
Native Oberon: Symbol and Object File Format

P. Reali

May 19, 2000

1 Introduction

This document describes the object and symbol file format used in PC Native Oberon 2.3.4
and greater and in binary compatibles systems.

2 Notation

The EBNF (Extended Backus Naur Format) is used to describe the syntax of the symbol and
object file format. The semantics of the format are specified whenever needed.

We use the following writing conventions:

names write 0X terminated string
names0 write string with 0X compression
num1 write num as 1 byte value
num2 write num as 2 byte value
num4 write num as 4 byte value
numn write num as compressed value

0X compression integrates the 0X terminating the string in the last character by adding
80X to it. Exceptions to this rule are the empty string (written as 0X) and strings containing
characters bigger than 7EX. Appendix B contains the zero compression code.

3 Symbol File

The symbol file implements a variation of the fine-grained object fingerprinting presentend
in R. Crelier dissertation, also known as Object Model (OM). The OM allows to extend a
symbol file, e.g. add symbols to a module interface, without invalidating the clients of the
module.

1

SymFile = {modnames0}
[SFConst {Structure names0 val}]
[SFvar {[SFreadonly] Structure names0}]
[SFlproc {Structure names0 ParList}]
[SFxproc {Structure names0 ParList}]
[SFoperator {Structure names0 ParList}]
[SFalias {Structure names0}]
[SFtyp {Structure}]
SFEnd

ParList = {[SFvar] Structure names0} SFEnd
Structure = Basic | UserStr | oldstrn | modnon (names0 | 0X oldimpstrnn)
Basic = SFtypBool .. SFtypNilTyp
UserStr = [SFinvisible][SFsysflag flagn] UserStr2
UserStr2 = (SFtypOpenArr | SFtypDynArr) Structure names0

| SFtypArray Structure names0 sizen
| SFtypPointer Structure names0
| SFtypProcTyp Structure names0 ParList
| SFtypRecord Structure names0 prion flagsn RecStr

RecDef = { FieldDef }[SFtproc {MethodDef}] SFend
FieldDef = [SFreadonly] Structure names0
MethodDef = Structure names0 ParList

• records: invisible fields and methods are exported with name ”” (empty string)

• internal structure numbering: the first time an UserStr is exported, it is assigned a
number (starting from 0, decreasing) which will be used as ”oldstr”-reference for further
export

• external structure numbering: the first time an imported structure is re-exported, it
is assigned a number (starting form 0, ascending) which will be used as ”oldimpstr”-
reference for further export. Every imported module has an own re-export numbering

2

Basic Types Encoding
SFtypBool = 01X
SFtypChar = 02X
SFtypSInt = 03X
SFtypInt = 04X
SFtypLInt = 05X
SFtypHInt = 06X
SFtypReal = 07X
SFtypLReal = 08X
SFtypSet = 09X
SFtypString = 0AX
SFtypNoTyp = 0BX
SFtypNilTyp = 0CX
SFtypByte = 0DX
SFtypSptr = 0EX

Composed Types
SFtypOpenArr = 2EX
SFtypDynArr = 2FX
SFtypArray = 30X
SFtypPointer = 31X
SFtypRecord = 32X
SFtypProcTyp = 33X

Flags
SFsysflag = 34X
SFinvisible = 35X
SFreadonly = 36X

Section Delimiters
SFconst = 37X
SFvar = 38X
SFlproc = 39X
SFxproc = 3AX
SFoperator = 3BX
SFtproc = 3CX
SFalias = 3DX
SFtyp = 3EX
SFend = 3FX

4 Object File

ObjectFile = OFTag OFVersion symfilesizen SymbolFile
Header Entries Commands Pointers Imports VarConsLinks Links
Consts Exports Code Use Types References

OFTag = 0BBX
OFVersion = 0AFX

4.1 Heading

Header = refSize4 nofEntries2 nofCommands2 nofPointers2
nofTypes2 nofImports2 nofVarConsLinks2 nofLinks2
dataSize4 constSize2 codeSize2 moduleNames

This sections gives the number of entries in the following sections.

3

4.2 Entry Section

The entry table contains the address relative to the code base of the exported procedures.
Also in this table are the procedures that are assigned to a procedure variable, because the
assignment requires the absolute address of the procedure.

Entries = 82X {entryOffset2}nofEntries

4.3 Command Section

Exported procedures without parameters are commands and can be invoked by the system.
cmdOffset is relative to the code base.

Commands = 83X {cmdNames cmdOffset2 }nofCommands

4.4 Pointer Section

This section lists the pointers in the global variables. This information is used as root set for
the current module by the garbage collector. The pointerOffset is relative to the static base
of the module and is always a negative number (variables are stored below the static base).

Pointers = 84X {pointerOffset4 }nofPointers

4.5 Import Section

This section lists the modules needed by the current modules. These modules must be loaded
before the current module.

Imports = 85X {moduleNames}nofImports

4.6 VarConstLink Section

This section contains the fixup lists for global variables and constants (including type descrip-
tors). The list contains the count of fixes to be done and their offset relative to the code base.
The address of the entry has to be added to the value found at the offset!

All the entries of the current module are grouped into the list with mod = 00 and entry =
0FFFFH.

For every imported entry, mod is the module where the entry is defined (as implicitly
numbered in the import section), entry is always 0. The Use Section (4.10) contains the table
that maps an imported symbol to a fixup list.

VarConstLinks = 8DX { VarConstLinkEntry }nofVarConsLinks
VarConstLinkEntry = mod1 entry2 count2 {offset2}count

4

4.7 Link Section

This section contains the fixup list for procedure calls, system calls, and some other special
fixups in the code. offset is relative to the code base. That location contains the address of
the next fixup (this fixup chain is embedded in the code).

The following mod / entry have special meanings:

00 / 255 case table fixup
00 / 254 local procedure assignment
00 / 253 system call to NewRec
00 / 252 system call to NewSys
00 / 251 system call to NewArr
00 / 250 system call to Start
00 / 249 system call to Passivate
00 / 247 system call to Lock
00 / 246 system call to Unlock

Links = 86X {LinkEntry}nofLinks
LinkEntry = mod1 entry1 offset2

4.8 Const and Code Sections

The Consts are loaded in memory beginning at the static base.

Consts = 87X {char1}constSize
Code = 89X {char1}codeSize

4.9 Export Section

This section lists the exported symbols of the module

Exports = 88X nofExports2 {ExportEntry}nofExports 0X
ExportEntry = FPn fixupn [1X ExportRecord]
ExportRecord = oldrefn

| tdentryn [1X ExportRecord] nofFPs2 {FPn [1X ExportRecord]}nofFPs 0X

The Export Section contains the information and linking point of all the exported symbols
in the module. The ExportEntry describes different entry kinds, depending on the value of
the fixup:

• fixup < 0 Fixup is the offset of a variable relative to the static base. If the variable
type is a record, ExportRecord will describe it.

• fixup = 0 Anchor for a named record type, always followed by ExportRecord.

• fixup > 0 Fixup is the offset of a procedure entry point relative to the code base; it
never has an ExportRecord.

A record may be described in two ways (recognized by the first value read):

5

• tdentry > 0 tdentry is the offset of the pointer to the type descriptor in the constant
section; followed by the fingerprints of the base type (if existent), the public and private
record fingerprints, the methods and fields fingerprints. If a record field has record type,
then it is followed by the description of the type.

• oldref < 0 the -oldref-th explicitely described type descriptor.

4.10 Use Section

Use = 08AX {UsedModules} 0X
UsedModules = moduleNames0 {UsedVar |UsedProc |UsedType} 0X
UsedVar = FPn varNames0 fixlistn [1X UsedRecord]
UsedProc = FPn procNames0 offsetn
UsedType = FPn typeNames0 0X [1X UsedRecord]
UsedRecord = tdentryn [FPn "@"] 0X

The Use Section contains the information for the linker about all the imported entries
(Variables, Procedures and Type Descriptors). Every entry has the format fingerprint
name value. Variables have a positive value, procedures a negative one and types have
value = 0.

Variables fixlist is an index to a fixup list in the VarConstLink Section (4.6. The address
to be patched is found in the Export Section (4.9) of the module exporting the variable using
the fingerprint.

Procedures The fixup chain for this call starts at −offset relative to the code base. The
address to be patched is found in the Export Section (4.9) of the module exporting the
procedure.

Type Descriptors For every imported type descriptor, an hidden copy of the pointer to
the descriptor is allocated in the local constant section at offset tdentry. The address to be
patched is found using the fingerprint in the Export Section (4.9) of the module exporting
the Type.

4.11 Types Section

This section contains the description about the type descriptors.

Types = TypeTag {TypeEntry}nofTypes
TypeEntry = size4 tdaddr2 Base Count names Methods Pointers
Base = module2 entry4
Count = nofMethods2 nofInheritedMethods2 nofNewMethods2 nofPointers2
Methods = {methodNumber2 entryNumber2}nofNewMethods
Pointers = {pointerOffset4}nofPointers

There are 3 different Base allowed:

no base module and entry are equal to -1

6

local record module equal to 0; entry is the offset in the constant section of the pointer to
the base type

imported record module is an index in the table of imported modules; entry is the finger-
print of the record (to be found and checked in the export section of the module)1

4.12 Reference Section

The reference section is used by the Oberon trap handler to display the values on the stack
when the trap occured. With some extensions (i.e. object types) it may be also used for some
meta-programming.

Reference = 8BX {ProcRef}
ProcRef = 0F8X offset name {VarMode VarType [dim] offset name}
VarMode = Direct | Indirect
VarType = Byte | Bool | Char | SInt | Int | LInt | Real | LReal | Set | Pointer | Proc | Strin
Direct = 1X
Indirect = 3X
Byte = 1X | 81X
Bool = 2X | 82X
Char = 3X | 83X
SInt = 4X | 84X
Int = 5X | 85X
LInt = 6X | 86X
Real = 7X | 87X
LReal = 8X | 88X
Set = 9X | 89X
Pointer = 0DX | 8DX
Proc = 0EX | 8EX
String = 0FX

A V arType ≥ 80X means an array of the given type; in this case the number of dimensions
must follow the type. Open Arrays have dimension 0.

A Oberon Kernel System Calls

This appendix has been contribued by Pieter Muller. Many thanks.

TYPE ProtectedObject = POINTER TO RECORD END; (* protected object (10000) *)
TYPE Body = PROCEDURE (typetag: LONGINT; self: ProtectedObject);
PROCEDURE CreateActivity(body: Body; priority: LONGINT; flags: SET; obj: ProtectedObject);

Create a thread associated with the active object obj. body contains the body method of
the active object. priority and flags are the values specified in the annotation of the body.
This call is generated by the compiler when an active object (a POINTER TO RECORD variable
with a BEGIN-END body) is allocated with NEW. First the object is allocated as usual, then its
initializer is called (if defined), and then Create is called to activate it.

1In fact this is not really needed, because for every imported record, a pointer to it is created in the local
constants section. The module number could be safely ignored and entry be the offset in the constants; the
fingerprint would be checked in the use section when fixing the reference to the td.

7

The call creates a new thread that has the body entry point as initial instruction pointer.
A stack is set up for the local variables of the thread, in such a way so that return from the
body will terminate the thread. A stack overflow will cause an extension of the stack, or a
trap if no more memory is available to the thread. Any trap will cause the thread to be either
restarted at the body, or terminated (this depends on flags). It is not (yet) defined what
happens to the locks that are held by a trapping thread. Priority levels are not yet defined.
The thread of an active object will anchor the object until it terminates. After that the object
may remain anchored by other references to it, but it can not become active again. It can
remain in the system as a protected object.

PROCEDURE Lock(obj: ProtectedObject; exclusive: BOOLEAN);

Lock protected object obj. The compiler generates this call at the entry to a method with
the EXCLUSIVE or SHARED annotation (called a protected method). exclusive indicates which
is the relevant case. Only one thread can lock an object exclusively, and many threads may
obtain a shared lock when no exclusive lock is held. A thread is not allowed to re-enter its own
exclusive region. Any object with exclusive or shared methods (also if only in an extension)
can be locked. The compiler must indicate this in the type descriptor of the object, so that
the object can be allocated with the relevant header. (As an approximation, any object with
methods may be treated as a protected object). Shared locks may be implemented identical
to exclusive locks in the simplest case.

PROCEDURE Unlock(obj: ProtectedObject; dummy: LONGINT);

Unlock protected object obj. The compiler generates this call at the exit of a protected
method. The relevant lock is released. (The dummy parameter is a placeholder to be used or
removed later).

TYPE Condition = PROCEDURE (slink: LONGINT): BOOLEAN;
PROCEDURE Passivate(cond: Condition; slink: LONGINT; obj: ProtectedObject; flags: SET);

Passivate the current thread until some condition becomes true. The compiler generates
this call for the PASSIVATE statement. The boolean condition is compiled in a separate
procedure which is logically nested in the scope where the passivate resides, and which returns
the boolean result of the expression. The static link value to that scope is passed in the slink
parameter. This value is used when calling the condition procedure, so that it can access the
variables of the enclosing scope. obj points to the object instance containing the passivate
statement. Bit 0 of the flags parameter is set if the compiler detects a ‘global’ condition,
i.e. a boolean expression with function calls or reference to non-local variables.

PROCEDURE NewRec*(VAR p: SYSTEM.PTR; typetag: LONGINT);

This call is generated for the NEW procedure with a POINTER TO RECORD parameter. typetag
is a the address of a type descriptor for the specified record type. From the type descriptor
can be learned if the relevant object is a protected object, in which case a heap block with the
required protected object header is allocated. (It would be advantageous to have the compiler
generate a separate kernel call for this case). p returns the allocated pointer value.

PROCEDURE NewArr*(VAR p: SYSTEM.PTR; elemTag, numElems, numDims: LONGINT);

8

This call is generated for the NEW procedure with a POINTER TO ARRAY OF parameter,
where the array elements are pointers or records containing pointers. elemTag is the address
of a type descriptor for the element record type, or 0 in the case of an array of pointers.
numElems and numDims indicate the total size and number of dimensions of the array. The
array is allocated with a special header where the sizes of the different dimensions are stored.
These fields are initialized by code generated by the compiler after the kernel call.

PROCEDURE NewSys*(VAR p: SYSTEM.PTR; size: LONGINT);

This call is generated for the SYSTEM.NEW procedure to allocate a block of memory that
does not contain any pointers that have to be traced by the garbage collector. It is also used
for the NEW procedure with a POINTER TO ARRAY OF parameter, where the array elements do
not contain pointers.

Kernel call numbers:

244 -
245 -
246 Unlock
247 Lock
248 -
249 Passivate
250 CreateActivity
251 NewArr
252 NewSys
253 NewRec

B Zero Compression of strings

PROCEDURE WriteString(VAR R: Files.Rider; VAR s: ARRAY OF CHAR);
VAR i: INTEGER; ch: CHAR;

BEGIN
i:=0; ch:=s[i];
IF ch=0X THEN Files.Write(R, 0X); RETURN END;
WHILE (ch#0X) & (ch<7FX) DO INC(i); ch:=s[i] END;
IF i>1 THEN Files.WriteBytes(R, s, i-1) END;
IF ch=0X THEN Files.Write(R, CHR(ORD(s[i-1])+80H))
ELSE

IF i>0 THEN Files.Write(R, s[i-1]) END;
Files.Write(R, 7FX);
REPEAT Files.Write(R, ch); INC(i); ch:=s[i] UNTIL ch=0X;
Files.Write(R, 0X)

END
END WString;

PROCEDURE ReadString(VAR R: Files.Rider; VAR s: ARRAY OF CHAR);
VAR i: INTEGER; ch: CHAR;

BEGIN i := 0;
LOOP Files.Read(R, ch);

IF ch = 0X THEN s[i] := 0X; RETURN
ELSIF ch < 7FX THEN s[i]:=ch; INC(i)
ELSIF ch > 7FX THEN
s[i] := CHR(ORD(ch)-80H); s[i+1] := 0X; RETURN

9

ELSE (* ch = 7FX *) EXIT END
END;
LOOP Files.Read(R, ch);
IF ch = 0X THEN s[i]:=0X; RETURN
ELSE s[i]:=ch; INC(i) END

END
END ReadString;

10

