
On the architecture of software
component systems

M. Franz
Department of Information and Computer Science
University of California
Irvine, CA 92697-3425

Abstract
Current object-oriented development practice is centered around application
frameworks. In this paper, we argue that this approach is misleading, as it
distracts from the ultimate goal of composing software out of “software
components” originating from different sources. In particular, we suggest a model
of software composition that is based on passing of “first-class messages” rather
than on inheritance.

In most object-oriented programming languages, messages and the methods
that get executed in response to receiving them are only “second class citizens”.
In these languages, one can send a message to an object, but one cannot further
manipulate the message itself as a data object. As a consequence, many of the
operations that a naive observer might expect to be available are in fact not
usually offered. Examples of such missing operations are the ability to store
arriving messages in a data structure and execute them asynchronously later,
perhaps in a different order, or the capability of forwarding a received message to
another object without first having to decode it.

We are working on a system based on an experimental language that supports
“first-class messages” efficiently. We argue that this additional language
capability by itself suffices to simplify the design of extensible, component-
oriented systems, and that it leads to a more uniform overall system architecture.

1 INTRODUCTION

The widespread deployment of object technology has brought about sweeping
changes to many areas of software construction. For a variety of applications, the
approach of taking an object-oriented application framework and customizing it
for a task at hand is a fast and cost-effective strategy that yields good results.

2

Similarly, reusing object-oriented components within an organization can be
highly beneficial. Unfortunately, however, current object-oriented technology is
less well suited for the emerging component-software paradigm, in which many
independently developed and highly specialized software parts co-operate in such
a manner that they appear to the end-user as one homogeneous application
program.

The major hurdle to applying object-oriented technology in component-
structured systems is of architectural nature. Current object-oriented tools are
almost ideally suited for extending a comparatively large application framework
with a comparatively small amount of user-level functionality (Figure 1). This is
usually achieved by employing the inheritance mechanism offered in object-
oriented languages: the user-level functionality is implemented by deriving
specialized descendants of framework classes in which the default behavior of the
framework is being overridden by the desired behavior of the application.

Application
Framework

User-Level
Customization

Figure 1: Framework-Based Application Architecture

This approach is particularly beneficial in the user-interface part of highly
interactive applications. Consequently, it is a common implementation strategy to
use an application framework specifically for realizing user-interfaces, while the
domain-specific remainders of the same applications might be implemented from
the ground up (and not necessarily using object-oriented technology). In this case,
Figure 1 would apply only to the user-interface part of the application.

A similar approach (Figure 2) is currently being employed in the development
of Java “applet” extensions for the most popular World Wide Web browsers.
Applets are user-level customizations of an application framework called the
Java Class Library (Chan and Lee, 1997). What is striking about the Java
approach in particular is that the Java application framework is orders of
magnitude larger than almost all user-level applications that have so far been

3

implemented on top of it. Moreover, the framework is expanding rapidly with
each revision.

Java
Class
Library

Applets

Figure 2: Java Applet Execution Environment

This is partly due to the fact that user-level Java applets are frequently executed
by a slow virtual machine interpreting an intermediate byte-code representation
(Lindholm et al., 1996), while the framework is always represented as native
code and hence can provide a guaranteed performance. We suspect, however, that
a further contributing factor for the trend of incorporating every conceivable
functionality into the framework itself is that it is just so much easier to reuse
code in the application framework than it is to reuse third party code obtained
elsewhere.

Why then, is it so much more difficult to reuse code outside of the application
framework, and why is MacIlroy’s vision of a software component industry
(McIlroy, 1968) so persistently elusive? After all, Java supports dynamic linking
of classes, which should make the composition of software out of pre-fabricated,
independently developed building blocks all that much easier.

Our answer to this question is that, besides the well-known organizational
obstacles to effective reuse (e.g., Card and Comer, 1994), the object-oriented
concept of inheritance quickly becomes a burden as the number of sources to
inherit from grows. Hence, taking a self-consistent application framework and
customizing it in a few isolated places is different from building something new
out of a variety of pre-fabricated components.

In the remainder of this paper, we elaborate some more on the difference
between customizing an application framework and composing a piece of
software from ready-made building blocks. We then argue that the former
approach is a dead end in the long term, and that efforts should be undertaken to
better support composeability of software from different sources. We suggest that
“first-class messages” are a first step in this direction, since they simplify the
assembly of a consistent end-product from a host of independently developed
software building blocks.

4

2 HIERARCHICAL DECOMPOSITION AND BLACK-BOX REUSE

One of the most successful engineering techniques is hierarchical decomposition.
A problem is successively divided “top-down” into sub-problems, until it is small
enough to be solved directly, yielding a self-contained sub-system that will
become part of the eventual solution. The individual sub-systems that have been
created in this manner are then combined in a “bottom up” fashion. Since the
various sub-systems have been designed in isolation to each fulfil a particular
task, they can later be put together in combinations that differ from the original
constellation, i.e., they can be reused.

Hierarchical decomposition has the important structural property that when
several smaller parts are combined into a larger part, the larger part “shadows”
the smaller ones. One no longer needs to understand the smaller parts in order to
use the larger part that has been constructed out of them. Just as importantly, one
can even change the interface between the smaller parts without affecting the
interface of the large part to the outside world.

Unfortunately, this structural property is lost in most object-oriented systems.
Object-oriented design often differs from hierarchical decomposition because
inheritance can be used not only to express specialization, but also generalization
(Wegner and Zdonik, 1988; Evered et al., 1997). As a consequence, object-
oriented design does not automatically create tree structures. For example, in
languages that support multiple inheritance, each of several base classes can be
used in the specification of several dependent ones, creating a web of
dependencies. The Interface mechanism present in Java is somewhat more
restrictive than general multiple inheritance, and hence lessens this problem
somewhat, but still encourages the cross-dependencies that counteract
hierarchical structure.

Even without multiple inheritance, object-oriented design destroys locality.
Objects are backward-compatible with objects of their superclasses, while
method overriding has the effect that the meaning of a certain piece of code can
be changed in a future extension. As a consequence, programmers need to spend
more time analyzing components before they are able to use them. Certification
of such components is also more difficult, and even more importantly, mandates
that none of the components upon which the certified part depends is changed
afterwards. Because of lack of locality, traditional software review techniques are
almost impossible to apply.

As a consequence of all this, reusing someone else's classes is much more
difficult than reusing a traditional set of sub-systems with static procedural
interfaces. One needs to know not only the definition of all reused classes, but
also all possible interactions between one's own classes and the reused ones. It is
no coincidence that in many object-oriented systems (Goldberg and Robson,
1983; Goldberg, 1984; Muys-Vasovic, 1989) the source code is considered to be
an integral part of the documentation (“white-box reuse”).

5

3 REUSABLE SOFTWARE COMPONENTS

If software engineering were like every other engineering discipline, we would
expect to be able to acquire ready-made components and simply “plug them in”,
i.e., use them without having to study their implementation. For example, if we
required an abstract data type “Stack”, we could most probably find one in a
library somewhere, download it, and reuse it after studying the description of its
interface.

In today’s application-framework-oriented world, this particular goal of the
“software components” idea has more or less been accomplished. Frameworks,
such as the Java Class Library, are so encompassing that they contain ready-made
solutions for most of the common problems. For example, the Java Class Library
provides a class java.util.Stack with the required “stack” functionality.

However, a second, equally important aspect of the “software components”
concept is not fulfilled by the current application framework approach: it is
virtually impossible to substitute a built-in class of a framework by an alternate
external one that fulfils the same interface. At closer range, we see that the
framework itself is one rather large monolithic piece of software, with a
multitude of non-obvious inner dependencies. For example, as is elaborated in the
next section, the “Stack” class found in the Java Class Library provides much
more than just the functionality of a stack. In order to duplicate its functionality
externally, one would, for example, need to know also about “Vectors” and
“Enumerations”.

Hence, rather than encouraging an independent marketplace for freely
substitutable software components, current software engineering practice
encourages the accumulation of all reusable functionality in an application
framework. Since the application framework is really a monolithic system, all
potential cross-dependencies are under the control of a single team of architects,
and need not be documented externally. Consequently, replacing internal
components or policies, unless specifically anticipated in the original design,
requires access to source code. We contend that while this approach is practical
in today’s competitive development climate, it will harm our practice in the long
run.

Instead of extensible frameworks, we should strive to craft true software
component architectures (Figure 3). The main characteristics of such an
architecture are the following:
• a software component system is a result of hierarchical decomposition,
• components on the same hierarchical level communicate as peers,
• components are substitutable with equivalent ones fulfilling the same

interface, and
• the common substrate that is shared by all components is relatively small.

6

Component
Substrate

Independently
Developed
Components

Figure 3: Software Component Architecture

Interestingly enough, such component architectures do exist, on the macroscopic
level: For the last few years, various standards for component interoperability
have been defined, such as CORBA (Object Management Group), COM/OLE
(Microsoft), and SOM/OpenDoc (Apple Computer, IBM, Novell), and this
“coarse-grained” component structure has been demonstrated to work effectively.
Why then, is the same approach not also utilized on a microscopic level, for
example, for implementing the stack functionality required by an application?
Mainly because it is generally assumed to be too heavy-weight.

Upon closer examination, the above-mentioned interoperability standards
differ from the object-oriented programming model that forms the basis of
application frameworks. Although the interfaces between components lend
themselves to be modeled as message protocols, and hence the components
themselves as objects, there is little “object orientation” beyond this. In
particular, there is no inheritance across component boundaries. Instead of
invoking “super”, objects specifically have to request the services of other objects
more prepared for fulfilling a particular task, i.e. delegate the request.

We are in the process of developing a system based on the experimental
language Lagoona (Franz, 1997a), a descendant of Oberon (Wirth, 1988a), in
which all component interaction is initiated by message-passing among objects.
Unlike conventional object-oriented languages, however, Lagoona’s messages are
“stand-alone” data objects, and not subordinate to classes: For example,
Lagoona’s messages can be stored in data structures such as “message queues”,
they can be duplicated and sent to more than just a single receiver object, and
previously stored messages can be executed asynchronously.

While Lagoona, just like other object-oriented languages, provides type
extension (Wirth, 1988b), polymorphic variables, and automatic method dispatch
depending on the type of the receiver argument, it does away with the concept of
method inheritance that is usually offered by object-oriented languages. Instead,

7

objects have the option of explicitly forwarding received messages to other
objects that handle them on their behalf, using a delegation mechanism called re-
send. Hence, the effect of inheritance can be simulated, if required, but it turns
out that re-send can be used to create far more effective architectures than
traditional class inheritance. In particular, Lagoona’s microscopic program
architecture corresponds to the macroscopic architecture of component-oriented
systems.

In the next section, we first examine the “Stack” data structure of the Java
Class Library in a little more detail, exposing the many dependencies a user of
the class has to be aware of. Without going into the syntactic peculiarities of
Lagoona, which are not the subject of this paper, we then explain how much
more straightforward and elegant an implementation would be in a language that
provides stand-alone messages. This brings us to the conclusion that the
“compose out of parts and link by message-passing” model of software
construction might be better suited as a basis for software reuse than the “inherit
from framework and customize by overriding” model that is currently popular.

4 HIGHER-ORDER DATA STRUCTURES: CONTAINERS

An adequate support for user-defined data structures is an important characteristic
of a good developing environment. For example, most object-oriented application
frameworks provide a host of pre-defined “container” data types that implement
data structures such as linked lists, stacks, hash tables, and the like, sparing the
programmer the effort of re-implementing this functionality over and over. As a
further benefit, the common code handling the container functionality is factored
out into a single class, rather than being duplicated in many different places,
reducing the overall application footprint.

Unfortunately, in object-oriented application frameworks, these container data
types are often realized in a relatively heavyweight fashion. As a case study, let
us take a look at how container data structures are implemented in the Java Class
Library (Chan and Lee, 1997). Java's standard package java.util provides five
container classes: Dictionary, HashTable, Properties, Vector, and Stack, forming
the inheritance hierarchy depicted in Figure 4.

java.lang.Object

java.util.Dictionary
(abstract class)

java.util.Hashtable java.util.Properties

java.util.Vector java.util.Stack

Figure 4: Excerpt of the Java Class Hierarchy

8

In particular, a Java Vector is an expandable indexed data structure holding an
arbitrary number of objects as its elements. Elements can be added and removed
at any index position. A Java Stack is a specialization of such a Vector that
additionally provides simplified methods (such as push and pop) for managing
data in a LIFO queue. The specification of Stack doesn't mandate invalidation of
the methods inherited from Vector, hence it is unclear whether the integrity of a
Stack is actually guaranteed in implementations of the Java Class Library, or
whether it can be circumvented by calling an inherited Vector method to insert or
remove elements in the middle of a Stack. It seems that the inheritance
relationship between Vector and Stack has the sole purpose of facilitating code
reuse, while creating a problematic extension relationship.

A common task required of container data structures is enumeration of their
contents. For this purpose, the Java Class Library specifies an interface called
Enumeration. The Enumeration interface provides two methods,
hasMoreElements() that determines whether there are any more elements in the
enumeration and nextElement(), which retrieves the next element in the
enumeration. All five of the above-mentioned container classes provide a method
elements() that returns an enumerator object compatible with the Enumeration
interface*. The enumerator object can then be used for accessing the individual
elements of the container data structure. For example, one might use a loop such
as depicted in Figure 5 for accessing the elements of a vector.

for (
Enumeration e = v.elements(); // create an enumeration
e.hasMoreElements(); // while still some unprocessed elements left
)

{
Object o = e.nextElement() ; // retrieve the next element
o.doIt; // do something with it

}

Figure 5: Iterating Over a Container Data Structure in Java

There is a considerable overhead involved in using container classes in this
manner. Every time that the elements of any of our containers need to be

* Note that while Dictionary and Vector each provide a method elements() returning an Enumeration,
these two instances of elements() are conceptually two different methods. In languages such as Java, the
intent of simultaneously introducing the same message into two disjoint class hierarchies can be
expressed only by providing two textually equal definitions. In Lagoona, on the other hand, messages
are “stand-alone” data objects, and not subordinate to classes. This means that messages are defined
globally on the package level, and not within the scope of a class; as a consequence, two otherwise
disjoint classes can “share” the same message by providing method implementations for it.

9

enumerated, we first have to create an enumeration object. The enumeration
object contains pointers to the elements of the original data structure and keeps
track of which elements have been enumerated already.

Now think of how much effort is required to create an alternative class
MyStack that could be used as a substitute for java.util.Stack. Not only does one
have to implement the complete functionality of Vectors, since Stacks happen to
be backward-compatible with them, but one also has to implement a complete
private enumerator class for each container class. Further, container classes have
complex interactions with their enumerators, which in the case of Java are not
even clearly specified (for example, what if an object is removed from a
container before an ongoing enumeration has come to a finish?).

5 USING FIRST-CLASS MESSAGES

How then, do first-class messages make this any easier? There are several
contributing factors: First, if we do away with method inheritance, as the
language Lagoona does, we arrive at a looser coupling between the individual
software modules, increased locality, and regain what Bertrand Meyer once
called modular continuity (Meyer, 1988): a small change in a module should not
trigger a large change in the resulting system. Second, we gain structural
uniformity: the fine-grained interaction between individual objects now follows
the same model as the coarse-grained interaction between OpenDoc parts or
ActiveX components. Note that the abolition of code inheritance need not
necessarily lead to code duplication or diminished code reuse. On the contrary,
since messages are now tangible elements at the source-language level, they can
be re-sent even outside of the type-extension hierarchy of the original receiver
object. The main difference is that this process is now explicit. The eventual
implementation can be made efficient (Franz, 1997a).

Most importantly, however, the simple model of “tangible” messages leads to
sweeping architectural simplifications. For example, instead of the clumsy
enumeration feature of java.util.Stack described above, it would be much more
elegant if every container data structure simply offered a mechanism by which
messages could be generically broadcast to all the contained elements. For
example, in our paper on Lagoona (Franz, 1997a), we describe the use of a
distributor object that can receive arbitrary messages and automatically re-send
them to all elements of a private data structure (i.e., broadcast them). This is not
only simpler than the approach taken in Java, but it is also safer, since no direct
pointers to the individual contained elements are ever revealed. Note that this
approach also reduces overall complexity and code-size: instead of programming
a loop over the enumerator’s data structure at every iteration site, the loop is now
encapsulated wholly within the container.

As a case study, consider the example of an extensible graphics editor. By
extensible, we mean that the graphics editor is supplied with a number of pre-

10

defined graphical shapes, and the user has the ability to later add components that
implement further shapes. The addition of such late extension needs to be
possible without requiring that any part of the editor or any already existing
extensions be updated.

In a traditional framework-based system, this is solved by letting the graphical
editor communicate with all of its shapes through an abstract interface, and by
using dynamic loading to add classes implementing additional shapes to the
already executing system (Franz, 1997b). This is a good solution to the problem,
but only as long as the abstract message-interface of “shape” objects is
considered immutable.

Now imagine that we want to create a new kind of shape extension for the
existing graphics editor that represents a clock, a circle with two hands that
display the current time in analog form within the graphics-editor window. Just
like any other shape, clocks need to be instantiable: users may create arbitrarily
many clocks within each graphics document.

Hence, the question becomes: how do we control the periodic update of each
clock’s display? A naive solution is to attach a separate thread to each clock-
object that handles the update; however, this is of course a very uneconomic use
of processor resources. Ideally, there should be only a single thread that is
responsible for updating all the clocks on the screen, no matter how many of
them are present. (This also has the added advantage that clock updates become
synchronous.)

A “good” solution therefore uses just one thread, located in the same module
as the clock class, which periodically sends tick messages to all clock-objects,
instructing them to update their respective displays. Unfortunately, in a
conventional object-oriented system, this means that the thread sending the tick
messages needs to keep track of all the clock objects, because tick messages can
be sent only to clock objects, and not to other graphical shapes: At the time that
the abstract message protocol of “shape” was defined, it wasn’t anticipated that
we would eventually need tick messages, and hence no provision was made for
them.

However, there is a considerable bookkeeping effort associated with keeping
track of the clock objects: it means that every time a new clock is created, it
needs to register with the tick thread, and before any clock is destroyed, it needs
to unregister. Since the latter can occur also as a side-effect of user actions such
as closing a window containing such a clock, implementing all of the
bookkeeping operations is no trivial task. In fact, it is feasible in practice only if a
finalizing garbage collector is available that can perform the unregister operation
automatically.

Besides requiring substantial programming effort, the outlined solution has
aesthetic shortcomings: It requires a separate data structure specifically for
linking together all the clock objects. This is in addition to the link already
maintained in the graphics editor, which groups together all the objects belonging

11

to a graph. One can easily imagine that many such separate data structures are
required once that the object hierarchy grows to include lots of object types
whose message protocol cannot completely be accommodated by the abstract
“shape” interface.

In traditional object-oriented languages, the only way of avoiding all of this is
by exposing the graphic editor’s underlying data structure that links the
individual objects in a graph. Then, instead of maintaining separate data
structures, the extension modules can iterate over the full graph, sending
messages only to selected objects. However, this violates the concepts of
information hiding and safety, as it gives the programmer of one extension access
to objects created by another one.

This is where first-class messages come in. First-class messages allow a
complete separation of concerns while greatly simplifying the construction of
such extensible systems. If the above example were programmed in Lagoona, the
graphics editor could offer a procedure that generically broadcasts any message
to all objects in a graph. In this case, the iterator is wholly contained in the “main
part” of the editor, which also completely encapsulates the manner in which
individual objects in a graph are linked together. As a consequence, no object
need ever be exposed to any code written in another module. Moreover, the
protocol of messages that can be broadcast need not be defined a priori; only
those messages that relate to the interaction between the editor itself and the
shapes it contains need to be specified abstractly.

Hence, our tick thread would instruct the graphics editor to tell every object
that the time had advanced. This message would be broadcast to all objects, but
only the clocks would actually have an implementation associated with the
message; all other objects would simply ignore it. The added cost of this scheme
is that the iterator needs to touch every object, including objects that don’t
“understand” the message being sent (which can be determined by a simple table
look-up). In return, a significant amount of bookkeeping effort is avoided
elsewhere and great architectural simplifications are gained.

6 RELATED WORK

While lacking direct language support for messages and methods, the Oberon
System (Wirth and Gutknecht, 1992), which originally inspired the Lagoona
language, has an architecture that makes extensive use of generic message
broadcast and message re-send. For example, all editing applications in the
Oberon System are structured after the Model-View-Controller pattern (Krasner
and Pope, 1988), and update-events that result from model changes are
distributed to the respective viewers by a broadcast mechanism. Hence, rather
than keeping pointers from the model back to the views that display them, models
notify their viewers of a change by sending a message to the root of the display
hierarchy. The message then “trickles down” the display hierarchy, automatically

12

forwarded by every container-object to each of its children. Hence, for example,
a window-object passes all received messages to the objects representing its
contents. Note that the messages forwarded in this manner may include messages
that are not included in the protocol of the container.

The main difference between Oberon and the system we are building is that
the Oberon language (Wirth, 1988b), in which the Oberon system is written,
doesn’t automate type-dispatch. This places a burden on the programmer and
simultaneously also makes efficient implementation more difficult. Our project
starts off from the general architecture of the Oberon System with the aim of
improving it further by the addition of a small amount of language support.

Another object-oriented programming language that explicitly renounces
method inheritance is Emerald (Raj et al., 1991). Similar to Lagoona, Emerald
stresses the concept of locality (which its authors call object autonomy) by
forcing all behavior to be encapsulated within the definition of each individual
object class. In Emerald, the domain of encapsulation is the class; unfortunately
there is no separate package concept. An interesting aspect of Emerald is the fact
that it bases object substitutability on interface conformity (rather than common
type-ancestry); hence multiple implementations of the same class are possible.
Emerald is targeted towards distributed systems and hence has slightly different
goals than Lagoona; in particular, Emerald has no equivalent to Lagoona’s re-
send mechanism and hence, in the absence of inheritance, makes code-sharing
difficult.

Several recent papers (e.g., Odersky and Wadler, 1997; Krall and Vitek,
1997) propose to extend and improve upon the original definition of the Java
language. Some of the proposed constructs, such as Higher-Order Functions
(Odersky and Wadler) and Iterators (Krall and Vitek) present alternative
solutions to the “loose coupling” idea that is approached in Lagoona through the
mechanism of message forwarding. However, while these additional constructs
raise the expressive power of Java, we feel that they make an already complex
programming language even more difficult to master. The primary design goal of
Lagoona, on the other hand, is to replace method inheritance altogether by a
simpler and more flexible construct that can be used to emulate inheritance if
required. We contend that Lagoona is a simpler language than Java, and that
message forwarding is a “natural” paradigm for component-based systems since
it uniformly applies to intra-component messaging as well as inter-component
communication.

7 SUMMARY AND CONCLUSION

Elevating messages to stand-alone status on the programming language level,
alongside classes and variables, gives rise to new system architectures. These
architectures lead to elegant and small implementations, and since they duplicate
the macroscopic structure of software component systems on a microscopic level,

13

provide structural uniformity. For these reasons, we think that languages that
directly correspond to such architectures are better suited for the implementation
of component-oriented systems than conventional object-oriented languages.

8 REFERENCES

Arnold, K. and Gosling, J. (1996) The Java Programming Language; Addison-
Wesley.

Card, D. and Comer, E. (1994) Why Do So Many Reuse Programs Fail? IEEE
Software, 11:5, 114-115.

Chan, P. and Lee, R. (1997) The Java Class Libraries: An Annotated Reference;
Addison-Wesley.

Evered, M., Keedy, J.L., Schmolitzky, A., and Menger, G. (1997) How Well Do
Inheritance Mechanisms Support Inheritance Concepts?, in Hanspeter
Mössenböck (Ed.), Modular Programming Languages, Proceedings of the
Joint Modular Languages Conference, JMLC’97, Springer Lecture Notes in
Computer Science No. 1204, 252-266.

Franz, M. (1997a) The Programming Language Lagoona: A Fresh Look at
Object-Orientation. Software – Concepts and Tools, 18:1, 14-26.

Franz, M. (1997b) Dynamic Linking of Software Components IEEE Computer,
30:3, 74-81.

Goldberg, A. (1984) Smalltalk-80: The Interactive Programming Environment;
Addison-Wesley.

Goldberg, A. and Robson, D. (1983) Smalltalk-80: The Language and its
Implementation; Addison-Wesley.

Krall, A. and Vitek, J. (1997) On Extending Java, in Hanspeter Mössenböck
(Ed.), Modular Programming Languages, Proceedings of the Joint Modular
Languages Conference, JMLC’97, Springer Lecture Notes in Computer
Science No. 1204, 321-335.

Krasner, G.E. and Pope, S.T. (1988) A Cookbook for using the Model-View-
Controller User Interface Paradigm in Smalltalk-89. Journal of Object-
Oriented Programming, 1:3, 26-49.

Lindholm, T., Yellin, F., Joy, B., and Walrath, K. (1996) The Java Virtual
Machine Specification; Addison-Wesley.

McIlroy, M.D. (1976) Mass Produced Software Components, in Software
Engineering, Concepts and Techniques, Proceedings of the NATO
Conferences, New York, 88-98.

Meyer, B. (1988) Object-Oriented Software Construction; Prentice-Hall.
Muys-Vasovic, J.-D. (1989) MacApp: An Object-Oriented Framework

Application, in Tutorial Notes, Technology of Object-Oriented Languages
and Systems (TOOLS) ‘89.

14

Odersky, M. and Wadler, P. (1997) Pizza into Java: Translating theory into
practice, in Proceedings of POPL’97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM Press, 146-159.

Raj, R.K., Tempero, E., Levy, H.M., Black, A.P., Hutchinson, N.C., and Jul, E.
(1991) Emerald: A General-Purpose Programming Language. Software-
Practice and Experience, 21:1, 91-118.

Wegner, P. and Zdonik, S.B. (1988) Inheritance as an Incremental Modification
Mechanism, or, What Like Is and Isn't Like, in ECOOP'88 Proceedings,
Springer Lecture Notes in Computer Science, No. 322, 55-77.

Wirth, N. (1988a) The Programming Language Oberon. Software-Practice and
Experience, 18:7, 671-690.

Wirth, N. (1988b) Type Extensions. ACM Transactions on Programming
Languages and Systems, 10:2, 204-214.

Wirth, N. and Gutknecht, J. (1992) Project Oberon: The Design of an Operating
System and Compiler; Addison-Wesley.

9 BIOGRAPHY

Michael Franz is an assistant professor in the Department of Information and
Computer Science at the University of California, Irvine. He holds a Doctorate in
Technical Sciences and a Diploma in Computer Engineering, both from the Swiss
Federal Institute of Technology (ETH) in Zurich. Further information about
Franz and his research can be found at http://www.ics.uci.edu/~franz .

