
Does Java Have Alternatives?

Michael Franz and Thomas Kistler
Department of Information and Computer Science

University of California
Irvine, CA 92697-3425

+1 (714) 824-4825
{franz, kistler}@ics.uci.edu

ABSTRACT
At first sight, Java’s position as the de-facto standard for
portable software distributed across the Internet seems
virtually unassailable. Interestingly enough, however, it is
surprisingly simple to provide alternatives to the Java
platform, using the plug-in mechanism supported by the
major commercial World Wide Web browsers.

We are currently developing a comprehensive
infrastructure for mobile software components. This is a
long-term research activity and not directly related to Java
and the World Wide Web. However, purely as a
technology demonstration, we have recently started a small
spin-off project called “Juice” with the intent of extending
our experimental mobile-code platform into the realm of
the commercial Internet.

Juice is implemented in the form of a browser plug-in
that generates native code on-the-fly. Although our
software distribution format and run-time architecture are
fundamentally different from Java’s, once that the
appropriate Juice plug-in has been installed on a Windows
PC or a Macintosh computer, end-users can no longer
distinguish between applets that are based on Java and
those that are based on Juice. The two kinds of applets can
even coexist on the same web-page.

This, however, means that Java can in principle be
complemented by alternative technologies (or even
gradually be displaced by something better) with far fewer
complications than most people seem to assume. As
dynamic code generation technology matures further, it
will become less important which code-distribution format
has the largest “market share”; many such formats can be
supported concurrently. Future executable-content
developers may well be able to choose from a wide range
of platforms, probably including several dialects of Java
itself.

Keywords
Mobile code technologies, plug-in browser extensions, on-
the-fly code generation, Java, Juice, Oberon.

1 INTRODUCTION
In the short time since its launch, Sun Microsystems’s
Java technology has become almost synonymous with
portable software that can be distributed across the
Internet. Java’s pre-eminent position is reinforced by the
fact that built-in support for its distribution format, the
Java Virtual Machine (JVM), is now not only part of
practically every World Wide Web browser, but is starting
to appear even within operating systems. Yet in spite of
the de-facto adoption of Java by most of the Internet
community as the standard platform for encoding
executable content (at least for the time being), it remains
surprisingly simple to provide alternatives to this platform,
even within the context of commercial browser software.

We have created such an alternative to the Java platform
and named it “Juice”. Juice is an extension of the first
author’s earlier research on portable code and on-the-fly
code generation [3, 4, 5]1. Our current work is significant
on two accounts: First, Juice’s portability scheme is
technologically more advanced than Java’s and may lead
the way to future mobile-code architectures. Second, the
mere existence of Juice demonstrates that Java can be
complemented by alternative technologies with far less
effort than most people seem to assume. In fact, once that
Juice has been installed on a machine, end-users need not
be concerned at all whether the portable software they are
using is based on Juice or on Java. In light of this, we are
surprised by the widespread belief in the myth that, in
order to be portable, all executable content must
necessarily be encoded in Java. In the short term, this myth
may lead to some ill-founded technology decisions.

Just as with Java, there are three major components to the
Juice technology: 1) a source language and an API in
which Juice applets are programmed, 2) an architecture-
neutral distribution format, and 3) an environment for
executing Juice applets, which in the current
implementation of Juice is supplied in the form of a

1 note that this earlier work on mobile code predates Java by

several years

browser plug-in that generates native code on-the-fly. On
all three accounts, Juice differs considerably from Java, yet
from the web-browsing end-user’s perspective, there is no
obvious difference between Java and Juice applets.

In the following, we will introduce the three components
of the Juice platform: source language, distribution format,
and dynamic-compilation environment. We will then use a
simple example for presenting Juice and Java side-by-side,
arguing that the choice of a particular mobile-code
solution may simply be a matter of personal taste, rather
than a technological necessity. Luckily, it is the applet
developer that needs to make this choice; the end user need
not know any of it as multiple mobile-code technologies,
such as Java and Juice, can happily coexist, even on the
same web page (Figure 1).

2 PROGRAMMING JUICE APPLETS
Juice applets are programmed in the language Oberon
[16], a direct successor of Pascal and Modula-2 that was
defined by Niklaus Wirth (Pascal’s original creator) in
1988. Oberon is surprisingly close to Java in spirit; like
Java, Oberon is based on the principles of simplicity and
safety. Oberon enforces type-safety by mandating array-
bounds checking and prohibiting pointer arithmetic, it
automates memory management through the provision of
garbage collection, and provides source-level
modularization facilities along with dynamic loading.
Superficially, but not entirely untrue, one might argue that
Oberon is a subset of Java with Pascal syntax, except that

Oberon was defined several years before Java.

Oberon is a much smaller language than Java, having been
designed almost as the “essence of a programming
language”. For example, Oberon provides no language-
level support for concurrency. While we agree with Ted
Lewis [7] that Java’s concurrency scheme falls
disappointingly short of the existing state-of-the-art ante,
Oberon offers no built-in support for concurrency at all.
For the project described here, we have not attempted to
change the Oberon language and have therefore only
studied applets that can be constructed from the set of
language features in the intersection of Oberon and Java.
However, we note that this is only an incidental effect of
our choice of Oberon as a source language and in no way
limits our claim about Java’s substitutability in principle.
Moreover, we note that some current optimizing
translators for Java also exclude the concurrency
capabilities of the Java language [11], because support of
threads has a performance penalty associated with it [14].

A Juice-applet development tool-kit is now a standard part
of the Oberon software distribution from ETH Zurich and
UC Irvine [13] for Apple Macintosh and Microsoft
Windows. Besides providing a full implementation of
Oberon System 3 [6], it supplies a set of Juice-specific
APIs along with a compatibility-box recreating the
environment of a browser plug-in within the Oberon
environment. Hence, Juice applets under construction can
be tested interactively without having to exit the

Figure 1: Java Applet (left) vs. Juice Applet (right)

development environment.

3 DISTRIBUTING JUICE APPLETS
Juice’s code distribution format, which we call “slim
binaries” [2], is based on the Ph.D. thesis work of the first
author [4]. The slim binary format differs considerably
from virtual-machine representations such as p-Code [12]
or Java byte-codes [8] in that it does not resemble
executable code. Instead, it is based on a tree-shaped
program representation as is typically generated transiently
in optimizing compilers. This intermediate tree-
representation is then compressed by merging isomorphic
sub-trees, using a variant of Welch’s classic LZW
algorithm [15] that has been specifically adapted towards
compressing program trees. Being a dedicated algorithm,
it achieves remarkable information densities (Figure 2).

Using a tree-based intermediate code-representation has
the disadvantage that it is not well suited for
interpretation. While representations such as p-Code and
Java byte-codes permit random access, i.e. one can jump
20 instructions forward in the code and resume
interpretation, this is not possible with slim binaries. Each
symbol in a slim-binary-encoded program can be
interpreted only in the context of all the symbols that
precede it. Because of this characteristic, our
implementations have eschewed interpretation of the
intermediate form from the very beginning and have
incorporated on-the-fly code generators [4, 5].

On the other hand, reading a slim binary in our system re-
creates the original tree data-structure, which is not only
an almost ideal input for an optimizing code-generator, but
it also makes code verification relatively easy. The slim
binary format preserves structural information such as
control flow and variable scope that is lost in the transition
to linear representations such as Java byte-codes. In order
to perform code generation with advanced optimizations
from a byte-code representation, a time-consuming pre-

processing step is needed to re-create the lost structural
information. This is not necessary with slim binaries. This
argument applies not only with respect to code
optimization, but also for code verification: analyzing a
mobile program for violation of type and scoping rules is
much simpler when the program has a tree-based
representation than it is with a linear byte-code sequence.

Our present implementation of slim binaries is in so far
restrictive as it supports exactly one source language,
Oberon. In this respect, our system presently doesn’t do
much better than abstract-machine-based portability
schemes in which the instruction set of the virtual machine
is explicitly crafted to support a particular source
language. While we do not foresee any difficulties in
encoding syntax trees for other languages, possibly even
using the identical format, the suitability for other
languages has yet to be established by an actual
implementation.

We have therefore recently started a follow-up project with
the aim of constructing a compiler that takes Java as its
input, but generates slim binaries instead of Java byte-
codes as its output. This tool will not only enable a more
direct comparison of our code representation and our
dynamic compilation architecture with their respective
Java counterparts, but it will also aid the wider discussion
of platform-independent mobile-code solutions by
disengaging the question of source languages from the
separate issue of finding suitable distribution formats.

4 EXECUTING JUICE APPLETS
The only part of Juice that is visible to end-users is a set of
platform-specific plug-ins for Netscape Navigator and
Microsoft Internet Explorer. Once the appropriate Juice
plug-in has been installed on a user’s machine, the user
can then view and execute Juice content in the same
manner as Java applets. Hence, after installation of the
plug-in, users can no longer distinguish between Java and

665%

344%

284%

242%

277%

219%

172%

156%

100%

Source Code

PPC601 Binary

i386 Binary

Java Byte-Codes

LZSS Compressed Source Code

LZSS Compressed PPC601 Binary

LZSS Compressed Java Byte-Codes

LZSS Compressed i386 Binary

Slim Binary

Figure 2: Relative Size of Representative Program Suite in Various Formats

Juice applets, other than by disabling either format
manually.

The Juice plug-in contains a dynamic code-generator that
translates from the slim binary representation into the
native code of the respective target architecture (PowerPC
or Intel 80x86). This translation occurs before the applet is
started, but is fast enough not to be noticed under normal
circumstances. In contrast, most just-in-time compilers for
Java translate individual methods as they are called rather
than the whole applet at once. Translating the whole
applet at once usually results in better code quality since it
permits inter-procedural optimizations to be exploited.

Due to the greater compactness of slim binaries in
comparison to Java byte-codes, less time has to be spent on
the transmission of Juice applets. The time saved can then
be used to offset the cost of code generation. As the first
author showed in his 1994 dissertation [4], using the slim
binary representation can reduce I/O by so much that it
fully compensates for the additional effort of code
generation. The dissertation originally concerned itself
with object code read directly from a disk medium over a
fast bus; in the context of networks (which often have
transfer rates far slower than secondary storage), this work
gains added significance. Further, the speed of processors
is rising faster than the speed of I/O, so that hardware
technology is evolving in favor of increased density of
code-representation formats.

The main thrust of our continuing research is focused on
improving code quality. Our implementations so far are all
based on a well-established family of compiler back-ends
originating at ETH Zurich that produce high quality code
comparable to that of straightforward commercial
compilers [1]. On some newer RISC architectures,
however, these back-ends cannot fully compete with highly
optimizing compilers. Of further concern to our particular
application of load-time code generation is the fact that
optimizers for certain RISC architectures may have vastly
different run-time characteristics than the compilers we
have been using so far.

Consequently, we are now pursuing a two-tier strategy of
code generation. Rather than compiling every module
exactly once when it is loaded and then leaving it alone,
we use a background process executing only during idle
cycles that keeps compiling the already loaded modules
over and over. Since this is strictly a re-compilation of
already functioning modules, and since it occurs
completely in the background, this process can be as slow
as it needs to be, allowing the use of far more aggressive,
albeit slower, optimization techniques than would be
tolerable in an “interactive” context. When background
code-generation has completed, the code-images of the re-
generated modules are substituted for their older

counterparts in situ, without disrupting the ongoing
program execution.

Periodic re-optimization of already executing code allows
to fine-tune the code-generator's output beyond the level
generally achievable by static compilation. Not only does it
enable run-time profiling data from the current execution
to drive the next iteration of code optimization, but it also
makes it possible to cross-optimize application programs
and their dynamically loaded extensions and libraries. We
are currently experimenting with global optimization
techniques that were pioneered by incremental compilers
and link-time optimizers. Among them are register
allocation and code inlining across module boundaries,
global instruction scheduling, and global cache
optimization. Run-time extensible systems present new
challenges to these old problems, since no closed analysis
is possible due to the fact that further modules can be
dynamically linked to the already executing system at any
time.

5 A DIRECT COMPARISON OF JUICE AND JAVA
PROGRAMMING

The easiest way of demonstrating the different “flavors” of
programming in Juice vs. programming in Java is by
presenting actual source texts. In Figure 3 we present, side
by side, the source of a simple applet displaying the
current time in analog form (as shown in Figure 1),
encoded using Java (left) and Juice (right). These sources
and the resulting executable applets can also be found on
our World Wide Web site.

6 CONCLUSION AND OUTLOOK
Portable, executable content need not necessarily be tied to
Java technology. In this paper, we have presented an
alternative to Java called Juice. Our implementation uses
the existing plug-in mechanism of the major commercial
World Wide Web browsers, demonstrating that the plug-in
mechanism is suitable for supporting alternative mobile-
code solutions even in the case where on-the-fly code
generation is desired.

Our implementation also shows that alternative mobile
code solutions can remain completely transparent to end-
users once that an appropriate plug-in has been installed.
Hence, the eventual migration path from Java to a
successor standard at the end of Java’s life-cycle will
probably be much less painful than most people anticipate
now.

In fact, the plug-in mechanism opens the door for
potentially many different Java alternatives that could be
introduced over time, gradually reducing Java’s pre-
eminence. Besides the Juice solution described here, a
strong initial candidate to win market share from Java
might be Lucent’s Inferno [9] (assuming that Inferno could

be packaged as a plug-in), but other contenders will surely
appear. Note that each plug-in itself can be distributed
across the Internet, authenticated by a code-signing
mechanism, simplifying the logistics of supporting several
competing code-formats concurrently.

It is also possible, and even probable, that the Java
standard itself will fragment into several dialects. For
example, Microsoft is incorporating an API into its version
of Java and its Internet Explorer browser that differs from
the developments at Sun Microsystems, Java’s original
creator. There may come a point at which the differences
between the various sets of libraries become irreconcilable,
leading to mutually incompatible versions of Java. This
difference could be hidden from end-users using the same
approach that we have taken with Juice.

We believe that dynamic code generation technology is
reaching a level of maturity that it will soon diminish the
relative importance of “market share” of any particular
code distribution format. In order to be commercially
successful, distribution formats will have to mimic Java in
providing architecture neutrality and safety, but further
considerations such as code density will surely gain in
importance. For example, some future distribution formats
may be targeted towards particular application domains. In
this larger context, the current enthusiasm surrounding
Java may soon appear to have been somewhat overblown.

REFERENCES
[1] M. Brandis, R. Crelier, M. Franz, and J. Templ;

“The Oberon System Family”; Software-Practice and
Experience, 25:12, 1331-1366; 1995.

[2] M. Franz and T. Kistler; “Slim Binaries”;
Communications of the ACM, 40:12, to appear; also
available as Technical Report No. 96-24, Department
of Information and Computer Science, University of
California, Irvine; 1996.

[3] M. Franz and S. Ludwig; “Portability Redefined”; in
Proceedings of the Second International Modula-2
Conference, Loughborough, England; 1991.

[4] M. Franz; Code-Generation On-the-Fly: A Key to
Portable Software; Doctoral Dissertation No. 10497,
ETH Zurich, simultaneously published by Verlag der
Fachvereine, Zürich, ISBN 3-7281-2115-0; 1994.

[5] M. Franz; “Technological Steps toward a Software
Component Industry”; in Programming Languages
and System Architectures, Springer Lecture Notes in
Computer Science, No. 782, 259-281; 1994.

[6] J. Gutknecht, “Oberon System 3: Vision of a Future
Software Technology”; Software–Concepts and
Tools, 15:1, 26-33, 1994.

[7] T. Lewis; “If Java is the Answer, What Was the
Question?”; IEEE Computer, 30:3, 136&133-135,
March 1997.

[8] T. Lindholm, F. Yellin, B. Joy, and K. Walrath; The
Java Virtual Machine Specification; Addison-
Wesley; 1996.

[9] Lucent Technologies Inc.; Inferno; http://plan9.bell-
labs.com/inferno/.

[10] M. Franz and T. Kistler; Juice; http:
//www.ics.uci.edu/~juice.

[11] G. Muller, B. Moura, F. Bellard, Ch. Consel;
“Harissa: A Flexible and Efficient Java Environment
Mixing Bytecode and Compiled Code”; Proceedings
of the Third Conference on Object-Oriented
Technologies and Systems (COOTS), USENIX
Association Press, 1-20; 1997.

[12] K. V. Nori, U. Amman, K. Jensen, H. H. Nägeli and
Ch. Jacobi; Pascal-P Implementation Notes; in D.W.
Barron, editor; Pascal: The Language and its
Implementation; Wiley, Chichester; 1981.

[13] Institut für Computersysteme, ETH Zurich, and
Department of Information and Computer Science,
University of California at Irvine; Oberon Software
Distribution; http://www-cs.inf.ethz.ch/Oberon.html
or http://www.ics.uci. edu/~oberon.

[14] T. A. Proebsting, G. Townsend, P. Bridges, J. H.
Hartman, T. Newsham, and S. A. Watterson; “Toba:
Java For Applications – A Way Ahead of Time
(WAT) Compiler”; Proceedings of the Third
Conference on Object-Oriented Technologies and
Systems (COOTS), USENIX Association Press, 41-
53; 1997.

[15] T. A. Welch; “A Technique for High-Performance
Data Compression”; IEEE Computer, 17:6, 8-19;
1984.

[16] N. Wirth; “The Programming Language Oberon”;
Software-Practice and Experience, 18:7, 671-690;
1988.

import java.awt.*;
import java.util.*;

public class JavaClock
extends java.applet.Applet
implements Runnable
{

Thread timer = null;

public void run()
{

while (timer!=null) {
repaint();
try {Thread.sleep(1000);}
catch(InterruptedException e) {return;}

}
}

public void start()
{

if (timer == null) {
timer = new Thread(this);
timer.start();

}
}

public void stop()
{

timer = null;
}

public int min(int a, int b)
{

if (a < b) return a;
else return b;

}

public void arcline(Graphics g, int angle, int x, int y, int r1, int r2, boolean dot)
{

int x1, y1, x2, y2; double s, c, a;

angle = (angle - 15) % 60;
a = 2*Math.PI / 60 * angle;
s = Math.sin(a); c = Math.cos(a);
x1 = (int)(r1*c + 0.5);
y1 = (int)(r1*s + 0.5);
x2 = (int)(r2*c + 0.5);
y2 = (int)(r2*s + 0.5);
g.drawLine(x+x1, y+y1, x+x2, y+y2);
if (dot) g.fillOval(x+x2-5, y+y2-5, 10, 10);

}

public void paint(Graphics g)
{

int r, r0, rs, rm, rh, x, y, i;

r = min(size().width, size().height) / 2; r0 = 10*r / 11;
rs = 8*r /11; rm = 9*r/11; rh = 7*r/11; x = r; y = r;
g.setColor(Color.white);
g.fillRect(0, 0, size().width, size().height);
g.setColor(Color.black);
g.drawOval(0, 0, 2*r, 2*r);
for (i=0; i<60; i+=5) arcline(g, i, x, y, r0, r, false);

Date now = new Date();
arcline(g, now.getMinutes(), x, y, 0, rm, false);
arcline(g, now.getHours()*5+now.getMinutes()/12, x, y, 0, rh, false);
g.setColor(Color.red);
arcline(g, now.getSeconds(), x, y, 0, rs, true);

}

public void update(Graphics g)
{

paint(g);
}

}

MODULE JuiceClock;

IMPORT
Math := JuiceMath, Applets := JuiceApplets,
Devices := JuiceDevices, Misc := JuiceMisc;

TYPE
Applet = POINTER TO AppletDesc;
AppletDesc = RECORD (Applets.AppletDesc)

hour, min, sec: INTEGER
END;

PROCEDURE Min(a, b: INTEGER): INTEGER;
BEGIN

IF a < b THEN RETURN a ELSE RETURN b END
END Min;

PROCEDURE ArcLine(angle, x, y, r1, r2: INTEGER; dot: BOOLEAN);
VAR x1, y1, x2, y2: INTEGER; s,c,a : REAL;

BEGIN angle := (angle-15) MOD 60;
a := 2 * Math.pi / 60 * angle;
s := Math.Sin(a); c := Math.Cos(a);
x1 := SHORT(ENTIER(r1*c + 0.5));
y1 := SHORT(ENTIER(r1*s + 0.5));
x2 := SHORT(ENTIER(r2*c + 0.5));
y2 := SHORT(ENTIER(r2*s + 0.5));
Devices.Line(x+x1, y+y1, x+x2, y+y2);
IF dot THEN Devices.FillOval(x+x2-5, y+y2-5, 10, 10) END

END ArcLine;

PROCEDURE Update (me: Applet);
VAR r, r0, rs, rm, rh, x, y, i: INTEGER;

BEGIN Devices.Setup(me.device);
r := Min(me.device.w, me.device.h) DIV 2; r0 := 10*r DIV 11;
rs := 8*r DIV 11; rm := 9*r DIV 11; rh := 7*r DIV 11; x := r; y := r;
Devices.SetForeColor(Devices.white);
Devices.FillRect(0, 0, me.device.w, me.device.h);
Devices.SetForeColor(Devices.black);
Devices.FrameOval(0, 0, 2*r, 2*r);
i := 0; WHILE i < 60 DO ArcLine(i, x, y, r0, r, FALSE); INC(i, 5) END;

Misc.GetTime(me.hour, me.min, me.sec);
ArcLine(me.min, x, y, 0, rm, FALSE);
ArcLine(me.hour * 5 + me.min DIV 12, x, y, 0, rh, FALSE);
Devices.SetForeColor(Devices.red);
ArcLine(me.sec, x, y, 0, rs, TRUE);
Devices.Restore(me.device)

END Update;

PROCEDURE AppletHandler (me: Applets.Applet; VAR M: Applets.AppletMsg);
VAR hour, min, sec: INTEGER;

BEGIN
WITH me: Applet DO

WITH M: Applets.DisplayMsg DO
IF M.id = Applets.update THEN Update(me)
ELSE Applets.AppletHandler(me, M)
END

| M: Applets.IdleMsg DO Misc.GetTime(hour, min, sec);
IF (hour # me.hour) OR (min # me.min) OR (sec # me.sec) THEN

Update(me)
END

ELSE Applets.AppletHandler(me, M)
END

END
END AppletHandler;

PROCEDURE NewApplet*;
VAR a: Applet;

BEGIN NEW(a); a.handle := AppletHandler; Applets.newApplet := a
END NewApplet;

END JuiceClock.

Figure 3: Java Source Code (left) vs. Juice Source Code (right)

