
A Tree-Based Alternative to Java Byte-Codes
Thomas Kistler and Michael Franz

Department of Information and Computer Science
University of California at Irvine

Irvine, CA 92697-3425

Abstract. Despite the apparent success of the Java Virtual Machine, its lackluster
performance makes it ill-suited for many speed-critical applications. Although the latest
just-in-time compilers and dedicated Java processors try to remedy this situation,
optimized code compiled directly from a C program source is still orders of magnitude
faster than software transported via Java byte-codes. This is true even if the Java byte-
codes are subsequently further translated into native code. In this paper, we claim that
these performance penalties are not a necessary consequence of machine-independence,
but related to Java’s particular intermediate representation. We have constructed a
prototype and are further developing a software transportability scheme founded on a
tree-based alternative to Java byte-codes. This tree-based intermediate representation is
not only twice as compact as Java byte-codes, but also contains more detailed semantic
information, some of which is critical for advanced code optimizations. Our architecture
not only provides on-the-fly code generation from this intermediate representation, but
also continuous re-optimization of the existing code-base by a low-priority background
process. The re-optimization process is guided by up-to-the-minute profiling data, leading
to superior optimization results.

1 Introduction
In recent months, the Java Virtual Machine [LYJ96] has rapidly become a standard platform for building
portable Internet “applets” and applications. For these applications, portability is achieved by compiling
Java source files into Java byte-codes (instruction sequences for the Java Virtual Machine) that are
completely independent of the eventual target architecture. These byte-codes can easily be distributed over
the Internet and interpreted on any given machine.

For small Internet applets, electronics, and household appliances, interpreting Java byte-codes yields
adequate performance in most cases. For most other application areas, however, the performance penalty
associated with interpreting byte-codes makes such an approach unsuitable—higher performance is
required.

To remedy this situation, major software distributors have introduced just-in-time compilers. Just-in-time
compilers translate Java byte-codes into a sequence of native machine instructions on a method-by-method
basis upon first activation of a method; the compiled version is then cached for subsequent activations.
According to manufacturers of such just-in-time compiler, e.g. [Sun95], the quality of the generated code is
“reasonably good” and “almost indistinguishable from native C or C++”.

Just-in-time compilers improve the situation relative to interpreted execution, but they still cannot compete
with true optimizing compilers. Certain advanced optimizations rely on information that, although present
in the source program, is lost in the transition to Java byte-codes, and whose reconstruction is
extraordinarily difficult. Hence, compilers that take Java byte-codes as their input are not easily capable of
performing intermodular optimizations, global trace scheduling, or code-parallelizations, which makes them
intrinsically inferior to optimizing C or C++ compilers.

Since just-in-time compilers cannot always meet the required performance goals, most performance-critical
applications continue to be compiled directly from source code into the machine language of the target

A Tree-Based Alternative to Java Byte-Codes

Edited by Michael Griebling 2 07/14/98

machine. The current proliferation of native plug-ins (software programs that extend the capabilities of Web
browsers) rather than Java applets for high-performance applications clearly illustrates this point (e.g.
Shockwave, PDFViewer, Live3D).

In this paper, we demonstrate that portability and high-performance are two goals that need not necessarily
be irreconcilable. In the first part of this paper we describe an alternative intermediate representation that is
based on high-level abstract syntax-trees rather than on low-level byte-codes. Abstract syntax trees provide
the necessary foundation for advanced code optimizations and impose no artificial barriers to it.

In the second part, we introduce the concepts of dynamic runtime optimization and adaptive profiling. In
our system, a dynamic runtime optimizer performs code optimizations continuously, based on runtime
profile data. A background process regularly generates faster program versions that then replace earlier, less
optimal versions. Basing compilation on an adaptive profiler allows the code optimizer to make superior
optimization decisions, improving even the quality of already optimized code on subsequent re-optimization
iterations.

2 A Tree-Based Intermediate Representation
Rather than compiling source files into a sequence of Java byte-codes or into a register transfer language
[Wal86], source files in our implementation are translated into an intermediate representation called Slim
Binaries [Fra94, FK96]. The Slim Binary representation is based on abstract syntax-trees and describes the
actions of the original program similar to a parse tree. In contrast, abstract machine representations such as
Java byte-codes are linear. In the Slim Binary representation, every node in the tree is strongly typed by a
reference to the symbol table, in the byte-code representation, this type information as well as the block
structure of the program are only implicitly present and not directly accessible.

The Slim Binary representation, as its name suggests, is exceptionally dense, more so than compressed
source code or compressed object code, accelerating the transfer of executable content over a network. It is
a variation of adaptive compression schemes, such as the popular LZW algorithm [Wel84], tailored towards
syntax trees. It is based on the observation that different parts of programs often look very similar. As an
example, expressions like j++ or subexpressions like ...*pi/360 might be used several times within the
same scope. The same holds for procedure calls. Procedures might be called repeatedly with similar
parameter sets (e.g. formatfloat(..., 10, 2)). These similarities can be exploited by the use of a
predictive algorithm that encodes recurring expressions and subexpressions efficiently both in terms of
space and time.

In our implementation, the abstract syntax tree is reconstructed at load-time and native code is generated
on-they. Slim Binaries cannot be easily interpreted at runtime which, at first sight, might be a disadvantage.
Their structure is less suited in the area for which Java was originally invented—embedded systems, and
advanced consumer electronics. This area mainly distinguishes itself by limited memory capacity and
computing resources. However, this argument is becoming less relevant considering the recent increase of
computing power and the recent reduction of memory prices. For personal computers, interpreted execution
isn’t very appealing at all.

Because code-generation is performed at load-time, and because generating code takes more time than
merely linking programs, we have built a code generating loader with the explicit design goal of fast loading
times. In this context, the importance of Slim Binaries being compact becomes even more significant. The
time saved by the faster downloading of object files can be compensated for the on-they compilation phase.
Measurements show that the resulting loading times are well within the range of what users are willing to
tolerate even for large applications. Surprisingly the goal of fast load-times does not even go at the expense
of code quality. The code generated by our loader is comparable in quality to commercial C and Java just-
in-time compilers. In contrast to Java interpreters and just-in-time compilers, however, the full native speed
of applications is brought into action from the very beginning of executing an application.

A Tree-Based Alternative to Java Byte-Codes

Edited by Michael Griebling 3 07/14/98

Slim Binaries have several advantages over Java byte-codes. First, a tree representation is likely to be more
secure than byte-codes. The very definition of adaptive compression schemes limits the vocabulary at all
times to symbols that can legally be accessed at the current position in the program. It is therefore hardly
possible to construct a program that violates the scoping rules of the source language. Even if malicious
applications could be constructed, scoping violations can easily be detected and handled during code
generation, without resorting to mechanisms as complex as Java’s byte-code verification. Byte code
verification is a time-consuming process as it requires extensive data flow analysis.

Second, and much more important, the information available in our intermediate representation builds the
foundation for advanced code optimizations. In contrast to Java, as we will show in the next section, we are
able to apply more aggressive algorithms without large pre-processing costs, since essential data about
control and data flow is preserved in the abstract syntax-tree.

3 Advanced Code Optimizations
In a runtime environment that is based on byte-codes, two categories of optimizations can basically be
carried out. The first category encompasses optimizations that are completely independent of the eventual
target architecture. Examples are constant folding, dead-code elimination, loop-invariant code motion, and
to some extent, even procedure inlining. These optimizations can entirely be performed at compile-time,
and on the level of the source language.

The second category comprises optimizations that depend on processor-specific information. Because this
information is only available at load-time, these optimizations must operate on byte-code sequences. To
improve performance, instructions can be rearranged to achieve a better instruction mix, or unnecessary and
expensive register-spills can be eliminated by smart register allocation algorithms. Peephole optimizations
can also be classed with this category of optimizations.

Yet, there is a third important category of optimizations that, like optimizations of the first group, operate
on the level of the source language but also depend on processor specific information that is only available
at load-time. These optimizations cannot be performed at all on Java byte-codes. Cache blocking [WL91]
and loop-unrolling are two examples of these techniques. Analyzing and recognizing access patterns, as
well as having precise information about important cache parameters (e.g. cache size, line size) are
prerequisites for these optimizations. While the former can be accomplished at compile-time, the latter
cannot in practice. Value numbering [CS70] poses a similar problem. If done at all at compile-time, byte-
code instructions that cannot be mapped to the underlying architecture on a one-to-one basis, but have to be
translated into a sequence of native instructions (e.g. invokevirtual, invokestatic,
invokeinterface) cannot reasonably be taken into consideration. Delaying value numbering until
load-time is also impractical. A further problem that belongs to the third category of optimizations is
parallelizing instruction streams. Analyzing properties of data-structures can only be realized at compile-
time. However, important information about underlying hardware parameters (e.g. number of processors) is
not available until load-time.

Not being able to perform any of these optimizations is an immense disadvantage, which will be of prime
importance in the near future. This holds especially for optimizations that parallelize instruction streams,
since the tendency to cope with increasing performance requirements is rather to build multi-processor
systems than single-processor systems.

Moreover, Java byte-codes have additional disadvantages. Directly mapping byte-codes onto the underlying
architecture is much more difficult than generating machine instructions from an abstract syntax-tree. Code
generators that are based on a high-level representation do not have to deal with unfavorable peculiarities of
Java byte-codes but can tailor their output towards advanced and specific processor features, such as special
purpose instructions, size of register sets, and cache architectures. This is especially true for today’s most
common RISC processors which are less suited for byte-code’s heavily used stack operations. Whether

A Tree-Based Alternative to Java Byte-Codes

Edited by Michael Griebling 4 07/14/98

dedicated Java processors, such as Sun Microsystems recently announced picoJava architecture, will
overcome this disadvantage is still an open question.

In contrast to Java byte-codes, Slim Binaries are optimally suited for all categories of code optimizations
and do not have to deal with any of the bytecodes’ disadvantages. At the time of loading, the abstract syntax
tree, which can be efficiently decoded, contains the same amount of information that is available at compile-
time. It not only preserves the control and data flow of programs, but also the structure and property of data-
structures and data-types. This information is essential for aggressive code optimizations.

4 Runtime Optimization and Adaptive Profiling
Slim Binaries reconcile portability and efficiency by providing the foundation for code-optimizations at the
time of loading. Unfortunately performing optimizations at load-time has one problem: it is quite time-
consuming. In many cases it takes at least five times as long as simply compiling the program [Bra95]. This
might be feasible for small applications, or large numerical applications in which the time saved by the
optimizations is much more substantial than the additional time required to optimize the program. For all
other applications, however, a different solution is necessary.

Therefore, in our design (Fig. 1), program optimization is performed at runtime, taking advantage of idle
cycles (we measured idle times of more than 90%). At load-time, a fast code-generating loader transforms
the intermediate representation into a first unoptimized code-image. The optimizer then continuously
generates faster versions of the program in the background, replacing older code images “in situ”. This step
is repeated until a fixpoint is reached and further optimizations do not continue contributing to the overall
system performance.

Fig. 1. Architecture

Performing optimizations at runtime also enables a completely new set of intermodular optimizations.
Because the configuration of the system (i.e. which components are active, and how they interact) is known
at runtime, optimizations are not restricted to local algorithms. Previous studies have shown that the impact
of intermodular optimizations on runtime performance can be dramatic in some cases [Höl94]. Examples of
intermodular optimizations are intermodular inlining, intermodular register allocation, and global cache
optimizations [Kis96].

Runtime optimization is only one aspect of our architecture. Equally important is the adaptive profiler that
continuously collects information about the system’s runtime behavior. The profiler’s primary goal is to
pinpoint the program parts that account for most of the execution time. That way, optimizations can be

A Tree-Based Alternative to Java Byte-Codes

Edited by Michael Griebling 5 07/14/98

concentrated on high payoff areas rather than being applied uniformly to each section of the program. Less
frequently executed sections are optimized sparsely, and no optimization is performed on rarely executed
sections or sections in which optimizations would not yield profitable results.

Further, with the availability of accurate profiling-data at the time of optimization, the optimizer never has
to resort to inexact heuristics. This leads to superior results in most cases. Many of today’s aggressive
optimization algorithms are based on heuristics, in order to achieve good results. However, this can be a
double-edged sword. On the one hand, if the system’s runtime behavior is properly predicted, considerable
performance increases may be expected. On the other hand, if predictions do not come true, these
optimizations will lead to performance penalties. As an example, in trace scheduling, traces (also called
execution-paths) are selected and scheduled in decreasing order of their execution frequency. The most
frequently executed path is scheduled first, as if it were one single basic block. However, in order to
preserve semantic correctness, corresponding code motions have to be performed in off-trace paths. If, at
runtime, the trace which was assumed to be executed most often is indeed executed most of the time, this
optimization yields superior results. If that is not the case, and off-trace paths are executed more often, then
this optimization will deteriorate the overall performance. Loop-unrolling which depends on loop-frequency
estimates and cache parameters, or inlining and partial evaluation which depend on call-frequency estimates
are other examples of optimizations that highly depend on heuristics.
In order to make the profiler as unobtrusive as possible, it uses a combination of dynamic instrumentation of
the object code and statistical profiling techniques. It also varies the granularity at which it monitors the
system’s execution, and is only applied when it can contribute to the overall system performance, pushing
the profiling overhead below 5%. Previous studies have reported profiling overheads of 5%-91% [BL94].

5 Results
In the last few months, we have implemented an experimental system that is based on our proposed
architecture. The system, named “Juice”, enables the seamless integration of Slim Binary encoded
executables into HTML-pages. It is based on a family of Netscape plug-ins that contain an on-the-fly code
generator and the Juice runtime environment. Juice is currently publicly available for Intel based computers
running Windows 95 and for PowerPC based Macintosh computers.

Beside being reliable and simple to use, Juice is also efficient. Table 1 shows time-measurements for basic
operations, such as assignments, additions, and method calls. The benchmark was executed on an Intel
Pentium processor clocked at 166Mhz (Dell OptiPlex GXM 5166). Since neither the optimizer nor the
profiler have yet been fully implemented and integrated into the Juice architecture, they have not been taken
into account for all of the benchmarks (this special configuration that only applies on-the-fly compilation
but no optimizations is subsequently called Juice Level I). Juice does very well in comparison to just-in-
time compilers. The runtime-differences are only minimal. Both runtime systems achieve an average speed-
up factor of 12 to 18 in contrast to byte-code interpretation.

Internet Netscape Internet Juice
Explorer 3.0 Navigator 3.0 Explorer Level I
(Interpreted) (Just-In-Time) (Just-In-Time) (No Opt.)

Local Var. Assignment 0.220 0.011 0.006 0.015
Instance Var. Assignment 0.440 0.010 0.007 0.046
Array Elem. Assignment 0.590 0.050 0.051 0.045
Byte Addition 0.680 0.044 0.030 0.021
Short Addition 0.660 0.044 0.030 0.047
Int Addition 0.570 0.015 0.013 0.017
Float Addition 0.570 0.046 0.045 0.054
Double Addition 0.500 0.140 0.044 0.110
Method Call 1.500 0.092 0.091 0.120
Average 0.637 0.050 0.035 0.053

Table 1. Suite 1—Basic Operations. All numbers are given in microseconds per operation.

A Tree-Based Alternative to Java Byte-Codes

Edited by Michael Griebling 6 07/14/98

Yet, speed-up factors in this range are not realistic in most cases. This has to be attributed to the fact that
larger applications often call Java library routines that are distributed as native binaries, already optimized
for speed. The more native libraries are called, the less just-in-time compilers boost performance. The
results of the second benchmark, which comprises of several long-running, computational intensive tasks,
emphasizes this statement. It compares the execution times of Juice, just-in-time compilers, and optimized
C++ to the execution time of byte-code interpretation (Table 2). The speed-ups are remarkably smaller than
the ones measured in the first test suite. Performance comprehensibly degrades with the number of library
calls down to disappointing ratios of 2:1-4:1. Examples are the “String Sort” benchmark that frequently
invokes the native “System.arraycopy” method and the “Fourier Analysis” benchmark that frequently calls
the math library (Math.sin, Math.cos, Math.exp).

Netscape Internet Juice C++
Navigator 3.0 Explorer 3.0 Level I Optimized

(Just-In-Time) (Just-In-Time) (No Opt.)
Numeric Sort 11.17 13.21 9.63 79.69
String Sort 3.50 4.72 1.55 6.70
Bitfield Operations 17.61 15.92 20.82 64.94
Fourier Analysis 0.87 2.76 2.45 4.27
IDEA Encryption 4.54 3.24 6.69 16.30
Huffman Compression 11.87 16.14 20.68 35.32
LU Decomposition 7.63 7.18 6.18 36.69
Average 8.43 9.19 10.05 35.33

Table 2. Suite 2—Computational Intensive Operations. All numbers are given in multiples of the
performance of interpreted byte-codes using Internet Explorer.

This benchmark also unequivocally demonstrates that native code, compiled from an abstract syntax tree, is
at least equivalent in quality to code generated by just-in-time compilers (Fig. 2). In some cases, the results
even surpass the fastest available Java runtime systems—notably without applying any optimizations or
profiling. However, the benchmarks also clearly demonstrate the current deficiencies of just-in-time
compilers—they cannot yet compete with true optimizing compilers. Optimized C++ code is still an order
of magnitude faster. In order to narrow this gap, aggressive and advanced optimizations are a necessity. The
proposed tree-based intermediate representation fulfills all the requirements for achieving this goal.

Fig. 2. Average Speed-Up Results

One of the initial claims of this paper was that a tree-based intermediate representation not only provides
the basis for closing the efficiency gap between Java byte-codes and optimized C++ code, but also reduces
the overhead for transferring files over a network. Not only are Slim Binary object files more than twice as
dense as Java class files, and a factor of 3 to 4 smaller than traditional native object files, Slim Binaries are

A Tree-Based Alternative to Java Byte-Codes

Edited by Michael Griebling 7 07/14/98

even smaller than compressed native code. Figure 3 summarizes the results for the above test suite
(consisting of 12 source files, approximately 130kBytes in size).

Fig. 3. Size Comparison Between Different Distribution Formats. All numbers are given in kBytes.

Although Slim Binaries reduce network traffic by a factor of two in terms of network packets, the
differences between downloading Java class files and Juice Slim Binaries are almost indistinguishable in
terms of download-time. This stems from the fact that for small execution units, it is mostly the time to set
up the connection to a server that accounts for most of the waiting-time. However, with the introduction of
component packaging concepts (compact archive formats for packaging the components of a Java or Juice
application) the size of executable units will become more significant.

Finally, we have also measured the time that is required to compile the abstract syntax tree into native code.
As mentioned earlier, the compilation time is hardly noticeable by the user. On a PowerPC based computer
(Power Macintosh 8500/120) it takes approximately 470ms to compile the 12 benchmark-files. In
comparison to the time required to download these files using a fast connection (4s), or using a slow
connection (40s), the overhead of on-the-fly code generation can be neglected.

6 Conclusions
In the last few months, Java and the Java Virtual Machine have become a standard environment for building
portable Internet “applets” and applications. However, despite its success, its lack of performance makes it
ill-suited for many performance critical applications. Although just-in-time compilers try to remedy this
situation and achieve speed-ups of 10-15 compared to interpreted bytecodes, they still cannot compete with
true optimizing compilers.

In this paper, we have shown, that portability and high performance need not necessarily be irreconcilable.
We have proposed an alternative intermediate representation that is based on abstract syntax trees rather
than on low-level byte-codes. This intermediate representation, bundled with a dynamic runtime optimizer
and an adaptive profiler, builds the basis for advanced and aggressive optimizations that are difficult to
perform on a lower-level representation—much of essential information is lost in the transition from source
code to byte-codes. We have shown that our current version of the proposed architecture can compete with
today’s fastest just-in-time compilers, although no optimizations have yet been implemented. With the
availability and integration of the runtime optimizer and the adaptive profiler, we will be able to level the
performance with optimized C++ and dismantle the current performance deficiency of portable
transportability schemes.

A Tree-Based Alternative to Java Byte-Codes

Edited by Michael Griebling 8 07/14/98

Additional information about Juice and research related topics at the University of California at Irvine can
be found on the World Wide Web at the following location: http://www.ics.uci.edu/~juice.

References
[Bra95] M. M. Brandis; Optimizing Compilers for Structured Programming Languages; (Doctoral

Dissertation) Eidgenössische Technische Hochschule Zürich; 1995
[BL94] T. Ball, J. R. Larus; Optimally Profiling and Tracing Programs; In ACM Transactions on

Programming Languages and Systems , 16(4), pp 1319-1360; July 1994
[CS70] J. Cocke, J. Schwartz; Programming Languages and Their Compilers: Preliminary Notes;

Courant Institute of Mathematical Sciences, New York University; April 1970
[FK96] M. Franz, Th. Kistler; Slim Binaries; Technical Report 96-24, Department of Information and

Computer Science, UC Irvine; 1996
[Fra94] M. Franz; Code-Generation On-the-Fly: A Key to Portable Software; (Doctoral Dissertation)

Verlag der Fachvereine, Zürich; 1994
[Höl94] U. Hölzle; Adaptive Optimization for SELF: Reconciling High Performance with Exploratory

Programming; (Ph.D. Dissertation) Department of Computer Science, Stanford University;
1994

[Kis96] Th. Kistler; Dynamic Runtime Optimization; Technical Report 96-54, Department of
Information and Computer Science, UC Irvine; 1996

[LYJ96] T. Lindholm, F. Yellin, B. Joy, K. Walrath; The Java Virtual Machine Specification ; Addison-
Wesley; 1996

[Mot93] Motorola, Inc.; PowerPC 601: RISC Microprocessor User’s Manual; 1993
[Sun95] Sun Microsystems; The Java Language: An Overview;

http://java.sun.com/doc/Overviews/java/java-overview-1.html; 1995
[Wal86] D. W. Wall; Global Register Allocation at Link Time; In Proceedings of SIGPLAN `86

Symposium on Compiler Construction, pp 264-275; July
[Wel84 T. A. Welch; A Technique for High-Performance Data Compression; IEEE Computer, 17(6),

pp 8-19; June 1984
[Wir88] N. Wirth; The Programming Language Oberon; In Software-Practice and Experience 18(7),

pp 671-690; July 1988
[WL91] M. Wolf, M. Lam; A Data Locality Optimization Algorithm; In Proceedings of the SIGPLAN

`91 Conference on Programming Language Design and Implementation, pp 30-44, Published
as SIGPLAN Notices 26(6); June 1991

