
Beyond Java: An Infrastructure for High-Performance
Mobile Code on the World Wide Web

Michael Franz
Department of Information and Computer Science

University of California
Irvine, CA 92697-3425

franz@uci.edu

Abstract: We are building an infrastructure for the platform-independent distribution and
execution of high-performance mobile code as a future Internet technology to complement
and perhaps eventually succeed Java. Key to our architecture is a representation for mobile
code that is based on adaptive compression of syntax trees. Not only is this representation
more than twice as dense as Java byte-codes, but it also encodes semantic information on a
much higher level. Unlike linear abstract-machine representations such as p-code and Java
byte-codes, our format preserves structural information that is directly beneficial for
advanced code optimizations.

Our architecture provides fast on-the-fly native-code generation at load time. To increase
performance further, a low-priority compilation thread continually re-optimizes the already
executing software base in the background. Since this is strictly a re-compilation of already
existing code, and since it occurs completely in the background, speed is not critical, so that
aggressive, albeit slow, optimization techniques can be employed. Upon completion, the
previously executing version of the code is supplanted on-the-fly and re-optimization starts
over.

Our technology is being made available under the name “Juice”, in the form of plug-in
extensions for the Netscape Navigator and Microsoft Internet Explorer families of WWW
browsers. Each plug-in contains an on-the-fly code-generator that translates Juice-applets
into the native code of the target machine. As far as end-users are concerned, there is no
discernible difference between Java-applets and Juice-applets, once that the plug-in has been
installed, although the underlying technology is very different. The two kinds of applets can
coexist on the same WWW page, and even interact with each other through the browser’s
API. Our work not only demonstrates that executable content need not necessarily be tied to
Java technology, but also suggests how Java can be complemented by alternative solutions,
and potentially be displaced by something better.

1. Introduction

One of the most beneficial aspects of the rapid expansion of the Internet is that it is driving the deployment of
“open” software standards. We are currently witnessing the introduction of a first suite of interoperability
standards that is already having far-reaching influences on software architecture, as it simultaneously also
marks the transition to a component model of software. The new standards, such as CORBA (Object
Management Group), COM/OLE (Microsoft), and SOM/OpenDoc (Apple Computer, IBM, Novell), enable
software components to interoperate seamlessly, even when they run on different hardware platforms and have
been implemented by different manufacturers. Over time, the monolithic application programs of the past will
be supplanted by societies of interoperating, but autonomous, components.

It is only logical that the next development step will lead to even further “open-ness”, not only freeing
components from all dependence upon particular hardware architectures, but also giving them the autonomy to
migrate among machines. Instead of executing complex transactions with a distant server by “remote control”
over slow communication links, software systems will then be able to send self-contained mobile agents to a
server that complete the transactions autonomously on the user’s behalf. The inclusion of executable content

2

into electronic documents on the World Wide Web already gives us a preview of how powerful the concept of
mobile code is, despite the fact that so far only a unidirectional flow of mobile programs from server to client
is supported. Distributed systems that are based on freely-moving agents will be even more powerful.

In order to transfer a mobile program between computers based on different processor architectures, some
translation of its representation has to occur at some point, unless the mobile program exists in multiple
execution formats simultaneously. Although the latter approach seems feasible in the current context of
software distribution via CD-ROM, its limits will soon become apparent when low-bandwidth wireless
connectivity becomes pervasive. Hence, a compact universal representation for mobile code is required. The
search for such a universal representation is the subject of much current research [Engler 1996, Inferno,
Lindholm et al. 1996], including recent work of the author [Franz & Kistler 1996, Kistler & Franz 1997].

Although Sun Microsystems’ Java technology is now the de-facto standard for portable “applets”
distributed across the Internet, it remains surprisingly simple to provide alternatives to this platform, even
within the context of commercial browser software. We have created such an alternative to the Java platform
and named it Juice. Juice is an extension of the author’s earlier research on portable code and on-the-fly code
generation1 [Franz & Ludwig 1991, Franz 1994a, Franz 1994b]. Our current work is significant on two
accounts: First, Juice’s portability scheme is technologically more advanced than Java’s and may lead the way
to future mobile-code architectures. Second, the mere existence of Juice demonstrates that Java can be
complemented by alternative technologies (and potentially be gradually displaced by something better) with far
less effort than most people seem to assume. In fact, once that Juice has been installed on a machine, end-users
need not be concerned at all whether the portable software they are using is based on Juice or on Java. In light
of this, we question whether the current level of investment in Java technology is justified, in as far as it is
based on the assumption that Java has no alternatives.

In the following, we swiftly introduce the mobile code format upon which all of our work is based. We
then give an overview of our run-time architecture, which not only provides on-the-fly code generation, but
also dynamic code re-optimization in the background. Finally, we report on the current state of our
implementation, specifically the availability of an integrated authoring and execution environment for Juice
components, and of a family of plug-in extensions for two popular commercial WWW browsers that enable
these browsers to execute Juice-based content.

2. An Effective Representation for Mobile Code

Our mobile-code architecture is based on a software distribution format called slim binaries [Franz & Kistler
1996] that constitutes a radical departure from traditional software-portability solutions. Unlike the common
approach of representing mobile programs as instruction sequences for a virtual machine, an approach taken
both with p-code [Nori et al. 1976] as well as with Java byte-code [Lindholm et al. 1996], the slim binary
format is instead based on adaptive compression of syntax trees [Franz 1994a]. When compiling a source
program into a slim binary, it is first translated into a tree-shaped intermediate data structure in memory that
abstractly describes the semantic actions of the program (e.g., “add result of left sub-tree to result of right sub-
tree”). This data structure is then compressed by identifying and merging isomorphic sub-trees, turning the
tree into a directed acyclic graph with shared sub-trees (for example, all occurrences of “x + y” in the program
could be mapped onto a single sub-tree that represents the sum of “x” and “y”). The linearized form of this
graph constitutes the slim binary format.

In the actual implementation, tree compression and linearization are performed concurrently, using a
variant of the classic LZW data-compression algorithm [Welch 1984]. Unlike the general-purpose
compression technique described by Welch, however, our algorithm is able to exploit domain knowledge about
the internal structure of the syntax tree being compressed. Consequently, it is able to achieve much higher
information densities [Fig. 1]. We know of no conventional data-compression algorithm, regardless of whether
applied to source code or to object code (for any architecture, including the Java virtual machine), that can
yield a program representation as dense as the slim binary format.

[1] note that this earlier work on mobile code predates Java by several years

3

665%

344%

284%

242%

277%

219%

172%

156%

100%

Source Code

PPC601 Binary

i386 Binary

Java Byte-Codes

LZSS Compressed Source Code

LZSS Compressed PPC601 Binary

LZSS Compressed Java Byte-Codes

LZSS Compressed i386 Binary

Slim Binary

Figure 1: Relative Size of a Representative Program Suite in Various Formats

The compactness of the slim binary format may soon become a major advantage, as many network connections
in the near future will be wireless and consequently be restricted to small bandwidths. In such wireless
networks, raw throughput rather than network latency again becomes the main bottleneck. We also note that
one could abandon native object code altogether in favor of a machine-independent code format if the portable
code would not only run as fast as native code, but also start up just as quickly (implying that there would be
no discernible delay for native-code translation). As the author has shown in previous work, this becomes
possible if the portable software distribution format is so dense that the additional computational effort
required for just-in-time code generation can be compensated entirely by reduced I/O overhead due to much
smaller “object files” [Franz 1994a, Franz 1994b, Franz 1997a].

Compactness does come at a small price: since isomorphic sub-trees have been merged during encoding, a
program represented in the slim binary format cannot simply be interpreted byte-by-byte. Conversely, the
individual symbols in an abstract-machine representation such as Java byte-codes are self-contained,
permitting random access to the instruction stream as required for interpreted execution. However, in
exchange for giving up the possibility of interpretation, which by its inherent lack of run-time performance is
limited to low-end applications anyway, the slim binary format confers a further important advantage:

It turns out that the tree-shaped program representation from which the slim binary format is generated
(and which is re-created in memory when a slim binary file is decoded) is an almost perfect input for an
optimizing code generator. The slim binary format preserves structural information such as control flow and
variable scope that is lost in the transition to linear representations such as Java byte-codes. In order to
perform code generation with advanced optimizations from a byte-code representation, a time-consuming pre-
processing step is needed to re-create the lost structural information. This is not necessary with slim binaries.
A similar argument applies with respect to code verification: analyzing a mobile program for violation of type
and scoping rules is much simpler when the program has a tree-based representation than it is with a linear
byte-code sequence.

3. A Run-Time Architecture Featuring Dynamic Re-Optimization

We are developing a run-time architecture in which the capability of generating executable code from a
portable intermediate representation is a central function of the operating system itself [Franz 1997b]. It
thereby becomes possible to perform advanced optimizations that transcend the boundaries between individual
portable components, as well as the boundary between user-level and system-level code.

Consider a scenario in which a user downloads several portable components from various Internet sites
during a single computing session. Every time that such a component is downloaded, it is translated on-the-fly
into the native code of the target machine so that it will execute efficiently. This “just-in-time” translation is
able to achieve remarkable speed-up factors when compared to interpreted execution, but it still cannot extract
the theoretically achievable optimum performance from the system as a whole. This is because every
component has been compiled and optimized individually, rather than in the context of all other components
in the system.

4

In order to achieve even better performance, one would have to perform inter-component optimizations.
Examples of such optimizations are procedure inlining across component boundaries, inter-procedural register
allocation, and global cache coordination. However, since the set of participating components is open-ended
and the user has the option of interactively adding further components at any time, it is of course impossible to
perform these optimizations statically. Unfortunately, the principle of dynamic composability that
fundamentally underlies open, component-based systems runs counter to the needs of optimizing compilers.
The problem is compounded further by the fact that component-based systems are often made out of a
relatively large numbers of relatively small parts.

There is, however, a solution: at any given time, the set of currently active components is well known.
Hence, a globally optimized version of the system can in fact be constructed, except that this has to be done at
run-time and that its validity extends only until the user adds the next component. This leads to the key idea of
our run-time architecture: to perform the translation from the slim binary distribution format into executable
code not just once, but to do so continually, constructing a series of globally cross-optimized code images in
memory, each of which encompasses all of the currently loaded components. Whenever such a cross-optimized
image has been constructed, it supersedes the previously executing version of the same code, i.e. the new code
image is “hot-swapped” into the operational state while the previous one is discarded. At the same time,
construction of yet another code image is initiated. We call this iterative process re-optimization, and it is
performed with low priority in the background.

Since re-optimization occurs in the background while an alternate version of the same software is already
executing in the foreground, it is largely irrelevant how long this process takes. This means that far more
aggressive optimization strategies can be employed than would be possible in an interactive context. Further,
because re-optimization occurs at run-time, “live” execution-profile data can be taken into account for certain
optimizations [Ingalls 1971, Hansen 1974, Chang et al. 1991]. This is why our model is continuous: although
re-optimization would strictly be necessary only whenever new components are added to the system, usage
patterns among the existing components still shift over time. Re-optimization at regular intervals makes it
possible to take these shifts into account as well. Our system bases each new code image on dynamic profiling
data collected just moments earlier, and hence can provide a level of fine-tuning that is not possible with
statically-compiled code.

This leaves the question of what happens when a new component is added interactively to the running
system. Clearly, one cannot wait for the completion of a full re-optimization cycle of the whole system before
the new component can be used. This problem is taken care of by a second operational mode of our code
generator: besides being able to generate high-quality optimized code in the background, it also has a “burst”
mode in which compilation speed is put ahead of code quality so that execution can commence immediately.
Using this “burst” mode, each new component is translated into native code as a stand-alone piece of code not
cross-optimized with the rest of the system. For a short while, it will then execute at less than optimum
performance. Upon the next re-optimization cycle, it will automatically be integrated with the remaining
system and henceforth run more efficiently.

4. Our Prototype Implementation

Our work has originated and continues to evolve in the context of the Oberon System [Wirth & Gutknecht
1989, Wirth & Gutknecht 1992]. Oberon constitutes a highly dynamic software environment in which
executing code can be extended by further functionality at run-time. The unit of extensibility in Oberon is the
module; modules are composed, compiled and distributed separately of each other. Oberon is programmed in a
language of the same name [Wirth 1988], a direct successor of Pascal and Modula-2. The Oberon System is
available on a wide variety of platforms [Franz 1993, Brandis et al. 1995].

For all practical purposes, Oberon’s modules supply exactly the functionality that is required for modeling
mobile components. Modules provide encapsulation, their interfaces are type-checked at compilation time and
again during linking, and they are an esthetically pleasing language construct. The only feature that we have
recently added to the original language definition is a scheme for the globally unique naming of qualified
identifiers. Hence, when we have been talking about “components” above, we were referring to Oberon
modules.

5

We have already come quite far in deploying the ideas described above in a broader sense than merely
implementing them in a research prototype. The current Oberon software distribution [Oberon] uses the
architecture-neutral slim binary format to represent object code across a variety of processors. Our on-the-fly
code generators have turned out to be so reliable that the provision of native binaries could be discontinued
altogether, resulting in a significantly reduced maintenance overhead for the distribution package. Currently,
our implementations for Apple Macintosh on both the MC680x0 and the PowerPC platforms (native on each)
and for the i80x86 platform under Microsoft Windows 95 all share the identical object modules, except for a
small machine-specific core that incorporates the respective dynamic code generators and a minimal amount
of “glue” to interface with the respective host operating systems.

The latest release of the Oberon software distribution additionally contains an authoring kit for our Juice
mobile-component architecture. The main difference between ordinary Oberon modules and Juice components
is that they are based on different sets of libraries. The Juice API is smaller than Oberon’s, and modeled after
Netscape’s Java-Applet-API. Components that are based on this reduced system interface cannot only be
executed within the Oberon environment, but also within the Netscape Navigator and Microsoft Internet
Explorer families of WWW browsers, both on the Macintosh (PowerPC) and Microsoft Windows (i80x86)
platforms. Hence, by choosing the optional Juice API rather than Oberon’s standard libraries, developers of
Oberon-based components can address a much larger potential market.

In order to enable Juice components to execute within the aforementioned WWW browsers, we supply a
set of platform-specific plug-ins [Juice]. Each plug-in contains a dynamic code-generator that translates the
slim binary representation into the native code of the respective target architecture (PowerPC or Intel 80x86).
This translation occurs before the applet is started, using the aforementioned “burst mode” of code generation.
It is fast enough not to be noticed under normal circumstances, and the resulting code quality is comparable to
the current generation of just-in-time Java compilers. Unlike our Oberon-based research platform, our Juice
plug-ins do not yet provide background re-optimization and the additional performance gains that come with
it. However, we plan to periodically incorporate our research results into Juice.

Juice differs considerably from Java, yet from the web-browsing end-user’s perspective, there is no
obvious difference between Java and Juice applets. We claim that this is important, because it shows that Java
can be complemented by alternative technologies in a user-transparent manner. In the long run, the choice of a
particular mobile-code solution may often simply be a matter of personal taste, rather than a technological
necessity. Luckily, it is the applet developer that needs to make this choice; the end user need not know any of
it as multiple mobile-code technologies, such as Java and Juice, can happily coexist, even on the same web
page.

5. Conclusion and Outlook

Mobile code for the Internet need not necessarily be tied to Java technology. In this paper, we have presented
various aspects of a mobile-code infrastructure that differs from Java on several key accounts. Not only is our
implementation a test-bed for novel code-representation and dynamic-compilation techniques, but it also
confirms the suitability of the existing browser plug-in mechanism for supporting alternative software
portability solutions.

As our implementation demonstrates, the plug-in mechanism can even be utilized to provide on-the-fly
native-code generation, enabling alternative portability schemes to compete head-on with Java in terms of
execution speed. Using plug-in extensions for the most popular browsers, many mobile-code formats could
potentially be introduced side-by-side over time, gradually reducing Java’s pre-eminence rather than having to
displace it abruptly. This would make the eventual migration path from Java to a successor standard at the end
of Java’s life-cycle much less painful than most people anticipate now. The same strategy could also be
employed to simultaneously support several mutually incompatible enhancements of the original Java
standard.

We contend that dynamic code generation technology is reaching a level of maturity that it will soon be
relatively inexpensive to support multiple software distribution formats concurrently. It will then become less
important how much “market share” any incumbent software distribution format such as Java byte-codes or
Intel binary code already owns. In order to be commercially successful, future software distribution formats
will have to mimic Java as far as providing architecture neutrality and safety, but further considerations such

6

as code density will surely gain in importance. Some future formats, for instance, will be more narrowly
targeted towards particular application domains. In this larger context, the current enthusiasm surrounding
Java may soon appear to have been somewhat overblown.

Acknowledgement

The author gratefully acknowledges Thomas Kistler as the co-author of the Juice system. Part of this work is being funded
by the National Science Foundation under grant CCR-9701400.

References

[Brandis et al. 1995] M. Brandis, R. Crelier, M. Franz, and J. Templ (1995); “The Oberon System Family”; Software-
Practice and Experience, 25:12, 1331-1366.

[Chang et al. 1991] P. P. Chang, S. A. Mahlke, and W. W. Hwu (1991); “Using Profile Information to Assist Classic
Code Optimizations”; Software–Practice and Experience, 21:12, 1301-1321.

[Engler 1996] D. R. Engler (1996); “Vcode: A Retargetable, Extensible, Very Fast Dynamic Code Generation System”;
Proceedings of the ACM Sigplan ‘96 Conference on Programming Language Design and Implementation, published as
ACM Sigplan Notices, 31:5, 160-170.

[Franz 1993] M. Franz (1993); “Emulating an Operating System on Top of Another”; Software-Practice and Experience,
23:6, 677-692.

[Franz 1994a] M. Franz (1994); Code-Generation On-the-Fly: A Key to Portable Software; Doctoral Dissertation No.
10497, ETH Zürich, simultaneously published by Verlag der Fachvereine, Zürich, ISBN 3-7281-2115-0.

[Franz 1994b] M. Franz (1994); “Technological Steps toward a Software Component Industry”; in J. Gutknecht (Ed.),
Programming Languages and System Architectures, Springer Lecture Notes in Computer Science, No. 782, 259-281.

[Franz 1997a] M. Franz (1997); “Dynamic Linking of Software Components”; IEEE Computer, 30:3, 74-81.

[Franz 1997b] M. Franz (1997); “Run-Time Code Generation as a Central System Service”; in The Sixth Workshop on
Hot Topics in Operating Systems (HotOS-VI), IEEE Computer Society Press, ISBN 0-8186-7834-8, 112-117.

[Franz & Kistler 1996] M. Franz and T. Kistler (1996); “Slim Binaries”; Communications of the ACM, to appear; also
available as Technical Report No. 96-24, Department of Information and Computer Science, University of California,
Irvine.

[Franz & Ludwig 1991] M. Franz and S. Ludwig (1991); “Portability Redefined”; in Proceedings of the Second
International Modula-2 Conference, Loughborough, England.

[Juice] M. Franz and T. Kistler; Juice; http://www.ics.uci.edu/~juice.

[Hansen 1974] G. J. Hansen (1974); Adaptive Systems for the Dynamic Run-Time Optimization of Programs (Doctoral
Dissertation); Department of Computer Science, Carnegie-Mellon University.

[Ingalls 1971] D. Ingalls (1971); “The Execution Time Profile as a Programming Tool”; Design and Optimization of
Compilers, Prentice-Hall.

[Oberon] Department of Information and Computer Science, University of California at Irvine; Oberon Software
Distribution; http://www.ics.uci.edu/~oberon.

[Kistler & Franz 1997] T. Kistler and M. Franz (1997); “A Tree-Based Alternative to Java Byte-Codes”; Proceedings of
the International Workshop on Security and Efficiency Aspects of Java, Eilat, Israel.

[Lindholm et al. 1996] T. Lindholm, F. Yellin, B. Joy, and K. Walrath (1996); The Java Virtual Machine Specification;
Addison-Wesley.

[Inferno] Lucent Technologies Inc.; Inferno; http://plan9.bell-labs.com/inferno/.

[Nori et al. 1976] K. V. Nori, U. Amman, K. Jensen, H. H. Nägeli and Ch. Jacobi (1976); “Pascal-P Implementation
Notes”; in D.W. Barron (Ed.); Pascal: The Language and its Implementation; Wiley, Chichester.

[Welch 1984] T. A. Welch (1984); “A Technique for High-Performance Data Compression”; IEEE Computer, 17:6, 8-19.

[Wirth & Gutknecht 1989] N. Wirth and J. Gutknecht (1989); “The Oberon System”; Software-Practice and Experience,
19:9, 857-893.

[Wirth & Gutknecht 1992] N. Wirth and J. Gutknecht (1992); Project Oberon: The Design of an Operating System and
Compiler; Addison-Wesley.

[Wirth 1988] N. Wirth (1988); “The Programming Language Oberon”; Software-Practice and Experience, 18:7, 671-690.

