SOETWA R PRACTICN AN DXPRRIESCT, YO0 248, (77600 (LN 1wl

Emulating an Operating System
on Top of Another

MICHALL FEARE
frsetind fiir Compenbersesicoe, ETH Sinch, CH-S09F Shvch, Swizerdand

SUMMARY

In this paper, we presenl the disign of wn operaling-system emlator, This software interface provides
the services of one opernfing system [(Oheron) on & machine ronnlng o different operating sysiem
{Macintoshi, by mappiog the funcibons of the ficd onfo apuivalent calls §o the second, The constructlon
of this emulator proceeded in foor distinet phases, documented bere through examples from each of
Hiwse plinses. We belleve that vur foue-phase approsch con be beneliclal whenever & larger software
system needs 1o be adapted from one wrchitecture onte another, In copcluslon, we relate sone of the
lexsons Benracd amd propose guidelines For shinilar engineering projects,

KEY woRDs Sofleere enpincering Opernting syslems Sofoware poraldiy. Oberon Macinbosh

INTRODUCTION

CMrepern* refers simultaneously to o modular, extensible operating system and an
abject-oricnted programming language developed for implementing it. Both were
eonceived origimally for the Ceres” personal workstation, but have since heen
implemented on a number of other machine architectures wsing a portable compiler
Fromt-end® a5 a common slarting point.

This paper is based on the experiences we gained while porting the (Oberon
Operating Systemn (subsequently called Qberan) onlo the Apple Macimtosh.™ All of
aur examples come from this project. However, rather than giving a detailed descrip-
tion of our implementation, we present typleal problems materinlizing in such o
design and & methodology for solving them. We therefore do not assume familiarity
with cither operating system, but point oul the lwo systems® partieular characteristics
wherever necessary.

I muny aspects, the Macintosh operating system is similar to Oberon, Both offer
relatively lew but powerful operations to the programimer, as opposed to other
operating systems that offer a multitude of simple operations. From another angle,
however, the two operating systems are very different. Oberon is much smaller than
the Macintosh eperating system and attempts to present an orthogonal progromming
interface, in which there is uswally only one way of achieving a certain task. The
Macinlosh operaling system, on the other hand, apparently tries to be all things to
all people, allowing different ways of reaching the same goal and offering heavily

LOES-44/93/060677- 1681300 Received 22 Novernber 199]
() 1993 by John Wiley & Sons, Lid, Revised § Decernbrer 1992

iTH B, THRAME

parametrized procedures, This parametrization introduces overheads and impedes
performance.

One might expect that implementing a small operating system on top of a more
extensive one should be straightforward. In our experience, this is not the case.
Some of the simplest functions of the emulated operating system turned out to be
surprisingly cumbersome to replicate in the target system, For example, o fundamen-
tal display operation in Oberon is the procedure Dotx, v, mode, colour), which changes
the appearance of an individual pixel on the screen. Several higher-level functions
are based on this procedure. But, curiously, the Maciniosh operating system has
no elementary operation for drawing single pixels; its manufacturer recommencds
nse of the built-in line-drawing routine with a ling-length of 0 and a line-thickness
of 1 instead, This routine s needlessly complex for owr purpose and requices
additional parameters (such as a clipping region and a fll-in pattern), which make
lirthe sense when operating on single pixels.

We have implemented an cmulator for the Apple Macintosh that presents
the interface of Oberon o client programs, enabling uwsers 1o bring existing
Oberon software to the Macintosh by mere recompilation. This emulator, named
MactHreroe, uns as one of severnl processes on top of the existing Macintosh
operating system and is infegrated into its architecture, allowing Oberon to be used
concurrently with other applications and to exchomge diti with them, In the following
sections, we shall present our approach to this design. illuminate speafic solutions,
and attempl to draw some guidelines. Our experiences may be helpful to other
enginecrs engaged in similar projects.

BARRIERS TO PORTABILITY

The major hurdles that have o be overcome in order to emulaste one syslem on
lopr of another can be classificd under the following headings:

1. fncompatible paradigims. This is the most severe type of abstacle o be overcome
i porling any software system, s il forees the designer 1o violate rules of the
target system Lo accommodate the new paradigm. As an illustration, Oberon
is based on the paradigms of decentralized control and unlimited extensibility
through the addition of modules that can be loaded dynamically. The Macintosh
aperating system, on the other hand, is not frecly extensible and is based on
the concept of an ‘application program’, which distributes control to sub-parts
that are statically linked to it. Extensibility was not anticipated by 1he desipners
of the Macintosh operating system and eannot be built into it without breaking
some of 115 rules,

2. Contrasting aebstractions. Less troublesome than a clash of fundamental para-
tlipms, but difficult to bridge nevertheless, is o divergence in the central abstric-
tions upoen which systems are founded. When a certain concept in one system
has no exact counterpart in the other, the designer is foreed to redistribute
functionality. In most cases, this lnvolves the reconstruction of higher-level
abstractions from lower-level ones. For example, Oberon differentiates between
the abstractions of 2 data file and a mechanism for access to it, while the
Macintosh operating system mixes the two concepts, associating a position with
every file. Basing Oberon's abstractions on those of the Macintosh is not
possible without programming some of their functions anew,

FMULATING AN OPERATING SYSTHM A

. Ameplerreniation pesteictions, Unpleasant for an implementer are restrictions that
are present in the target system but have no equivalent in the system being
simulated, They can generally not be circumvented, but moderated at best,
For mstanee, the Macintosh operating system limits the number of files that
may be open simultancously, whercas Oberon recognizes no such restriction,
The restriction can be lessened so that i will not much disturb users of the
Oberon emulatar, but never removed completely,

4. Performance boftlenecks. Least important, but not negligible, are impediments
tar adequate performance of the emulated system that are inherent in the design
Of the tarpet svetem. These bottlenecks are often not al all perceived as such
on the target machine, because they apply to services that are seldom used,
For example, the routine that displays single characters on the screen is not
efficient on the Macintosh, but there is another routine that can display whale
strings. Unfortunately however, Oberon does not feature the complex operation
but only the simple one, relying on its efficient implementation. Circumventing
this bottleneck can increase the speed of wext-display operations sipnificantly.

Our project of implementing the Oberon system interface on top of the Macintosh
aperating system followed the order of these four phases, solving the fundamental
prroblems first and settling minor inconvenicnces [st.

We startcd by identifving the major paradigms that needed to be adjusted in the
transition from the Macintosh opernting system to Oberon, and implemented this
adaptation, We then firroduced the major abstractions of Oberon into the Macintosh
framework, From this point onward, we were able w use Oberan on our target
machine, although our implementation was far from being complete. As a next step,
we eliminated or weakened restrictions of the target operating system that “shone
through' into the emulated Oberon world too prominently. At the last step, we
fine-trred perfortance by singling ot performance bottlenecks and trying (o work
around them.

The following sections cxamine in turn the different phoses of our project ly
giving representative examples of the problems encountered. We belicve that the
swme four-phase approach can be applied to many other projects that involve
adapting software from one base to another.

PHASE ONE: AIDMUSTING PARADIGMS

Ak we have staled above, changing a poradigm in an existing system is o grove
assault on the integrity of that system. This step must be executed with the greatest
care and is not possible withowt violating existing roles, making the modification
‘unsafe’ from the viewpoint of the unmodified system. Equally critical in practice
is the fact that there is usoally no documentation available that explains how 1o
carry out these ‘illegal” alterations, or how 1w minimize their potential danger.

In order 1o reprodiuce the strncture of Oberon on the Macintosh, we hiad to make
two such fundamental adjustments to the run-time architecture uf the Macintosh.
The first one wos necessary for the support of dynoamic module-leading, and the
sccond for duplicating Oberon's control flow, specifically the facility to abort running
conmminds,

Gl M. IRANS

Adding unlimited extensibility

Application programs on the Macintosh are event-driven. Their behaviowr from
moment to moement is determined by input from the vser i the torm of mouse and
keyvhaard actions. Whenever such g wser action ovcurs, the Macintosh operating
syatem makes o record of it in o so-called ‘event guene’. There are severnl such
cvent quewcs, ane for cach running application, and the operating system uses a
hewrsstic method for assigning events Lo specific event gueunes. For example, keyboard
events are forwarded to the apphication that owns the front-most window on the
sereen. In the Mocintosh co-operative multitasking environment, ditferent applh-
cation programs gain control every so often and then process the event records in
their respective event quencs psynchronously,

The overall architecture of Oberon bears some similarities to that of the Macintosh
operating system. Unfortunmtely, however, our Oberon emulitor necds (o act a3 an
application program on the Macintogh, which requires a markedly different internal
organization (Figure 1), Bach Macintosh application i structured around a central

Macintosh Application Program

M GuLe
Keybrard _hf‘___-:,l,_ et Loog r.||=|-||:-!|1r-|. conire] dowmrawands
W bwark o by c2lling predelemyined fundions

i "'-.__.
: ; liriked sladiqally
Ouerlap 1 Sy 2 Oz 2
l_- rf_- ‘ ; A | i;r_ ‘ i main loop
Oberon
Modinle 1 Mpdule 2 Module 3 londed dymamically
wihile syslem i3 ranning
t .

Fhaouie o
r delegates cantred wpwards
Keybaard ;* Adgin fon %
A l % | by teraling mossages Lo ohjerts

Metwark R

Figare 1 Svareas arehiteciase

EMULATING AN OPPRATING SYSTEM i |

‘event loop’, which extracts events repenatedly from ils private event quene, analyses
them, and executes specifie actions in response, Since the correspondence between
particular events and resuliing actions is hard-coded o it, such an ppplication
canmot e extended to include new functionality without changing its program source.

Cberon, on the other hand, is extensible. Tts ‘main loop’ docs not associale any
specific actions with certain classes of events but instead responds to them by sending
input messages” to objects representing viewers (windows) on the sereen. The action
taken in response o a vser input depends on the particular viewer that receives the
carresponding input message. Viewers are implemented in progeam maodules that
are positioned hierarchically above the main loop, These modules are loaded dynami-
cally while Oberon is running. Extending the system is easy and done by creating
new classes of viewers that implement new Tunctions. Adding new classes of viewers
w Oberon is more or less analopous to writing new application programs in other
operating systenis.

Incorporating the extensibility of Oberon into an application program cannot be
accomplished within the rales of the Macintosh operating system because it reguires
a facility for the dynamic loading of additional program modules while the application
i already running. Although the Macintosh operating system offers a mechanism
for dymamically loading parts of 2 program as overlay segmems, this mechanism
cinnot be employed for our purpose since it uses a plobal, fixed-size link table for
redirecting calls between different segments. Using overlay segments for the simul-
atien of dynamically-loadable madules would require 2 unigque numbering of modules
and would preclude the addition of further modules after all link-table slots were
Illedd,

Consequently, we had to construct 2 new module loader for our Oberon emulator
on the Macintosh. This module loader itsell is written in Oberon and installed by
a so-called “hoot-loader”. Only the boot loader is a “proper’ Macintosh program
recognized as such by the Maecintosh operating system, All other modules sub-
sequently loaded are comsidered to be ‘data’. Nevertheless, the instructions containesd
within these modules are executed after loading, violating a convention that strietly
separates data from executable code, Luckily, this convention cannot be enforced
by the Macintosh operating system, owing to the fact that it does not supporl
memory protection.

Changing the flow of control

The Macinosh event queve containg more than just simple input events that can
be processed dircctly by Oberon’s main loop, There are also meta-events that
concern the emulator application as a whole, e.g. the ‘suspend’ and ‘resume’ events
of the Macintosh co-operative multi-tasking environment, administeative events
nstructing an application to redraw parts of the screen, and events relating to the
stimedard Macintosh vser interfoce. All of these pneed 1o be processed on the “Mucin-
tosh side’ of the Oberon emulator, as the emulated Oberon system has no equivalent
CONCEpLs.

Emulating Oberan within @ Macintosh application program requires moving the
event loop from the top of the module hicrarchy olmost w its bottom, T our
Oberon emulator, the Macintosh event gueue is processed as a side-offect of
Creron's keyboard polling, Each time that MacOberon inspeets its kevbourd buffer,

L2 M. FRANE

which does not exist in the Magintosh operating system and is therefore simulated,
the Macintosh event queue is scanned and all pending kevboard ¢vents are accumi-
lated into this buffer, Mennwhile, all event records that have no mateh in Oberon
are extracted from the event queue also and processed dircetly (Figure 2). Control
is returned 1o the emulated Oberon system after all events in the quenc have been
processed,

Regrettably, however, Oberon's main loop not only delegates control upwards,
but can also take it beck at any time, in response to a special user-break command
rom the keyboard, This pre-emptive break mechanism cannot be integrated into
the Macintosh environment so easily. The usual way of sending a signal to a running
application on the Macintosh is via the event quene. However, we require pre-
emption at arbitrary times, not only at the points at which they access this queue.
MacOberon thercfore instals an interrupt routing that 5 exccuted several times per
second and monitors the keyboard for the simultaneous depression of a certain key
combination. When this condition is detected, steps arc taken that will return control
to the Main Loop as soon as this can be dane salely.

A running command is aborted by temporarily substituting a supervisor call in

MRFIH’LDSH Oberon Universe
LIniverse
Book Lrader -‘
— | C— Aladuie 1 ‘ l Adoddiale 2 Mool 3
;. i- detepnle
-H-H-‘-"-\.. -H-H--"-.. Prm'lp“ '---d-'--
y -\-\--\- " - -\-.-\- d--.-__ -
q__\-\- e -
initialize ¢ irskall

‘u".hf.'ln'.-:w |

=

__,_P'

el r fead
i depasit !
Evrat toop tharscler * | Koy duffer
;l\
I

profess avenis

Figere 2, Flaw :|j'1'r.ln]r¢r.|' in Mact ik

EMULATIMG AN GPERATING SYSTEM q3

place of an mstroction that is just about to be cxeeuted, However, this is not as
straightforward us it may scem because user breaks are deteeted inside an intermg
serviee routine, at which point the calling chain may contain routines of the Macintosh
operating system that must always return normally, Moreover, there are certain
low-level routines of the Oberon emulator that aceess global resources and that
should therefore not be pre-empted either. Consequently, our break mechanism
needs to examine activation records on the stack, locating the topmaost procedure
i the calling chain that can safely be sborted and inscrting a break instruction only
there,

Pre-emption conflicts strongly with the usual programming model on the Macin-
tash, in which every subroutine always returns to its caller. From the viewpoint of
the Macintosh operating system, the control Dow in the Oberon emulator is ‘unsale’,
However, MacOberon can guarantee the safety of this mechanism because it keeps
track of the entry and exit points of every pracedure, Tt can, therelore, identily the
owner of every activation record on the stack uniquely and ensure that entical
operalions nre completed before the flow of control 15 redirected,

PHASE TWO: MAPPING ABSTRACTIONS

Systems are built on a small se1 of abstractions, which are usually accessible 1o
programmers through an interface consisting of a few abstract data types and
operations on these types. Constructing such a high-level interface from another
high-level interfoce con be o difficult task, more difficult than it would be to build
upon i low-level interface.

A one-to-one correspondence between abstractions that can be mapped directly
onto cach other is the exception cather thanm the rule, In typical scenarios, m
abstractions on one side need 10 be expressed by o abstractions on the other. In
the following, we shall study two examples from our implementation that represent
the two extremes of many-to-one and one-to-many mapping {(Figure 33, The treal-
ment of other configurations is analogous and involves a combination of the strategies
hiscussed here,

Oberon [i ' N ¥
Lniverse A L [I:EE_J _I

o W) [r] [&]

Chararter Fill:Fatbem Bit-Patem File

igicre 3. Abstraction meppring

4 M. FRANZ
Merping absiractions: patlerns

Oberon bases its imaging model on a single abstraction, called a “pattern’, which
i5 @ hitarramgement that may be pointed or replicated om the screen i one of
several colours and transfer modes. All graphic elements that can be displayed in
Oberon are bascd on patlerns, c.g., characters, cursors and grey-scales.

The Macintosh graphic system. on the other hand, uses several different abstrac-
tioma side by side, There s o datw stroctore deseriling images that are used [or
filling in arcas in & regular fashion, and another one describing less regular bit-
pratterns that can be painted only, but ool replicated, The roster dinta of choracters
are not accessible at all on the Macintosh, Instead, there are dedicated routines for
drawing charmcters and character strings. or the purposes of emubsting Oberon, we
had to hide these three different mechanisms behind the single pattern abstraction.

The unpleasant distinction between replicatable and non-replicatable images on
the Macintosh side was overcome by fransipiing cach Oberon pattern into both
Maciniosh representations, which conld then be kept simultancously in o single dala
structure. The abstract data item that represents the pattern within the emulated
Orberan system s a pointer to this strueture, Depending on the display operation
selected, one or the other variant is used when the call is forwarded to a routing
of the Macintosh operating system,

Characters are treated differently yet again, The Macintosh displays characters on
the sercen by using dedicated text-drawing romtines, which require the specification of
parameters such as the character’s font, size and siyle atnbwles besides its ordinal
vitlue, In analogy to the two other variants of patterns, we could have represented
the members of the third pattern species also by (pointers (0] descriptors in which
their characteristic attribaes were stored, However, this would require a separate
descriptor [or each character in every font being used. Character pattems can be
represented much more efficiently by encoding the character-code information
divectly in the pattern (Figure 4). A distinction between directly-encoded patterns
{describing characters) and storage-allocated patterns (describing other kinds of

[' ||:,| — .

reference "_'
H
Fatlem

= |

charager code o - i
lart family [eseriptor
T ind T = | o slre I:l:]lll'ﬂ ll:FII'I'!!-E'llll'llll':lri}
nifex font style
Font Takle

Figuee F, Represcntirfons Nidden beliingd Oherar’s prsteesr alstaneiion

EMULATING AN OPERATING SYSTEM LA

mmages) is easily found by using odd values for the former; the lntter are painters,
which are always ¢ven on the Macintosh.

In this fashion, three different coneepts on the Macintosh conld be unified in the
single Oberon abstraction of the “pattern’. Only the emulator’s display routines
make explicit wie of the fact that there are three different varietics of pattcrns,
among which they distinguish automatically, and quickly. As far as any other Oberon
routine 15 concerned, o ‘pattern’ always describes an image, be it o character bit-
map, & more general picture, or a replicatable shade of prey,

Splitting an abstraction: files amd riders

The Oberon system differentintes between the abstractions of 8 date file and an
gocess mechanisnl o i, which is called a ‘rider”. An arbitrary number of these riders
may aperate concurrently on the same file, shaning buffers if their ranges overlap,
In contrast, the Macintosh operating system mixes the two abstractions, making the
‘current pogition” a property of the fle. Several access paths to the same file may
be created by "opening the file several times’. However, each of these paths uses
its own privite hoffers and the integrity of the associated data file may be destroyed
by overlapping buffers.

In order to map one interface onto the other, one has 0o gphir the *Ale’ abstraction
of the Macintosh operating system, Splitting absteactions is far more troublesome
than merging them. It wsoally invelves a substantial amount of programming when
the resulting abstractions cannot be constructed diveetly from the ones 1o be split,
but have to be reassembled from lower-level ones.

Oberon's concept of a ‘file’ s almost Tully contained in the “fle’ abstraction of
the Macintosh operating system, whereas its notion of a “rider’ is very «differem
from the ‘multiply open file’ mechanism, Not surprisingly then, implementing
Oberon’s files” on the Macintosh was relatively easy, whereas implementing ‘riders’
WA TsE,

In order to achieve the former, all we had to do was to separate the directory
operations Trom the lile operations, Oberon distinguishes between the two, allowing
several files of the same name to exist concurrently, only one of which is registered
iy the directory, Ab any given moment, o dircelory lookup will return the instance
of the file that was last registered. This behaviour can be simulated by a naming
seheme thal assigns tempornry names o files thet are not registered in the directory
and by renaming files when necessaty, All of these non-registered temporary files
are deleted wt the end of v computing session.

The ‘rider’ mechanism, on the other hand, had to be reimplemented from the
buffer level upwards, employing the services of the onderlying operating system for
the transfer of miegral buffers between memory and secondary storage only. As a
beneficial side-effeet ol this reimplementation, the routines offered by our emulator
are faster than their eounterparts of the Macintosh operating system. because they
are less general, beenuse the overhend for calling them is smaller, nd because they
employ a higher degree of buffering, which is sensible when memory abounds as it
does on Wdlny's computers.,

[§13] M. FRAME

PFHASE THREE: LIFTING RESTRICTIONS

Some restrictions are engineered so deeply into an operating system that it is no
possible to climinate them at reasonable expense. However, it may still be worthwhile
to try to mitigate their offects if a balance between cost and result can be found,
Our example will show how we were able to diminish the effects of an important
limitation considerably. without having to invest much cffort, because we could
banild upon features that were present in our implementation alrendy,

Increpsing the number of files in wse

The Macintosh file system restriels the number of files thst ean be open simul-
taneously on one machine, i.e. by all active applications combined. This number is
unfortunately quite small, of the order of tens rather than hundreds in typical system
configurations. Oberon, on the other hand, makes heavy use of files and allows any
number of them 1o be active nt the same time, In the course of wypical Oberon
sessions, large numbers of files are open concurrently, many of them anonymous
temparary files that are needed for a short time only, but which are neither explicitly
closed, nor deleted. On native Oberon machines, this is natural because disk space
is reclaimed only when the system is started, by o garbage-collection process,

We were able to diminish the restrictions that the Macintosh operating system
impaosed on owr emulator by applying two countermensures, First, we recognized
that the majority of files in Oberon were newly-created ones, which were being
nsed as all sorts of temporary bulfers, These buffers were typically quite small, of
the onder of several bundred bytes. It was therefore logical to defer the physical
ereation of new files until their length had exeecded a certain limit or until the wser
registered them in the directory in order o make them permanent. By keeping
small new files in memory completely, we were able to reduee the vse of disk-based
files to a minimum, o that the limitations of the Macintosh operating system would
searcely ever be reached, This was not difficult to implement, as we had already
programmed owr own buffering in order o support multiple riders.

As o second action, we optimize the use of available file-access paths by keeping
liles open only as long as absolutely necessary. A file can be Qushed o disk and
elosed as soom vs it con be guarantecd that it wiall ne lenger be used. The later is
the case when all references o the file Decome unreachable, which is information
that can be obtained as o by-product of garbage collection, Since Oberon always
includes a parbage collector, we wereg able to incorporate automatic file-closing at
very little additional expense.

PHASE FOUR: REMOVING BOTTLENECKS

Any piece of software can be optimized to run as efficiently as possible under one
specilic implementation of an operating system. This i3 done by making intelligent
use of the resources offered, piving thought to the price of each operation and
minimizing total cost. However, when the same environment is simulated on another
architecture, the relative cost of the individual services may shift dramatically, and
oplimized programs may actually run slower than non-optimized ones.

In our case, we were dealing with software that had been optimized to run
under Oberon, In fogl, since Oberon has o small and orthogonal interfoce, the

FEMULATING AN DPERATING SYSTEM L

straightforward solution is usually already the optimal one for Oberon. But now
this software was required to run on the Macintosh, indireetly using the services of
a less regular operating system, in which sophisticated functions often yield perform-
ance far supenor 1o their simple counterpins.,

The following cxample will show how we were able to make use of the more
complex functions of the Macintosh operating system transparently, increasing the
performance of all Oberon programs simultaneously without requiring a change in
cach for accommadating the more complex interface of the Macintosh,

Accelerating text-display operations

The Macintosh display system is far more hardware-independent than that of
Cleron, It supporis a wide range of display devices, differing in size, resolution,
depth and even pixel arrangement. Several different pieces of display hardware can
b wsed congurrently and disploy operations may involve more thon one device,
Consequently, the operating system has to break down every activation of a display
rontine into seporate calls 1o deviee-specific operstions for each of the devices
i ved .

MNaturally, this generality is very costly, When drawing individual characters onto
a single display device, the overhead of each call is close to the actual cffors
required to copy the character's raster data into the frame buffer. Typical Macintosh
applications use string-drawing routines instead of character-drawing routines, which
require an overhead only once for a whole sequence of characters. However,
Oberon’s orthogonal interface features a character-drawing routine only, which has
to be Tast, as it is the one factor that influences responsivencss the most, and iy
therefore eritical to user satisfaction,

Adequate performance of Oberon™s text routines on the Macintosh was achieved
by way of u string buffer. As we have explained above, the routines thal draw
COlseron's patterns onto the sereen can distinguish whether these describe bit-images,
grey-scales, or character glyphs. Furthermore, from patterns deseribing characters
they are able to reconstruct the ordinal value of the original character, s well s
its font, size and style attributes. This information is used 1o assemble sequences of
characters that share the same attributes, which are then drawn as a string in @
single operation. Two characters with the same attributes can be considered part
of @ string, if the sccond is positioned at the same vertical position as the first, and
at # a horizontal position offset from the first character's horzontal position by that
character’s width,

In our Oberon emulator, drawing operations involving characters are delayed
while the display subsystem attempts to build strings of characters. The string cache
is fushed periodically, and is goaranteed to be empty before any other drawing
operation is executed that could be in confiict with caching (part of a string whose
drawing is delayed might, for example, lie within the source range of a block move
operation). By the use of string caching, we were able to boost performance by a
factor of more than 10 in typical situations, making it comparable to that of programs
using the siring routines of the Macintosh dircctly.

[Fiss M. FRAMY
LESSONS LEARMNED

It 15 nmpossible to pass on completely the wealth of experience that we have gained
during our mmplementation, While our overall design procecded in four phases as
we have outlined above, individual design decisions in each of these phases were
poverned Iy a yet-unwritien set of rules, which come under the general heading of
'ENgINeEnng comman sensc’,

Mevertheless, i the course of our design we ran into dead-ends repeatedly, and
had o unde and rebuild, In hindsight, we would like to formulate the lessons that
we hivve learned, the essence of "engincering common sense’, 50 to speak, inlo seven
general guidelines. As we have done above, we shall present illustrations from aur
project for most of these rales. The reader should keep in mind that in reality there
are many complex interrelationships, so that more than one role may be applicable
for cach of the examples piven,

1. Develop on the target machine

In our expericnce, development on the target machine is more productive by at
least o factor of two, becawse twrmaround times are much shorter. Additionally,
having to depend om the correciness of one's own programs is a healthy lesson
indece. Whenever our Oberon editing environment crashed during development on
the target machine, invalidating hours of work, there was nobody but ourselves 1o
blame, The program editor that we wsed in our development, the Oberon routines
called by it, and the compiler that was used for creating it, are now among the
most slable components of Oberon on the Maocintosh, because serious crrors were
discovered during the early stages of development.

2, Oplimize later, it you have lo

IT you have to fimprove” on established practices, save this for a later phase of
your project, unless it is absolutely necessary for accomplishing your goal, Many
prrtential optimizations will twrn out 1o be redundum later, but drown you in their
complexity when you attempt to do all things at once,

For example, the compiler we developed initinlly for our Oberon projeet optimized
data alignment. Incorporating this feature cost us a lot of time and effort, at a time
when we were stll cross-developing, By supporting two differem sets of calling
conventions and data-alignment tactics, the compiler could guarantee that the stack
would always lic on a long-word boundary,® This resulted in o performance gain of
about 200 per cent on MCHR020 processors, but the advantage vanished in the newer
models of the processor family, owing to the effects of cache memory, Meanwhile,
the optimizations added o the complexity of the compiler quite considerably.

We estimate lhat we would have heen able 1o start developmen on the target
machine one month earlier, gaining two months’ worth of cross-development pro-
ductivity, if we had not built optimal alignment into our compiler from the start,
Ironically, the feature was dropped in a later version, reducing the code generator
Iy about 20 per cent in size.

EMULATING AN GFERATING SYSTEM (]
3. Add fenlures (ransparently

In some respects, the target system may offer services that are superior to (and
a supersel of) the corresponding, functions of the system being simulated; if these
advanced features can be integrated into the cmulation transparently, it s logical
ta incorporate them. However, transparency implies that client modules should not
depend on whether they are running under an emulator or on a native system.

As an example, the Macintosh font mechanism is superor to that of Oberon,
bocavse it provides for the automatic on-the-fly generation of glyphs in any raster
sige from an outline description, whereas Oberon reguires the explicit naming of a
font file that comtaing the apprapriate raster data.

Cur implementation of Oberon on the Macintosh parses this file name o exirac
font name, size and style information and then requests the corresponding font from
the Macintosh font monager. As long as the standard font-file-naming conventions
are adbered to, this mechanism s fully transparent to Oberon applications, but
pives users on the Mocintosh aceess to all fonts avalable on their machine, not just
those distributed with Oberon. An attempt 1o access one of these fonts in another
non-Muocintosh Oberon system will simply return the default font, which is the
stemdard behaviour of Oberon if @ certain font file cannot be located.

d Do mot prejudice

Although it is very likely that our Oberon emulator will be used like other Oberon
systems on other hardware platforms, there might one day be a progrommer with
special applications in mind. involving, for example. the Macintosh envirenment
around the emulmtor, As it is impossible to anticipate all fulure applications that
might come aleng, one should always design for maximum fexibility as long as this
con e done economically,

For instance, we had to implement a heap-storage allocator and a parbage collector
for MacOberon, The Macintosh offers no virtual addressing bat it woull have been
straightforward to map Oberen’s heap onto a contiguous area of primary storage
on the Macintosh., Hlowever, there are cerain built-in routines on the Macintosh
that allocate memory dircctly through the Macintosh u-pf:ml:ing system. Regular
Oberon programs never need 1o aceess any of these routines, bt what if some
special application” running under our emulator wished 1o da so anyway? Suppart
al the routines in question would require a sensible heanistic by which 1o leave o
gertain amaunt of memory unused for them without aking away too much {rom
the emulator,

Luckily, there is another solution that requires no heuristic, generates almost no
overhead, and gives maximum flexibility even to 'unuswal’ vser programs, Our
implementation uses a “discontinuous heap®, which consists of several medium-sized
Blocks that are requested from the target operating system and returned from it as
needed. Within these blocks, the Oberon emulator manages a fine-grained subdiv-
ision on 115 own, This scheme introduces an imsignificant additional effort while it
allows MacOberon to occupy only as much memory as is needed, leaving the
remaining storage at the disposal of the user.

M) M. FTHANZ
5. Integrate

Although it may sound paradoxical, even when emulating a complete operating
system within another, w0 end-users this should appear o be well-integrated into
the host operating system. In our case, matters were slightly more complicated, as
we wished to integrate an Oberon emulator into the operating system of the Macin-
tosh, But then integrate this Macintosh into a local-area network of Ceres® computers
running Oberon as the native operating system, Integration into the Macintosh
operating system was achieved by sharing resources with other Macintosh appli-
cations, and by supporting certain harmonizing features of the host operaling system.

For example, MacOberon does not take over the whele screen but is confined
o o window coexisting with the windows of other applications. It supports the
Macintosh operating system’s mechanisms of co-operative multi-tasking and inter-
application switching, Other aspects of integration include support of the Macintosh
Clipboard, which allows text with font and style attributes to be transferred from
ane running application w another by “culting’ and *pasting’, and the incorporation
of the Macintosh font machinery in addition to the one wsually found in Oberon.

O he other hand, integration inte the Oberon network was possible by reim-
plementing the network protocols of the Ceres computer on the bare Macintosh
hardware, bypassing the network services of the Macintosh operating system. Both
machines use the same hardware interface.

f. Unify comcepis

[Fa not implement several variants of the same mechanism, but try putting 1o use
a single generalized version. Take the following example: like other Macintosh
programs, gur Oberon emulater features pull-down menus at the top of the screen,
offering commands for purposes such as quitting the application and accessing the
‘wut and paste” mechanism, In carly versions of the cmulator, the contents of these
pull-down menus were fixed and the actions to be performed hard-coded into the
loop that examined the event queue, just as in every other application on the
Macintosh,

But then it occurred to us that the more general activation-by-name mechanism
avatlable for procedures in Oberon could be employed even for calling commands
in these menus, The Oberon loader net only allows medules to be loaded dynamically
at run-time, but also has a function te obtain a procedure’s entry point when s
name is known, Our pull-down menus contain a module name and a procedure
name in a lixed syntax. When a menw item is selected, the associated string is parsed
to obtain these two nomes. The corresponding module is then loaded dynamically and
the procedure mentioned in the menu is called.

MacOberon is now the only Macintosh application known to us that allows the
user to link any function that can be performed at all within the application to any
item appenring anywhere in the menu bar, These functions can be added and
removed without modifying the program, simply by editing a Macintosh system
resource that contains the menu text, Intorestingly enough, Duilding this generality
inte our emulator amounted {o removing lines of code, as the mechanism was
present already,

EMULATING AN QPFERATING SYSTIM i
7. Make it as simple a5 possible (but not simpler)

Einstein's rule, which has guided the Oberon Project from its very conceplion,
fundamentally underlies all others cited here and is the most imporiant of all,
Whenever in the course of our project we had to make a critical design decision,
the simplest solution turned oul 1o be superior in the end,

The importance of simplicity and clarity of design cannot be overstressed. We
woere able to adapt o compiler for the Oberon lainguage 1o the Macintosh in less
time than it took us w implement the operating-system interface on the same
machine, although o complete code-generator had o be created from serateh,
Initially, we expected the construction of a compiler back-cnd to be far more difficult
and time-consuming than that of an opersting-system cmulator. However, in the
case of the compiler we were able to build wpon the simple and concise design of
the existing front-end, whereas for the emulator we had o interface to a complex,
inefficient and often uselessly general behemoth of an aperating system.

SUMMARY AND CONCLUSION

Emulating & complete operating system on top of another is an interesting sollware-
design project, because it involves different classes of problems, ranging from decply-
rooded architectural issues 1o such mundane, albeit cqually important, opics as fine-
tuning of performance. By keeping the design simple, and structuring it, even
projects with a wide scope such as this can remain casily managealle.

We have outlined the four-phase approach of our design. We belicve that this
approach can be applied in many other situations that involve adapting a significam
amount of existing software 1o a different platform. We are further convinced thin
the complexity of projects such as ours can be reduced considerably by tackling
mdividual problems in the order that we have outlined.

We have attempted to present real problems that have come up in an actual
project, Probably none of owr solutions 1o these individual problems is novel.
Meveriheless, we hope that our survey of the different kinds of problems encountered
has given an insight into the diversity of issues that one is confronted with when
porting software systems, and wish that our expericnces will Benelit many readers
T REAENREE LY.

ACKEMOWLEMEMENTS

Régis Crelier and Josel Templ developed implementations of Uberon for other
machine architectures concurrently with our project. Some parls of the design
presented here were inspired by their ideas or matured during discussions with them,
each having slightly different problems to tackle but all sharing the same vision,
The author would like o thank Niklaus Winth for creating Oberon and thereby
giving us this vision, for initiating the project described here and goiding it through
all of its stages, and for his constructive suggestions and comments regarding this
paper.

REFERENCES

1. M. Wirth, "The programming language Oberon’, Soffware—Practioe and Experience, 18, 671-6%0
{1%8K)

12 M, PRAMY

oM, Wit aid 1o Gutkneoht, "The Oberon system’, Softwaer—Praiice and Expeefence, 19, 857493
X Hﬂ?{hﬂﬂﬁ Trevelopment and analysiz of 2 workdation eomputer’, Disserdnion Moo 8437, ETH
4. E.I{{Ij:;hJE:HLPE—a portaile Oberon2 compiler”, Proc. Second fntermmional Modula-2 Conf, 1591,
5 !;'l;];; :{-’E’mm.m, Ine., Jusiche Macintosh, Adidison-Wesley, Reading, Masachusetls, 1585,

fi. M. Franz, “The rewards of penerating troe 32-hit code’, SIGPLAN Notices, 36, (11, 121-123 (1991}

