields the canonical form of the parse for any sentence of a precedence phrase structure language, if there exist no two syntactic rules with the same right part. Furthermore, this canonical parse is unique.

This theorem is proven, if it can be shown that in any sentence its directly reducible parts are disjoint. Then the algorithm, proceeding strictly from left to right, produces the canonical parse, which is unique, because no reducible substring can apply to more than one syntactic rule.

The proof that all directly reducible substrings are disjoint is achieved indirectly: Suppose that the string $S_{1} \ldots S_{n}$ contain two directly reducible
 Then because of a. it follows from the definition of the precedence relations that $S_{j-1} \doteq S_{j}$ and $S_{k}>S_{k+1}$, and because of b. $S_{j-1} \lessdot S_{j}$ and $S_{k} \doteq S_{k+l}$. Therefore this sentence cannot belong to a precedence grammar.

Since in particular the leftmost reducible substring is unique, the syntactic rule to be applied is unique. Because the new sentence again belongs to the precedence language, the next reduction is unique again. It can be shown by induction, that therefore the entire parse must be unique.

From the definition of the meaning of a phrase structure programming language it follows that its meaning is unambiguous for all sentences, if the underlying syntax is a precedence syntax.
5. Precedence Functions.

The given parsing algorithm refers to a matrix of precedence relations with n^{2} elements, where n is the number of symbols in the language. For practicalcompilers this would in most cases require an extensive amount of storage space. Often the precedence relations are such that two numeric functions (f,g) ranging over the set of symbols can
be found, such that for all ordered pairs (S_{i}, S_{j})
a. $\quad f\left(S_{i}\right)=g\left(S_{j}\right) \longleftrightarrow S_{i} \doteq S_{j}$
b. $\quad f\left(S_{i}\right)<g\left(S_{j}\right) \longleftrightarrow S_{i} \lessdot S_{j}$
c. $f\left(S_{i}\right)>g\left(S_{j}\right) \longleftrightarrow S_{i}>S_{j}$

If these functions exist and the parsing algorithm is adjusted appropriately, then the amount of elements needed to represent the precedence information reduces from n^{2} to 2 n . An algorithm for deciding whether the functions exist and for finding the functions if they exist is given as part of the ALGOL program in Appendix-1 .

In example \mathscr{G}_{2} e.g. the precedence matrix can be represented by the two functions f and g, where

S	$=$	s	h	λ	$\mathbf{6}$
$\mathbf{f}(S)=$	3	1	3	3	3
$\mathrm{~g}(\mathrm{~s})$	$=$	1	2	1	2

A precedence phrase structure syntax for which these precedence functions do not exist is given presently:
$V=\{A, B, C, \lambda,[]$,
$\beta=\{\lambda,[]$,

Ф: $\quad \begin{aligned} \mathrm{A} & \rightarrow \mathrm{C} \\ \mathrm{A} & \mathrm{B}] \\ \mathrm{A} & \rightarrow[\quad] \\ \mathrm{B} & \rightarrow \lambda \\ \mathrm{B} & \rightarrow \lambda \mathrm{A} \\ \mathrm{B} & \rightarrow \mathrm{A} \\ \mathrm{C} & \rightarrow[\end{aligned}$

It can be verified that this is a precedence syntax and in particular the following precedence relations can be derived:

$$
\lambda \lessdot[,[\gtrdot[,[\doteq], \lambda \diamond]
$$

Precedence functions f and g would thus have to satisfy

$$
f(\lambda)<g([)<f([)=g(])<f(\lambda)
$$

which clearly is a contradiction. Precedence functions therefore do not exist for this precedence syntax.
6. Higher Order Precedence Syntax.

It is the purpose of this chapter to redefine the precedence ralationships more generally, thus enlarging the class of precedence phrase structure systems. This is desirable, since for precedence languages a constructive parsing algorithm has been presented which is instrumental in the definition of the meaning of the language. The motivation for the manner in which the precedence relationships will be generalized is first illustrated in an informal way by means of examples. These examples are phrase structure systems which for one or another reason might be likely to cccur in the definition of a language, but which also violate the rules for simple precedence syntax.

Example 1.
$V=(A, B, \quad, S, D\}$
$\boldsymbol{B}=\{;, S, D\}$
$\Phi: \mathrm{A} \rightarrow \mathrm{B}$
$A \rightarrow D ; A$
$B \rightarrow S$
$B \rightarrow B ; S$
$S \in \$(A)$, thus $; \ll S$, and also $;=S$.
This syntax produces sequences of D's separated by ";", followed by a sequence of symbols S, also separated by ";". A parse is constructed as follows:

The sequence of S 's is defined using a left-recursive definition. while the sequence of D^{\prime} 's is defined using a right-recursive definition. The precedence violation occurs, because for both sequences the same separator symbol is used.

The difficulty arises when the symbol sequence ";s" occurs. It is then not clear whether both symbols should be included in the same substring or not. The decision can be made, if the immediately preceding symbol is investigated.

In other words, not only two single symbols should be related, but a symbol and the string consisting of the two previously obtained symbols. Thus:

$$
\mathrm{B} ; \doteq \mathrm{S} \text { and } \mathrm{D} ; \lessdot \mathrm{S} .
$$

Example 2:
$G=[A, B, \quad, S, D)$,
$g=\{;, S, D\}$
$\Phi: \quad \mathrm{A} \rightarrow \mathrm{B}$
$\mathrm{A} \rightarrow \mathrm{A} ; \mathrm{S}$
$B \rightarrow D$
$B \rightarrow D$; B
$D \in R(A)$, thus $D>$; and also $D \doteq$;
This syntax produces the same strings as the preceding one, but with a different syntactic structure:

Here the same difficulty arises upon encountering the symbol sequence "D;" . The decision whether to include both symbols in the same syntactic category or not can be reached upon investigating the following symbol. Explicitly, a symbol should be related to the subsequent string of 2 symbols, ie.

$$
\mathrm{D} \doteq \text {; } \mathrm{D} \text { and } \mathrm{D}>\text {; } \mathrm{S} .
$$

Example 3:
$V=\{\mathrm{A}, \mathrm{B}, \lambda, ;,[]$,
$B=\{\lambda, ; \quad[]$,
$\Phi: \mathrm{A} \rightarrow \mathrm{B} ; \mathrm{B}$
$\mathrm{B} \rightarrow[\mathrm{A}]$
$B \rightarrow[\lambda]$
$B \rightarrow \lambda$
Since $\lambda \in \mathscr{L}(A)$ and $A \in \circ(A):[\lessdot \lambda$ and $\lambda>]$. But'also $[\doteq \lambda$ and $\lambda \doteq]$.

In this case the following relations must be established to resolve the ambiguity.

$$
[\doteq \lambda], \quad[\ll \lambda ;, \quad ; \lambda \gg] \text { and }[\lambda \doteq]
$$

This syntax therefore combines the situations arising in Examples 1 and 2. Obviously, examples could be created where the strings to be related would be of length greater than 2. We will therefore call a precedence phrase structure system to be of order (m, n), if unique precedence relations can be established between strings of length $\leq m$ and strings of length <n. Subsequently, a more precise definition will be stated. A set of extended rules must be found which define the generalized precedence relations. The parsing algorithm, however, remains the same, with the exception that not only the symbols S_{i} and P_{k} be related, but possibly the strings $S_{i m} \ldots S_{i}$ and $P_{k} \ldots P_{k+n}$.

The definitions of the relations $\lessdot \dot{=}$, $>$ is as follows: Let $x=s_{-m} \cdot s_{-1}, y=S_{1} . . S_{n}, \quad$ let $u, v, u^{\prime}, v^{\prime} \in \mathcal{V}^{*}$ and $U, U_{1}, U_{2} \in \mathcal{V}^{c}-\beta$, then
a. $\mathrm{x} \doteq \mathrm{y}$, if and only if there exists a syntactic rule $u \rightarrow u S_{-1} S_{1} v, \quad$ and $u s_{-1} \xrightarrow{*} u^{\prime} x, S_{1}{ }^{*} \xrightarrow{*} y^{-} v^{\prime}$;
b. $x \lessdot y$, if and only if there exists a syntactic rule $u \rightarrow u S_{-1} U_{1} v$, and $u S_{-1} \xrightarrow{*} u^{\prime} x, \mathrm{U}_{1} \mathrm{v} \xrightarrow{*} \mathrm{yv}^{\prime} \quad$;
c. $x>y$, if and only if there exists a syntactic rule $\mathrm{U} \rightarrow \mathrm{uU}_{\mathrm{I}} \mathrm{S}_{1} \mathrm{v}$, and $\mathrm{uU}_{1} \xrightarrow{*} \mathrm{u}^{\prime} \mathrm{x}, \mathrm{S}_{1} \mathrm{v} \xrightarrow{*} \mathrm{yv}^{\prime}, \quad$ or there exists a syntactic rule $\mathrm{U} \rightarrow \mathrm{uU}_{1} \mathrm{U}_{2} \mathrm{v}$ and $\mathrm{uU}_{1} \xrightarrow{*} \mathrm{u}^{\prime} \mathrm{x}, \quad \mathrm{U}_{2} \mathrm{v} \xrightarrow{*} \mathrm{yv}^{\prime}$.

A syntax is said to be a precedence_syntax of order (m, n), if and only if
a. it is not a precedence syntax of degree (m^{\prime}, n^{\prime}) for $m^{\prime}<m$ or $n^{\prime}<n$, and
b. for any ordered pair of strings $S_{-m}{ }^{\prime} \cdot S_{-1}, S_{1} \cdot$. $S_{n}{ }^{\prime}$, where $m^{\prime}<m$ and $n^{\prime}<n$ either at most one of the 3 relations $\lessdot \doteq \bullet$ holds or otherwise b. is satisfied for the pair $S_{-\left(m^{\prime}+1\right)} \cdots \quad \ldots S_{1} \cdot . \cdot S_{n^{\prime}+1}$.

A precedence syntax of order (ll) is called a simple precedence syntax. With the help of the sets of leftmost and rightmost strings, the definitions of the precedence relations can be reformulated analogously to their counterparts in section $2 b$, subject to the condition that there exists no rule $U+A$.
a. $\quad \mathrm{x} \doteq \mathrm{y} \leftrightarrow 3 \varphi\left(\varphi: \mathrm{U} \rightarrow \mathrm{uS}{ }_{-1} \mathrm{~S}_{1} \mathrm{v}\right)$

$$
\begin{aligned}
& \wedge\left(u^{\prime} s_{-m} \ldots s_{-2}=u \vee s_{-m} \ldots s_{-2} \in \Re^{(m-1)}(u)\right) \\
& \wedge\left(S_{2} \cdots s_{n} v^{\prime}=v \vee s_{2} \cdots s_{n} \in \mathscr{L}^{(n-1)}(v)\right)
\end{aligned}
$$

b. $\quad \mathrm{x} \lessdot \mathrm{y} \leftrightarrow \exists \varphi\left(\varphi: \mathrm{u} \rightarrow\right.$ us $\left.{ }_{-1} \mathrm{U}_{1} \mathrm{v}\right)$

$$
\begin{aligned}
& \wedge\left(u^{\prime} s_{-m} \cdots s_{-2}=u \vee s_{-m} \cdots s_{-2} \in R^{(m-1)}(u)\right) \\
& \wedge\left(s_{1} \ldots s_{n} \in \mathscr{L}^{(n)}\left(U_{1} v\right)\right)
\end{aligned}
$$

c. $\quad x \mapsto y \leftrightarrow \exists \varphi\left(\varphi: u \rightarrow u U_{1} S_{1} v\right)$

$$
\begin{aligned}
& \wedge\left(s_{-m^{\prime}} \cdot 0 \square \in \mathbb{R}^{(m)}\left(u U_{1}\right)\right) \\
& \wedge\left(S_{1} \ldots s_{n} v^{\prime}=v \vee S_{2} \ldots s_{n} \in \mathscr{L}^{(n-1)}(v)\right) \\
& \exists \varphi\left(\varphi: u \rightarrow u U_{1} U_{2} v\right) \\
& \wedge\left(s_{-m} \ldots s_{-1} \in R^{(m)}\left(u U_{1}\right) \wedge\left(S_{1} \cdot ._{n} s \in \mathscr{L}^{(n)}\left(U_{2} v\right)\right)\right.
\end{aligned}
$$

$$
\text { or } \quad \exists \varphi\left(\varphi: u \rightarrow u_{1} U_{2} v\right)
$$

$\mathscr{L}^{(n)}(s)$ and $\mathscr{R}^{(1()}(s)$ are then defined as follows:

1. $\quad z=Z_{1} \ldots z_{n} \in \mathscr{L}^{\prime n}\{(U u) \leftrightarrow \exists k(1 \leq k \leq n) \rightarrow$

$$
\left((z _ { 1 } \cdot \cdot \cdot z _ { k } \in \mathscr { L } ^ { (k) } (u)) A \left(z_{k} \cdots z_{n} u^{\prime}=u \vee z_{k} \cdot \dot{n}^{\left.z \in \mathcal{L}^{(n-k)}(u)\right)}\right.\right.
$$

la. $\quad z=z_{1} \ldots z_{n} \in \mathscr{L}^{(n)}(U) \leftrightarrow \exists k(0 \leq k \leq n) \quad \ni$ (U $\left.\rightarrow Z_{1} \ldots . Z_{k} u A Z_{k} \ldots Z_{n} \in \mathcal{L}^{(n-k)}(u)\right)$
2. $\quad z=Z_{\dot{n}} . Z_{1} \in \mathscr{R}^{(n)}(u U) \leftrightarrow \exists k(1 \leq k \leq n) \rightarrow$ $\left(\left(u^{\prime} z_{n} \ldots z_{k+1}=u v_{z_{n}} \cdots z_{k+1} \in \mathscr{R}^{(n-k)}(u)\right) \wedge\left(z_{k} \ldots z_{l} \in \mathscr{R}^{(k)}(U)\right)\right.$
2a. $\quad z=Z_{n} \ldots Z_{1} \in \mathscr{R}^{(n)}(U) \leftrightarrow \exists k(0 \leq k \leq n) \quad \ni$ $\left(u \rightarrow u z_{k} \ldots z_{1} A \quad z_{n} \ldots z_{k+1} \in R^{(n-k)}(u)\right)$

These formulae indicate the method for effectively finding the sets \mathscr{L} and \mathbb{R} for all symbols in $\mathcal{V}-\mathscr{G}$. In particular, we obtain for $\mathcal{L}^{(1)}$ and $\mathbb{R}^{(1)}$ the definitions for \mathcal{L} and \mathbb{R} without superscript as defined in section 2 b .

Although for practical purposes such as the construction of a useful programming language no precedence syntax of order greater than $(2,2)$-- or even $(2,1)$-- will be necessary, a general approach for the determination of the precedence relations of any order shall be outlined subsequently:

First it is to be determined whether a given syntax is a precedence syntax of order (1,1). If it is not, then for all pairs of symbols ($S_{i}, S k$) between which the relationship is not unique, it has to be determined whether all relations will be unique between either ($\mathrm{S}_{\mathbf{j}} \mathrm{S}_{\mathbf{i}}, \mathrm{S}_{\mathbf{k}}$) or $\left(S_{i}, S_{k} S_{j}\right)$, where S_{j} ranges over the entire vocabulary. According to the outcome, one obtains a precedence syntax of $\operatorname{order}(2,1),(1,2)$ or $(2,2)$, or if some relations are still not unique, one has to try for even higher orders. If at some stage it is not possible to determine relations
between the strings with the appended symbol S_{j} ranging over the entire vocabulary, then the given syntax is no precedence syntax at all.

Example:

$$
\begin{aligned}
y^{G}= & \{A, B, \lambda,[,]\} \\
B= & \{\lambda,[,]\} \\
\Phi: & A \rightarrow B \\
& A \rightarrow[B] \\
& B \rightarrow \lambda \\
& B \rightarrow[\lambda]
\end{aligned}
$$

The conflicting relations are $[\lessdot \lambda,[\doteq \lambda, \lambda \doteq]$ and $\lambda \gg$. But a relation between ($\mathrm{S}[, \lambda$) or $(A] S$,$) can be established for no symbol$ S whatsoever, and between $\left(\left[, \lambda S_{1}\right)\right.$ and $\left.\left(S_{2} \lambda,\right]\right)$ only for $\left.S_{1}=\right]$ and $S_{2}=[$. Thus this is no precedence syntax.

Clearly there exist two different parses for the string [A], namely

The underlying phrase structure systems in section III. 3 and chapter IV will be simple precedence phrase structure systems.
C. An Example

A simple phrase structure programming language shall serve as an illustration of the presented concepts. This language contains the following constructs which are well-known from ALGO£ 60: Variables, arithmetic expressions, assignment statements, declarations and the block structure. The meaning of the language is explained in terms of an array of variables,
called the 'value stack', which has to be understood as being associated with the array \underline{S} which is instrumental in the parsing algorithm. The variable \underline{V}_{i} represents the 'value' associated with the symbol \underline{S}_{i}. E.g., the interpretation rule ψ_{11} corresponding to the syntactic rule φ_{11} determines the value of the resulting symbol expr- as the sum of the values of the symbols expr- and term belonging to the string to be reduced.
$\varphi_{11}: \quad$ expr- \rightarrow expr- + term

$$
\Psi_{11} \quad: \underline{V}_{j} \leftarrow \underline{V}_{j}+\underline{V}_{i}, \quad[\underline{V}(\underline{\text { expr }-}) \leftarrow V(\underline{\text { expr }-})+V(\underline{\text { term }})]
$$

Note that the string to be reduced has been denoted by $S_{-j} \cdots \underline{S}_{i}$ in the parsing algorithm of section III.2a. Instead of thus making explicit reference to a particular parsing algorithm, $V_{i} \ldots V_{i}$, the values of the symbols $\underline{S}_{i} \ldots \underline{S}_{j}$, can be denoted explicitly, i.e. instead of \underline{V}_{i} and ${ }_{-3}$. in $\Psi_{l l}$ one might write V (term) and V (expr-) respectively. For the sake of brevity, the subscripts i and j have been preferred here.

A second set of variables is called the 'name stack' . It serves to represent a second value of certain symbols, which can be considered as a 'name' . The symbol decl is actually the only symbol with two values; it represents a variable of the program in execution which has a name (namely its associated identifier) and a value (namely the value last assigned to it by the program). The syntax of the language is such that the symbol decl remains in the parse-stack S as long as the declaration is valid, i.e. until the block to which the declaration belongs is closed. This is achieved by defining the sequence of declarations in the head of a block by the right $=$ recursive syntactic rule φ_{4}. The
parse of a sequence of declarations illustrates that the declarations can only be involved in a reduction together with a body- symbol after a symbol body- has originated through some other syntactic reduction. This, in turn, is only possibly when the symbol end is encountered. The end symbol then initiates a whole sequence of reductions which result in the collapsing of the part of the stack which represented the closing block. On the other hand, the sequence of statements which constitutes the imperative part of a block, is defined by the left-recursive syntactic formula φ_{6}. Thus a statement reduces with a preceding statement-list into a statement-list immediately, because there is no need to retain information about the executed statement in the value-stack.

This is a typical example where the syntax is engaged in the definition of not only the structure but also the meaning of a language. The consequence is that in constructing a syntax one has to be fully aware of the meaning of a constituent of the language and its interaction with other constituents. Many other such examples will be found in chapter IV of this article. It is, however, not possible to ennumerate and discuss every particular consideration which had to be made during the construction of the language. 'Only a detailed study and analysis of the language can usually reveal the reasons for the many decisions which were taken in its design.

Subsequently the formal definition of the simple phrase structure language is given:

$$
\begin{aligned}
& \mathcal{L}_{p}=(\vartheta, \Phi, \mathcal{B}, \operatorname{program}, @, \&) \\
& \vartheta-\beta=\left\{\left.\frac{\text { pprogram }}{\text { statlist }}\left|\frac{\text { block }}{\text { expr }}\right| \frac{\text { body }}{\text { exp:r- }} \right\rvert\, \text { body }-\left|\frac{\text { decl }}{\text { term }}\right| \text { statment } \mid\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{\Sigma}=\quad\{\underline{S}, \underline{V}, \underline{W}, i\}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi: \varphi_{1}: \text { program } \rightarrow \perp \text { block } \perp \\
& \varphi_{2}: \text { block } \rightarrow \text { begin body end } \\
& \varphi_{3}: \text { body } \rightarrow \underline{\text { body- }} \\
& \varphi_{4} \text { : body- } \rightarrow \text { decl ; body- } \\
& \varphi_{5}: \text { body- } \rightarrow \text { statlist } \\
& \varphi_{6}: \quad \text { statlist } \rightarrow \text { statlist , statment } \\
& \varphi_{7}: \underline{\text { statlist }} \rightarrow \underline{\text { statment }} \\
& \varphi_{8}: \underline{\text { statment }} \rightarrow \text { var } \leftarrow \underline{\operatorname{expr}} \\
& \varphi_{9}: \underline{\text { statment }} \rightarrow \underline{\text { block }} \\
& \begin{array}{ll}
\varphi_{10}: \text { expr } & \rightarrow \text { expr- } \\
\varphi_{11}: \text { expr- } & \rightarrow \text { expr- }+ \text { term }
\end{array} \\
& \varphi_{12}: \text { expr- } \rightarrow \text { expr- term } \\
& \varphi_{13}: \text { expr- } \rightarrow-\text { term } \\
& \varphi_{14}: \text { expr- } \rightarrow \text { term } \\
& \varphi_{15}: \text { term } \rightarrow \text { term- } \\
& \varphi_{16}: \text { term- } \rightarrow \text { term- } \times \text { factor } \\
& \varphi_{17}: \text { term- } \rightarrow \text { term- / factor } \\
& \varphi_{18}: \text { term- } \rightarrow \text { factor } \\
& \varphi_{19} \text { : factor } \rightarrow \underline{\text { var }} \\
& \varphi_{20}: \text { factor } \rightarrow(\underline{\text { expr }}) \\
& \varphi_{21}: \text { factor } \rightarrow \text { number } \\
& \varphi_{22}: \underline{\operatorname{var}} \quad \rightarrow \lambda \\
& \varphi_{23}: \underline{\text { number }} \rightarrow \underline{\text { digit }} \\
& \varphi_{24}: \text { number } \rightarrow \text { number digit } \\
& \varphi_{25}: \text { decl } \rightarrow \underline{\text { new }} \lambda \\
& \varphi_{26}: \text { digit } \rightarrow 0 \\
& \varphi_{27} \text { : digit } \rightarrow 1 \\
& \varphi_{35}: \underline{\text { digit }} 9
\end{aligned}
$$

1. The branch in rule ψ_{22} labelled with $E R R O R$ is an example for the indication of a 'semantic error' in \mathcal{L}. By 'semantic error' is in general meant a reaction of an interpretation rule which is not explicitly defined. In the example of ψ_{22} the labelled branch is followed when no identifier equal to \underline{S}_{i} is found in the W stack, i.e. when an 'undeclared' identifier is encountered.
2. The basic symbol λ in ϑ is here meant to act as a representative of the class of all identifiers. Nothing will be said about the representation of identifiers.

On the subsequent pages follow the sets of leftmost and rightmost symbols \mathcal{H} and \mathbb{R}, the matrix \mathbb{M} of precedence relations, and the precedence functions f and g, all of which were determined by the syntax-processor program listed in Appendix I.

NO.	SYMBUL	F	G
001	BLUCK	003	004
002	BODY	001	001
003	BODY-	002	002
004	DECL	001	003
005	STATLIST	002	003
006	STATMENT	003	003
007	VAR	006	004
008	EXPR	003	001
009	EXPR=	004	002
010	TERM	005	002
011	TERM -	005	003
012	FACTOR	006	003
013	NUMBER	006	004
014	DIGIT	008	006
015	IDENT	007	004
016	BEGIN	001	005
017	END	004	001
018	;	002	001
019	,	003	002
020	\leftarrow	001	006
021	$+$	002	004
022	-	002	004
023	\times	003	005
024	1	003	005
025	$($	001	004
026)	006	003
027	0	008	007
028	1	008	007
029	2	008	007
030	3	008	007
031	4	008	007
032	5	008	007
033	6	008	007
034	7	008	007
035	8	008	007
036	9	008	007
037	NEW	004	003
038	1	004	003

IV. EULER: An Extension and Generalization of ALGOL 60

In this chapter the algorithmic language EULER is described first informally and then formally by its syntax and semantics. An attempt has been made to generalize and extend some of the concepts of ALGOL thus creating a language which is simpler yet more flexible than ALGOL 60. A second objective in developing this language was to show that a useful programming language which can be processed with reasonable efficiency can be defined in rigorous formality.
A. An Informal Description of EULER:

1. Variables and Constants

In ALGOL the following kinds of quantities are distinguished: simple variables, arrays, labels, switches and procedures. Some of these quantities 'possess values' and these values can be of certain types, integer, real and Boolean. These quantities are declared and named by identifiers in the head of blocks. Since these declarations fix some of the properties of the quantities involved, ALGOL is rather restrictive with respect to dynamic changes. The variables are the most flexible quantities, because values can be assigned dynamically to them. But the type of these values always remains the same. The other quantities are even less flexible. An array identifier will always designate a quantity with a fixed dimension, fixed subscript bounds and a fixed type of all elements. A procedure identifier will always designate a fixed procedure body, with a fixed number of parameters with fixed type specification (when given) and with fixed decision on whether the parameters are to be called by name or by value. A switch identifier always designates a list with a fixed number of fixed elements. We may call arrays, procedures, and switches'semistatic',
because some of their properties may be fixed by their declarations.

In order to lift these restrictions, EULER employs a general type concept. Arrays, procedures, and switches are not quantities which are declared and named by identifiers*, i.e. they are not as in ALGOL quantities which are on the same level as variables. In EULER these quantities are on the level of numeric and Boolean constants. EULER therefore introduces besides the

```
number and
``` logical constant
the following additional types of constants: reference, label, symbol list (array), procedure, undefined.

These constants can be assigned to variables, which assume the same form - as in ALGOL, but for which no fixed types are specified. This dynamic principle of type handling requires of course that each operator has to make a type test at execution time to insure that the operands involved are appropriate.

The generality goes one step further: A procedure when executed can produce a value of any type (and can of course also act by side effects), and this type can vary from one call of this procedure to the next. The elements of a list can have values of any type and the type can be different from element to element within the same list. If the list elements are labels then we have a switch, if the elements are procedures then we have a procedure list, a construct which is not available in ALGOL 60 at all. If the elements of a list are lists themselves then we have a general tree structure.

\footnotetext{
identifiers are defined in EULER exactly as in ALGOL 60.
}

EULER provides general type-test operators and some type conversion operators.
a) Numbers and Logical Constants

Numbers in EULER are essentially defined like unsigned numbers in ALGOL 60.

The logical constants are true and false.
b) References

A reference to a variable in EULER is a value of type Reference. It designates the identity of this particular variable rather than the value assigned to it. We can form a reference by applying the operator @ to a variable:
@<variable>
The inverse of the reference operator is the evaluation operator (.). If a certain variable x has been assigned the reference to a variable \(y\), then
x.
represents thevariable y. Therefore the form
<variable>.
is also considered to be a variable.
c) Labels
A label is like in ALGOL a designation of an entry point into a
statement sequence. It is a 'Program Reference' . A label is
symbolically represented by an identifier. In contrast to ALGOL 60
each label has to be declared in the head of the block where it is
defined. In the paragraph on declarations it is explained why this
is so.

\section*{d) Symbols}

A symbol (or character) in EULER is an entity denoted in a distinguishable manner as a literal symbol. A list of symbols is called a string.
e) Lists

Lists in EULER take the place of arrays in ALGOL. But they are more general than arrays in ALGOL in several respects. Lists can be assigned to variables, and are not restricted to a rectangular format; they can display a general tree structure. Furthermore, the structure of lists can be changed dynamically by list operators.

Basically a list is a linear array of a number of elements (possibly zero). A list element is a variable: to it can be assigned a constant of any type (in particular, it can itself be a list), and its identity can be specified by a reference.'

A list can be written explicitly as (<expression> , <expression> ,)

The expressions are evaluated in sequence and the results are the elements of the created list.

A second way to specify a list literally is by means of the list operator list

\section*{\$estpression>}
where the expression has to deliver a value of type Number, and the result is a list with as many elements (initialized to \(\Omega\)) as specified by the expression.

The elements of a list are numbered with the natural numbers beginning with 1. A list element can be referenced by subscripting
a variable (or a list element) to which a list is assigned. If the subscript is not an integer then its value rounded to the nearest integer is used for subscripting. An attempt to subscript with i, where \(i<0\) or \(i>l e n g t h\) of the list, results in an error indication. An example for specifying a list structure is
\[
(1,2,(3,(4,5), 6,()))
\]

This is a list with three elements, the first two elements being numbers, the third element being a list itself. This sublist has four elements, a number, another sublist, again a number and last another sublist with 0 elements. If this list would have been assigned to the variable a, then \(a[2]\) would be the number 2 , \(a[3][2]\) would be the list \((4,5)\).

In order to manipulate lists, list operators are introduced into EULER. There are a type-test operator (isli), an operator to determine the current number of elements (length), a concatenation operator (\&), and an operator to delete the first element of a list (tail). Here are some examples for the use of these operators: (Assuming the list given above assigned to a)
isli a[2]
Fengtin \(a[3][4]\)
(2,3) \& a[3][2]
(a[2]) \& tail tail \(a[3]\)
gives a value false gives a value 0 gives the list \((2,3,4,5)\) gives the list \((2,6,())\)

From the formal description of EULER it can be seen what rules have to be observed in applying list operators, and in what sequence these operators are executed when they appear together in an expression (like in the last example).

Only a minimal set of list operators is provided in EULER.
This set can, however, easily be expanded. The introduction of list
manipulation facilities into EULER makes it possible to express with this language certain problems of processing symbolic expressions which can not be handled in ALGOL but required special list processing languages like LISP or IPL.
f) Procedures

Similar to ALGOL, a procedure is an expression which is defined once (possibly using formal parameters), and which can be evaluated at various places in the program (after substituting actual parameters). The notion of a procedure in EULER is, however, in several respects more general than in ALGOL. A procedure, i.e. the text representing it, is considered a constant, and can therefore be assigned to a variable. An evaluation of this variable'effects an evaluation of this procedure, which always results in a value. In this respect every EULER procedure acts like a type-procedure in ALGOL. The number and type of parameters specified may vary from one call of a procedure to the next call of this same procedure.

Formally parameters are always called 'by value'. However, since an actual parameter can again be a procedure, the equivalent of a "call by name' in ALGOL can be accomplished. Furthermore an actual parameter being a reference establishes a third kind of call: "call by reference'. It must be-noted that the type of the call of a parameter is determined on the calling side. For example, assuming \(i=1\) and \(a[i]=2\),
```

    \(\mathrm{p}(\mathrm{a}[\mathrm{i}])\) is a call by value,
    \(p\left({ }^{6} a[i]\right.\) ) \() \quad\) is a call by procedure (name),
    p (@ a[i]) is a call by reference.
    ```

In the first case the value of the parameter is 2 , in the second case it is \(a[i]\), in the third case it is the reference to \(a[1]\).

A procedure is written as

\section*{' <expression>' or}

where \(\delta\) represents a formal declaration. The evaluation of \(a\) procedure yields the expression enclosed in the quote marks.

A formal declaration is written as
formal <identifier> .
The scope of a formal variable is the procedure and the value assigned to it is the value of the actual parameter if there exists one, \(\Omega\) otherwise. When a formal variable is used in the body of the procedure, an evaluation of it is implied. For instance in
\[
p \leftarrow{ }^{6} \text { formal } x ; x \leftarrow 5^{\prime} ; \ldots ; p(@ a) ;
\]
the reference to \(a\) is assigned to the formal variable \(x\), and the implied evaluation of \(x\) causes the number 5 to be assigned to the variable a (and not to the formal variable x). As a consequence, the call \(p(l)\) would imply that an assignment should be made to the constant 1. This is not allowed and will result in an error indication.

\section*{g) The Value 'Undefined'}

The constant \(\Omega\) means 'undefined? Variables are automatically initialized to this value by declarations. Also, a formal parameter is assigned this value when a procedure is called and no corresponding actual parameter is specified in the calling sequence.

\section*{2. Expressions}

In ALGOL an expression is a rule for obtaining a value by applying certain operators to certain operands, which have themselves values. A statement in ALGOL is the basic unit to prescribe actions. In EULER these two entities are combined and called'expression', while the term 'statement' is reserved for an expression which is possibly labelled. An expression in EULER, with the exception of a goto-expression, produces a value by applying certain operators to certain operands, and at the same time may cause side effects. The basic operands which enter into expressions are constants of the various types as presented in paragraph 1, variables and list elements, values read in from input devices, values delivered by the execution of procedures and values of expressions enclosed in brackets. Operators are in general defined selectively to operate on operands of a certain type and producing values of a certain type. Since the type of a value assigned to a variable can vary, typetests have to be made by the operators at execution time. If a type test is unsuccessful, an error indication is given. Expressions are generally executed from left to right unless the hierarchy between operators demands execution in a different sequence. The hierarchy is implicitly given by the syntax. Operators with the highest precedence are the following type test operators:
\begin{tabular}{|c|c|c|}
\hline b & <variable> & (is logical?) \\
\hline isn & <variable> & (is number?) \\
\hline isr & <variable> & (is reference?) \\
\hline isl & & (is label?) \\
\hline isy & & (is symbol?) \\
\hline isli & & (is list?) \\
\hline isp & & (is procedure?) \\
\hline isu & <variable> & (is undefined?) \\
\hline
\end{tabular}

These operators, when applied to a variable, yield true or false, depending upon the type of the value currently assigned to the variable. At the same level are the numeric unary operators: abs (forming the absolute value of an operand of type Number), integer (rounding an operand of type Number to its nearest integer), the list reservation operator list, the length operator length (yielding the number of elements in a list), the tail operator, and type conversion operators like real, which converts a logical value into a number, logical which converts a number into a logical value, conversion operators from numbers to symbols and from symbols to numbers, etc.

The next lower precedence levels contain in this sequence: Exponentiation operator, multiplication operators \((x, /, \div, \bmod)\), addition operators (+, -), extremal operators (max, min). Operands and results are of type Number.

The next lower precedence levels contain the relational and logical operators in this sequence: relational operators \((=, \neq,<, \leq,>, \geq)\), negation operator 7, conjunction operator \(\wedge\), disjunction operator \(\vee\). The relational operators require that their operands are of type Number and they form a logical value. The operators \(\wedge\) and \(\vee\) are executed differently from their ALGOL counterparts: If the result is already determined by the value of the first operand, then the second operand is not evaluated at all. Thus, false \(\wedge x \rightarrow\) false, true \(V x \rightarrow\) true for all \(x\).

The next lower precedence level contains the concatenation operator \& .

Operators of the lowest level are the sequential operators goto,

If, then, and else, the assignment operator \(\leftarrow\), the output operator out and the bracketing symbols begin and end. According to their occurence we distinguish between the following types of expressions: goto-expressior, assignment expression, output expression, conditional expression, and block. As it was already mentioned, all expressions except the goto-expression produce a value, while in addition they may or may not cause a side effect.

The go-to-expression is of the form
Gexpression>
If the value of the expression following the goto-operator is of the type Label, then control is transferred to the point in the program which this label represents. If this expression produces a value of a different type, then an error indication is given.

The assignment expression assigns a value to a variable. It is of the form
\[
\text { <variable> } \leftarrow \text { <expression> }
\]

In contrast to ALGOL an assignment expression produces a value, namely the value of the expression following the assignment operator, This general nature of the EULER assignment operator allows assignment of intermediate results of an expression. For example:
\[
\mathrm{a} \leftarrow \mathrm{~b}+[\mathrm{c} \leftarrow \mathrm{~d}+\mathrm{e}]
\]
would compute \(d+e\), assign this result to \(c\), and then add \(b\), and assign the total to a.

The output expression is of the form
out <expression>
The value of the expression following the output operator is transmitted
to an output medium . The value of the output expression is the value of the expression following the output operator.

A conditional expression is of the form
if <expression> then <expression> else <expression>
The meaning is the same as in ALGOL.
The construct

\section*{if <expression> then <expression>}
is not allowed in EULER, because this expression would not produce a value, if the value of the first expression is false.

An expression can also be a block.
3. Statements and Blocks

A statement in EULER is an expression which may be preceded by one or more label definition'(s). If a statement is followed by another statement, then the two statements are separated by a semicolon. A semicolon discards the value produced by the previous statement. Since a goto-expression leads into the evaluation of a statement without encountering a semicolon, the goto operator also has to discard the value of the statement in which it appears.

A block in EULER is like in ALGOL a device to delineate the scope of identifiers used for variables and labels, and to group statements into statement sequences. A block is of the form
\[
\text { begin } \sigma ; \sigma ; \ldots ; \sigma \text { end or }
\]
begin \(\delta ; \delta ; \ldots ; \delta ; \sigma ; \sigma ; \ldots ; \sigma\) end
where \(\sigma\) represents a statement and \(\delta\) represents a declaration. The last statement of a block is not followed by a semicolon, therefore its value becomes the value of the block.

Since procedures, labels, and references in EULER are quantities which can be dynamically assigned to variables, there is a problem which is unknown to ALGOL: These quantities can be assigned to variables which in turn can be evaluated in places where these quantities or parts of them are undefined.

Situations like this are defined as semantic errors, i.e. the language definition is such that occurrences of these situations are detected.

\section*{4. Declarations}

There are two types of declarations in EULER, variable-declarations and label-declarations:
new <identifier> and label <identifier>

A variable declaration defines a variable for this block and all inner blocks, to be referenced by this identifier as long as this same identifier is not used to redeclare a variable or a label in an inner block. A variable declaration also assigns the initial value \(\Omega\) to the variable.

As discussed in paragraph 1, no fixed type is associated with a variable.

A label declaration serves a different purpose. It is not a definition like the variable declaration; it is only an announcement that there is going to be a definition of a label in this block of the form <identifier> :
prefixing a statement.

Although the label declaration is dispensable it is introduced into EULER to make it easier to handle forward references. A situation like begin...L:...begin...goto \(L\); ... L: . .end; . .end
makes it necessary to detect that the identifier \(L\) following the goto operator is supposed to designate the label defined in the inner block. Without label'declarations it is impossible to decide, whether an identifier (not declared in the same block) refers to a variable declared in an outer block, or to a label to be defined later in this block, unless the whole block is scanned. With a label declaration every identifier is known upon encounter.
B. The Formal Definition of EULER

EULER was to be a language which can be concisely defined in such a way that the language is guaranteed to be unambiguous, and that from the language definition a proce'sing system can be derived mechanically, with the additional requirement that this processing system should run with reasonable efficiency. A method to perform this transformation mechanically, and to accomplish parsing efficiently, has been developed and is given in Chapter III for languages which are simple precedence phrase structure languages. Therefore, it appeared to be highly desirable to define EULER as a simple precedence language with precedence functions. It was possible to do this and still include in EULER the main features of ALGOL and generalize and extend ALGOL as described.

The definition of EULER is given in two 'steps' to insure that the - language definition itself forms a reasonably efficient processing system for EULER texts. The definition of the compiling system consists of the parsing algorithm, given in paragraph III.B.l., a set of syntactic rules, and a set of corresponding interpretation rules by which an EULER text is transformed into a polish string. The definition of the executing system consists of a basic interpreting mechanism with a rule to interpret each symbol in the polish string. Both descriptions use the basic notation of chapter II. If the definition of EULER would have been given in one step like the definition of the example in chapter III \(C\), it would have been necessary to transform it into a two phase system in order to obtain an efficient processing system. Furthermore, a one phase definition requires the introduction of certain concepts (e.g. a passive mode, where a text is only parsed but not evaluated) which are without consequence for
practical systems, because they take on an entirely different appearance when transformed into a two phase system.

The form of the syntactic definition of EULER is influenced by the requirement that EULER be an unambiguous simple precedence phrase structure language. This involves that:
a) there must be exactly one interpretation rule (possible empty) for each syntactic rule,
b) the parsing algorithm has to find reducible substrings in exactly the same sequence in which the corresponding interpretation rules have to be obeyed,
c) extra syntactic classes (with empty interpretation rules) have to be introduced to insure that at most one precedence relation holds between any two symbols,
d) no two syntactic rules can have the same right part.

For an illustration of the requirements a) and b) consider the syntactic definition of an arithmetic expression in ALGOL 60:
<arithmetic expression> : : = <simple arithmetic expression> | <if clause> <simple arithmetic expression> else <arithmetic expression>

If the text
\[
\text { if } b \text { then } a+c \text { else } d+e
\]
is parsed, then \(d+e\) is reduced to <arithmetic expression> and accordingly evaluated, before it has been taken into account that the preceding <if clause> may prevent \(d+e\) to be evaluated at all. In this example, the syntax of ALGOL 60 fails to reflect the sequence of evaluation properly, as it does e.g. in the formulations of simple expressions. To correct this default, the corresponding syntactic definitions in EULER are as follows: (BNF is adopted here to obviate the analogies)
```

<expresssion> ::= <if clause> <true part> <expression>
<if clause> ::= if <expression> then'
<true part> ::= <<<xpression> else

```

In the example above, the operator else will be recognized as occuring in <true part> before the expression \(d+e\) is parsed. Through the interpretation rule for <true part> the necessary code can be generated.

A similar situation holds for the ALGOL definition
```

<basic statement> ::= <label> : <basic statement>

```

The colon, denoting the definition of a label, is included in a reduction only after <basic statement> was parsed and cvaluated. In EULER the corresponding definitions read:
```

<statement> ::= <label definition> <statement>
<label definition> ::= <identifier> :

```

Thus the parsing algorithm detects the label definition before parsing the statement.
- As a third example, we give the EUIER definition of <disjunction>

\section*{<disfunction> ::= <disjunction head> <disjunction> <disjunction head> ::= <conjunction> V}

Thus, \(V\) is included in a syntactic reduction, before <disjunction> is parsed and evaluated; code can be generated which allows conditional skipping of the following part of program corresponding t\&disjunction>. The corresponding AIGOI syntax <Boolean term> ::=. <Boolean term> V <Boolean factor> reflects the fact that both <Boolean term and <Boolean factor> are to be evaluated before the logical operation is performed. This interpretation of the logical operators \(\wedge\) and \(\vee\) was deliberately discarded as being undesirable.

> According to requirement c) the language definition of EULER contains certain auxiliary nonbasic symbols like
```

<variable-> , <integer-> etc. to insure that EULER is a simple

``` precedence language. Without these nonbasic symbols the reducible substrings in a sentence are not disjoint, as the following example taken from ALGOL shows:


Therefore one obtains the contradicting precedence relations \(\mathbf{x} \doteq\) <factor> and X \llfactor> .

The requirement d) together with the precedence property is a sufficient condition for the language to be unambiguous. Requirement d) has far reaching consequences on the form of the language definition, because it forces the syntax to be written in a sort of linear arrangement rather than a net. Two examples will be given.

A label unlike in ALGOL can in EULER not be defined as <identifier>, because we already have
<variable-> ::= <identifier>

This suggests that the best thing to do would be to introduce two different forms of identifiers for the two different entities variable and label. It was felt, however, that tradition dictates that the same kind of identifiers be used for variables and labels. It was possible to do this in EULER although the solution might not be considered clean. In the text
goto L
the identifier \(L\) is categorized by the parsing algorithm into the syntactic class <variable>, but the corresponding interpretation rule examines the table of declared identifiers and discovers that this identifier
designates a label (defined or undefined at this time). Therefore, a label is inserted into the polish string instead of a variable.

A second example for the specific arrangement of the syntax chosen to fullfill requirement \(d\)) is the following: The concatenation operator (\&) is introduced into the syntax in the syntactic class <catena>, which is defined as
```

<catena> : := <catena> \& <primary> |
<disjunction>

```

This looks as if \& had a lower precedence than the logical and arithmetic operators. But this is of no consequence, since an operand of \& must be a quantity of type List and a <disjunction> can only be of type List if it is a <primary>, i.e. not containing any logical or arithmetic operators.
- But we cannot write

> <catena> ::= <primary> ,
because this would violate requirement d). Therefore <catena> appears in the syntax at a rather arbitrary place between <primary> and <expression>.

Looking at the requirements made upon the language definition and observing the careful choices that had to be made in drawing up the language definition in line-with these requirements, the criticism will probably be raised, that the difficulties usually encountered in deriving syntax directed compilers for given languages are not avoided in EULER but merely 'sneaked' into the definition of the language itself. This point is well taken, but we think that nobody is likely to create something as complicated as a processing system for an algorithmic language like ALGOL without encountering some difficulties somewhere. We think
it is the merit of this method of language definition to bring these difficulties into the open, so that the basic concepts involved can be recognized and systematically dealt with. It is no longer possible to draft an 'ad hoc syntax' and call it a programming language, because the natural relationship between structure and meaning must be established.

Subsequently follows the formal definition of EULER. It has been
programmed as an Extended ALGOL program for the Burroughs B5500 computer. This program is listed in Appendix II.

\section*{Phase I (Translator)}

The vocabulary \(v:\)
The set of basic symbols \(\mathscr{B}\) : *


```

list |tail |in|isb}|isn|isr|isl|isli|isy|isp|isu|\sigma|\Omega
30 | | true |false |

```

The set of non-basic symbols \(\vartheta-\mathbb{B}\) : program|block|blokhead|blokbody|labdef \(\mid\) stat \(\mid\) stat- \(\mid\) expr|expr-|ifclause|truepart|catena|disj|disjhead \(\mid\) conj|conj-|conjhead |negation|relation|choice|choice-| sum \(\mid\) sum- \(\mid\) term \(\mid\) term- \(\mid\) factor \(\mid\) factor- \(\mid\) primary \(\mid\) procdef \(\mid\) prochead \(\mid\) ist* \(\mid\) reference \(\mid\) number \(\mid\) real* \(\mid\)
 integer** integer-|digit|logval|var|var=|vardecl|
 labdecl|fordecl

The environment \(\mathcal{E}_{1}\) :
\begin{tabular}{ll}
\(S\) & (stack used by the parsing algorithm) \\
V & \\
i & (index to S and V) \\
j & (index to S and V) \\
P & (program produced by Phase I) \\
k & (index to P) \\
N & (list of identifiers and associated data) \\
n & (index to N) \\
m & (index to N) \\
bn & (block number) \\
on & (ordinal number) \\
scale & (scale factor for integers)
\end{tabular}
\(\boldsymbol{\varepsilon}_{1}=(S, V, i, j, P, k, N, n, m, b n, o n\), scale \(]\)
* \(\lambda\) and \(\sigma\) are representatives for identifiers and symbols respectively.

\begin{tabular}{|c|c|}
\hline 25: number \(\rightarrow\) real* & \(\wedge\) \\
\hline \[
\text { 26: number } \rightarrow \underline{\text { real }}^{*} 10 \text { integer* }
\] & \[
\begin{aligned}
& t \leftarrow 10 \uparrow V[i] ; \\
& V[j] \leftarrow V[j] x t
\end{aligned}
\] \\
\hline \(27:\) number \(\rightarrow\) 10 \({ }^{\text {integer* }}\) & \[
\begin{aligned}
& \mathrm{t} \leftarrow 0.1 \uparrow V[i] ; \\
& \mathrm{V}[j] \leftarrow \mathrm{V}[j] \times \mathrm{t}
\end{aligned}
\] \\
\hline 28: number \(\rightarrow 10\) integer* & \(\mathrm{V}[\mathrm{j}] \leftarrow 10 \uparrow \mathrm{~V}[\mathrm{i}]\) \\
\hline 29: number \(\rightarrow_{10}\) - integer* & \(\mathrm{V}[\mathrm{j}] \leftarrow 0.1 \uparrow \mathrm{~V}[\mathrm{i}]\) \\
\hline 30: reference \(\rightarrow\) Qvar & \(\wedge\) \\
\hline 31: listhead \(\rightarrow\) listhead expr, & \(V[j] \leftarrow V[j]+1\) \\
\hline 32: 1 isthead \(\rightarrow\) (& \(\mathrm{V}[\mathrm{j}] \leftarrow 0\) \\
\hline 33: list \({ }^{\text {a }}\) (\({ }^{\text {listhead expr) }}\) & \(\left.\mathrm{k} \leftarrow \mathrm{k}+1 ; \mathrm{P}[\mathrm{k}] \leftarrow(6)^{9}, \mathrm{~V}[\mathrm{j}]+1\right)\) \\
\hline 34: list* \(\rightarrow\) listhead) & \(\left.\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow\left({ }^{6}\right)^{9}, \mathrm{~V}[\mathrm{j}]\right)\) \\
\hline 35: prochead \(\rightarrow\) prochead fordecl ; & \(\wedge\) \\
\hline 36: prochead \(\rightarrow^{6}\) & \[
\begin{aligned}
& \mathrm{bn} \leftarrow \mathrm{bn}+1 ; \mathrm{on} \leftarrow 0 ; \mathrm{k} \leftarrow \mathrm{k}+1 ; \\
& \mathrm{P}[\mathrm{k}] \leftarrow(669, \Omega) ; \mathrm{V}[j] \mathrm{tk} ; \\
& \mathrm{n} \leftarrow \mathrm{n}+1 ; \mathrm{N}[\mathrm{n}] \leftarrow(\Omega, \mathrm{m}) ; \\
& \mathrm{m} t \mathrm{n}
\end{aligned}
\] \\
\hline 37: procdef \(\rightarrow\) prochead expr \({ }^{\text {, }}\) & \[
\begin{aligned}
& k \leftarrow k+1 ; P[k] \leftarrow(699) ; \\
& P[V[j][2] \leftarrow k+l ; b n t b n-1 ; \\
& n t m-1 ; m \leftarrow N[m][2]
\end{aligned}
\] \\
\hline 38: primary \(\rightarrow\) var & \(k \leftarrow k+l ; P[k] \leftarrow(' v a l u e ')\) \\
\hline 39: primary \(\rightarrow\) var list* & \(\mathrm{k} \leftarrow \mathrm{k}+1 ; \mathrm{P}[\mathrm{k}] \leftarrow\left({ }^{\text {call }}{ }^{\prime}\right)\) \\
\hline 40: primary \(\rightarrow\) logval & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow\left({ }^{\text {l }}\right.\) logval \(\left.{ }^{\prime}, \mathrm{V}[\mathrm{j}]\right)\) \\
\hline 41: primary \(\rightarrow\) number & \(k \leftarrow k+l ; P[k] \leftarrow(' \underline{\text { number }}\) ',\(~ V[j])\) \\
\hline 42: primary \(\rightarrow \sigma\) & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow{\left.\underline{(6 \text { symbol }}{ }^{9}, \mathrm{~V}[\mathrm{j}]\right)}^{\text {a }}\) \\
\hline 43: primary \(\rightarrow\) reference & A \\
\hline 44: primary \(\rightarrow\) list* & A \\
\hline 45: primary \(\rightarrow\) tail primary & \(k \leftarrow k+1 ; P[k] \leftarrow(' t a i l ')\) \\
\hline 46: primary \(\rightarrow\) procdef & A \\
\hline 47: primary \(\rightarrow \Omega\) & \(k \leftarrow k+l ; P[k] \leftarrow\left({ }^{\prime} \Omega^{\prime}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 48: primary & \(\rightarrow\) expr 1 & \(\wedge\) \\
\hline 49: primary & \(\rightarrow\) in & \(k \leftarrow k+1 ; P[k] \leftarrow\left(\begin{array}{l}\text { in }\end{array}\right)\) \\
\hline 50: primary & \(\rightarrow\) isn var & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow\left({ }^{(} \mathrm{isb}^{\prime}\right)\) \\
\hline 51: primary & \(\rightarrow\) isn var & \(k \leftarrow k+l ; P[k] \leftarrow\left({ }^{(i s n}{ }^{\prime}\right)\) \\
\hline 52: primary & \(\rightarrow\) isr var & \(k \leftarrow k+1 ; P[k] \leftarrow\left({ }^{\text {isr }}{ }^{\prime}{ }^{\prime}\right)\) \\
\hline 53: primary & \(\rightarrow\) isl var & \(k \leftarrow k+l ; P[k] \leftarrow\left(6^{\text {isl }} 9\right)\) \\
\hline 54: primary & + isli var & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow\left({ }^{\text {isli }}{ }^{\prime \prime}\right)\) \\
\hline 55: primary & \(\rightarrow\) isy var & \(k \leftarrow k+1 ; P[k] \leftarrow\left('{ }^{\text {isy }}\right.\) ' \()\) \\
\hline 56: primary & \(\rightarrow\) isp var & \(k \leftarrow k+1 ; P[k] \leftarrow\left({ }^{\text {isp }}{ }^{\prime}\right)\) \\
\hline 57: primary & \(\rightarrow\) isn var & \(k \leftarrow k+1 ; P[k] \leftarrow\left(6^{\text {isn }}{ }^{\prime}\right)\) \\
\hline 58: primary & \(\rightarrow\) abs primary & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow\left({ }^{6} \underline{\text { abs }}{ }^{\prime}\right)\) \\
\hline 59: primary & \(\rightarrow\) length var & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow(\) 'length') \\
\hline 60: primary & \(\rightarrow\) integer primary & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow\left(\right.\) 'integer \(\left.^{\prime}\right)\) \\
\hline 61: primary & \(\rightarrow\) real primary & \(\mathrm{k} \leftarrow \mathrm{k}+1 ; \mathrm{P}[\mathrm{k}] \leftarrow(\) 'real' \()\) \\
\hline 62: primary & \(\rightarrow \underline{\text { logical }}\) primary & \(\mathrm{k} \leftarrow \mathrm{k}+1 ; \mathrm{P}[\mathrm{k}] \leftarrow\left(\right.\) logical \(\left.^{\prime}\right)\) \\
\hline 63: primary & \(\rightarrow\) list primary & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow(\) list') \\
\hline 64: factor- & \(\rightarrow \underline{\text { primary }}\) & \(\wedge\) \\
\hline 65: factor- & \(\rightarrow \underline{\text { factor }-\uparrow \text { primary }}\) & \(\mathrm{k} \leftarrow \mathrm{k}+1 ; \mathrm{P}[\mathrm{k}] \leftarrow\left(6 \uparrow^{\prime}\right)\) \\
\hline 66: factor & \(\rightarrow\) factor- & \(\wedge\) \\
\hline 67: term- & \(\rightarrow\) factor & \(\wedge\) \\
\hline 68: term- & \(\rightarrow\) term- X factor & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow\left(6{ }^{9}\right)\) \\
\hline 69: term= & \(\rightarrow\) term- / factor & \(k \leftarrow k+l ; P[k] \leftarrow(6 / 9)\) \\
\hline 70: term- & \(\rightarrow\) term- \(\div\) factor & \(\mathrm{k} \leftarrow \mathrm{k}+1 ; \mathrm{P}[\mathrm{k}] \leftarrow\left({ }^{6} \div{ }^{\prime}\right)\) \\
\hline 71: term- & \(\rightarrow\) term- mod factor & \(\mathrm{k} \leftarrow \mathrm{k}+\mathrm{l} ; \mathrm{P}[\mathrm{k}] \leftarrow\left(\mathrm{mod}^{\prime}\right)\) \\
\hline 72: term & \(\rightarrow\) term- & \(\wedge\) \\
\hline 73: sum- & \(\rightarrow\) term & \(\wedge\) \\
\hline
\end{tabular}
```

    74: sum- ++ term ^
    75: sum- -+-term
    76: sum- }->\mathrm{ sum- + term
    77: sum- }\quad->\mathrm{ sum- -term
    78: sum }->\mathrm{ sum- 
    79: choice- + sum ^
    80: choice- }->\mathrm{ choice- min sum
    81: choice-_ }->\mathrm{ choice- max sum
    82: choice }->\mathrm{ choice=
    83: felation }->\mathrm{ choice
    84: relation }->\mathrm{ choice = choice
    85: relation }->\mathrm{ choice }\not=\mathrm{ choice
    86: . .elation }->\mathrm{ choice < choice
    87: relation }->\mathrm{ choice }\leq\mathrm{ choice
    88: relation }->\mathrm{ choice }\geq\mathrm{ choice
    89: relation }->\mathrm{ choice }>\mathrm{ choice
    90: negation }->\mathrm{ relation
    91: negation }->\mathrm{ \ relation
    92: conjhead }->\mathrm{ negation A
    93: conj- }->\mathrm{ conjhead conj
    94: conj- }->\mathrm{ negation
    95: conj }->\mathrm{ conj-
    96: disjhead }->\mathrm{ conj V
    97: disj }\quad->\mathrm{ disjhead disj
    98: disj }->\mathrm{ conj }
    99: catena 3 catena & primary }\quad\textrm{k}\leftarrow\textrm{l
    ```
```

100: catena }->\mathrm{ disj }
101: truepart 3 expr else
k}\leftarrowk+1;P[k]\leftarrow(\mp@subsup{}{}{6}\mp@subsup{else}{}{9};\Omega);V[j]\leftarrow
102: ifclause }->\mathrm{ if expr then

```

```

103: expr- }->\mathrm{ 'Block
104: expr- }->\mathrm{ ifclause truepart
expr-
105: expr- }->\mathrm{ var }\leftarrowexpr-\quad\textrm{k}\leftarrow\textrm{e}+1;\textrm{P}[\textrm{k}]\leftarrow(`t'
106: expr- }->\mathrm{ gotoi m a ry
107: expr- }->\mathrm{ out expr-
k \leftarrowk+l; P[k]\leftarrow ('out')
108: expr= -> catena
109: expr }->\mathrm{ expr-
110: stat- }->\mathrm{ labdef stat=
\wedge
111: stat- }->\mathrm{ expr }
112: stat }->\mathrm{ stat- ^
113: labolef }->\lambda,\lambda: t t n ;
Lll3l: if t\leqm then goto ERROR;
if N[可][1] = V [j] then goto Lll32;
t tt-1; goto Lll产;
Lll32: if N[t][4] F \Omega then goto ERROR;
s }\leftarrowN[t][3];N[t][3] \leftarrowk+1
N[t][4] \leftarrow ' 'label';
L 1133: if s = \Omega then goto Ll134;
t}\leftarrowP[s][\overline{2];}P[s][2] \leftarrowk+1
s\leftarrowt; goto Lll33;
L1134:
114: blockhead }->\mathrm{ begin}
bn\leftarrow\textrm{bn}+1\mathrm{ ; on }\leftarrow0\mathrm{ ; k }\leftarrow\textrm{k}+1\mathrm{ ;
P[k]}\leftarrow(\mp@subsup{}{}{6}\mathrm{ begin }\mp@subsup{}{}{9})
n}\leftarrow\textrm{n}+1;\overline{N}[\textrm{n}]\leftarrow(\Omega,m);m\leftarrow
115: blokhead }->\mathrm{ blokhead vardecl; }
1l6: blokhead }->\mathrm{ blokhead labdecl; ^
117: blokbody -> blokhead .. ^
ll8: blokbody }->\mathrm{ blokbody stat; }
119: block }->\mathrm{ blokbody stat end }k\leftarrowk+l; P[k]\leftarrow('end')
bn tm-1; m\leftarrowN[m][2]
120: program}->\perp\mathrm{ block }\perp

```

\section*{Phase II (Interpreter)}

The following is the definition of the execution code produced by Phase I.
The variables involved are:

S (tree structured memory stack)
i (stack index)
mp (stack index, points at the last element of a linked list of Marks)
P (program)
k (program index of the instruction currently being interpreted)
fct (counter of formal parameters)
s , t , A. B , C (variables and labels local to any interpretation rule)
\[
\mathcal{E}_{2}=\{s, i, m p, P, k, \text { fct }\}
\]

The following types of quantities are introduced, which were not mentioned in Chapter II :
labels
procedures \(\quad\left(\begin{array}{l}\text { i.e. program references) } \\ \text { i.e. procedure descriptors) }\end{array}\right.\)
with the accompanying type-test operators isl, isp and the following type-conversion operators :
progref converting the two integers pa and bn into the pro-gram-reference with address pa defined in the block with number bn.
proc converting three integers (block-number, Mark-index, program-address) into a uniquely defined proceduredescriptor,
bln converting a procedure-descriptor into its block-number, mix converting a procedure-descriptor or a label into the index of the Mark belonging to the block in which the procedure-descriptor or label is defined (Mark-index),
adr
converting a procedure-descriptor or a label into its program address.

Also, there exists an operator
reference converting the two integers on and bn, into the reference of the variable with ordinal number on in the variable-list of the block with number bn.

The detailed description of these operators depends on the particular scheme of referencing used in an implementation, for which an example is given in Appendix II. It should be noted, however, that a reference, label or procedure-descriptor, may become undefined if it is assigned to any variable which is not in its scope. Since procedures and blocks may be activated recursively, the actual identity of a reference, label or procedure-descriptor can only be established in Phase II, which makes it necessary for Phase \(I\) to describe them in terms of more than one quantity. The sufficient and necessary amount of information to establish these identities is contained in the 'Marks' stored in \(S\). Marks are created upon entry into a block (or procedure) and deleted upon exit. A Mark contains the following data:
1. a block-number
2. a link to its dynamically enclosing block
3. a link to its statically enclosing block
4. a list of its variables .

5: a program return address
By 'link' is meant the index of the Mark of the indicated block.
The following list indicates to the left the operator \(\mathrm{P}[\mathrm{k}][\mathrm{l}]\) currently to be executed, and to the right the corresponding interpretation algorithm. At the end of each rule a transfer to the Cycle routine has to be implicitly understood. This basic fetch cycle is represented as follows:
```

Initialize: i}\leftarrow0; mp \leftarrow0; k \leftarrow0
Cycle : k \leftarrowk+l;
T : Obey the Rule designated
by P[k][l]; goto_Cycle

```
\begin{tabular}{|c|c|}
\hline Operators & Interpretation Rules (\(\Psi_{2}\)) \\
\hline + & if 7 isn \(S[i-1]\) then goto ERROR: if \(\neg\) isn \(S[i]\) then goto ERROR; \(\bar{S}[i-1] \leftarrow S[i-1]+S[i] ; i \leftarrow i-1\) \\
\hline \[
\left.\begin{array}{l}
\bar{x} \\
/ \\
\dot{+} \\
\underline{\text { mod }}
\end{array}\right\}
\] & \} defined analogously to + \\
\hline - & if 7 isn \(S[i]\) then goto ERROR; \(\bar{S}[i] \leftarrow-S[i]\) \\
\hline \[
\left.\begin{array}{l}
\begin{array}{l}
\text { abs } \\
\text { integer }
\end{array} \\
\underline{\text { logical }}
\end{array}\right\}
\] & \} defined analogously to: \\
\hline real & if 7 isb \(S[i]\) then goto ERROR; \(\overline{S[i]}\) real \(S[i]\) \\
\hline \(\underline{\text { min }}\) & \[
\begin{aligned}
& \text { if } \neg \text { isn } S[i-l] \text { then goto ERROR; } \\
& \text { if } \neg \text { isn } S[i] \text { then goto ERROR; } \\
& \text { i } \leftarrow i-1 ; \\
& \text { if } S[i]<S[i+1] \text { then goto } A ;
\end{aligned}
\] \\
\hline \(\underline{\max }\) & defined analogously to min \\
\hline isn & \[
\begin{aligned}
& \text { if }\urcorner \text { isr } S[i] \text { then goto_A; } \\
& S[i] \leftarrow S[i] . ; \\
& A: S[i] \leftarrow \text { isn } S[i]
\end{aligned}
\] \\
\hline \[
\frac{\frac{i s b}{i s r}}{\frac{i s l}{i s l i}}
\] & \(\}\) defined analogously to isn \\
\hline \[
\begin{aligned}
& \frac{i s y}{i s p} \\
& \frac{i s u}{}
\end{aligned}
\] & \(\int\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(<\) & if 7 isn \(S[i-1]\) then goto ERROR; if \(ᄀ\) isn \(\mathrm{S}[\mathrm{i}]\) then goto ERROR; \(\bar{S}[i-1] \leftarrow S[i-1]<S[i] ;\) it \(i-1\) \\
\hline \[
\left.\begin{array}{l}
\sum \\
\vdots \\
\bar{s} \\
\neq
\end{array}\right\}
\] & defined analogously to < \\
\hline \(\wedge\) & \[
\begin{aligned}
& \text { if } \neg \frac{\text { isb } S[i}{} \text { then goto ERROR; } \\
& \text { if } S[i] \text { then } \frac{\text { goto } A ;}{k} \leftarrow P[k][2] ; \text { goto } T \text {; } \\
& A: i-i-1
\end{aligned}
\] \\
\hline v & \begin{tabular}{l}
if 7 isb \(S[i]\) then goto ERROR; \\
\(\overline{\text { if }} 7 \overline{\mathrm{~S}[\mathrm{i}]}\) then goto \(A\); \\
\(\bar{k} \leftarrow P[k][2]\); goto \(T\); \\
A: i \(\leftarrow i-1\)
\end{tabular} \\
\hline 1 & \[
\frac{\text { if }}{S[i]} \underset{\sim}{\text { isb }} \mathrm{S}[\mathrm{i}] \text { then goto ERROR; }
\] \\
\hline then & ```
if ᄀ isb S[i] then goto ERROR;
i}\leftarrow\textrm{i}-1
if S[i+1] then goto A;
```



```
A:
``` \\
\hline else & \(\mathrm{k} \leftarrow \mathrm{P}[\mathrm{k}][2]\); goto T \\
\hline length & ```
if ᄀ isr S[i] then goto A;
S[i]}\leftarrowS[i].
A: if 7 isli S[i] then goto ERROR;
S[i] }\leftarrow\underline{\mathrm{ length S[i]}
``` \\
\hline tail & ```
if ᄀ isli S[i] then goto ERROR;
S[i]\leftarrowtail S[i]
``` \\
\hline \& & if 7 isli \(S[i-1]\) then goto \(A\); if \(ᄀ\) isli \(S[i]\) then goto ERROR; \(S[i-1] \leftarrow S[i-1] \& S[i] ; i \leftarrow i-1\) \\
\hline list & ```
A: if ᄀ isn S[i] then poto ERROR;
    t \leftarrowS[i];S[i]}\leftarrow\overline{();
B: if t 
S[i]}\leftarrow\textrm{S}[\textrm{i}]|(\Omega);\textrm{t}\leftarrow\textrm{t}-1
goto B; C:
``` \\
\hline
\end{tabular}
```

number $\quad i \leftarrow i+1 ; S[i] \leftarrow P[k][2]$
logval $\quad i \leftarrow i+1$; S[i] $\leftarrow P[k][2]$
$\Omega \quad i \leftarrow i+1 ; S[i] \leftarrow \Omega$
string $\quad i \leftarrow i+1 ; S[i] \leftarrow P[k][2]$
label $\quad i \leftarrow i+l ; S[i] \leftarrow \operatorname{progref}(P[k][2], P[k][3])$
@ $\quad i \leftarrow i+l ; S[i] \leftarrow \underline{\text { reference }}(P[k][2], P[k][3])$
new $\quad S[m p][4] \leftarrow S[m p][4] \&(\Omega)$
formal $\quad$ fct $\leftarrow \mathrm{fct+l}$;
if fct < iengtin sirmp][4] then goto A;
$\mathrm{S}[\mathrm{mp}][4] \leftarrow \mathrm{S}[\mathrm{mp}][4] \&(\Omega) ; \mathrm{A}:$
$\leftarrow \quad \quad$ if 7 isr $S[i-l]$ then goto ERROR;
$S[i-1] . \leftarrow S[i] ; S[i-1] \leftarrow S[i]$
$i \leftarrow i-1$;
$i \leftarrow i-1$
if 7 isn $S[i]$ then goto ERROR;
if $S[\bar{i}] \leq 0$ then goto ERROR; i ti-1;
if $ᄀ$ isr $S[i]$ then goto ERROR;
$\overline{S[i]} \leftarrow \mathrm{S}[i] . ;$
if $ᄀ$ isli $S[i]$ then goto ERROR;
$\mathrm{t} \leftarrow$ length $S[i]$;
if $S[i+1]>t$ Eher geto $R$;
$\overline{S[i]} \leftarrow @ S[i][\bar{S}[i+1]]$
begin
end
$t \leftarrow S[m p][2] ; S[m p] \leftarrow S[i] ;$
itmp; $m p \leftarrow t$
i $\leftarrow \mathrm{i}+1$;
$\mathrm{S}[\mathrm{i}] \leftarrow \mathrm{proc}(\mathrm{S}[\mathrm{mp}][1]+1, \mathrm{~S}[\mathrm{mp}][3], \mathrm{k})$
$\mathrm{k} \leftarrow \mathrm{P}[\mathrm{k}][2]$; goto T
value $\quad \frac{i f}{S[i]} \frac{i s r}{\leftarrow S}[i] . ;$ then goto $A$;
A: if 7 isp $S[i]$ then goto $B$;
$\mathrm{fct} \leftarrow 0 ; \mathrm{t} \leftarrow \mathrm{S}[\mathrm{i}]$;
$S[i] \leftarrow(\mathrm{bln} t$, mix $t, \mathrm{mp},(), k)$; (a Mark)
$\mathrm{mp} \leftarrow \mathrm{i} ; \mathrm{k} \leftarrow \mathrm{adr} \mathrm{t} ; \mathrm{B}:$

```
```

call i
if 1isr S[i] then goto A;
S[i]}\leftarrowS[i].
A: if lisp S[i] then goto ERROR;
fct }\leftarrow0; t \leftarrowS[i]
S[i]}\leftarrow(\mathrm{ bln t, mix t, mp, S[i+l], k); (a Mark)
mp ti; k \leftarrowadr t
, k}\leftarrow\textrm{S}[\textrm{mp}][5];\textrm{t}\leftarrow\textrm{S}[\textrm{mp}][2]
S[mp]}\leftarrow\textrm{S}[\textrm{i}]
itmp; mp \leftarrowt
got0 if ר isl S[i] then goto ERROR;
mp}\leftarrow\overline{\mathrm{ mix }}\textrm{S}[\textrm{i}];\overline{\textrm{pp}}\leftarrow\textrm{adr}\textrm{S}[i]
i}\leftarrow\textrm{mp}\mathrm{ ; goto. T
). t}\leftarrow\textrm{P}[k][2]; s\leftarrow(
(build a list)
A: if t = 0 then goto B;
t }\leftarrow\textrm{t}-1;\textrm{s}\leftarrow\textrm{s}\&(S[i-t]); goto A
B: i \leftarrow i+l; i \leftarrow i - P[k][2];
S[i]}\leftarrow

```

Certain features of ALGOL are not included in EULER, because they were thought to be non basic (or not necessary), or because they did not fit easily into the EULER definition, or both.

Examples are
the empty statement, allowing an extra semicolon before end, the declaration list, avoiding the necessity of repeating the declarator in front of each identifier,
the conditional statement without else,
the for-statement,
the own type.
It is felt that these features could be included in a somewhat
'fancier' EULER+ language, which is transformed into EULER by a prepass to the EULER processing system. This prepass might include other features
- like 'macros' or 'cliches', it would take care of the proper deletion of comments,etc. Certain standard macros or procedures might be known to this prepass and could thus be used in EULER+ without having been declared, like the standard functions in ALGOL. The set of these procedures would necessarily have to include a complete set of practical input-output procedures. It should be noted, however, that in contrast to ALGOL, they can be described in EULER itself, assuming the existence of appropriate opera-
 and lists (formats are lists of symbols), of type-test- and conversionoperators are of course instrumental in the design of these procedures. A few other useful 'standard procedures' are given as programming examples in the following paragraph. (cf. 'for', 'equal' and 'array')

\section*{C. Examples of Programs}

A list can contain elements of various types, here numbers and procedures:
begin new \(x ;\) new \(s ;\)
\(s \leftarrow\left(2, \quad\right.\) 'begin \(\left.x \leftarrow x+1 ; s[x] \underline{e n d ', ~ ' o u t ~} x^{\prime}\right) x \leftarrow s[1] ; s[x]\) end

A reference can be used to designate a sublist. Thus repeated double indexing is avoided:
begin new \(a ;\) new \(r\);
\(a \leftarrow(1,(2,3), 4) ; \quad\) The output is: 2,3
\(r \leftarrow @ a[2]\);
out r.[1]; out r.[2];
\(r .[1] \leftarrow \Omega\)
end

A procedure assigned to a variable (here p) is replaced by a constant,
as soon as further execution of the test \(\mathrm{n}<100\) is no longer needed:
begin new p ; new n ; new f ;
\(\mathrm{n} \leftarrow 0\);
\(\mathrm{P} \leftarrow \mathrm{n} \leftarrow \mathrm{n}+\mathrm{l}\); if \(\mathrm{n}<100\) then \(\mathrm{f}(\mathrm{n})\) else \(\mathrm{p} \leftarrow \mathrm{f}(\mathrm{n})\) ';
\(\mathrm{f} \leftarrow\) ‘formal \(\mathrm{x} ;\)..............';
end

If a parameter is a 'value-parameter', the value is established at call
time. In the case of a 'name-parameter', no evaluation takes place at call time. Thus the output of the following program is \(4,16,3\)
```

    begin new p; new a; new i;
    P}\leftarrow'\underline{formal x; formal k;
        begin k \leftarrowk+l; out x end';
    i}\leftarrow1
    a}\leftarrow(4,9,16)
    p(a[i],@i); p('a[i]', @i); out i
    end
begin new p; new a; new i;
p}\leftarrow\mp@code{`formal x; formal k;
begin k}\leftarrowk+1; x\leftarrowk end';
a \leftarrowlist 3; i \leftarrowl;
p(@a[i], @i); p( @a[i]', @i)
end
Here the final value of a is (2, \Omega,3).
A for statement is not provided in EULER. It can, however, easily be programmed as a procedure and adapted to the particular needs. Two examples are given below, the latter corresponding to the ALGOL for:
for $\leftarrow$ 'formal $v$; formal $n$; formal $s ;$
begin label $k ; v \leftarrow 1$;
$\mathrm{k}: ~ i f \mathrm{v} \leq \mathrm{n}$ then
begin $s ; v \leftarrow v+l$; goto $k$ end
else $\Omega$
end ${ }^{\prime}$
algolfor $\leftarrow \underline{\text { formal } v ; ~ f o r m a l ~} \ell$; formal step; formal u; formal $s$; begin label $k ; v \leftarrow \ell$;
$k:$ if $(v-u) \times$ step $\leq 0$ then
begin $s ; v \leftarrow v+$ step; goto $k$ end
else $\Omega$
end'

```

It should be noted that the decision whether the iterated statement should be able to alter the values of the increment and limit is made in each call for 'for' individually by either enclosing the actual parameters in quotes (name-parameter), or omitting the quotes (value-parameter).
E.g. a) \(n \leftarrow 5\); for (@i, \(n\), 'begin \(n \leftarrow n-1\); out \(n\) end')
b) \(n \leftarrow 5\); for (@i, 'n', 'begin \(n\) tn-1; out \(n\) end')
a) yields 4,3,2,1,0, while b) yields 4,3,2.

There is no provision for an operator comparing lists in EULER. But list comparisons can easily be programmed. The given example uses the 'for' defined above:
equal \(\leftarrow\) 'formal \(x\); formal \(y\);
begin new \(t\); new \(i\); label \(k\);
\(t \leftarrow \underline{\text { false; }}\)
if isli \(x \wedge\) isli \(y \wedge\) length \(x=\) length \(y\) then begin for (@i, length \(x\),
`if \(\boldsymbol{\imath}\) equal (@x[i], @y[i]) then goto \(k\) else \(\Omega\) ');
\(t\) ttrue
end else
\(t\) tisn \(x\) A isn y \(\wedge x=y\);
k: t
end'

It should be noted that the definition of A deviates from ALGOL and thus makes this program possible; therefore in
t tisn \(\mathrm{x} \wedge\) isn \(y \wedge \mathrm{x}=\mathrm{y}\)
the relation \(\mathrm{x}=\mathrm{y}\) is never evaluated if either x or y is a number. If the list elements may also be logical values or symbols, then the above statement must be expanded into:
\(t \leftarrow i s h . x\) A ism \(y\) A \(x=y V\) isbn \(x A\) isbn \(y \wedge\) real \(x=\) real \(y V\) isy \(x\) A isy \(y\) A real \(x=\) real \(y\)

There is no direct provision for an array declaration (or rather array
'reservation') either. It can be programmed by the following procedure:
array \(\leftarrow\) 'formal \(\boldsymbol{\ell}\); formal \(x\);
begin new \(t\); new \(a ;\) new \(b ;\) new \(i ;\)
\(\mathrm{b} \leftarrow \ell ; \mathrm{t} \leftarrow \underline{\text { list }} \mathrm{b}[1]\);
\(\mathrm{a} \leftarrow\) if length \(\mathrm{b}>1\) then array (tail \(\mathrm{b}, \mathrm{x}\)) else x ;
for (@i, bl], 'ti] \(\leftarrow a ')\);
t
end'
The statement \(a \leftarrow \operatorname{array}((x l, x 2, . . ., x n))\) would then correspond to
the ALGOL array declaration
array \(a[1: x l, 1: x 2, . \quad ., 1: x n]\),
while the statement \(a \leftarrow \operatorname{array}((x l, x 2, . . ., x n), a)\) would additionally
'initialize all elements with \(\boldsymbol{\alpha}\).

The following is an example of a summation procedure, using what is
in ALGOL known as 'Jensen's device'. The statement sum ('t', @1, I, u) has the meaning of \(\sum_{i=\boldsymbol{\ell}}^{\mathbf{u}} t\).
begin new \(k\); new \(I\); new sum; new \(a\); new \(b\);
sum \(\leftarrow\) 'formal \(t\); formal i; formal \(l\); formal \(u\); begin \(i \leftarrow \ell\);
\[
\text { if } \ell>u \underline{\ell+1,} u \text {) else } t+\operatorname{sum}(' t \text { ', @1, }
\]
end';
\(a \leftarrow(1,4,9,16)\);
\(\mathrm{b} \leftarrow((1,4),(9,16))\);
```

    out sum('@[k]', @k, 1, 4);
    out sum ('a[k] X a[5-k]', @k, 1, 4);
    out sum ('sum ('b[k][\ell]', @\ell, 1, 2)', @k, 1, 2)
    end

```
```

        * * * * * * * * * *
    ```
 * * * * * * * * * *
begin new \(x\); new sqrt; new elliptic; label \(K\);
begin new \(x\); new sqrt; new elliptic; label \(K\);
 elliptic \(\leftarrow\) 'formal \(a ;\) formal \(b ;\)
 elliptic \(\leftarrow\) 'formal \(a ;\) formal \(b ;\)
 if abs \([\mathrm{a}-\mathrm{b}] \leq 10^{-} 6\) then \(1.570796326 / a\) else
 if abs \([\mathrm{a}-\mathrm{b}] \leq 10^{-} 6\) then \(1.570796326 / a\) else
 elliptic ([a+b]/2, sqrt (axb))';
 elliptic ([a+b]/2, sqrt (axb))';
 sqrt \(\leftarrow\) 'formal \(a ;\)
 sqrt \(\leftarrow\) 'formal \(a ;\)
 begin label \(L\); new \(x ; x \leftarrow a / 2\);
 begin label \(L\); new \(x ; x \leftarrow a / 2\);
 L:if abs \([x \uparrow 2-a]<1_{10}-8\) then \(x\) else
 L:if abs \([x \uparrow 2-a]<1_{10}-8\) then \(x\) else
 begin \(x \leftarrow[x+a / x] / 2\); goto \(L\)
 begin \(x \leftarrow[x+a / x] / 2\); goto \(L\)
 end
 end
 end';
 end';
 \(x \leftarrow 0.7\);
 \(x \leftarrow 0.7\);
K: out \(x\); out \(\operatorname{sqrt(x);~out~elliptic~}(1, x)\);
K: out \(x\); out \(\operatorname{sqrt(x);~out~elliptic~}(1, x)\);
 \(x \leftarrow x+0.1 ;\) if \(x \leq 1.3\) then goto \(K\) else \(\Omega\)
 \(x \leftarrow x+0.1 ;\) if \(x \leq 1.3\) then goto \(K\) else \(\Omega\)
end
```

end

```

This program contains a square-root procedure using Newton's method iteratively, and a procedure computing the elliptic integral

using the Gaussian method of the arithmetic-geometric mean recursively.

As a final example, a permutation generator is programmed in EULER, so that the value of
```

perm (1, \ell)

```
```

is the list of all permutations of the elements of list \ell, i.e. a list with
1 x 2x3x . . . X kerogtoh ll i s t s :
begin new perm;new a; new k; label f;
perm }\leftarrow`\mp@code{formal k; formal y;             begin new romeN exch; new x;                 x \leftarrowy;                     rot \leftarrow `formal k; formal m;
if m > length x then() else
perm (k+l, exch (k, m, @x)) \& rot (k, m+l)';
exch }\leftarrow`\mathrm{ `formal k; formal m; formal x;
begin new b; new t;
t tx;
b}\leftarrowt[k];t[k]\leftarrowt[m];t[m]\leftarrowb;
end';
if length x = k then (x) else rot (k, k)
end';
a}\leftarrow0
f: out perm (1, a); a \leftarrowa \& (length a); goto f
end
This program generates the following lists:
()
((0))
((0,1), (1,0))
((0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,1,0), (2,0,1))

```

\section*{References}
1. P. Naur, ed., 'Report on the algorithmic language ALGOL 60', Comm. ACM, vol. 3, pp. 299-314; (May 1960).
2. ----, 'Revised Report on the algorithmic language ALGOL 60', Comm. ACM, vol. 6, pp. l-17 (Jan. 1963).
3. C. Böhm, 'The CUCH as a formal and descriptive language', IFIP Working Conf., Baden, Sept. 1964.
4. P. Landin, 'The mechanical evaluation of expressions', Comp. J. vol. 6, 4 (Jan 1964).
5. P. Landin, 'A correspondence between ALGOL 60 and Church's LambdaNotation', Comm. ACM vol. 8, 2 and 3, pp. 89-101 and 158-165.
6. A. Church, 'The calculi of lambda-conversion', Ann. of Math. Studies, vol. 6, Princeton N. J., 1941.
7. A. Curry, R. Feys and W. Craig, 'Combinatory Logic', North-Holland Pub., 1958.
8. A. van Wijngaarden, 'Generalized ALGOL', Annual Review in Automatic Programming, vol. 3, pp. 17 -26.
9. A. van Wijngaarden, 'Recursive definition of syntax and semantics', IFIP Working Conf., Baden, Sept. 1964.
10. J. van Garwick, 'The definition of programming languages by their compiler', IFIP Working Conf., Baden, Sept. 1964.
11. R. W. Floyd, 'The syntax of programming languages - a survey', IEEE Trans. on El. Comp., vol. EC-13, pp. 346-353 (Aug. 1964).
12. Y. Bar-Hillel, M. Perles and E. Shamir, `On formal properties of simple phrase structure grammars', Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, vol. 14, pp. 143-172; also in 'Language and Information' Addison-Wesley Pub., 1964.
```

13. R. W. Floyd, 'A descriptive language for symbol manipulations',
Ј. ACM, vol.8,pp.579-584 (Oct. 1961).
14. R. W. Floyd, 'Syntactic analysis and operator precedence', J. ACM,
vol. 10, pp. 316-333 (July 1963).
15. E. T. Irons, 'Structural connections in formal languages', Comm. ACM,
vol. 7, pp. 67-71 (Feb. 1964).
16. N. Wirth, 'A generalization of ALGOL', Comm. ACM vol. 6, pp. 547-
554 (Sept. 1963).
```

Acknowledgement: The authors wish to acknowledge the valuable assistance of Mr. W. M. McKeeman, who programmed the major part of the Interpreter on the Burroughs B5500 computer. His contribution includes the "Garbage Collector", a particularly subtle piece of code.

\section*{Appendix I}

The following is a listing of the syntax-processor programmed in Extended ALGOL* for the Burroughs B5500 computer. The organization of this program is summarized as follows:

Input lists of non-basic symbols, basic symbols and productions
A.

Bl.
Cl. Build list of leftmost and rightmost symbols, cf. III B2.

C2. Establish precedence relations, cf. III B2.
B2. Find precedence functions, cf. III B5.
B3. Build tables to be used by the parsing algorithm of the EULER processor. (punch cards)

Most of the program is written in ALGOL proper. Often used extensions of ALGOL are:
1. READ and WRITE statements
(symbol strings enclosed in \(<\) and \(>\) denote a format)
2. DEFINE declarations, being macros to be literally expanded by the ALGOL compiler.
3. STREAM procedures, being B5500 machine-code procedures, allowing the use of the B5500 character mode.
* cf. Burroughs B5500 Extended ALGOL Reference Manual.
```

BEGIN COMMENT SYNTAXOPROCESSOR. NIKLAUS WIRTHDEC.1964S
DEFINE NSY =150*: COMMENT MAX. NO. OF SYMBOLSS
DEFINE NPH 150*! COMMENT MAX.NO. OF PRODUCTIONSJ
DEFINE UPTO = STEP 1 UNTIL *B

```

```

    FILE OUT PCH O (2,10)S COMMENT PUNCH FILEJ
    I NTEGER LTB COMMENT NUMBER OF LAST NONBASIC SYMBOLS
    INIEGRK,M,N, MAX, OLONS BOOLEAN ERRORFLAGS
    ALPHA ARRAY READBUFFER[0:9], WRITEBUFFER[0:14]s
    ALPHA ARRAY TEXT [O:11]s COMMENT AUXILIARY TEXT ARRAYS
    ALPHA ARRAY SYTB [O:NSY]; COMMENT SYMBOLTABLE]
    I NTEGER ARRAY REF [OBNPR,O&5]& COMMENT SYNTAX REFERENCE TABLES
    LABEL START,EXITS
    LABEL A,B,G,E,F,G;
    STREAM PrOCEOURE CLEAR (D,N)B VALUE N
BEGIN 01 * DJ OS* \& LIT *N:SIt DJ DStNWDS
END J'
STREAM PHOCEOURE MARK (D,S): VALUES\&
BEGIN DI* DSSI t LOC SJ SItSI+T! OStCHR
END ;
BOOLEAN STREAM PROCEDUREFINIS(S)S
BEGIN TALLY *18SItSJIF SC *** THEN FINIS * TALLY
END J
STREAM PROCEDURE EDIT (S,D,N)\&
BEGIN DI * DJ SItNS OS t 30ECBSI t SJ OS* 9 WDSS
END J
STREAM PROCEDURE MOVE (S,D)S
BEGIN SI\&S!01 t DSOS \& WDSJ
END J
STREAM PROCEDURE MOVETEXT(S,D,N): VALUE NJ
BEGIN DIt DJ SI*SOS *NWDSB
END J
BOOLEAN STKEAM PROCEDURE EQUAL (S:D)B
BEGIN SI t SJ DIt DJ TALLY * 1IIF 8SC DC THENEOUAL GTALGYS
END J
STREAM PROCEDURE SCAN (S,DD,N)S
BEGIN LABEL A\&B,C,D,ES
SI t SJ DIt ODJ DS t 48 LIT MOM\&DI* DDJ SItsitis
IF SC THEN DITDI+8\&
AI IF SC THEN BEGIN SI SI\&1BGOTOAEND J
IFSC> "g" THEN GO TO DJ
8 (IFSCFWN THEN BEGINDS\&LITMN! GO TO EEND J OS\&CHR\&E:IS
B: IFSC*NTHEN BEGIN SI +SI\&IBGOTOB END J
C:SIt SI+1; GO TO As
DI DI * NJ SI *SI+5! OS \& O OCT
END ;
STREAM PROCEDURE EDITTEXT (S,D,N)S VALUE NJ
BEGIN SI*SIO1 t DIDI*DI+IO\&NCDI*DI*2I OS* 8 CHR)
END J
STREAM PROCEDURE SETTEXT (A,B,C,D,E,Z)S
BEGIN 01 \& Z! 01 t DI+6; SI t A! DS* 3 DEC! SI \&B! DS \& WOS!
DItDI+5! SI t G CS +3DECI DI* DI+3I SI *DS DS * 3 DECB
01 t DI\&3s SI t EJ OS * 3 OECJ

```
```

    END &
    STREAM PROCEOURE PCHTX(S:D,N)S VALUE N)
    BEGIN SI&SI UI*DSDI*DI+4S
        NCOS&LIT NNN!DS& 8 CHR; DS & LIT wnN; DS & LIT N,N)&
    END ;
    PROCEDURE INPUT)
READ(CARDFIL,10, READBUFFER[*]) [EXIT])
PROCEDURE OUTPUT)
BEGIN WHITE (PRINFIL, 15, WRITEBUFFER[*J)\&
CLEAR (WRITEBUFFER[OJ, 14);
END ;
I NTEGER PROCEDURE IN% (X); REAL X;
BEGIN INTEGER II LABEL F;
FOR 1 - UPTO M DO
IF EQUAL (SYTB[IJ, X) THEN GOTO FJ
WRITE(<"UNDEFINED SYMBOL"\)S ERRORFLAG \& TRUE)
F:INX\& Ii
END)
START:
FOR N * O UPTO 5 DO
FOR N* O UPTO NPR DO REP [M\&N]*Q
M*N \& MAX \& ULDN \& OS ERRORFLAG \& FALSES
CLEAR (WRITEBUFFER{OJ,14)\
COMMENT READ LIST OF SYMBOLS, ONE SYMBOL MUST APPEAR PER CARD,
STARTINGIN COL.9(8 CHARS. ARE SIGNIFICANT), THE LIST OF NON"
BASIC SYMBOLSIS FOLLOWED BY AN ENDCARD (**N IN COL.1). THEN
FOLLOWS THE LIST Of BASIC SYMBOLS AND AGAIN AN ENDCARDJ
WRITE (< "NONBASIC SYMBOLS:">))
A: INPUTJ
IF FINIS (READBUFFER[O]) THEN GO TO E%
M\&M+13
MOVE (REAUBUFFER[1], SYTB [MI,;
EDIT (READBUFFER[O], WRITEBUFFER[I], M)S
OUTPUTJ GO TO AS
E! WRITE (</"BASIC SYMBOLS\&">))LT*MS
FI INPUT\
IFFINIS (READBUFFER(OJ) THEN GO TOGB
M*M+1%
MOVE (READBUFFER[I], SYTB[M])]
EDIT (READBUFFER[O], WRITEBUFFER[I], M)!
OUTPUTJ GO TO FJ
COMMENT READ THE LIST OF PRODUCTIONS, ONE PER CARD, THELEFTPART
IS 4 NONBASIC SYMBDL STARTING IN COL.2.NO FORMAT IS PRESCRIBED
FOR THE RIGHT PART, ONE OR MORE BLANKS ACT 4 SSYMBOL SEPARATORS,
IF COL.2IS BLANK, THE SAME LEFTPART AS IN THE PREVIOUS PRODUCTION
IS SUBSTITUTED. THE MAX, LENGTH OF A PRODUCTION IS 6 SYMBOLS;
G\& WRITE (</"SYNTAX\&">)!
B\& INPUT3
IF FINIS (READBUFFER[OJ) THEN GO TO CB
MOVETEXT (READBUFFER(O): WRITEBUFFER(1), 10)! OUTPUTS
MARK (READBUFFER[9], 12): SCAN (READBUFFER[OJ,TEXT(OJ,N)S
IFN S OOKN > NPR OR REF[NOO] O THEN
BEGIN WRITE (<<UNACCEPTABLE TAGN>)) ERRORFLAGTTRUE; GO TO B

```

END
IFND MAX THEN MAX \(t\) NJ
COMment the syntax is stored in ref, each symbol represented by ITS INDEX IN THE SYMBOL-TABLES
FOR K * O UPTO 5 DO REF [NoK] + INX (TEXT(K])?
IF REF [N:O] = Othen REF[NsO] + REF[OLDN:O] ELSE.
IF REF [Nol) > LT THEN
BEGIN WHITE (<"ILLEGAL PRDDUGTION">)s ERRORFLAG * TRUE END B
OLDN * NS GO TO B!
CI If errorflag then go to exit)
N + MAXB
COMMENT M IS the length of the symbol.table, \(N\) of the refetables

BEGIN COMMENT BLOCK As
INTEGER ARRAY H(OIM, oimjs COMMENT PRECEDENCE MATRIXS
Integer array f, gloimjs comment precedence functionsj
BEGIN COMMENT BLOCK BI:
INTEGER ARRAY LINX, RINX [OBLT] COMMENT LEFT / RIGHT INDICESs
INTEGER ARRAY LEFTLISTIRIGHTLISTEOIIO22Js
begin comment block ci, build left. and right. Symbol listss
INTEGER IっJ]
I NTEGER SP, RSPS COMMENT STACK- AND RECURSTACK-POINTERS;
INTEGER LP, RP) COMMENT LEFT/RIGHT LIST PDINTERSI
I NTEGER ARHAY INSTACK [OIM];
bOOLEAN ARRAY DONE, ACTIVE \{OILT]\}
INTEGER ARRAY RECURSTACK. STACKMARK [0ILT+1]\}
Integer array stack, [0:1022]; COMMENt here the LISTS are builts
PROCEDURE PR\&NTLIST (LX:L) 3 ARRAY LX, L [0]s
BEGIN INTEGER I, J,K3
FOR I * 1 UPTOLT DO IF DONEIIJ THEN
BEGIN K +0 S MOVE (SYTB[I], WRITEBUFFER(0)])
FOR J + LX[I],J+1 WHILE L[J] 0 DO
BEGIN MOVE (SYTB[L[J]J, TEXT(K])S K * K+1)
If K \(\mathbf{Z}\) 10then
BEGIN EOITTEXT (TEXT[0], WRITEBUFFER(0).10)S OUTPUTS K + O
END ;
END 3
IFK > 0 THEN
beGIN EDITTEXT(TEXT[0], WRITEBUFFER[OJ, K)S OUTPUT END END
END 3
PROCEDURE DUMPITS
BEGIN INTEGER \(I, J)\) WRITE ([PAGEJ)s WRITE (<X9,"DONE ACTIVE LINX RINX">))
WRITE (<5I6>, FOR I* UPTOLT DO
[I, DONE[I], ACTIVE[I], LINX [IJ, RINX[IJJ)!
WRITE (</nSTACKI se anglj>, Sp)!

[I, FOR J +IUPTO I+9 DO STACK (JJ])]
WRITE (く/MRECURSTACK:">))
WRITE (<3I6>, FOR I + 1 UPTO RSP DO
[I, RECURSTACK[I], STACKMARK[I]])]

END ;
procedure keset (\(x\)) 3 value \(X\); integer \(X\);
BEGIN INTEGER Ii
FOR I \& X UPTO RSP DO STACKMARK [I] \& STACKMARK \([x]\))
END 3
procedure putintostack (x)s Value xi integer xs
COMMENT X Is PUT INTO THE WORKSTACK, DUPLICATION IS AVOIDED!
BEGIN IF INSTACK [X]=0 THEN BEGIN SP * SP+1; STACK [SP] \& XB INSTACK [XI * SP END ELSE If INSTACK [X] < StaCKMARK [RSP] then BEGIN SP + SP+1; STACK [SP] \& X\}
 END
IF SP > 1020 THEN
BEGIN WRITE (</"STACK OVERFLOWN/>): DUMPIT: GO TO EXIT END
END 3
PROCEDURE COPYLEFTSYMBOLS \((x)\)) VALUE \(X\}\) INTEGER Xi
'COMMENT COPY the list of leftsymbols of X into the stacks
BEGIN FUR \(X\) \& LINX[X], \(X+1\) WHILE LEFTLIST[X] \(\neq 0\) DO PUTINTOSTACK (LEFTLIST(X))
END
PROCEDURE COPYRIGHTSYMBDLS \((X)\)) VALUE \(X\) : INTEGER \(X\);
COMMENT COPY THE LIST OF RIGHTSYMBOLS OF XINTO THE STACKS
BEGIN FUR \(X\) +RINX[X], \(X+1\) WHILE RIGHTLIST[X] \(\neq 0\) DO PUTINTOSTACK (RIGHTLIST(X))!
END:
PROCEDURE SAVELEFTSYmbdLS (X) Value Xi Integer XI
COMMENT THE LEFTSYMBOLLISTS OF ALL SYMBOLS IN THE RECURSTACK WIth INDex \(>\) X have been built and must now be removed, they are COPIED INTJ "LEFTLIST" and the symbols are marked "done" s
begin integer IoJous label heEx
L IF STACKMARK CX] = STACKMARK [X+1〕 THEN
BEGIN X \(4 X+13\) IF \(X\) < RSP THEN GO TO LELSE GO TO LXEND 3
STACKMAHK [RSP + 1]+ SP + 1]
FOR 1 - \(X+1\) UPTO RSP DO
BEGIN LINX \{RECURSTACK[I]]+ LP+1\}
ACTIVE [RECURSTACK[I]] + FALSEs DONE [RECURSTACK[I]J+ TRUE;
FUR J \& STACKMARK[I] UPTO STACKMARK[1+1]-1 DO
IF STACK [J] \(\Rightarrow 0\) THEN
BEGIN LP + LP +1BLEFTLIST [LP] \& STACK [JJ]
If LP > 1020 THEN
BEGIN WRITE (</"LEFTLIST OVERFLOW"/>)s DUMPITS
PRINTLIST (LINX, LEFTLIST)S GO TO EXIT
END:
END
END 3
LP \& LP + IS LEFTLIST [LP] • OS
EXIRSP + X
END

COMMENT ANALOG TO "SAVELEFTSYMBOLS";
begin Integer dejs label Loex;
LI I F STACKMARK \([x]=\) STACKMARK \([x+1]\) THEN BEGIN \(X+X+1\) IF \(X<R S P\) THEN GO TO LELSE GO TO EX END STACKMAKK [RSP+1] + SP+13
```

        FURI + X+I UPTD RSP DO
        BEGIN RINX [RECURSTACK[I]]*RP+1;
            ACTIVE[RECURSTACK[I]}. FALSE; DONE [RECURSTACK[I]] t TRUE!
            FUR J & STACKMARK[I] UPTO STACKMARK[1+1]=1 DO
            If STACK 【J】# O THEN
            BEGIN RP&RP+1! RIGHTLIST {RP} - STACK {JJ&
            IFRP > 1020 THEN
            BEGIN WRITE (</NRIGHTLIST OVERFLOWN/>)/ DUMPIT)
                PRINTLIST (RINX,RIGHTLIST)S GO TO EXIT
            END ;
            END
        END $
        RP - RP+13 RIGHTLIST [RPJ& 03
    EX:RSP * XB
    END ;
    PROCEDURE BUILDLEFTLIST (X); VALUE Xi INTEGER X;
COMMENT THE LEFTLIST OF THE SYMBOL X IS BUILT BY SCANNING THE
SYNTAX FORPROOUCTIONS WITH.LEFTPART X. THE LEFTMOST SYMBOLIN
THE RIGHTPART IS THEN INSPECTED: IF It IS NONBASIC AND NOT MARKED
DONE, ITS LEFTLIST IS BUILT FIRST. WHILE A SYMBOL IS 8EJNG INSPECTED
IT IS MARKEO ACTIVES
BEGIN INTEGER I,R,OWNRSP;
ACTIVE[X] * TRUE;
RSP * OWNRSP * LINX [X]* RSP+1]
RECUHSTACK CRSPJ * Xi STACKMARK [RSP]* SP\&I]
FOR I \& UPTON DO
IF REF [I,O〕 m X THEN
BEGIN IF OWNRSP \& RSP THEN SAVELEFTSYMBOLS (OWNRSP)\&
R\&REF[IOIJ! PUTINTOSTACK (R))
If R sLT THEN
BEGIN IF DONE [R] THEN COPYLEFTSYMBOLS CR) ELSE
IF ACIIVE[R\ THEN RESET (LINX (RJ) ELSE
BUILDLEFTLIST (R)\&
END
END ;
END;
PROCEDURE BUILDRIGHTLIST(X)S VALUE X; INTEGER XS
COMMENT ANALOG TO NBUILDLEFTLISTN\&
BEGIN INTEGER d,R,OWNRSP; LABEL QQs
ACTIVE[X〕 \& TRUE;
RSP \& OWNRSP \& RINX [X]* RSP+1]
RECUKSTACK [RSP]\& Xi SJACKMARK [RSP]* SP+1%
FOR I \& UPTO N DO
If REF [I,OJ: XTHEN
BEGIN IF OWNRSP \& RSP THEN SAVERIGHTSYMBOLS (OWNRSP)B
FOR R \& 2,3,4,5 00 If REF {I,RJmO THEN GO TO QQs
OO!R\&REF (I,R=IJ! PUTINTOSTACK (R))
If R SLT THEN
BEGINIF DONE [RJ THEN COPYRIGHTSYMBOLS(R) ELSE
IF ACTIVE{R\ THEN RESET (RINX[RJ)ELSE
BUILDRIGHTLIST (R)S
END
END
END

```
```

    SP & RSP & LP * OB
    FORI*1 UPTU LT DO DONE[I] & FALSE;
    FOR I& UPTOLT OO IF NOT DONE [I] THEN
    BEGIN SP*RSP +0S
        FOR J & IUPTOMDOINSTACK[J]*OS
        BUILOLEFTLIST (I)S SAVELEFTSYMBOLS (O)S
    END ;
    WRITE ([PAGE]); WRITE (<X2O,"*** LEFTMOST SYMBOLS ****/>))
    PRINTLIST (LINX, LEFTLIST))
    SP + RSP + HP * O&
    FOR I & I UPTOLT OO DONE[I] & FALSES
    FOR I & I UPTO LTDO IF NOT OONE 〔I] THEN
    BEGIN SP*RSP* 0;
        FOR J & I UPTO M OO INSTACK [J] & O]
        BUILURIGHTLIST (I); SAVERIGHTSYMBOLS (O)I
    END J
    WRITE ([3])) WRITE (<x2O,**** RIGHTMOST SYMBOLS ****/>)&
    PRINTLIST (RINX, RIGHTGIST)!
    END BLOCK CIS
BEGIN COMMENT BLOCK C2, BUILO PRECEDENCE RELATIONS;
INTEGER J,K,P,Q\&R,b,T;
LABEL NEXTPRODUCTIONS
PROCEDURE ENTER (X,Y,S); VALUE X,Y,SS INTEGER X,Y,S;
COMMENT ENTER THE RELATION S INTO POSITION [X,Y]. CHECK FOR DOUBLE*
OCCUPATION OF THIS POSITION;
BEGIN Y \&H[X,Y]' If T\# NULL ANDT\&S THEN
BEGIN ERRORFLAG t TRUE;
WRITE (<"PRECEDENCE VIOLATED BY ",2AI," FOR PAIRN,2IA.
" BY PRODUCTION",Ia>, T, So X, Y, J)s
END J
H[X:Y]* St
END J
WRITE ([PAGE])S
FOR K \& UPTO M DO
FOR J * 1 UPTD M DO H[K,J] * NULL;
FOR J \& 1 UPTO N DO
BEGIN FUR K\&2,3,4,5 00 IF REF[J,K]*O THEN
BEGIN P*REP {J,K=I]}Q*REF {J,K}}
ENTER (P,Q:EQ);
If P S LT THEN
BEGIN FORR\&RINX{PI:R+1 WHILE RIGHTLIST {RJ* 0 DO
ENTER (RIGHTLIST[RJOQ,GR)S
If OSLT THEN
FORL+LINX[QJ,L+IWHILE LEFTLIST\L<br>0 00
BEGIN ENTER (P, LEFTLIST [L}:LS))
FOR R\&RINX{P),R+1 WHILE RIGHTLIST{R\ 0 DO
ENTER (RIGHTLIST(RJ,LEFTLISTILJOGR)
END
END
ELSE IF SGT THEN
FURL\&LINX{0],L+1 WHILELEFTLIST[LJ*0 00
ENTER (P, LEFTLIST(LJOLS):
END

```
```

    ELSE GO TO NEXTPROOUCTIONS
    NEXTPHODUCTION: END J ;
    WRITE (</X3,3913/>, FOR J © 1UPTOM OO J);
    FOR K + IUPTO M DO
    WRITE (<I3,39(X2,A1)>, K, FOR J*1 UPTO M DO H[K,JJ))
    END BLOCK C2}
END BLOCK B1;
If ERrorflag THEN GO TO EXIT;
WRITE (</"SYNTAX ISA PRECEDENCE GRAMMAR"|>);
BEGIN COMMENT BLOCK B2. BUILD F ANO G PRECEDENCE FUNCTIONS1
INTEGERI\& J, K,KI% N, FMIN, GMIN. TB
PROCEDURE THRU (I,J,X); VALUE I\&J,X\& INTEGER I\&J:X;
BEGIN WHITE (</NNO PRIURITY FUNCTIONS EXIST N,3I6>% lod,X):
GO TO EXIT
END \&
PROCEDURE FIXUPCOL (L,J,X): VALUE L,JoXB INTEGER LoJoXs FORWARD;
PROCEDURE FIXUPRON(IOL,X)\& VALUEI,L,X; INTEGERI:L*X\&
BEGIN INTEGER J\&F{I]\&G{L}+X!
IF KI E K THEN
BEGIN IF H[I,K]a EQ ANO F[I] (G{K] THEN THRU (I,K,O) ELSE
IFH[d,K]G LS ANDF[I] ZG[K] THEN THRU (IOK,O)
ENO ;
FOR J *KI STEPe1 UNTIL 1 00
IFH[I,J]\# EQ ANO F[I]\#G[J] THEN FIXUPCOL (I,J,O)ELSE
If H[IOJ] LS AND F[I]z G[J] THEN FIXUPCOL(I:J,1)\&
END ;
PROCEDURE f IXUPCOL (L, J\&X); VALUE L\& J\&X; INTEGER L\& Joxs
BEGIN INTEGER I\&G[J]*F{LJ + X;
IF KI\# K THEN
BEGIN IF H[K,J] EQ AND F[K] G[J] THEN THRU(K,J,I) ELSE
IF H[K,J]:GR ANO F[KJ S GCJJ THEN THRU (K,J\&1)
END J
FOR I \& K STEP \& UNTIL 1 DO
IFH[IOJ] EQ AND F[I] G{J] THEN FIXUPROW(IOJ,O)ELSE
IFH[IOJ] GR AND F[I]SG[J] THEN FIXUPROW(I\&J:I)\&
END B
Kl t Os
FOR K * IUPTOM DO
BEGIN FMIN 61J
FOR J \& I UPTO KI DO
IFH[K,J] EQ AND FMIN < G{J] THEN FMIN G{J] ELSE,
IFH{K,J)= GR AND FMINS G{JJ THEN FMIN t G{JJ+IB
F[K]* FMIN;
FOR J \&KI STEP -1 UNTIL 1 DO
IFH{K,J] EQ AND FMIN (G{J] THEN FIXUPCOL (KoJ,O) ELSE
IF H[K,JJ E LS AND FMIN zG[J] THEN FIXUPCOL (K,J,I)\&
KI*KI+1; GMIN+1!
FOR I \& IUPTO K OO
IF H{I,KJE EQ ANO F[IJ> GMIN THEN GMIN *F[IJ ELSE
IFH{I,KJ: LS ANDF[IJZGMIN THEN GMIN ©F[IJ+I!
G[K]*GMINJ
FORI \& KTEP ©IUNTILID O
IFH[I,KJE EQ ANO F[IJ<GMIN THEN FIXUPROW(I,K,O)ELSE:

```
```

                IFH[I,K]=GR AND F[I] SGMIN THEN FIXUPROW(I,K,I)}
    END K ;
    END BLOCK B2:
WRITE ([PAGE]))
BEGIN COMMENT BLOCK B3. BUILD TABLES Of PRODUCTION REFERENCESS
I NTEGER I:J,K,LS
INTEGER ARKAY MTB{O:M]} COMMENT MASTER TABLE }
INTEGER ARRAY PRTB [Ott02211 COMMENT PRODUCTION TABLE;
L\&03
FOR I + I UPTOM DO
BEGIN MTB{IJ\&L+1}
FUR J + IUPTON DO
IF REF[J,1] =IT HEN
BEGIN FOR K \& 2,3,4,5 DO
IF REF[J,K]*0 THEN
BEGIN I, *L\& 1; PRTB[L] \& REF[J,K]
END 3
L*L+1; PRTB[L] \& -J}L +L+1: PRTB[L] \& REF [J:OJ}
END ;
L \&L+1;PRTB[L]* 0
END ;
COMMENT PRINT AND PUNCH THE RESUTS:
SYMBOLTABLE, PRECEDENCE FUNCTIONS: SYNTAX REFERENCE TABLES;
WRITE (\&X8,NNO,N,X5,"SYM8OLN,X8, "FN,X5,"GN,X4,"MTBN/>))
FOR I\& UPTOM DO
BEGIN SETTEXT(I,SYTB[I],F[I],G[I], MTB[I], WRITEBUFFER[O])S
OUTPUT
END ;
WRITE (</NPRODUCTION TABLE:N/>)I
FOR I * O STEP 10 UNTIL L DO
WRITE ([I9:X2,10I6](I9:X2,10I6), FORI \& STEP 10 UNTIL I, DO
[I, FOR J \& I UPTOI\&9 DO PRTB[JJ])}
WRITE ((|"SYNTAX VERSION n,A5>, TIME (O)))\&
WRITE (PCH: <X4,NFT+N,I3,N; LT+N,I4,N! LP\&N,IG,N;N>,日T+I,M\&L)I
FOR I \& 1 STEP 6 UNTIL M DO
BEGIN PCHTX (SYTB[IJ, WRITEBUFFER{OJ. IF M=IZ6 THEN 6 ELSE M={+1)}
W RITE (PCH;10,WRITEBUFFER[*]): CLEAR (WRITEBUFFER[OJ,9)
END ;
W RITTE (PCH,<X4,12(I4,*"N)>, FOR I* 1UPTOMOOF[IJ)}
WRITE (PCH: <X4,I2(14,N;N)>, FORI \& UPTOM DO G[IJ)S
W R IT E (PCH;<X4,12(I4,N,N)>, FOR I * 1 UPTOM D O MTB{IJ)}
W RITTE (PCH,<X4,12(I4,N,N)>, FOR I \&IUPTOL DOPRTB[IJ)\&
END BLOCK B3
END BLOCK A \&
EXIT:
END,

```

\section*{Appendix II}

The following is a listing of the EULFR processing system prozranei wn Extended ATGOI, for the Burrough: B5500 computer. The organzation of this program is summarized a:; follows :

\section*{EULER Translotor}

Declarations including the procedure INSYMBOL and the code-gererating procedures Pl., P2, P3, FIXUP, Initialization of tables with data produced by the syntax-procosor, The parsing algorithm, The interpretation rules (their labels correspond to their numbe sing in IV B)

EULER Interpreter
Declarations including the procedures DUMPOUT (used for outputtiry results) and FREE (used to recover no longer used storage space when memory space becomes scarce)

The interpretation rules for the individual instructions

The source program is punched on cards (col. 1-72) in free field format. Blank spaces are ignored, but may not occur within identifiers or word-delimiters.

An identifier is any sequence of letters and digits (starting with a letter), which is not a word-delimiter. Only the first 8 characters are significant; the remaining characters are ignored.
```

Appendix II (continued)

```
A word-delimiter is a sequence of letters corresponding to a single EULER symbol, which in the reference-language is expressed by the same sequence of underlined or boldface letters. E.g., begin \(\rightarrow\) BEGIN, end \(\rightarrow\) END etc. Note: \({ }^{6} \rightarrow\) LQ, \({ }^{\prime} \rightarrow \mathrm{RQ}, \mathrm{c}_{\mathrm{c}} \rightarrow \mathrm{TEN}, \Omega \rightarrow\) UNDEFINED.
A symbol is any BCL-character* (or sequence of up to 5 XL-characters) enclosed between characters "", E.g. "*"
An example of an EULER program is listed at the end of this Appendix.

\footnotetext{
cf. Burroughs B5500 Extended ALGOL Reference Manual.
}

BEGIN COMMENT E U LER I V S Y S T EM MARCH 1965; INTEGER FT, LT: COMMENT INDEX OF FIRST AND LAST BASIC SYMBOLS I NTEGER LP! COMMENT LENGTH OF PRODUCTION TABLE)
ARRAY PKOGKAM CO1102211

LABEL EXIT
FT \& 45; LT + 119; LP * 465! COMMENT DATA GENERATED BY SY•PR.B
BEGIN COMMENT E U L R IV TRANSLATOR NOWIRTH;
DEFINE MARK = 119 * IDSYM = 63 *, REFSYM 59 *, LABSYM 62 *

DEFINE UNARYMINUS \(=116\) * NUMSYM 68 * BOOLSYM 64 *
DEFINE LISTSYM 1028 , SYMSYM \(=113\), FORSYM 61
DEFINE NAME VCOJ \#B
I NTEGER I,J,K,M,N,R,T,TI,SCALES BOOLEAN ERRORFLAGS
I NTEGER BN: ONS COMMENT BLOCK. AND ORDER-NUMBER;
I NTEGER NP; COMMENT NAME LIST POINTER;
INTEGER MPJ COMMENT MARK-POINTER Of NAMEDISTI
INTEGER PRP; COMMENT PROGRAM POINTER;
I NTEGER WC, CCB COMMENT INPUT POINTERS;
ALPHA ARRAY READBUFFER, WRITEBUFFER[OB14]B
ALPHA ARRAY SYTB [OBLTJB COMMENT TABLE OF BASIC SYMBOLS)
INTEGER ARRAY F, G [OILTJB COMMENT PRIORITY FUNCTIONS \(\boldsymbol{B}\)
I NTEGER ARRAY MTB [OILTJ; COMMENT SYNTAX MASTER TABLE \&
INTEGER ARRAY PRTB \{O\&LPJ! COMMENT PRODUCTION TABLE\}
I NTEGER ARRAY S \{O:127〕\} COMMENT STACK
REAL ARRAY V [Ois27]s COMMENT VALUE STACK s
ALPHA ARRAY NL\&\{0:63\}\} COMMENT NAME LISY\}
I NTEGER ARRAY NL2, NL3, NL4 \{0:63\}\}
LABEL AO,A1,A2,A3,A4,A5,A6,A7,A8,A98
LABEL LO, L1131. NAMEFOUND.
L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16,L17,L18,L19,
L20,L21,L22,L23,L24,L25,L26,L27,L28,L29,L 30,L31:L 32 ,L33,L34.
L \(35, L 36, L 37, L 38, L 39, L 40, L 41, L 42, L 43, L 44, L 45, L 46, L 47, L 48, L 49, L 50, L 51\),
\(L 52, L 53, L 54, L 55, L 56, L 57, L 58, L 59, L 60, L 61, L 62, L 63, L 64, L 65, L 66, L 67, L 68\),
L69,L70,L71,L72.L73,L74,L75,L76,L77,L78,L79,L80,L81,L82,L83,L84,L85,
\(L 86, L 87, L 88, L 89, L 90, L 91, L 92, L 93, L 94, L 95, L 96, L 97, L 98, L 99, L 100, L 101\),
L102,L103,L104,L105,L106,L107,L106,L109,L110,L111,L112,L113,L114\% L115,L116,L117,L118,L119,L1208
SWITCH BRANCH
L1,L2,L3,L4,L5,L6,L7,L6,L9,L10,L11,L12,L13,L14,L15,L16,L17,L18,L19, L20,L21,L22,L23,L24,L25,L26,L27,L28,L29,L30,L31,L32,L33,L34, \(L 35, L 36, L 37, L 38, L 39, L 40, L 41, L 42, L 43, L 44, L 45, L 46, L 47, L 48, L 49, L 50, L 51\), L52,L53,L54,L55,L56,L57,L58,L59,L60,L61,L62,L63,L64,L65,L66,L67,L68, L69,L70.L71,L72,L73,L74,L75,L76,L77,L78,L79,L80,L81,L82,L83,L84,L85. \(L 86, L 87, L 88, L 89, L 90, L 91, L 92, L 93, L 94, L 95, L 96, L 97, L 98, L 99, L 100, L 1010\) L102,L103,L104,L105,L106,L107,L106,L109,L110,L111,L112,L113,L114日 L115:L116:L117.L118,L119.L120

STREAM PROCEQURE ZERO (D) B
BEGIN DI4 DSOS + 8 LIT MOH
END
STREAM PROCEDURE CLEAR (D):
BEGIN DI*DSUS* 8 LIT N NSI*DSDS•14 WOS
END
```

STREAM PROCEDURE MOVE (S,O)\&
BEGIN SI * SJ DI*DSDS* WDS
END ;
BOOLEAN STKEAM PROCEDURE EQUAL (X,Y)B
BEGIN TALLY * 1; SI* X DI \& Y IF 8SC m DC THEN EQUAL * TALLY
END J
INTEGER PROCEDURE I NSYMBOL;
COMMENT "INSYMBOL" READS THE NEXT EULER-SYMBOL FROM INPUT.4
STRINGS Of LETTERS AND DIGITS ARE RECOGNIZED AS IDENTIFIERS,IF
THEY ARE NUT EQUAL TO AN EULER=IVWORD~DELIMITER.
A CHARACTER-SEQUENCE ENCLOSED IN N IS RECOGNIZED AS A SYMBOL;
BEGIN INTEGER I! LABEL A,B,C,D,E;
STREAM PROCEDURE TRCH (S,M%D,N)S VALUE MONB
BEGIN SI \& SJ S\&SI\&MS DI\&DSDI*DI\&NS OS \& CHR
END J
BOOLEAN STKEAM PROCEOURE BLANK (S,N)B VALUE N\&
BEGIN TALLY \&ISSI \& SJ SI \& SI\&N%IFSC * * THEN BLANK * TALLY
END J
STREAM PROCEDURE BLANKOUT (O);
BEGIN DI*D\& DS * 8 LIT ***
END {
BOOLEAN STKEAM PROCEDURE QUOTE (S,N)\& VALUE NJ
BEGIN TALLY * 1; SI \& S SI \& SI +N%IFSC **WN THEN QUOTE * TALLY
END J
BOOLEAN STKEAM PROCEDURE LETTER (S\&N)S VALUE NJ
BEGIN TALLY + 1;SI \& SJ SI \&SI\&N;
IF SC ALPHA THEN
BEGIN IF SC < "O" THEN LETTER * TALLY END
END
BOOLEAN STREAM PROCEDURE LETTERORDIGIT (S,N): VALUE NJ
BEGIN TALLY * 1; SI*SSSI*SI+N3
IF SC ALPHA THEN LETTERORDIGIT * TALLY
END
STREAM PROCEOURE EDIT (N, S: O); VALUE NJ.
BEGIN SI\& LOC NJ DI +OS OS \& 3 OECJ
SI+S! 01 * 01 + 13)DS \& 10 WDS
END J
PROCEDURE ADVANCE;
COMMENT ADVANCES THE INPUT POINTER BY 1 CHARACTER POSITION\&
BEGIN IFCC % THEN
BEGIN IF WC % \& THEN
BEGIN READ (CARDFIL,10,READBUFFER[*]){EXITJ}
EOIT (PRP+1, READBUFFER{O), WRITEBUFFER(OJ))
WRITE (PRINFIL.15, WRITEBUFFER[*J)\& WC * 0
END ELSE WC \& WC+1%
CC*OS
END
ELSE CC \&C+1%
END ADVANCE J
BLANKOUT (NAME);
A, IF BLANK (READBUFFER [WCJ, CC) THEN
BEGIN ADVANCE;-GO TO A ENDJ
IF LETTER (READBUFFER (WCJ, CC) THEN
BEGIN FOR I \& O STEP 1 UNTIL 7 00

```
```

            BEGIN TRCH (READBUFFER [WCJ, CC, NAME, I); AOVANCEJ
                        If NOT LETTERORDIGIT (READBUFFER[WCJ:'CC) THEN GO TO C
            END J
        B: AOVANCEJ
            IF LETTERORDIGIT (READBUFFER [WCJ, CC) THEN GO TO BJ
    Cl
    END ELSE
    IF QUOTE (READBUFFER [WCJ. (C) THEN
    BEGIN AOVANCEJ ZERO (NAME)S NAME ** * *
    EI TRCH (READBUFFER[WCJ, CC, I, 7; ADVANCE;
        IF I ##"N THEN
        BEGIN NAME *IG{42:6}& NAME [18:24:24]; GO TO E END
        ELSE I* SYMSYMJ GO TO O
        END ELSE
        BEGIN TRCH (REAOBUFFER [WC], CC, NAME;O)& ADVANCE
        END J
    FOR I & FT STEP 1 UNTIL LT DO
    II; EQUAL(SYTB[IJ, NAME) THEN BEGIN ZERO(NAME): GO TO O END J
    1 * IDSYMS
    D: INSYMBUL*I
    END INSYMBOL J
    PROCEDURE PI(X)\& VALUE XS INTEGER XB
BEGIN PRP * PRP+1! PROGRAM[PRP\ * X
END J
PROCEDURE P2(X,Y)\& VALUE X,Y; INTEGER X;REALY
BEGIN PRP \&PRP+1% PROGRAM[PRPJ \& X' PROGRAM[PRPJ.BFIELD \& YJ
END J
PROCEDURE P3(X,Y,L); valUE X,Y,Z; INTEGER X,Y,Z;
BEGIN PHP \&PRP+1; PROGRAM[PRPI \& XJ PROGRAMEPRPJ,BFIELD \& YJ
PROGHAM[PRPJ,CFIELD*Z
ENDJ
PROCEDURE FIXUP(I,X); VALUE IOX; INTEGER I\&XS
PROGRAM[IJ.BFIELD* XS
PROCEOURE ERROR (N)SVALUE NJ INTEGER N
BEGIN SWITCH FORMAT ERR *
("UNDECLARED IDENTIFIERN),
("NUMBER TOU LARGE"),
("LABEL IS DEFINEDTWICE"):
("A LABELIS NOT DECLARED"),
("LABEL DECLARED BUT NOT DEFINED?),
("PRUGRAM SYNTACTICALLY INCORRECT");
ERRORFLAG * TRUE;
WRITE ([NO], ERR[N])] WRITE (<X40,"COL.",13>, WCX8* CC +1)
END ERROR J
PROCEDURE PRUGRAMDUMPS
BEGIN REAL TJ INTEGER I; LABEL LJ
STREAM PROCEDURE NUM (NOD)B VALUE NJ
BEGIN 01 * DJ SI LOC NJ OS - 3 OEC
ENO J
READ (<A4\rangle: T) {L}} If T "DUMP" THEN GO TO L}
WRITE(<//"NPROGRAM DUMPN>))
FORI4 1 STEP 1 UNTIL PRP OO
BEGIN CLEAR (WRITEBUFFER[OJ))

```

T．PROGRAM［I］）NUM（I．WRITEBUFFER［O］）s
MUVE（SYTB［T，AFIELD］，WRITEBUFFER［1］）？
IF T．BFIELD \(\neq 0\) THEN NUM（T．BFIELD．WRITEBUFFER［2］）
IF T．CFIELD 0 THEN NUM（T．CFIELD．WRITEBUFFER［3］）B IF T．AFIELD \(\Rightarrow\) NUMSYM THEN
BEGIN I＋I＋1）WRITE（［NOJ，＜XI4，E16．8＞，PROGRAMCIJ）END 3 WRITE（PRINFIL， 150 WRITEBUFFERI由J）
END J
LIEND PROGRAMDUMP J
COMMENT INITIALISE THE SYMBOLTABLE，THE PRIORITY FUNCTIONS ANO THE PRODUCTION TABLES WITH DATA GENERATED BY THE SYNTAX－PROCESSORJ FILLSYIB［由］WITHOn

FILL F【＊J WITH 00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1. & 40 & 190 & 1. & 20 & 1. & 28 & 30 & 4， & 1， & 40 & 4. \\
\hline 58 & 50 & 50 & 6. & 60 & 60 & 7. & 7. & 8 & \(9{ }^{1}\) & 10， & 11． \\
\hline 110 & 12. & 12. & 13． & 13. & 3. & 13， & 3. & 130 & 13， & 13. & 15， \\
\hline 17． & 190 & 130 & 130 & 150 & 10 & 10 & 1， & 190 & 190 & 190 & 190 \\
\hline 190 & 19， & 19， & 19， & 19， & 190 & 190 & 16， & 210 & 19， & 13. & 148 \\
\hline 140 & 140 & 160 & 3. & 16， & 218 & 58 & 190 & 13. & 19， & 13. & 12． \\
\hline 48 & 48 & 30 & 19， & 19： & 120 & 190 & 190 & 11. & 80 & 8, & 8 ， \\
\hline 80 & 80 & 80 & 90 & 90 & 10， & 10， & & & 118 & 11． & 12， \\
\hline & & & & & & & 13： & 13， & 13． & 13. & 13. \\
\hline 13. & 13. & 13. & 12． & 12； & 130 & 16， & 16， & 13， & 13． & 51 & \\
\hline ILI & G［＊］W & ITH 0 & 13， & 13. & & & & & & & \\
\hline 10 & 50 & 6 ， & 60 & 3. & 10 & 20 & 30 & 40 & 50 & 1\％ & 5. \\
\hline 50 & 60 & 60 & 60 & 7. & 7. & 7. & 8, & 90 & 13） & 13. & 10， \\
\hline 118 & 11． & 12. & 128 & 138 & 138 & 138 & 14． & 130 & 18. & 18． & 160 \\
\hline 178 & 17. & 13. & 13. & 14. & 19， & 3. & 19， & 180 & & & 18， \\
\hline 18， & 180 & 18， & 180 & 180 & 180 & 30 & 15． & 1． & 160 & 130 & 200 \\
\hline 40 & 200 & 140 & 15， & 30 & 60 & 1. & 148 & 3. & 13. & 3. & 5. \\
\hline 5. & 13. & 5. & 3. & 3. & 40 & 50 & 60 & 7. & 7. & 7. & 7. \\
\hline 7. & 70 & 7. & 8， & 80 & 10， & 10， & 11． & 110 & 110 & 11. & 12， \\
\hline 138 & 13． & 13． & 13． & 130 & 138 & 13, & 13. & 13. & 13． & 13. & 13, \\
\hline 130 & 138 & 13. & 13. & 13， & 130 & 130 & 160 & 130 & 130 & \(4)\) & \\
\hline
\end{tabular}

FILL MTB[\#] WITH OP
1, 2, 5, 16, 258 298 30, 338 390 42: 470 48, 558 58, 62: 68, 71, 75, 81, 84, 111, 122, 125, 136, 1398 158, 1610 168. 1710174,183, 186, 198, 201, 204, 2160 \(22382298232,235,245,256,257,258,259,26202650268\), \(271,274,277,280,283,286,289,2908291,292,2930\) 297, 3018 305, 3098 315, \(320,321,324,325,328,329,332,3330\) 337034103428347 , 348,3498 350, 351 , 352835683570 358, \(3590360,361,362,36383648\) 368, 372, 3730374,375 , 3740. 3770 381, 385, 389, \(39303978401,405,4080412,4160420\), 424, 428,432: 4360 440, 4438 446r 454, 4558 456, 461\}
FILL PRTB[*]WITH O,

WC * 8; CC * 7; CLEAR (WRITEBUFFER[O]): CLEAR (READBUFFER[O])! S\{O\} - MARK! ERRORFLAG F FALSE;
\(I * J * B N \leftarrow O N * N P \leftarrow P R P * O B\)
```

COMMENT ALGUKITHM FOR SYNTACTIC ANALYSIS\&
COMPARE THE PRIORITIES OF THE SYMBOL R ANO OF THE
SYMBOL UN TOP OF THE STACK S. IF S[JJ...S[IJ CONSTITUTE A RIGHT*
PART OF A PRODUCTION, THEN REPLACE THISSEQUENCE BY THE
CORRESPONDING LEFT.PART AND BRANCH TO THE INTERPRETATION-RULE
BELONGING TO THE PERFORMED PRODUCTION;
AO: R + INSYMBOL;
A1: IF F[S[I]]> G{R] THEN GO TO A2!
IF R m MARK THEN GO TO A9s
I \& J \& I+1! S[I] \& R! MOVE (NAME, V[I])! GO TO AOJ
IFF[S[J-1]] = G[S[J]] THEN BEGIN J \& Jm\& GO TO A2 ENDJ
M*MTB[S[J]])
A3: IF PRTB[M] = O THEN BEGIN ERROR(5)! GO TO EXIT END'
N + JB
A4: N +N+1%
IF PRTB[M] < O THEN GO TO AB:
IF N S I THEN GO TO AT:
A5: M. +M+1;
IF PRTB[M] \geq O THEN GO TO A5:
A6: M M M+2; GO TO A3!
A7: IF PKTB[M] SCNJ THEN GO TO A5B
M*M+1S GO TO A4S
IF N 4 I THEN GO TO A61
G O T O BRANCH[-PRTB[M]]!.
LO: SCJJ \& PRTB[M+IJ; I \& J; GO TO AlI'
COMMENT THE FOLLOWING ARE THE INTERPRETATION-RULESS
L1:
P!(S[J]);NP \& NP+1; MOVE (V[I],NLI{NP]); ZERO (V[I])\&
NL2{NP]* BNJ NL3[NP]*ON \&ON+1}NL4[NP] \& S{J]! GO TO LO!
L3: NP \& NP+13 MOVE (V[I],NLI[NP]): ZERO (V[I])!
NL2[NP] \& BNJ NL3[NP] \& NLA[NP] \& UNOEF] GO TO LOS
L4: FOR T \& NP STEP -1 UNTIL 1 DO
IF EQUAL (NLI[T], V[I]) THEN GO TO NAMEFOUNO!
ERROR (O): GO TO LOS
NAMEFOUND:
IF NLA[T] NEWSYM THEN
P3(REFSYM, NL3[T]: NL2[T]) ELSE
IF NL4[T] = LABSYM THEN
P3(LABSYM, NL3[T], NL2[T]) ELSE
If NL4[T]= FORSYM THEN
BEGIN P3(REFSYM:NL3(T), NL2[T])) P{(VALSYM) END ELSE
BEGIN P3(LABSYM, NL3[T], NL2{TJ): NL3[T] 4.PRP END J
GO TO LOS
L5: PI(S[IJ): GO TO LOB
L6: P1(VALSYM): GO TO LOS
60:
L9:V V[J]-0; GO TO LOJ
L11:
L8: V{J] \& 13 GO TO LOS
L{2:V[J] +2; GU TO LOJ
L13:V[J] + 3; GU TO LOS
L141V[J] 4 4; GO TO LO,
L15: VCJJ + 5! GO TO LOI
L16: VCJJ + 61 GO TO LOS

```
```

    L17:V[J]*73 GO TO LO}
    L18: V[J] & 83 GU TO LOS
    L19: V{J] + 9s GO TO LOS
    L20: SCALE +13 GO TO LO&
    L21:V[J] & V[J] x 10 +V{I]} SCALE * SCALE+1;
        IFSCALE > 11 THEN ERROR (1); GO TO LOS
    L23:V[J] & V[I] x IO * ('SCALE) +V[J]BGO TO LOS
    L26:V[J] & V[J]\times10 \bulletV[I]s GO TO LOS
    L27:V{J]*V[J] x .1*V{I]{ GO TO LO!
    L28:V[J]*10 *V[I])GUTO LOB
    L29: V[J] + .1*V[I]; GO TO LO}
    L31:V[J]*V[J]+1:G OTU L0;
    L32:V[J]+0; GU TO LOS
    L33: P2(S[I],V[J]+1): GD TO LOB
    L34: P2(S[I], V[J]): GO TO LO&
    L36: BN+BN+13 ON+OS P2(S[J], UNDEF): V[J]* PRP!
        NP & NP+1} ZERO (NLI[NP])!NL2{NP]*MP} MP * NP; GO TO LO!
    L37:P1(S[I])} FIXUP (V[J], PRP+1)} NP & MP=1! MP & NL2{MPI)
        BN & BN-1: GO TO LO3
    L38:P1(VALSYM): GO TO LO,
    L39: P1(CALLSYM)! GO TO LO;
    L40: P2(BOOLSYM,V[I])} G O TO LOS
    L41: PI(NUMSYM): PHP & PRP+13 PROGRAM[PRP] & V[IJ3 GO TO LOB
    L42: P2(S[I]: V[I]): GO TO LOB
    L75: PI(UNARYMINUS): GO TO LOS
    L92: L96: L101:L102: P2(S[IJ. UNDEF):V[J]. PRP; GO TO LOB
    L93: L97: FIXUP (V[JJ, PRP+I)} GO TO LOB
    L104: FIXUP (V{J], V{J+1}+1); FIXUP(V[J+1],PRP+1);G0T OLOS
    L113: FOR T * NP STEP -1 UNTIL MP+1 DO
        If EQUAL (NLI[T],V[J]) THEN
        BEGIN IF NLA[T] # UNDEF THEN ERROR(2):
            Tl* NL3[T]} NL3[T] & PRP&1) NL4[T] * LABSYMS ZERO (V[JJ)&
            L1131:IF TI GUNDEF THEN
                        BEGINT + PROGRAM[TIJ.BFIELDS FIXUP (TI,PRP+I)S
                        T16T$ GO TO L1131
                        END:GO TO LOS
        END ;
        ERROR(3)S GO TO LO;
    L114: BN + BN+1!UN+0!PI(S(IJ)!
        NP&NP+1} ZERO (NLI{NP})} NL2{NP} & MP! MP & NP} GO TO LO}
    L118:PI(S[IJ):GU TO LO:
    L119:FOR T & MP+1 STEP 1 UNTIL NP DO If NLA[TJ UNDEF THEN ERROR(4)S
    ```


```

    L61: L62: L63: L91:L106:L107:P1(S(J))3GOTOLO&
    L65:L681 L69: L70:L71:L768L77:L801 L81:L84% L85: L861 L67:L881
    L89: L99: L105iP!(S[J+1])} GO TO LO)
    ```


```

    L1091L1108L111:L112:L115:L1168L1178L120:GG OTOLOs
    A9: PI(MARK)S PROGRAMOUMP; If ERRORFLAG THEN GO TO EXIT
    END * ;

```

```

-DEFINE
TYPE=[1:4]\#,
WCT={28:10]*:
ADORESS=[38:10]**
STATIC=[28:10]%,
DYNAMIC=[8:10]*,
BLN=[18:10]%,
NSA=[18:10]*: COMMENT NEW STARTING ADDRESS FOR FREE;
UNDEFINED=0\#,
NUMBERTYPE=1%,
SYMBOLTYPE=2*,
BOOLEANTYPE=3\#,
LABELTYPEE4\#,
REFERENCETYPEF5\#\#
PROCEDURETYPE=6*:
LISTTYPEm7*,
BLOCKMARK=8\#*

```
```

STREAM PROCEDURE MOVE(FI, TI,W)\&

```
STREAM PROCEDURE MOVE(FI, TI,W)&
BEGIN LOCAL R1, R2&
BEGIN LOCAL R1, R2&
 SI *WI SI * SI + 6I
 SI *WI SI * SI + 6I
 DI*LOC RII DI*DI*7! OS*CHRJ
 DI*LOC RII DI*DI*7! OS*CHRJ
 DI * LOC R2S DI * O1 + 73 DS * CHRS
 DI * LOC R2S DI * O1 + 73 DS * CHRS
 SI *FI! DI*TII
 SI *FI! DI*TII
 R1(2(DS & 32 WDS))3 DS * R2 WDSs
 R1(2(DS & 32 WDS))3 DS * R2 WDSs
ENO;
```

ENO;

```
```

PKOCEOURE DUMPUUT(XI, X); VALUE XI, XB REAL XI, XB
BEGIN INTEGER T, II
PROCEDURE LISTUUT(XI); VALUE XIS REAL XI;
BEGIN COMMENT RECURSIVE LIST OUTPUT;
INTEGER I, NJ
SWITCH FORMAT LPAR *
("(N))(",(")
SWITCH FURMAT HPAR*

```

```

    WRITE(<X9,"LISTN,IIO>, XI,ADDRESS)! WRITE ([NOJ, LPAR[LVLJ))
    LVL + LVL + 1; N + XI,ADDRESS + XI.WCT - I;
    FOR I & XI.ADDRESS STEP 1 UNTIL N OO DUMPOUT (FI[IJ,F(IJ);
    LVL * LVL - I\ WRITE (RPAR[LVLJ)&
    END LIST OUT;
T * XI.TYPES
IF T = UNDEFINED THEN WRITE(<X9, "UNOEFINED">) ELSE
If T = NUMBERTYPE THEN
BEGIN
If X \# ENTIER(X) THEN WRITE(<X9,MNUMBERN,E2O,10>, X) ELSE
WRITE(<X9, "NUMBER"O 120>0 X)
END ELSE
IF T = BOOLEANTYPE THEN WRITE(<X9,"LOGICAL", 14XI, L5>, BOOLEAN(X))
ELSE
If T = LISTTYPE then bISTOUT(XI) ElSE
If t m labeltype then writer<xa, "labelo adDRESS mn, l4,
" MARK""O I4>, XI,ADDRESS, XI,STATIC) ELSE
If T: REFERENCETYPE THEN WRITE(<X9,"REFERENCE, ADDRESS=",I4,
" MARK=",I4>OXI,ADDRESS,XI,STATICS ELSE
If T \# PROCEDURETYPE THEN
WRITEC<X9,"PROCEOURE DESCRIPTORO ADDRESSm", I4, M BN=N, I4.
" MARK""O IA>P XI.ADDRESS, XI.BLN, XI.STATICJ ELSE
IF T \# blockMARK then
WRITEC<X9, "BLOCKMARK, BN=N, I4, " DYNAMIC""O 140 n STATIC=n,
I4. " RETURN""O I4>, XI,BLN, XI,DYNAMIC,XI,STATICOXI,ADDRESS)
ELSE IF T: SYMBOLTYPE THEN
WRITE(<X9, "SYMBOL ",A5>, X)S
END DUMPOUT;
PROCEDURE ERROR(N); VALUE N; INTEGER N;
BEGIN INTEGER I;
SWITCH FORMAT ER*
("ILLEGAL INSTRUCTION ENCOUNTERED"10
("IMPROPER OPERAND TYPE"),
("CANNOT DIVIDE BY ON):
("CALL OPERATOR DID NOT FINO A PROCEDURE")O
("REFERENCE OR LABEL OUT OF SCOPE"),
(*QUT Of SCOPE ASSIGNMENT OF A LABEL OR A REFERENCE")O
("SUBSCRIPT IS NOT A NUMBER"),
("SUBSCRIPT NOT APPLIED TO A VARIABLE")O
("SUBSCRIPTED VARIABLE IS NOT A LIST"):
("SUBSCRIPT IS OUT OF BOUNDS"),
("CANNOT TAKE TAIL OF A NULL LIST"),
("STACK UVERFLOW*).

```
```

    ("STACK OVERFLON DURING GARBAGE COLLECTION"),
    ("ASSIGNMENT TO ANON~VARIABLE ATTEMPTED"),
    (mfree stukage area is too small");
    WRITE ([UBL], ER[N])S
    ```

```

            SP, FP, PP,MP, PROGRAM(PPJ,AFIELD):
    FOR I & 1 STEP 1 UNTIL Sip DO
    BEGIN WRITE([NO], <I4>P I): DUMPOUT (SI(IJ,SIIJ) END ;
    GO TO DONE
    END ERROR;
PrOCEDURE freE(nEED); VALUE NEED; INTEGER NEED;
COMMENT "FrEE" IS A "GARBAGE COLLECTION" PrOCEDURE, ITIS CALLED
When free storage f is uSed up, and more space is nemded.
garbage collection takes the follow ng stepsi
1. ALL BLOCKMARKS, LIST DESCRIPTORS AND REFERENCES IN STACK
POINT TO VALID INFORMATION IN FREE STORRGE. LIKEWISE, ALL
list, descriptors and referenCes that are pointed to are valid,
enter into the stack all such entities,
2. tHE GARBAGE COLLECFOR MUST KNOW IN WHICH ORDER TO COLLAPSE THE
free Sturage, thUS SORt the list by free StOrage address,
3, MUVE EACH blOCK DOWN If NECESSARY,
4. NUW the ADDRESSES ARE WRONG=-mAKE ONE MORE PASS THROUGH THE
SORTED LIST TO UPDATE ALL ADDRESSES;
BEgIN OWN INTEGER G\&H, I, J; OWN REAL T!
INTEGER PKOCEDUHE FIND(W); VALUE W; REAL W;
BEGIN COMMENT BINARY SEARCH THROUGH ORDERED TABLES
I NTEGEK T, N, B, KEY, K\
label FOUND, bINARY;
T +G+13 B + SP + 1;
KEY \& W.ADDRESS;
BINARY: N - (B+T) DIV 2;
K + SI[N].ADDRESS3
If K = KEY THEN GO TO FOUND;
IF K < KEY THEN B \& N ELSE T \& N3
gO tO BINAKY;
FOUND: FINO \& SI[NJ.NSA
END FIND;
procedure reset(w,Z)s real w, zs
BEGIN INTEGER TYS
TY +W,TYPES
If TY a REERENCETYPE OR TY = LISTTYPE THEN W.ADORESS \& FIND(W) ELSE
IF TY = BLOCKMARK THEN Z.ADORESS \& FIND(Z)
ENO RESET;
procedure validate(P); Value p; real p;
begIN COMMENT TREE SEARCH fOR ACTIVE lISt StORAGE;
INTEGER l, U;
G + G + 1;
IF G > 1022 THEN ERROR(12)S
SI[G] + P;
U + P.ADURESS + POWCT - 1S
IFP.TYPE = LISTTYPE THEN FOR I* P.ADDRESS STEP 1 UNTIL U DO

```
```

    IF FI[IJ.TYPE m,LISTTYPE OR FICIj.TYPE m REFERENCETYPE THEN
    VALIDATE(FI(IJ)]
    END VALIDATIONS
PROCEDURE SURT(LB, UB)\& VALUE LB, UB! INTEGER LB, UB;
BEGIN COMMENT BINARY SORTS
I NTEGER MB
PROCEDURE MERGE(LB,M, UB)S VALUE LB,M, UBS INTEGER LB,M, UBS
BEGIN I NTEGER K,L,U,KI, K2\& LABEL A\& B!
K + UB - LB;
MOVE(SI[LB],S[LB],K)s
L\&K \& LB; U \& M; GOTO B;
At Kl \& S[LJ.ADDRESS! K2 *S[U],ADDRESS!
IF KI < K2 UR (K1 K2 AND S[LJ.TYPE m LISTTYPE) THEN
BEGIN SI[K]*S[L]!L*L+I
ENO ELSE
BEGIN SI[K]* S{U]} U \& U+1
ENO:
K+K+13
B:IF L m THEN ELSE IF U UB THEN
BEGIN K \& M-L! MOVE(S[LJOSI[UB*K), K)
END ELSE GO TO A
END MERGES
IF LB < UB THEN
BEGIN M \& (LB+UB) DIV 2I
SORT(LB,M): SORT(M+1, UB)S MERGE(LB, M+1, UB+1)
END
END SORT)

```
```

    INTEGER LLAO LLWs
    ```
 INTEGER LLAO LLWs
 G * SP\
 G * SP\
 FOR H&1 STEP 1 UNTIL SP DO
 FOR H&1 STEP 1 UNTIL SP DO
 BEGIN CUMMENT lOCATE ALL ACTIVE LISTS AND REFERENCESS
 BEGIN CUMMENT lOCATE ALL ACTIVE LISTS AND REFERENCESS
 IF SI[HJ.TYPE = LISTTYPE OR SI[HJ.TYPE . REFERENCETYPE THEN
 IF SI[HJ.TYPE = LISTTYPE OR SI[HJ.TYPE . REFERENCETYPE THEN
 VALIDATE(SI(HJ) ELSE
 VALIDATE(SI(HJ) ELSE
 IF SIGHJ.TYPE = &LOCKMARK THEN VALIDATE(S[HJJ)
 IF SIGHJ.TYPE = &LOCKMARK THEN VALIDATE(S[HJJ)
 ENDS
 ENDS
 COMMENT SORT THEM IN ORDER OF INCREASING ADDRESSS
 COMMENT SORT THEM IN ORDER OF INCREASING ADDRESSS
 SORT(SP+1, G)S
 SORT(SP+1, G)S
 I t 1s COMMENT COLLAPSE the free storages
 I t 1s COMMENT COLLAPSE the free storages
 FOR J & SP + 1 STEP 1 UNTIL G DO
 FOR J & SP + 1 STEP 1 UNTIL G DO
 IF SICJJ.TYPE - LISTTYPE THEN
 IF SICJJ.TYPE - LISTTYPE THEN
 BEGIN COMMENTIFG.C. OCCURS DURING "COPY" THEN WE MUST AVOID
 BEGIN COMMENTIFG.C. OCCURS DURING "COPY" THEN WE MUST AVOID
 THE CREATION OF DOUBLE LIST ENTRIES FROM DUPLICATED DESCRIPTORS;
 THE CREATION OF DOUBLE LIST ENTRIES FROM DUPLICATED DESCRIPTORS;
 IFSI[J]=SI[J+1] THENSI[J+1].TYPE t UNDEFINED)
 IFSI[J]=SI[J+1] THENSI[J+1].TYPE t UNDEFINED)
 LLA + SI[JJ.ADDRESSS LLW - SI[JJ.WCTS
 LLA + SI[JJ.ADDRESSS LLW - SI[JJ.WCTS
 IF lLA ITHEN
 IF lLA ITHEN
 BEGIN
 BEGIN
 MOVE(F[LLA], F[I], LLW)S
 MOVE(F[LLA], F[I], LLW)S
 MOVE(FI[LLA],FI[I], LLW)S
 MOVE(FI[LLA],FI[I], LLW)S
 ENOS
 ENOS
 SI[J].NSA + Ii
 SI[J].NSA + Ii
 I + I + LLWB
 I + I + LLWB
 END ELSE SI[JJ.NSA & I* LLW + SIlJJ.ADDRESS - LLAS
```

    END ELSE SI[JJ.NSA & I* LLW + SIlJJ.ADDRESS - LLAS
    ```
```

    FP*I;
    COMMENT RESET ALL AFFECTED ADDRESSES)
    FOR I & 1 STEP 1 UNTIL SP DO RESET(SI[II,SEIJ)S
    FOR I * 1 STEP 1 UNTIL FP-I DO RESET(FIIIJOF[IJ)S
    IF FP + NEED > 1022 THEN ERROR(14)%
    END FREE ;
PROCEDURE MOVESEG(LO)S REAL LDS
BEGIN COMMENT MOVE ONE LIST SEGMENTS
I NTEGER W, X;
W \& LD.WCTS
|F FP + W > 1022 THEN FREE(W)|
X * LO,ADDRESSS
MOVE(F[X], F[FP],W):
MOVE(FI[X],FI[FP], W)!
LD,ADDRESS \& FPS
FP\&FP + WB
END MOVE SEGMENT\&
PROCEDURE COPY(LDJS REAL LD;
BEGIN INTEGERI\& J\& COMMENT RECURSIVE LISTCOPYB
MOVESEG(LO)\&
J * LO.WCT . 13
FOR I * O STEP 1 UNTIL J DO
IF FIII+LD.ADDRESSJ.TYPE LISTTYPE THEN COPY(FICIHLO.ADDRESSJ)
END COPY;
PROCEOURE BOOLTEST'IFSIISPJ.TYPE BOOLEANTYPE THEN ERROR(I)S
INTEGER PROCEDURE ROUND(X)I VALUE XS REAL XS ROUND * XB
PROCEDURE BARITHS
BEGIN If SI[SPJOTYPE NUMBERTYPE OR SI[SP-IJ.TYPE NUMBERTYPE THEN
ERROR(1) ELSE SP *SPOI
END BARITHS
PROCEDURE FETCH\&
BEGIN INTEGER Ii
IF SI[SPJOTYPE REFERENCETYPE THEN
BEGIN I * SI{SPJ,ADDRESS! SI{SPI*FI{IJ!S[SPJ*F[IJ END
END FETCH ;
I NTEGER PROCEDURE MARKINOEX(BL)\& VALUE BL' INTEGER BL!
BEGIN COMMENT MARKINDEX IS THE INDEX OF THE MARK WITH BLOCKNUMBER BL!
LABEL UIS INTEGER IS
I\&MP;
UI:IFSIIIJ.BLN>BL T HEN
BEGIN I SICIJOSTATICSGOTO UIEND;
If SIIIJ.BLN \& 8L THEN ERROR(4):
MARKINDEX +I
END MARKINDEX ;
PROCEDURE LEVELGHEGK(X,Y)J VALUE YB INTEGER YS REAL XB
BEGIN INTEGER T, 18 t.8 U\$ T X,TYPES

```
```

    If T = REFERENCETYPE OR T = LABELTYPE THEN
        BEGINIF X.STATIC> Y THEN ERROR(5) END ELSE
    IF T = PROCEDURETYPE THEN X.STATIC& Y ELSE
    IF T = LISTTYPE THEM
    BEGIN L * X,ADDRESSS U * L + X,WCT - 1;
    FOR I & L STEP 1 UNTIL U DO LEVELCHECK(FIEIJ:Y)
    END
    END LEVEL CHECK;
PROCEOURE SPUPJ IF SP Z 1022 THEN ERROR(II)ELSESP\& SP + 1)
PRDCEOURE SETIS(V)\& VALUE V; INTEGER VJ
BEGIN FETCHB
S[SP] \& REAL(SI[SP].TYPE = V)J
SI[SP].TYPE * BUOLEANTYPES
END SET IS;
SWITCH EXECUTE *
PROCEDURECALL, VALUEOPERATOR SEMICOLON, UNDEFINEDOPERATOR,
REFERENCE8 NEW8 FORMAL, LABELL, UNDEFINEDOPERATOR, LOGVAGE
SUBSCRIPI, BEGINV, ENDV, NUMBER, RIGHTPAREN, LEFTOUOTE, RIGHTOUOTE,
GOTO8 OUTPUT8 STORE, UNDEFINEDOPERATOR, THENV, ELSEV, CATENATE8
LOR, LAND, LNOT, EQL, NEQ,LSS,LEQ, GEQ, GTR,MIN, MAX 8
ADD8 SUB, MUL, UIVIDE, IDIV, REMAINDER, POWER, ABSV,LENGTH\&
INTEGERIZE, REALL,LOGICAL,LISTT, T A IL ; INPUT,
ISLOGICAL, ISNUMBER, ISREFERENCE, ISLABEL,ISLIST,ISSYMBOL,
I SPROCEDURE ISUNDEFINED: SYMBOL % UNDEFIND, UNDEFINEDOPERATOR, NEGA
UNDEFINEDOPERATOR, UNDEFINEDOPERATOR, DONES
WRITE ({PAGE])S
SP\&MP\&PP\&OSFP*1; LVL*OSFT*FT*9S
NEXT: PP * PP+13
TRANSFER: GO TO EXECUTE [PROGRAM[PPJ.AFIELD - FT]\
UNDEFINEDOPERATOR:
ERROR(O)S
SEMICOLON:
Se * SP © 1' GO TO NEXT'
UNDEFIND: SPUPJ
SI[SPJ.TYPE \& UNDEFINEDS GO TO NEXTS
NUMBER:
PP \& PP \& 1} SPUP\& .
SI[SP],TYPE * NUMBERTYPE{ SCSP] * PROGRAMEPPIS GO TO NEXT:
SYMBOLI SPUPS
SI[SPJ.TYPE SYMBOLTYPES SCSPJ * PROGRAMEPPJ.BFIELDS GO TO NEXTJ
LOGVALI SPUPJ
SI[SPJ.TYPE B BOOLEANTYPEJ SCSPJ \& PROGRAMCPPI,BFIELDS
GO TO NEXTJ
REFERENCE: SPUPJ
SI[SPJ.0S
SI(SPJ.TYPE \& REFERENCETYPES
SI[SPIOSTATIC * 11 MARKINDEX(PROGRAMEPPJOCFIELDIS
SI[SP),ADDRESS * S[ILJ.ADDRESS \& PROGRAM[PP],BFIELD , If
GO TO NEXTS

```
```

LABELL: SPUPB
SI[SP].TYPE \& LABELTYPE!
SI[SP].SIATIC * MARKINDEX(PROGRAM[PP].CFIELD)B
SI[SPJ,AUURESS * PROGRAM{PPJ.BFIELDJ GO TO NEXTS
CATENATE;
If SI[SP].TYPE LISTTYPE OR SI[SP-IJ.TYPE\#LISTTYPE THEN ERROR(1)S
IF SI[SP-1],ADDRESS+SI[SP-1],WCT F SI[SPI.ADDRESS THEN
BEGIN CUMMENT MUST HAVE CONTIGUOUS LISTSB
MOVESEG(SI[SP-1]))
MOVESEG(SI[SP])!
END:
SP*SP*11
SI[SP],WCT*SI[SP].WCT \& SI[SP+1].WCT\&
GO TO NEXT)
LOR, BOOLTESTB
IF NOT BUOLEAN(S[SP]) THEN BEGIN SP \& SP - 1B GO TO NEXT END;
PP \& PROGRAMEPPJ.BFIELDS GO TO TRANSFER;
LAND: BOOLTESTS
IF BOOLEAN(S[SP]) THEN BEGIN SP * SP 1; G0 TO NEXT END;
PP \& PROGRAM[PP].BFIELDS GO TO TRANSFER;
LNOT : BOOLTEST;
S[SP] + KEAL(NOTBOOLEAN(S[SP])); GO TO NEXT;
LSS: BARITHJ
S[SP] * REAL(S[SP]<S[SP+1])}
SI[SP],TYPE \& BOLEANTYPE: GO TO NEXTS
LEQ: BARITHB
S[SP] * KEAL(S[SP] S S[SP+1])]
SI[SPI.TYPE GOOLEANTYPE: GO TO NEXT;
EQL: BARITHS
S[SP] * KEAL(S[SP] m S[SP+1])]
SI[SP].TYPE \& BUOLEANTYPES GO TO NEXT;
NEQI BARITHJ
S[SP] * KEAL(S[SP]\#S[SP+1]):
SI[SP],TYPE GUOLEANTYPE; GO TO NEXT;
GEO: BARITHJ
SCSPJ - REAL(S[SP]ZS(SP+1])!
SI[SPJ.TYPE+BUOLEANTYPESGO TO NEXT;
GTR: BARITH\&
S[SP] \& REAL(S[SP] > S[SP+1])B
SI[SP],TYPE \& BDOLEANTYPEJ GO TO NEXT)
MINI BARITHJ
IF S[SP+1]<S[SP] THEN SCSPJ*S[SP+1]; GO T0 NEXT;
MAX, BARITH]
IF S[SP+1]> SCSPJTHEN S[SP]+S[SP+1]\& GO TO NEXT!
ADD: BARITH:
SCSPJ +S[SP]+S[SP+1]; GO TO NEXT;
SU6 I BARITHJ
SCSPJ \& S[SP] - S[SP+1]`GGTO NEXT;
NEG: IFSI[SPJ.TYPE NUMBERTYPE THEN ERROR(I);
S[SP] \& = S[SP]! GO TO NEXT\
MUL: BARITHS
S[SP]+ S[SP]\timesS[SP+1]; GO TO NEXT;
DIVIDE: BAKITH}
IF S[SP+1]: O THEN ERRUR(2))
S[SP] + S[SP]/S[SP+1]} GO TO NEXT;

```
```

IUIV: BARITH;
IF ROUND(S[SP+1]) = 0 THENERROR(2)}
S[SP]\&KOUND(S[SP])DIVROUND(S[SP+1]);GOT O N EX T ;
REMAINDER: BARITH3
IF S[SP+1] = 0 THENERRUR(2)S
S[SP]+S[SH]MUD S[SP+1]} GO TO NEXT;
POWER: BARITH}
S[SP] \& S[SP]*S[SP+1]} GO TO NEXT]
ABSV I IF SI[SP].TYPE\#NUMBERTYPE THEN ERROR(1):
S[SP] \& ABS(S[SP])\& GO TO NEXT;
INTEGERIZE:
IF SI[SP].TYPE > BOOLEANTYPE THEN ERROR(I);
S[SP] * ROUND(S[SPJ)SGOT O NEXTS
REALL:
IF SI[SP].TYPE > BOOLEANTYPE THEN ERROR(I);
SI[SPI.TYPE \& NUMBERTYPES GO TO NEXT;
LOGICAL1
IF SI[SPJ.TYPE NUMBERTYPE THEN ERROR(1)B
IF S[SP]: O OR S[SP]=1 THEN SI[SP].TYPE* BOOLEANTYPE ELSE
SI[SPJ.TYPE\& UNDEFINEOJ
GO TO NEXTS
LISTT:
IF SI[SP].TYPE NUMBERTYPE THEN ERROR(1)S
1 2\&S{SP}}
IF 12 +FP> 1022 THEN FREE(I2)B
FOR11 \&FPSTEP 1 UNTILFP+I2=1 D OFIIIII,TYPE\&UNDEFINEDI
S I C S P J r T Y P E \& LISTTYPEJSI[SPj.WCT* 12;SI[SPJ,ADDRESS\&FP!
FP* FP +I2; GO TONEXTS
ISLOGICALI SETIS(BOOLEANTYPE)S GO TO NEXTJ
ISNUMBERI SETIS(NUMBERTYPE)S GO TO NEXTS
ISREFERENCE: SETIS(REFERENCETYPE)S GO TO NEXTS
ISLABEL: SETIS(LABELTYPE): GO TO NEXTJ
ISLISTG SETIS(LISTTYPE)SGOT O NEXTS
ISSYMBOL: SETIS(SYMBOLTYPE)S GO TO NEXT;
ISPROCEDURE: SETIS(PROCEDURETYPEJ) GO TO NEXT;
ISUNDEFINED: SETIS(UNOEFINEO): GO TO NEXTJ
TAlL!
IF SI[SPJ.TYPEMLISTTYPE THEN ERROR(1)]
IF SICSPJ.WCT = O THEN ERROR(IO)B
SI[SPJ.WCT * SI[SPjowCT - I!
SI[SPJ,ADDRESS + SI{SPJ,ADDRESS + IS GO TO NEXTS
THENV:
BOOLTEST: SP *SPE1%
IF BOOLEAN(S[SP+1]) THEN GO TO NEXT;
PP \& PROGRAM[PPJ.BFIELD: GO TO TRANSFER;
ELSEV:
PP * PROGRAM[PP].BFIELD: GO TO TRANSFERS
LENGTHI
FETCHB
IF SI[SP].TYPE F LISTTYPE THEN ERROR(1)\&
SI[SP],TYPE \& NUMBERTYPE! S[SP] \& SI[SP].WCT! GO TO NEXT:
gOTO:
IF SI[SPJ.TYPE (ABELTYPE THEN ERROR (1))

```
```

    MP GII[SP],STATICB
    COMMENT WE MUST RETU'N TO THE BLOCK WHERE THE LABEL IS DEFINEDS
    PP & SI[SPJ.ADDRESSS SP * MPJ GO TO TRANSFERS
    FORMAL:
FORMALCOUNT \&FURMALCOUNT +1s
IF FORMALCOUNTSS\MPJ.WGT T HEN GO TO NEXTELSEGOTONEW;
NEW I
S[MP],WCI \& S[MP].WCT +18
FI{FPJ.TYPE UNDEFINEDS
FP \& FP +13
IFFP>1022 THEN FREE(1)B
GO TO NEXTS
STORE I
IF SI[SP-1].TYPE REFERENCETYPE THEN ERROR(13)B
LEVELCHECK(SIISPI, SI{SP-II.STATIC)}
SP*SP*1}
II * SI{SPJ.ADDRESS!
S[SP] \& F[II]*S[SP+1]! SI[SP]*FI[II]*SI[SP+1]!
COMMENT THE NON=DESTRUCTIVE STORE ISNOT APPLICABLE TO LISTS\&
IF SI[SPJ.TYPE LISTTYPE THEN SI[SPJ.TYPE*UNDEFINEDI
GOTO NEXTS
SUBSCRIPTI
If SI[SP],TYPE \# NUMBERTYPE THEN ERROR(6)S
SP \& SP -1%
IF SI[SPJ.TYPE REFERENCETYPE THEN ERROR(T)!
I I GI[SP],STATICBSI[SP] FI[SI[SP].ADDRESSIJ
IF SI[SP],TYPE LISTTYPE THEN ERROR(B);

- IF S[SP +1]<1 0f? S[SP+1]\geqslantSI[SP].WCT THEN ERROR(9)]
SI[SP].ADDRESS \& SI[SPJ.ADDRESS + S[SP+1]. 13
SI[SP].TYPE t REFERENCETYPES COMMENT MUST CREATE A REFERENCES
SI[SPJ,STATIC+II!GO TO NEXT;
BEGINV: SPUPJ
SI[SP]+OJ
SI[SP],TYPE \& BLOCKMARKI
SI[SP].BLN + SI[MP].BLN + 1!
SI[SPJ.DYNAMIC \& MPS
SI[SP],STATIC*MPJ
S[SP].TYPE * LISTTYPES
S[SP],ADORESS \&FPJ
S[SP],WCT+O COMMENT A NULL LISTS
MP * SPJ GO TO NEXTB
ENDV:
11 * SI[MP].DYNAMICS
LEVELCHECK(SI[SP), SI(MP),STATIC))
SI[MP]* SICSPJJ S[MP] * S[SP]`
SP \&MPJ MP \&I1S GO TO NEXT'
LEF TQUOTEI COMMENT PROCEDURE DECLARATIONB
SPUPJ
SI[SPJ.TYPE\& PROCEDURETYPEJ
SI[SPJ.ADDRESS* P P J
COMMENT THE PROCEDURE DESCRIPTOR MUST SAVE ITS OWN LEXICOGRAPHICAL
LEVEL AS WELL AS THE STACK MARKER FOR UPLEVEL ADDRESSED VARIABLES;
SI[SP].BLN*SI[MP].BLN + IS
SI[SP],STATIC*MPJ
PP \& PROGRAM[PP], BFIELDS GO TO TRANSFER)

```
```

RIGHTQUOTE:
PP - SI[MP].ADDRESS! COMMENT A PROCEDURE RETURN:
1 1 +SI(MP).DYNAMICS
LEVELCHECK(SI(SP), SI(MPJ.STATIC)S
SI[MP] \& SI[SP]) S[MP] + SCSPJJ
SP \& MP; MP \&IIS GO TO NEXT;
valuEOPERATOR:
IF SI(SPJ.TYPE = LISTTYPE thEN GO TO NEXT)
FETCHS
IFSI[SPJ.TYPE = PROCEDURETYPE THEN
BEGIN FORMALCOUNT + OS
1 1 +SI[SPJ,ADDRESS!
SI[SPJ.TYPE * BLOCKMARKI
SI(SPJ,ADORESS * PPS
SI[SPJ.OYNAMIC \& MPJ
S[SPJ.TYPE - LISTTYPES
S[SP],WCT + 0 ;
MP * SPS PP +11;
END ELSE IFSICSPJ.TYPE=LISTTYPE .THEN COPY(SI(SPJ)]
GO TO NEXT;
PROCEOURECALL:
SP * SP -1% FETCHD
If SI[SPJ.TYPE \# PROCEDURETYPE THEN ERROR(3)!
FORMALCOUNT * OJ
1 1 +SI(SPJ,ADDRESS)
SI[SPJ.TYPE + OLOCKMARKS
SI[SP].ADDRESS * PPJ
SI[SP].OYNAMIC4 MPJ
S[SP] * SI[SP+1JB COMMENT THE LISTDESC.FOR PARAMETERS;
MP \& SPJ PP - I1] GO TO NEXTI
RIGHTPAREN:
11*PROGRAM[PPJOBFIELDS
If 11+FP> 1022 THEN FREE(II)S
SP + SP - 11 + 11
MOVE(S[SPJ, F[FP], II)S MOVE(SI[SPj, FI(FP], II)S
SI[SPJ.TYPE * LISTTYPES
SI[SP],WCT * IIS
SI(SP).ADORESS + FP)
FP + FP +113GU TO NEXTS
INPUT: SPUPJ
READ(S(SPJ)[EXIT]S SI[SP].TYPE* NUMBERTYPES GO TO NEXT;
OUTPUT :
DUMPOUT(SI[SPj,S[SPJ)] 'GO TO NEXT;
DONE :
END INTERPRETER;
EXIT :
END.

```

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 060 & FORMAL & & 120 & Q & 003 & 003 \\
\hline 061 & F ORMAL & & 121 & - & & \\
\hline 062 & BEGIN & & 122 & + & & \\
\hline 063 & NE W & & 123 & RO & & \\
\hline 064 & NE W & & 124 &) & 005 & \\
\hline 065 & NE W & & 125 & , & & \\
\hline 066 & NE W & & 126 & 3 & & \\
\hline 067 & Q & 004003 & 127 & Q & 001 & 003 \\
\hline 068 & Q & 001002 & 128 & - & & \\
\hline 069 & - & & 129 & END & & \\
\hline 070 & - & & 130 & RO & & \\
\hline 071 & - & & 131 & - & & \\
\hline 072 & 3 & & 132 & 3 & & \\
\hline 073 & + & 001 003 & 133 & Q & 004 & 001 \\
\hline 074 & + & 004003 & 134 &) & & \\
\hline 075 & (& \(1.000000000+00\) & 135 & \(\leqslant\) & & \\
\hline 077 & J & & 136 & 1 & & \\
\hline 078 & - & & 137 & \(Q\) & 001 & 001 \\
\hline 079 & LIST & & 138 & Q & 003 & 001 \\
\hline 080 & 4 & & 139 & (& 1.00 & 0000+00 \\
\hline 081 & 3 & & 141 & (& 1.00 & 0009+00 \\
\hline 082 & + & 003003 & 143 & 0 & 4.00 & 000 +00 \\
\hline 083 & + & 004003 & 145 & 10 & 165 & \\
\hline 084 & & & 146 & BEGIN & & \\
\hline 083 & (& \(1.000000000+00\) & 147 & Q & 004 & 001 \\
\hline 087 & \(\dagger\) & & 148 & Q & 004 & 001 \\
\hline 088 & * \({ }^{\text {Pa* }}\) & 099 & & & & \\
\hline 089 & \(\theta\) & 002001 & 150 & - & 003 & 001 \\
\hline 090 & P & 004003 & 151 & , & & \\
\hline 091 & - & & 152 &) & 001 & \\
\hline 092 & TAIL & & 153 & 8 & & \\
\hline 093 & Q & 002002 & 154 & 4 & & \\
\hline 094 & - & & 155 & 3 & & \\
\hline 095 & - & & 156 & 0 & 002 & 001 \\
\hline 096 &) & 002 & 157 & \(\rho\) & 004 & 001 \\
\hline 097 & , & & 158 & - & 003 & 001 \\
\hline 098 & ELSE & 102 & 159 & ; & & \\
\hline 099 & Q & 002002 & 160 &) & 002 & \\
\hline 100 & - & & 161 & - & & \\
\hline 101 & - & & 162 & OUT & & \\
\hline 102 & - & & 163 & ENO & & \\
\hline 103 & 1 & & 164 & R0 & & \\
\hline 104 & Q & 001001 & 165 &) & 005 & \\
\hline 105 & Q & 002003 & 166 & , & & \\
\hline 106 & C & \(1.000000000+00\) & 167 & END & & \\
\hline 108 & C & \(1.000000000+00\) & 168 & 3 & & \\
\hline 110 & Q & 004003 & & & & \\
\hline 111 & (& \(1.000000000+00\) & & & & \\
\hline 113 & J & & & & & \\
\hline 114 & - & & & & & \\
\hline 115 & 40 & 124 & & & & \\
\hline 116 & \(\bigcirc\) & 001003 & & & & \\
\hline 117 & Q & 002003 & & & & \\
\hline 118 & - & & & & & \\
\hline 119 & J & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & LIST NUMBER & 24 & & & NUMB\&H & & 4 \\
\hline) & & & 1 & & NUMB \& R & & 4 \\
\hline & LIST & 61 & & & LIST & 382 & \\
\hline \((\) & LIST & 62 & & \(\ldots \mathrm{C}\) & NUMBER & & \\
\hline . 0 & NUMB\&R & & 2 & & NUMBER & & 4 \\
\hline & NUMBER & & 2 & & NUMBER & & a \\
\hline -) & & & & & NUMB\&R & & a \\
\hline) & & & & ...) & & & \\
\hline & LIST & 142 & & . .) & & & \\
\hline \((\) & LIST & 143 & & \%) & & & \\
\hline . 6 & LIST & 145 & & & & & \\
\hline -18 & NUMBER & & 3 & & & & \\
\hline & NUMBER & & 3 & & & & \\
\hline & NUMBER & & 3 & & & & \\
\hline - 0 & & & & & & & \\
\hline & LIST & 148 & & & & & \\
\hline . 01 & NUMB\&R & & 3 & & & & \\
\hline & NUMB\&R & & 3 & & & & \\
\hline & NUMB\&R & & 3 & & & & \\
\hline -) & & & & & & & \\
\hline ,) & & & & & & & \\
\hline) & & & & & & & \\
\hline & LIST & 353 & & & & & \\
\hline C & LIST & 354 & & & & & \\
\hline . 6 & LIS T & 356 & & & & & \\
\hline .. 6 & LIST & 359 & & & & & \\
\hline -••1 & NUMB\&R & & 4 & & & & \\
\hline & NUMB\&R & & 4 & & & & \\
\hline & NUMBER & & 4 & & & & \\
\hline & NUMBEK & & 4 & & & & \\
\hline -••) & & & & & & & \\
\hline & LIST & 363 & & & & & \\
\hline -•1 & NUMB\&R & & 4 & & & & \\
\hline & NUMBER & & 4 & & & & \\
\hline & NUMB\&R & & 4 & & & & \\
\hline & NUMB\&R & & 4 & & & & \\
\hline -, \({ }^{\text {(}}\) & & & & & & & \\
\hline & LIST & 367 & & & & & \\
\hline -..8 & NUMBER & & 4 & & & & \\
\hline & NUMBER & & 4 & & & & \\
\hline & NUMBER- & & a & & & & \\
\hline & NUMBER & & 4 & & & & \\
\hline ...) & & & & & & & \\
\hline & LIST & 371 & & & & & \\
\hline - 10 & LIST & 374 & & & & & \\
\hline - - \({ }^{\text {l }}\) & NUMBER & & 4 & & & & \\
\hline & NUMBEH & & 4 & & & & \\
\hline & NUMBER & & 4 & & & & \\
\hline & NUMBER & & 4 & & & & \\
\hline -••) & & & & & & & \\
\hline & LIS T & 378 & & & & & \\
\hline -•1 & NUMBER & & 4 & & & & \\
\hline & NUMBEH & & 4 & & & & \\
\hline
\end{tabular}

```

