
Aspect-Or iented Programming

An Introduction to Aspect-Oriented Programming and AspectJ

Niklas Påhlsson

Department of Technology
University of Kalmar

S– 391 82 Kalmar SWEDEN

Topic Report for Software Engineering 2002-11-03

2

ABSTRACT

Separation of concerns is an important software engineering principle. It refers to the ability to
identify, encapsulate, and manipulate those parts of software that are relevant to a particular
concern (concept, goal, purpose, etc.).

The leading programming paradigm used today is object oriented programming (OOP). OOP is
a technology that is well known and is reflected in the entire spectrum of current software
methodologies and development tools. However, OOP has its limitations, some design decisions
can not be illustrated with the object oriented model.

This report is an introduction to a programming paradigm called Aspect-Oriented
Programming, a programming technique that makes it possible to express those programs that
OOP fail to support. This report also includes an introduction to AspectJ, an AOP
implementation in Java.

The reader of this report is expected to have at least basic understandings in object oriented
programming.

KEYWORDS

Aspect-Oriented Programming, Separation of Concerns, AspectJ

3

CONTENTS
1. Introduction... 4
2. Background – Separation of Concerns.. 4

2.1. Cross-cutting concerns..4
2.1.1. Implications..5
2.1.2. A simple cross-cutting example...5

2.2. Current solutions..6
3. AOP Fundamentals.. 6

3.1. What is Aspect-Oriented Programming?...6
3.2. Aspect Weaver..7
3.3. Development stages..7

3.3.1. Aspectual decomposition...7
3.3.2. Concern implementation...7
3.3.3. Aspectual recomposition ...8

3.4. AOP Language Implementations..8
4. AspectJ... 8

4.1. AOP implementation in AspectJ...8
4.1.1. Aspects...8
4.1.2. Joinpoints ...8
4.1.3. Pointcuts...9
4.1.4. Advices...9

4.2. HelloWorld, AOP version...9
5. Discussion... 10

5.1. Will AOP replace OOP or other programming paradigms?...10
5.2. AOP benefits..10
5.3. AOP disadvantages...10

6. Conclusions... 11
7. References... 12

4

1. INTRODUCTION
The leading programming paradigm used today is object oriented programming (OOP). OOP is
a technology that is well known and is reflected in the entire spectrum of current software
methodologies and development tools. However, OOP has its limitations, some design decisions
can’ t be illustrated with the object oriented model.

Xerox PARC (Palo Alto Research Center) has worked on developing programming techniques
that makes it possible to express those programs that OOP fail to support. This programming
technique is called Aspect-Oriented Programming (AOP).

The term Aspect-Oriented Programming includes Multidimensional Separation of Concerns,
Subject-Oriented Programming, Adaptive Programming and Composition Filters. In this report
the term Aspect-Oriented Programming is used to describe the space of programmatic
mechanisms for expressing crosscutting concerns since this is more commonly used.

The reader of this report is expected to have at least basic understandings in object oriented
programming.

2. BACKGROUND – SEPARATION OF CONCERNS
Separation of concerns is an important software engineering principle. It refers to the ability to
identify, encapsulate, and manipulate those parts of software that are relevant to a particular
concern (concept, goal, purpose, etc.). Concerns can range from high-level notations like
security and quality of services to low-level notations like buffering, caching and logging. They
can also be functional, such as business logics or non-functional like synchronisation.

A typical system consists of several concerns. In the simplest form there are the core concerns,
i.e. the natural components of the software. Except for these core concerns, there are system
level concerns, like security, logging, authentication, persistence and so on; concerns that tend
to affect several other concerns. For instance, if a logging feature is to be implemented in an
application, it is likely that all the underlying modules will have code for logging, making the
underlying modules less specialized and makes it very hard to predict what effects changes in
the code for logging will have.

Even though the object oriented model offers some ability for separation of concerns, it still has
difficulty localizing concerns which do not fit naturally into a single program module, or even
several closely related program modules.

2.1. Cross-cutting concerns

The problems discussed above, are called cross-cutting concerns, as they cross-cut several other
modules in the system. Crosscutting concerns are behaviours that span multiple, often
unrelated, implementation modules. In additional, crosscutting concerns cannot be neatly
separately from each other. Examples of crosscutting concerns are:

• Security (authorization and auditing)

• Logging and debugging

• Synchronization

• Persistence

• …

5

Why are the cross-cutting concerns a problem then? When modules in a system may interact
simultaneously with several requirements, which mean that concerns are tightly intermixed,
code tangling occurs. Since cross-cutting concerns spread over many modules, related
implementations also spread over those modules. The concerns are poorly localized, and this is
called code scattering.

2.1.1. Implications

Code tangling combined with code scattering affects software development in several ways, for
example:

• Harder to reuse code – Since a module implements several concerns, it will be difficult
to reuse the code.

• Lower productivity – Redundant implementation of multiple concerns shifts the
developer’s focus from the main concern to the peripheral concerns.

• Lower code quality – The two symptoms produces code with hidden problems.

• Limited evolution of the system – A limited view and constrained resources often
produces designs that address only current concerns. Addressing future requirements
often requires reworking the implementation. Since the implementation isn’ t
modularized, that means touching many modules. Modifying each subsystem for such
changes can lead to inconsistency. It also requires considerable testing effort to ensure
that such implementation changes have not caused bugs.

2.1.2. A simple cross-cutting example

To illustrate the cross-cutting concern, here is a small example of this.

The simple UML diagram above shows a very simple figure editor. An abstract class,
FigureElement, has two concrete classes, Point and Line, so far so good. Now, imagine that the

6

screen manager should be notified whenever a FigureElement moves. This requires every
method that moves a FigureElement to do the notification.

The red box in the figure is drawn around every method that must implement this concern, just
as the Point and Line boxes are drawn around every method that implements those concerns.
Notice that the box for DisplayUpdating fits neither inside nor around the other boxes in the
figure, instead it cuts across the other boxes. This is what is called a cross-cutting concern.

2.2. Current solutions

Since the cross-cutting concerns are not new phenomenas, a few techniques have emerged to
modularize their implementations. Today’s methods of a general type of separation of concerns,
includes among others, design patterns, application frameworks, application servers, mix-in
classes and domain specific solutions. The main disadvantage of these solutions is that the core
concern must be transformed to fit the solution selected for the problem. This report will not go
any further into these methods. Instead, it will focus on a relatively new programming paradigm
called Aspect-Oriented Programming.

3. AOP FUNDAM ENTALS

3.1. What is Aspect-Oriented Programming?

Aspect-Oriented Programming (AOP) is a new programming paradigm developed at Xerox
PARC. AOP strives to help the developer to separate concerns to overcome the problems with
cross-cutting concerns described earlier, and it provides language mechanisms that explicitly
capture crosscutting structure. This makes it possible to program crosscutting concerns in a
modular way, and get the usual benefits of improved modularity: simpler code that is easier to
develop and maintain, and that has greater potential for reuse. This is done by improving code
modularization using aspects. What OOP has done for object encapsulation and inheritance,
AOP does for crosscutting concerns.

An aspect is, by definition, modular units that cross-cut the structure of other units. An aspect
is similar to a class by having a type, it can extend classes and other aspects, it can be abstract
or concrete and have fields, methods, and types as members. It encapsulates behaviours that
affect multiple classes into reusable modules.

AOP languages use five main elements to modularize crosscutting concerns:

• Joinpoints

• A means of identifying joinpoints.

• A means of specifying behaviour at joinpoints.

• Encapsulated units combining joinpoints specifications and behaviour enhancements.

• A method of attachment of units to program.

The joinpoints are well-defined points in the execution of a program like method calls, field
access, conditional checks, loop beginnings, assignments and object constructions. More about
how the AOP language modularizes crosscutting concerns in section 4 where an implementation
of AOP in Java, AspectJ, is introduced.

An important notice is that AOP does not make crosscutting concerns to anything else than a
crosscutting concern. AOP will turn a tangled and scattered implementation of a crosscutting
concern into a modularized implementation of a crosscutting concern. When AOP is applied,
the concern will still be crosscutting, but the structure will be clearer.

7

3.2. Aspect Weaver

Compiling a program developed using AOP is a little bit different than usual compiling. AOP
lets codes and aspects to be woven together by an aspect weaver before the program is compiled
into an executable. Aspect weavers work by generating a joinpoint representation of the
component program, and then executing (or compiling) the aspect programs with respect to it.

3.3. Development stages

Aspect-Oriented Programming involves three different development steps. To explain each step
a simple credit card processing module example is used.

3.3.1. Aspectual decomposition

In the first step, the requirements are decomposed to identify crosscutting and common
concerns. Here, the core concerns are separated from the crosscutting system level concerns.

In our simple credit card processing module, we could identify these three concerns: core credit
card processing, logging and authentication.

3.3.2. Concern implementation

In the second step of the development, each concern is implemented separately.

In the credit card processing module, we would implement the core credit card processing unit,
logging unit and authentication unit separately.

8

3.3.3. Aspectual recomposition

In the last step, an aspect integrator specifies recomposition rules by creating modularization
units (aspects). The recomposition process is also called weaving or integrating.

Back to the credit card processing module, we would specify each operation’s start and
completion to be logged and that each operation must be authenticated before it proceeds with
the business logic.

3.4. AOP Language Implementations

One might wonder what tools are available that enables aspect-oriented software development.
The most documented and used tool for AOP is AspectJ, an AOP implementation in Java. Later
on, in this report, AspectJ will be introduced.

There are many other implementations of AOP in other languages, in different shapes, for
example, Squeak/Smalltalk, C, C++, C#, Perl, well, the most common languages are supported.
All these implementations have something in common. They all are under development and/or
only very early versions are available and this makes it hard to use AOP in “serious” projects.

4. ASPECTJ
AspectJ is a free aspect-oriented extension to Java. With just a few new constructs, AspectJ
provides support for modular implementation of crosscutting concerns. In AspectJ’s dynamic
joinpoint model, joinpoints are well-defined points in the execution of the program. Since
AspectJ’s language construction extends the Java language, so every Java program is also a
valid AspectJ program.

4.1. AOP implementation in AspectJ

The weaver in AspectJ is a compiler, and apart from the compiler, AspectJ also includes tools
for debugging and documenting the code. The AspectJ compiler produces standard class files
that follow Java bytecode specification. The bytecode can then be interpreted in any compliant
Java Virtual Machine (JVM).

4.1.1. Aspects

In AspectJ, an aspect is declared by a keyword, ”aspect” , and is defined in terms of joinpoints,
pointcuts and advices.

4.1.2. Joinpoints

The central concept in AOP, as in AspectJ, is the joinpoints. Joinpoints are well defined points
in a program’s execution. AspectJ limits the available joinpoints to:

• Constructor call

• Object and class initialization execution

• Method call

• Read/write access to a field

• Exception handler execution

Joinpoints are predefined in AspectJ. When writing an aspect, you will need to specify what
joinpoint you want to take action on when defining pointcuts.

9

4.1.3. Pointcuts

Pointcuts, or pointcut designators, are program constructs to designate joinpoints and collect
specific context at those points. The criteria can be explicit function names or function names
specified by wildcards.

4.1.4. Advices

Pointcuts are used in the definition of advice. An advice is code that runs upon meeting certain
conditions. In AspectJ there are three different advices; before advice, after advice and around
advice.

4.2. HelloWorld, AOP version

HelloWorld may not be the best example to show the strength in AspectJ and AOP, but since it
is a standard practise to start with that and any program that might show some of the benefits of
AOP would take too much place in the report, here is a standard HelloWorld program.

First, we have a simple class containing two methods for printing messages:

The aspect in this example will add greeting and gratitude manners. Before the program prints a
message, it should print “Good day!” , and after the message, it should print “See you soon!” .
So, this is how the implementation looks:

In MannersAspect, a pointcut called callSayMessage is defined. This captures all calls to public
static methods with names that start with say and that have any type of parameters (or none). In
our example, it would capture sayHello and sayHelloToPerson. The pointcut has two advices,
before and after reaching the callSayMessage printing “Good day!” and “See you soon!” .

What about the around advice then? How does it work? The around advice is called instead of
the code that the pointcut refers to. In an around advice, a proceed call can be made to call the
real code. This can be used as a verifier, to determine if a method should be called or not.

10

If you want to learn more about AspectJ, I recommend http://www.aspectj.org/, the official
homepage for AspectJ. Here you can download AspectJ. There is also support for some of the
most common development environments for the Java platform, for example JBuilder, Emacs,
Forte and Eclipse. You will also find lots of papers, examples and tutorials there.

5. DISCUSSION

5.1. Will AOP replace OOP or other programming paradigms?

One question that arises early is the one above; will AOP replace the methods we know today?
AOP is a very new programming paradigm, just outcome from the academic world. Sure, it can
and probably will add new standard in programming, but it will not replace anything we use
today. When OOP became the new standard in the programming world, procedural/functional
programming did not disappear. They are a part of OOP, and so will OOP be in AOP, it will
constitute the base of AOP, just as procedural is to OOP.

AOP complements object-oriented programming by facilitating another type of modularity that
pulls together the prevalent implementation of a crosscutting concern into a single unit. When
programming in AOP you use procedures, function, objects and aspects, each when most
suitable. AOP is not the final answer to separation of concerns, there will be new developments
in this area in the future, but it is likely that AOP will be a part of these solutions, just as OOP
is a part of AOP.

5.2. AOP benefits

Since AOP strives to help the developer to separate concerns to overcome the problems with
cross-cutting concerns, the benefits of AOP are the same benefits that come out of the ability to
modularize implementations of crosscutting concerns.

AOP helps overcoming the problems caused by code tangling and code scattering. As we saw
earlier, code scattering and tangling leads to some implications, like lower productivity, hard to
reuse code and evolving the system.

AOP addresses each concern separately with minimal coupling, which resulting in a
modularized implementation even in the presence of other crosscutting concerns. Such an
implementation produces a system with less duplicated code. The modularized implementation
also results in a system that is easier to understand and maintain. As the aspect modules can be
unaware of other crosscutting concerns, it is also easy to add newer functionality by creating
new aspects. The modularized implementation of crosscutting concern also makes code more
encapsulated and this make code more reusable.

In the discussions above, AOP is only used in development concerns, for example logging. The
system’s behaviour does not change when adding or removing these aspects. There is however
some other concerns AOP can be used to solve. For instance, an aspect can verify that an
objects state is correct in method calls, and that parameters to methods are within the range of
acceptable values. When the system works, is tested and going to be released, the aspect can be
removed without affecting the system.

5.3. AOP disadvantages

As AOP is a new technology, it is not very well tested and documented. AOP is today only
theory; nothing is tested in the “ real world” with large scaled projects, so there are no
guarantees that the theory works practical.

11

It is a limited amount of developing tools for AOP today. AspectJ is the leading AOP
implementation, and there are others, but all in early versions. This makes it hard to estimate
risks using AOP.

6. CONCLUSIONS
Aspect-Oriented Programming introduces a new way of handling crosscutting concerns, a
problem hard to solve in ordinary object-oriented programming. As this is becoming a bigger
and bigger problem as system grows and become more and more complicated, it is not unlikely
that AOP will get its breakthrough in the near future. The problems with AOP today are the
lack of development tools and documentation/results of other projects.

It is hard to predict what AOP will become in the future, but one thing is clear, AOP will be
part of future programming paradigms.

12

7. REFERENCES
AOP (2002) http://www.bluefish.se/aop/ (2002-10-19)

Aspect-Oriented Programming Enables Better Code Encapsulation and Reuse (2002)
http://msdn.microsoft.com/msdnmag/issues/02/03/AOP/default.aspx (2002-10-19)

Aspect-Oriented Software Development (2002) http://aosd.net (2002-10-19)

AspectJ (2002) http://www.aspectj.org (2002-10-19)

Background: Aspect-Oriented Programming (2000)
http://www.cs.man.ac.uk/cnc/mscprojects/aspect/node1.html (2002-10-19)

Hofmeister C., Nord R., Soni D. (2000) Applied Software Architecture, Addison-Wesley, USA

Hürsch W., Lopes C. (1995) Separation of Concerns, Technical report by the College of
Computer Science, Northeastern University, USA

I want my AOP! (2002) http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html
(2002-10-19)

Java Technology (2002) http://www-106.ibm.com/developerworks/java/library/j-
aspectj/index.html?dwzone=java (2002-10-19)

Kiczales et al. (1997) Aspect-Oriented Programming, in European Conference on Object
Oriented Programming (ECOOP), Finland

Kiczales et al. (2001) An Overview of AspectJ, in European Conference on Object Oriented
Programming (ECOOP), Budapest, Hungary

Lamping (1999) The role of the base in aspect oriented programming, in European Conference
on Object Oriented Programming (ECOOP), Lisbon, Portugal

