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Abstract

Development of different parts of large software systems by separate teams, re-
placement of individual software parts during maintenance without changing other
parts, and marketing of independently developed software components require in-
terface descriptions. Interoperation is impossible without sufficient description;
only abstraction leaves room for alternate implementations.

Specifications that only relate the state prior to service invocation (precondi-
tion) to that after service termination (postcondition) do not sufficiently capture
external calls made during operation execution. If other methods called in the
specification cannot be fully specified, it is not sufficient that the implementation
only performs the specified state transformation. The implementation must also
make the prescribed external calls in the respective states.

We show how to specify both state change and external call sequences using
simple extensions of programming languages. Furthermore, we give a formal defi-
nition of the correctness of implementations with respect to such specifications and
show how to prove correctness in practice with data refinement in context.

Keywords: behavioral interface specifications, component software, layered spec-
ifications, greybox specification, specification of state transformation and external
call sequences, refinement, specification extensions of imperative programming
languages, Java
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1 Introduction

Independently developed and marketed software components and individually re-
placeable software parts quickly gain importance. The interfaces between those
have to be specified so that independent readers arrive at the same conclusions.
The necessity for complete interface descriptions is especially big in the realm of
independently developed software components. Hence, we expect current bad ex-
periences with too fuzzy specifications to raise mainstream acceptance of the over-
head it takes to write more systematic and formalized specifications of software
component interfaces. Broad acceptance, however, can only be expected, if the re-
quired extra effort, both in time and intellectual, does not outweigh the experienced
—or expected— gain.

The contributions of this paper are an interface specification approach that cap-
tures both state transformations and component interactions via method calls and
accompanying refinement rules. The latter can be used both informally in the back
of the head as well as for formal proofs. To enhance practical applicability and
acceptance, our specification language is defined as a slight extension of an im-
perative programming language, in the case of this paper Java. Considering that
even pre- and postconditions, for which some tool support already exists [31], are
rarely adopted, we put special emphasis on bringing specifications closer to the
mind setting of an imperative programming language user.

The refinement calculus foundation guarantees us semantic soundness.

1.1 Interface specifications are abstractions

It is an old observation that there is a need to present abstractions of software build-
ing blocks to make them reusable by third parties and to allow for alternate imple-
mentations. A long time ago, programming languages started to provide means for
syntactic encapsulation, but even today only few can represent semantic abstrac-
tions. Almost all approaches to the latter rely on relating the system’s states prior
to an operation invocation to that after termination. Pre- and postconditions are
the most prominent example here. In this paper, we discuss a situation in which
these approaches are unsatisfactory and suggest to draw on the theory of program
refinement and to use abstract programs as specification formalism.

Already modular programming introduced by Parnas in 1972 [41, 40] includes
information hiding or encapsulation to separate concerns between implementing
and using a module. This simplifies the analysis of complex software systems,
because software using a specific moduleM can be described without explaining
M’s implementation details. As a further consequence, the implementation ofM
can even be changed later on, as long as it still meets the same abstraction. On the
syntactic level, modules are supported by several programming languages, such as
Modula-2 [51], Modula-3 [37], and Ada [50]. Programmers decide which iden-
tifiers (variables, procedures) are visible (exported) to clients of their module and
which are hidden and can be accessed by code within the same module only.
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Encapsulation is also one of several pillars on which object-oriented program-
ming (OOP) rests. As with modules, object implementations are decoupled from
their interfaces. In addition, however, the interfaces may be changed or extended
by subclasses. The separation between specification and implementation is also
crucial to achieve polymorphism, another main pillar of object orientation. Only
because an object’s client does not depend on one specific implementation, it can
work with instances of subclasses as well.

Syntax level encapsulation is provided by most OOP languages, for example,
C++ [47], Eiffel [30], and Java [18]. Modula-3 [37], Oberon [52], and Component
Pascal [39] combine object-orientation with modules.

As a combination of modular and object-oriented programming, component
software relies on encapsulation and abstraction as well [49]; and again, syntax
level abstraction is supported by interface description languages (IDLs), as defined
for Microsoft’s COM [44] and OMG’s CORBA [19] standards.

Syntax level encapsulation is extremely effective when it comes to ensuring
that certain internal invariants are never invalidated by client modules or classes.
Not granting access to data or functionality means that all access is under local
control. If things go wrong, the reason must be in the own software building block.

1.2 From syntactic to semantic abstractions

Syntax level encapsulation and abstraction is not enough. For those identifiers
that are visible to client programmers we often need to describe how, under which
circumstances, or in which way they are to be used.

Syntactic abstraction must, therefore, be complemented with semantic abstrac-
tion. If variables can be accessed, assignments may need to be constrained with
invariants. If operations can be invoked, it must be said under which circumstances
they may be invoked and what they then can be expected to do. Prominent lan-
guages and formalisms for this are Eiffel’s pre- and postconditions [30, 31], Larch
C++ [26], and Parnas’ tables [23].

All these approaches consider everything between an operation’s invocation
and termination as completely hidden. All available information deals with what
is before and after an operation’s execution. No information is given about what
happens in-between (Fig. 1). We call such specificationsblackbox specifications.

Often, this is sufficient, but there are cases in which blackboxes are too black
and more information is needed. Often software libraries are provided with com-

input output

Figure 1: Blackbox Specification
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plete implementation source code for last reference. Unfortunately, source code
spoils most advantages of encapsulation. We refer to source code also aswhitebox
specification. In this paper we discuss situations in which blackboxes are too dark
and propose a way to lighten up blackboxes to become greyboxes, which combine
the advantages of black- and whiteboxes.

We develop formal refinement rules to prove the correctness of implementa-
tions with respect to their specifications. Even for projects where the (expected)
cost savings in testing and maintenance don’t outweigh the cost of proofs, safety
is not critical, and the time is tight, we believe that it’s worthwhile to at least have
these rules in mind when coding. We look at them like loop invariants and termi-
nation functions, which are rarely written down —let alone formally proved— yet
are in some programmers’ mind when coding.

Overview. Section 2 illustrates a typical component interaction case where black-
box specifications hide too much. Furthermore, it introduces the observer-pattern,
which is used as an example throughout the paper. In Sect. 3 we show a first spec-
ification approach that shows mandatory call-backs without giving up abstraction.
In the following section we iron out the remaining problems and present the fi-
nal greybox specification style. Section 5 talks about implementations. Section 6
presents the full refinement rules to assert correctness of implementations with re-
spect to specifications. Aiming for practical applicability, we show how to prove
correctness of frequent special cases in Sect. 7. Readers who are content with an
informal, intuitive explanation of the correctness of implementations with respect
to their specifications may skip Sects. 6.5 and 7. Section 8 summarizes the required
additions to imperative programming languages for the purpose of greybox specifi-
cation. Finally, Sect. 9 discusses related work and Sect. 10 draws the conclusions.

2 The Problem: When Black is Too Dark

Above, we definedblackbox specificationsas descriptions that only relate the state
before and after an operation (Fig. 1). It is impossible to draw conclusions about
what happens between these two observation points unless there is some trace left
in the observable state.

Such blackbox specifications are insufficient when it comes to call-backs. Call-
backs activate functionality external to the specified component (Fig. 2). Typically
such functionality is installed by the calling client or even third party software, as
it is the case with the observer example detailed later in this section.

That blackboxes do not provide enough information to deal with call-backs
has been stated and discussed in detail in [49]. In the following we shall briefly
recapitulate that discussion.
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2.1 Call-backs

A call-back mechanism allows clients of a library to register operations for activa-
tion under certain circumstances. Figurative, the client instructs the libraryto call
it backupon occurrence of a certain event (Fig. 2).

Call-backs are used to make systems extensible. In layered system architec-
tures they occur as calls from lower into higher layers in which case they are known
as up-calls [12]. Up-calls allow the programmers of higher layers to modify the be-
havior of the lower layers of which they are clients.

In a similar way, methods implemented in a subclass but called in the respec-
tive superclass can be interpreted as call-backs from reusable into reusing software
components.

A representative application of call-backs is the observer design pattern [17].
It allows software components that need to react to certain events, such as partic-
ular state changes, to register anobserverobject with theobservedobject. The
observed object then calls a notify method of each registered observer object upon
occurrence of the respective events.

A prominent application of the observer pattern is in the Model-View-Control-
ler architecture (MVC), developed originally for Smalltalk [25, 17]. The MVC
architecture provides a separation of concerns between internal representation and
manipulation of data (model), data presentation to the user (view), and command
interpretation (controller). Because of that separation, the way of presenting the
data to users can be changed by replacing the view component while keeping —or
reusing— the model component. Most implementations of the MVC architecture
allow more than one view to present the same model at a time. These views may
even display the data differently, for instance, as a spreadsheet and as a pie chart.
In this paper, we use a simplified version of the MVC pattern without a separate
controller.

If we want the model component to work with zero, one, or several simul-
taneous views and not to depend on what the presentation actually looks like, it
must not be hard-wired to any specific view component. Simply defining the view
as a subclass of the model does not work because the model could not be shared
among different views. Whenever the data stored in the model is changed because
some client activates an operation, all the views have to be updated. This is done

input output

external service

Figure 2: Blackbox Specification with External Call
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by having each view register with the model as an observer to be notified on data
changes.

2.2 Example: part of a text system

Szyperski [49] presents a simple text system as an example of the above. In this
paper we shall only look at those functions needed to delete characters. As the form
of presentation we use Java syntax together with pre- and postconditions (Fig. 3).

All our specifications are model based. That is, we add a model state, such as
registeredObservers and text, to express the specifications. We use the modifier
private to mark model fields and methods, i.e., members that are only present for
specification purposes and are not accessible to clients and classes implementing
the interface.

We give the specification additions directly rather than as comments with a
special start symbol [27]. A pre-parser can easily remove the additions so that the
stripped version can still be processed with a normal Java compiler.

We use the abstract data typessetof andseqof for sets and sequences of ob-
jects. The empty set is denoted by ‘{}’ and the empty sequence by ‘<>’. The
length of a sequence is given bylen, theith element of sequences can be accessed
ass[i] with indices ranging from0 to len(s)-1. In accordance with Java, we use
‘==’ for equality and ‘=’ for assignment. The keywordall denotes universal quan-

interface ITextModel {
private setof ITextObserver registeredObservers={};
private seqof char text=<>;

int length();
pre true
post result ==len(text)

char charAt(int pos);
pre 0<=pos && pos<len(text)
post result==text[pos]

void deleteCharAt(int pos);
pre 0<=pos && pos<len(text)
post (all i: 0<=i && i<pos: text[i]==text′[i]) &&

(all i: pos<=i && i<len(text): text[i]==text′[i+1]) &&
len(text)==len(text′)-1

. . .

void register (ITextObserver obs); //specification omitted
void unregister (ITextObserver obs); //specification omitted
}

Figure 3: Pre-/Postcondition Specification of InterfaceITextModel
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interface ITextObserver {
void deleteNotification(int pos);

// pre character that was at pos has just been deleted
// (informal comment, not tool checkable). . .

}

Figure 4: Specification of InterfaceITextObserver

tification. Primed identifiers in postconditions refer to the state before invocation
(see below). The keywordresult denotes the result value.

According to the MVC pattern, instances of classes implementingITextModel
are data stores. Changes, such as deleting a character, can be initiated by any
client calling the respective method. Views need to call theregister method once
to subscribe to notifications about text changes.

The above specification ofITextModel.deleteCharAt does not say that and when
observers are notified. Because it is not reflected by the state of the text data before
or after calling the operation, pre- and postconditions of thedeleteCharAt opera-
tion cannot capture this. The only solution would be a textual comment like ‘call
deleteNotification of all registered observers after deleting character’. Addition-
ally, we can put the corresponding comment toITextObserver.deleteNotification
(Fig. 4). However, none of these plain English comments are machine checkable
and enforceable.

As an aside: Whereas the prime notation for the value in the pre state works
well with variables, it is unsharp for functions and actually dangerous for opera-
tions with side effects. In the latter case, using a function in a predicate must not be
confused with an actual call to that function, because the corresponding side effects
are not happening. With pure functions, problems occur if the result values depend
on other state than the explicit parameters. Thelength function, if used instead of
len(text), would be an example thereof; its result depends on the hidden state of the
text it is associated with. The usual workaround is to introduce additional bound
variable that denote the pre state.

2.3 Analysis of the example

In the ITextModel and ITextObserver example several aspects are unspecified or
specified informally only. For instance, in what order are the observers notified? Is
it the same order every time? Can the observers register additional observers upon
being notified of a state change? Are these newly registered observers notified in
the current round?

Often, such things will be left open intentionally and in this case the above
specification is just fine, as long as readers don’t make any assumptions about the
unspecified facts, which in practice often happens because the intention of non-
specification is not made explicit. It signals to the implementer of aITextObserver
that no assumptions must be made, while the the implementer of aITextModel
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has full freedom. Of more interest are situations in which certain aspects shall be
specified and other intentionally be left open.

The above problems illustrate the need for unambiguous interface specifica-
tions. They can, however, all be addressed with a pre- and postcondition-based
approach with a complete and clear semantics. As hinted at before, there are, how-
ever, some fundamental issues that cannot be specified in this way. As an example,
where blackbox specifications fails, we will in the remainder of this paper consider
thedeleteNotification method.

2.3.1 Blackbox specifications are about state changes only

The problem is rooted in the fact that we are specifying an interface of an open,
extensible system. While we know and can prescribe many aspects of the model’s
state, we want to retain full flexibility for the observer. It is the very idea of this
pattern that one has not to define what observers may do upon a notification. This
openness presents a dimension of extension.

Without talking about the observer’s state at all, we cannot specify the condi-
tions of a notifier call, because the call does not affect the model’s state. Theoreti-
cally, we could encode the calls made by an operation into history/trace variables.
For example, each observer could be equipped with a counter to be implicitly in-
cremented during each notification call. With this we could add a conjunct to the
postcondition ofITextModel.deleteCharAt expressing that the counters of all reg-
istered observers have been incremented. However, with only these counter we
could still not specify in which order, in which states, and with which parameter
values the calls are to be made. Are the observers notified before or after the actual
deletion? What are the parameter values of the calls?

Although theoretically possible, a trace variable encoding capturing all these
aspects is very complicated and unusable for practical specifications. Furthermore,
it does not give the desired results in combination with data refinement methods
for abstract data types based on observational substitutability: Without enquiry
operations for all trace variables, the latter can just be ‘forgotten’. With enquiry
operations, their values could be computed differently. Only a mandatory 1-to-
1 data refinement relation on trace variables and syntactic rules to forbid explicit
assignment to these variables could, theoretically, rest the case. In conclusion,
blackbox specification of callbacks through encoding is not practical.

2.3.2 Whitebox specifications would work but aren’t abstract enough

Whitebox specifications, that is source code, show exactly when and in which order
the observers are notified (Fig. 5). However, they ruin abstraction by fixing too
many details. For example, we might want to leave the notification order open so
it can be changed in future versions. In Sect. 3 we will discuss how abstraction can
be reintroduced into such whiteboxes.
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input output

external service

Figure 5: Whitebox Specification

2.3.3 Informal specifications are not good enough

Pure informal specifications might be clear enough in very simple cases, but they
also have their share of disadvantages. They cannot be used as input to any tool,
such as automatic test case generation [11], automatic pre- and postcondition check-
ing [31, 15], or formal theorem provers [1].

Informal sentences are subject to interpretation, which in turn depends on the
particular context of the reader. Often, these contexts vary resulting in mismatches
of interpretations by independent vendors and eventually leading to incompatible
software components.

This problem is aggravated by the fact that component interfaces need to ab-
stract and for this often intentionally leave certain aspects undefined. However,
with informal specifications it is often not clear what is intentionally left unspeci-
fied.

3 A Pragmatic Approach: Layering White on Black

In this section we discuss a simple and pragmatic way to specify the circumstances
under which call-backs are to be made. The idea is to decompose an operation con-
taining the call-backs into a set of private operations and a public operation calling
the former. None of these auxiliary operations contain any call-backs. Hence, they
can be specified as complete blackboxes. On top of that layer of blackbox specifi-
cation we put a single whitebox specification of the original operation (Fig. 6). The
latter contains only calls to the blackboxes of the lower layer, the call-backs, and

input output

external service

Figure 6: White-on-Black Layered Specification
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eventual loops and conditionals in which call-backs occur. In ourITextObserver
example, we decompose thedeleteCharAt method into just one blackbox opera-
tion changing the text data and a whitebox operation. The latter calls the blackbox
operation and notifies the observers (Fig. 7).

interface ITextModel {
private ITextObserver[] registeredObservers;
private int nofObservers=0;
private seqof char text=<>;

private void removeCharacter (int pos);
//Blackbox specification:
post (all i: 0<=i && i<pos: text[i]==text′[i] &&

(all i: pos<=i && i<len(text): text[i]==text′[i+1]) &&
len(text)==len(text′)-1

void deleteCharAt(int pos) pre 0<=pos && pos<len(text) {
// Whitebox specification:
int i;
removeCharacter(pos);
for (i=0; i<nofObservers; i++){

registeredObservers[i].deleteNotification(pos);
}

. . .
}

Figure 7: Layered Specification of InterfaceITextModel

The general idea used in the example can be summarized as follows. To make
clear, under which circumstances the observer is notified, we need to give a white-
box specification of all services that contain such calls; in our case this is the
deleteCharAt method. Specifying the entire service as a whitebox, however, would
be too detailed. Hence, wherever we want to give an abstraction instead of an ac-
tual implementation, we include a call to another private service, which we specify
as a blackbox. Without loss of generality we assume a single call-back only in the
general specification pattern illustrating the above idea (Fig. 8).

The main advantages of this approach is that it can readily be deployed with
formalisms such as Eiffel [30] or JML [27] that allow both black- and whitebox
specifications. Although external calls can be specified, neither of these approaches
comes with refinement rules that preserve the external call sequence.

This layered approach also has some disadvantages. We need to make every
data structure, such asregisteredObservers, used in the whitebox part concrete.
Leaving certain aspects, such as the notification order, unspecified may be dif-
ficult. Also, the need to introduce a blackbox operation for every block makes
specifications less readable.
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interface LayeredSpecPattern {
private void partOne(. . .);

// Blackbox specification:
// pre Pre1
// post Post1

private void partTwo(. . .);
// Blackbox specification:
// pre Pre2
// post Post2

void publicService(. . .) {
// Whitebox specification:
partOne(. . .);
callBack(. . .);
partTwo(. . .);
}
}

Figure 8: Pattern for Layered Specifications

4 Abstract Programs: Shades of Grey

Specification statements [4, 7] can be used instead of auxiliary blackbox meth-
ods. A specification statement is of the formany (T y; P) {S;} whereT is a type,y a
(bound) variable,P a predicate (boolean expression), andS a statement. Upon exe-
cution, an arbitrary value fory is chosen such thatP holds and thenS is performed.
For example,any (float y; y>=0 && 0.98*y*y<x && x<1.02*y*y) {s=y;} assigns the
square root ofx, computed with a precision of 2 % to y and subsequently tos. If
the value ofx is 16, then that ofs will be between3.96 and4.04 after the statement
has been executed.

In our example (Fig. 7), we can replace the call toremoveCharacter in delete-
CharAt by

any (seqof char txt; (all i: 1<=i && i<pos: txt[i]==text[i]) &&
(all i: pos<i && i<=len(text): txt[i]==text[i]) && len(txt)==len(text)-1) {text=txt;}

Whereas the above square root example was truly nondeterministic, the text
example isn’t because there is exactly one possible outcome for every initial value
of text andpos satisfying the precondition. Hence, the specification can in this case
be written as:

text=text[0..pos-1]+text[pos+1..len(text)-1]

As another specification construct, we add ado loop over sets. The body of
a do loop is executed exactly once with the iterator bound to each element of the
initial value of the set.

10



interface ITextModel {
private setof ITextObserver registeredObservers={};
private seqof char text=<>;
public int maxObservers=10;

invariant // denoted by I in the text
card (registeredObservers)<=maxObservers

inquiry int length() {
return len(text);
}

inquiry char charAt(int pos) pre 0<=pos && pos<len(text) {
return text[pos];
}

void deleteCharAt(int pos) pre 0<=pos && pos<len(text) {
text=text[0..pos-1]+text[pos+1..len(text)-1];
do (o in registeredObservers) {

o.deleteNotification(pos);
}
}

. . .

void register (ITextObserver obs) pre obs!=null && not (obs in registeredObservers) &&
card (registeredObservers)<maxObservers {

registeredObservers=registeredObservers+{obs};
}
}

Figure 9: Greybox Specification of InterfaceITextModel

Our focus has been on the notification calls, which we want to specify so that
they must be made in an implementation. However, a specification may also make
optional calls. Say, we use a call to a square root function of a math component. An
implementation should be free to either make the same call or compute the result
itself. To distinguish between mandatory and optional calls, we use the following
approach.Inquiry methodsare declared with the modifierinquiry in the specifica-
tion. All other methods are calledmodification methods—whether they actually
modify the state or not. Inquiry methods may not modify the state or contain any
calls to modification methods. In our example,length andcharAt are inquiry meth-
ods. Calls to modification methods in the specification are referred to asmandatory
calls; calls to inquiry methods asoptional calls. Implementations must make the
same mandatory calls as their specifications and may not make any additional calls
to modification methods of the mentioned component instances. Additionally, they
can make arbitrary calls to inquiry operations.

Figure 10 gives the general pattern for greybox specifications with the same
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interface GreyboxSpecPattern {
void publicService(. . .) {

any (T1 w1, . . ., Tm wm; Post1′) {u1=w1; . . .; um=wm;};
callBack(. . .);
any (T1 w1, . . ., Tn wn; Post1′) {u1=w1; . . .; un=wn;};
}
}

Figure 10: Pattern for Greybox Specifications

semantic meaning as Fig. 8.Post1′ and Post2′ correspond toPost1 and Post2
with ui replaced bywi . We have here generalized theany statement for multiple
variables. That is, an arbitrary tuple of values will be chosen forw1, . . ., wm.

Constructors are used in the creation of objects to explicitly assign instance
variables. A class may have many (overloaded) constructors with different signa-
tures. Unlike Java, we also allow constructor specifications in interfaces. These
specifications only prescribe certain constructors; no instances of interfaces can be
created.

Figure 11 illustrates the greybox specification approach.

input output

external service

Figure 11: Greybox Specification

4.1 Consistency of specifications

Specifications that may abort or invalidate their own invariant when executed are of
questionable use. Therefore, we require the following five consistency conditions
to hold for greybox specifications: If an operation is started in a state and with
actual parameters that satisfy both the invariant and the precondition, then

1. The method may not abort, i.e., try to access anull reference (We consider
throwing an exception as abortion.).

2. The invariant is guaranteed to hold after termination.

3. All external calls are made with parameters that satisfy the respective pre-
conditions.

4. The own invariant holds whenever an external call is made.

12



5. An operation either terminates or makes infinitely many external calls to
modification operations.

The reason for the fourth condition is explained in Sect. 6.1. As we do not allow
reentrant calls to modification methods (Sect. 6.1), external calls do not change the
local state; there only influence is via return values. Constructors have to satisfy
the above five consistency requirements when called with parameters satisfying the
precondition.

If there are no possible values for the bound variables (y) in anany specification
statement such that the predicate (P) holds, then the statement behaves likemagic ,
that is it satisfies any postcondition. Of course,magic cannot be implemented.
Still it has some practical applications in specifications [7].

5 Implementing Greybox Specifications

Implementations are coded as normal Java classes (Fig. 12). The only addition
is the invariant. The latter consists of two —possibly intermingled— parts, the
local and the gluing invariant. The local invariant restricts the ‘legal’ values of
the local variables. Its aims are the documentation of desired properties and the
simplification of proofs. The gluing invariant links the values of the concrete vari-
ables in the implementation to the abstract variables of the specification. For ex-

class CTextModel implements ITextModel {
private ITextObserver[] regObs=new ITextObserver[maxObservers];
private int nofObs=0;
private StringBuffer t=new StringBuffer();
invariant // denoted by I′ in the text

0<=nofObs && nofObs<=maxObservers &&
ITextModel.registeredObservers==regObs[0..nofObs-1] &&
(String)ITextModel.text==(String)t

public void deleteCharAt(int pos) {
int i;
. . . // remove character from t
for (i=0; i<nofObs; i++) {

regObs[i].deleteNotification(pos);
}
}

public void register (ITextObserver obs) {
regObs[nofObs]=obs;
nofObs++;
}
. . .
}

Figure 12: ImplementationCTextModel
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ample,ITextModel contains a set of observers. This set is implemented with an
array (Fig. 12). To prove (see below) that the implementation adheres to its spec-
ification, we need to say how the values of the set and the array are related. The
invariant conjunctITextModel.registeredObservers==regObs[0..nofObs-1], where
regObs[0..nofObs-1] is the set{regObs[0]} ∪ {regObs[1]} ∪ . . . {regObs[nofObs-
1]}, states this.

To allow different implementations, we require that all fields are private. Thus,
all accesses go through methods.

6 Refinement of Greybox Specifications

An implementation of a component must adhere to its specification; otherwise the
specification is useless for a client. Correctness of an implementation with respect
to its specification is established by proving greybox refinement. The basic idea
of greybox refinement is simple: The implementation of every method must make
the same sequence of mandatory calls to other component instances in the same
respective states as the specification, perform the same overall changes to the local
state, and return the same value. If the specification is nondeterministic, then the
call sequence, local state transformation, and return value of the implementation
must correspond to one choice in the specification. The refinement calculus [4, 7,
36] provides a formal base, but not yet any rules, to prove this conformance.

A specification can be viewed as a contract between a client and a provider
who implements it. To refine a specification means to improve it from the client’s
point of view. A refined version must be at least as good as the original. Often,
refinement is defined by observational substitutability: The client, that thinks it
uses the original version, does not notice that it actually uses a refined version.

In this section we first clear the field by discussing a number of critical issues
surrounding greybox refinement and then formalize the latter.

6.1 Reentrance

Reentrance occurs if methodm of componentA calls methodn of componentB and
n calls —directly or indirectly— methodo of A (Fig. 13) [49, 32]. For example, an
observer could in its implementation ofdeleteNotification call ITextModel.charAt
to enquire the current value oftext.

Both for the consistency of specifications (Sect. 4.1) and for the refinement
rules (Sect. 6.5) we assume the invariant of an object to hold whenever one of its
methods is called. Hence, we need to establish the invariant before making calls to
other components, so that the own invariant holds upon reentrant calls.

We follow [13] in banning reentrant calls to modification methods. Although
such calls can be handled in theory, they make components very difficult to un-
derstand. For example, assume that in Fig. 13o would be a modification method.
Then the effect of methodm on the local state of an instance ofA would not de-
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: A : B

m(..)

n(..)

o(..)

Figure 13: Reentrance Scenario

scribed bym alone. Instead all called external modification methods would have
to be examined for possible reentrant calls to modification methods.

Mutual recursion between inquiry methods of componentsA andB could hap-
pen ifA.m callsB.n andB.n call A.m. Because the calls to inquiry methods are not
visible from specifications, such mutual recursions cannot be detected by modular
reasoning. They are problematic if they are infinite. Documented solutions to this
problem include imposing a partial order on inquiry methods and allowing calls
only to ‘smaller’ methods [1]. In this paper we simply assume this problem to be
addressed by some mechanism.

6.2 Not-mentioned component instances

Often implementations use instances of additional components not mentioned in
the specification. For example, an observer may use a window instance, in which
it paints the text and a model may use a set from a collection framework to repre-
sent the set of observers. This use of additional component instances comprises a
variety of problems.

We call component instances referred to in the specification asmentioned com-
ponent instancesand all others asnot-mentioned component instances. For ex-
ample, from the perspective ofITextModel and of classes implementing only the
former, any instance of a componentCSet is classified as not-mentioned because
neitherCSet nor its specification is named. Furthermore, any instance ofITextOb-
server not registered as an observer is labeled not-mentioned.

As motivated above, allowing calls to modification methods of not-mentioned
component instances is absolutely necessary. However, such calls may lead to
reentrant calls of modification methods. Consider the following scenario: Method
CTextModel.deleteCharAt calls a modification methodevent of a (not-mentioned)
instance of aCLog component, the specification of which does not mention any
other components. Since,event is a modification method, it may itself call other
modification methods, including modification methods of ourCTextModel instance
and the latter’s registered observers. In both instances refinement ofITextModel by
CTextModel may be violated. This problem is similar to the one of mutual recursion
above. It cannot be solved by modular reasoning. Solutions that restrict the set of
objects whose methods may be called trade safety for flexibility. In this paper we
assume this problem to be solved by some strategy.
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6.3 Self calls

Self calls, that is calls to methods of the same component instance, deserve special
treatment. The idea of greybox specifications is to prescribe what calls have to
be made between different component instances in addition to the changes of the
instance state. If a specification contains self calls, it is simply for the purpose of
factoring out parts that —ignoring recursion— could be textually substituted for
the call. Hence, self calls are never mandatory. An implementation of a specifi-
cation method containing self calls must simply make the same external calls and
local state modification as the specification method including the own called meth-
ods. It is not required, but often beneficial, to establish the invariant before making
self calls.

6.4 Additional methods and constructors

Classes may have more public methods and constructors than one of their imple-
mented interfaces. For example,CTextModel could also have a methoddelete-
CharsBetween(int from, int to), which deletes all characters between positionsfrom
andto. Every possible execution of an additional method must constitute a refine-
ment of the external call sequence and state modifications performed by a finite
sequence of interface methods with possible local computation of parameters in-
between. In this case, other component instances cannot tell the difference between
the single call to the new method and the sequence of calls (mumbling invariance)
[9]. Additional enquiry methods can be added freely (stuttering invariance), as
covered by the above definition with the empty sequence.

A class may implement multiple interfaces. In this case, the methods pre-
scribed by other interfaces have to be considered as additional methods. For exam-
ple, if CTextModel were also to implement an interfaceILog, all implementations
of methods prescribed byILog would have to satisfy the above criteria with respect
to ITextModel and vice versa.

Especially if a class implements several interfaces, the above requirement for
additional methods sometimes turns out to be too strict. To overcome this prob-
lem, we allow interfaces to contain a special methodothers. This method is not
to be implemented by classes, it simply shows what other modifications —with
accompanying external calls— are allowed in additional methods.

Likewise, we can have additional constructors. Every possible execution of an
additional constructors must constitute a refinement of the external call sequence
and state modifications performed by an interface constructor followed by a finite
sequence of interface methods with possible local computation of parameters in-
between.

6.5 Formalizing greybox refinement

In this subsection, we give the general formalization of greybox refinement using
a trace semantics, partly inspired by the trace semantics for action systems [6]. We
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formalize the conformance of call sequences and state changes. Predicate trans-
former semantics for basic programming language constructs can be found in the
literature [7].

First we review some fundamentals of predicates, relations, and product and
sum types.

Predicates and relations. Predicates (boolean expressions) on a typeΓ are func-
tions from elements of typeΓ to Bool. For example, for variablex of type int, x>0
is a predicate onint. A predicate determines a subset, e.g. the positive integers.
Thus we use⊆ as order between predicates, e.g.x>5 ⊆ x>0. Predicates being
functions, they can be applied to values, e.g.(x>5)(6) is true.1

Relations of typeΣ↔ Γ are functions of typeΣ→ Γ→ Bool. An invariantI′ of
an implementation with state spaceΓ refining a specification with state spaceΣ can
also be considered as a relation of typeΣ↔ Γ. We can apply such a relation to a
stateσ of the specification and a stateγ of the implementation:I′(σ, γ). For relation
R and predicatep the relational imageim(R, p) is defined as{y | (exists x: R(x,y)
&& p(x))}. We use&& for conjunction of predicates and relations.

Product and sum types. The product typeint× char denotes the type of tuples of
integers and characters. The tuple(5, ‘a’) is an element of it. We use the projection
functionsfst andsnd for tuples, e.g.fst((5, ‘a’)) is 5 andsnd((5, ‘a’)) is ‘a’.

The sum typeint ⊕ char denotes a disjoint union of an integer and a character
(corresponding to a variant record in Pascal or a union with a type tag in C). A vari-
able of this type has either an integer or a character value. We leave the injection
and projection functions for sum types implicit.

Definition of greybox refinement. With these notions we can define greybox re-
finement. Without loss of generality, we assume in our treatment that methods have
no local variables, otherwise we turn them into instance variables. Furthermore, we
only allow constants and variables as actual parameters.

When we animate (execute) methodm of the sample interfaceITest, it gener-
ates a behavior. A behavior is a sequence of states, where the successor state is
computed by executing the next atomic statement.2 Let Σ be the type of the state
space of the specification, for examplesetof ITextObserver× seqof char× ITextO-
bserver for ITextModel, where the lastITextObserver stems from the local variable
o of deleteCharAt. When executingITextModel.deleteCharAt(2) the following is a
possible behavior:<({o1, o2}, [texst], null), ({o1, o2}, [text], null), ({o1, o2}, [text],
o1), ({o1, o2}, [text], o2)>.

1We omit the explicitλ if the binding is clear due to the names or position as in the example, i.e.,
x gets bound to 6.

2External method calls are split into two atomic statements as explained below. Otherwise, the
grain of atomicity is not important.
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As defined so far, we do not record which modification methods of which ob-
jects are called with which parameters. LetΩi for i in 1..e denote the types of
references to mentioned component instances in our specificationITest. Further-
more, let∆i, j for j in 1..fi denote the parameter types of the modification methods
of component typei. Finally, let Ω0 denote the typeUnit with the single element
unit and letf0==0. By extending every state in a sequence by an element of type

eM

i=0

Ωi×
fiM

j=1

∆i, j

we can indicate for every state, whether in this state a mandatory call is made and
if so to which method of which object and with which parameters. That is, an
element of the above type is a tuple of a reference to a component and a parameter
value for one of the modification methods of the referenced component.

Thus asimple behavioris of type:

seqof

(
Σ×

[
eM

i=0

Ωi×
fiM

j=1

∆i, j

])
A mandatory method callw=e.m(c) generates two statesσi andσi+1, such that

σi==(fst(σi−1), (e,c)) andσi+1==((fst(σi−1))[w:=e.m(c)], (unit, unit)). (fst σi−1)[w:=
e.m(c)] stands forfst(σi−1) with the value ofw replaced by the return value of
e.m(c). A state is acall stateif the second component is not(unit, unit).

For every methodITest.m we generate the setsbeh(ITest.m) of all simple be-
haviors where the first state and the value of the parameter satisfies the invariant
and the precondition.

Let Π be the type of the input parameter of method in question, for example
int for ITextModel.charAt, andΦ the result type, that ischar for the aforementioned
method. Afull behavioradditionally contains the values of the parameters and the
result. A full behavior is of type:

seqof

(
Σ×

[
eM

i=0

Ωi×
fiM

j=1

∆i, j

])
× (Π×Φ)

The set of full behaviors of methodITest.m is denoted bybeh(ITest.m). For full
behaviorb, the corresponding simple behavior isfst(b).

We distinguish four kinds of behaviors: (normally) terminating, aborting, mi-
raculous, and infinite behaviors. A terminating behavior is generated if the method
returns control to its caller via areturn statement or if its result type isvoid also
by executing the last statement. An aborting behavior is generated if the method
aborts, e.g., tries to access an array at an index outside its boundaries. Since abort-
ing behaviors are undesirable, we actually require both specifications and imple-
mentations to be free of them. A miraculous behavior is generated if at some
point magic is executed. An infinite behavior is generated if the operation neither
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ITest interface
CTest class
Σ type of state space ofITest
Γ type of state space ofCTest
I′ invariant ofCTest
Ωi types of references to mentioned components
∆i, j parameter types of modification methods ofΩi

⊕ sum type
× product type
fst, snd first and second projection of tuple
m prescribed method
n additional method
K prescribed constructor
L additional constructor
sbeh, beh set of simple/full behaviors
str, tr set of simple/full traces
b behavior
s, s′ simple traces
t, t′ full traces
_ concatenation of simple traces
str(ITest)∗ transitive closure of all simple traces ofITest

str( ̂ITest) union of simple traces of constructors
im(I′, I) relational image ofI underI′

Figure 14: Summary of Notation and Conventions

terminates nor aborts. The terminating (beh+(ITest.m)), aborting (beh⊥(ITest.m)),
magic (beh>(ITest.m)), and infinite behaviors (beh∞(ITest.m)) form a partitioning
of all full behaviors. The same holds for their simple counterparts.

Tracesare the observable parts of behaviors. They are generated by removing
non-observable states (states where no external calls are made) from behaviors. We
get the set of full tracestr(ITest.m) (resp. simple tracesstr(ITest.m)) by doing the
following two operations on each behaviorb in beh(ITest.m) (resp.sbeh(ITest.m)):

1. If b in beh∞(ITest.m) ends in an infinite sequence of non-call states, then
we removeb from beh∞(ITest.m) and add it with the infinite sequence of
non-call states removed tobeh⊥(ITest.m).

2. Remove all non-call states, except for the first state and ifb is final the last
state, fromb.

Simple/full traces are of the same type as simple/full behaviors. The trace set
is the union of the terminated, aborted, magic, and infinite traces.
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Likewise we generate the set of traces of the implementationCTest.m under
question. We assume that the state space ofCTest is Γ. The initial states are given
by im(I′, I && p). When computing traces for implementations, we only consider
mentioned component instances and their types. Thus the types of the traces of
ITest.m andCTest.mITest only differ in the first component of the sequences, which
is Σ, respectivelyΓ. The subscript forCTest.m is necessary becauseCTest may
implement multiple interfaces (Sect. 6.4).

We say that two simple tracess ands′ correspond at positioni, if the state parts
of the ith sequence elements are related by the invariant of the implementationI′,
taken as a relation, and the external call parts are identical:

s ∝ i
I ′ s′ def= I′(fst(s[i]), fst(s′[i])) && snd(s′[i])==snd(s[i])

We definetrace approximationunder the refinement relationI′ as follows: The
simple traces approximatess′ underI ′ (written s ¹I ′ s′) if one of the following
conditions holds:

• s ands′ are terminating,len(s)==len(s′), and(all i: 0<=i && i<len(s): s ∝ i
I ′

s′).

• s′ is magic and(all i: 0<=i && i<len(s′): s ∝ i
I ′ s′).

• s ands′ are infinite and(all i: 0<=i: s ∝ i
I ′ s′).

Greybox refinement for methodm holds if for every trace ofCTest.mITest there
is a corresponding trace ofITest.m:

ITest.m ≤I ′ CTest.mITest
def= all t′: t′ in tr(CTest.mITest):

exists t: t in tr(ITest.m):
(fst(t) ¹I ′ fst(t′)) && snd(t)==snd(t′)

To summarize: This condition requires thatCTest.m preserves the invariant,
refines its specification (call sequence, state transformation, return value), and es-
tablishes the invariant before each external call.

Additional methods. If CTest contains an additional public methodn beyond
those prescribed byITest, there must for every simple trace ofCTest.n be a finite
sequence of concatenateable traces of methods ofITest that approximates the for-
mer. For the starting states we distinguish two cases: Ifn is not prescribed by any
interface implemented byCTest and it has the preconditionp in the implementa-
tion, then the starting states areim(I′, I) && p. If n is prescribed by another interface
ITest2 with invariant I2 and state spaceΣ2, then I′ is actually a function of type
Σ→ Σ2→ Γ→ Bool. The starting states are{γ | exists σ, σ2: I′(σ, σ2, γ) && I(σ) &&
I2(σ2) && p(σ2)}.

We define concatenation (_) of simple traces as follows: Two simple traces
u and v can be concatenated ifu is terminating and iffst(u[len(u)-1])==fst(v[0]).
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In this case we first add the simple traces and then remove the two intermediary
non-call states. The concatenated trace belongs to the same kind (terminating,
aborted, magic, infinite) asv. We definestr(ITest) to be the union of all simple
traces of its modification methods —includingothers (Sect. 6.4)—, andstr(ITest)∗

the transitive closure thereof with respect to concatenation (including the empty
trace).

With these definitions we can formally express the refinement condition for
additional methods:

ITest∗ ≤I ′ CTest.nITest
def= (all s′: s′ in str(CTest.nITest):

exists s: s in str(ITest)∗: s ¹I ′ s′)

Note that for additional methods there is no equivalence criteria for parameters
or return values.

Constructors. The conditions for constructors are analogous to those for meth-
ods. The initial states are arbitrary. For simplicity, we consider the initialization
in the field declaration as part of every constructor. The condition for prescribed
constructorK3 is as follows:

ITest.K ≤I ′ CTest.KITest
def= all t′: t′ in tr(CTest.KITest):

exists t: t in tr(ITest.K):
fst(t) ¹I ′ fst(t′) && snd(t)==snd(t′)

Additional constructors are like additional methods, except that the first sim-
ple trace of the concatenated sequence must be that of a constructor. We define
str( ̂ITest) to be the union of all simple traces of the constructors ofITest. The rule
for additional constructorL then becomes:

ITest∗ ≤I ′ CTest.LITest
def= (all s′: s′ in str(CTest.LITest): exists s:

s in (str( ̂ITest)_str(ITest)∗): s ¹I ′ s′)

7 Refinement Proofs in Practice

The above trace refinement rules are difficult to apply directly. In cases where the
mandatory external calls in the specification and the implementation are embedded
in similar structures (loops, conditionals), we can use simpler data refinement in
context rules for corresponding blocks (Fig. 15). Of course, the blocks between
the external calls (S, T, S′, andT′) may contain additional structure, but this can be
ignored for our purposes.

3In most languages, constructors have the same name as the containing classes. To avoid over-
loading, we use different identifiers.
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7.1 Data refinement

We review some fundamentals of the weakest preconditions and refinement fol-
lowing [7] and of data refinement following [5].

Weakest precondition. For statementS and predicateq, wp(S,q) denotes Dijk-
stra’s weakest precondition, that is the set of states from whichS is guaranteed to
terminate inq. For S and predicatep the strongest postconditionsp(S, p) denotes
the smallest set of states in whichS may terminate if started fromp. Formally the
strongest postcondition is defined as:

sp(S, p) def= (∩ q : p ⊆ wp(S, q) : q)

Assert and guard. The assert statementassert p skips if the boolean expression
p holds and aborts otherwise. The guard statement is the dual of the assert. For
predicatep, guard p skips if p holds and magically establishes any postcondition
if p does not hold.

Algorithmic refinement. StatementS′ refines statementS, written S v S′, if it
establishes any postconditionq from any state whereS establishes it:

S v S′ def= all q: wp(S, q) ⊆ wp(S′, q)

Data refinement. Data refinement is a general technique to change the data rep-
resentation in a refinement. For relationR: Σ↔ Γ let [R] denote a nondeterministic
relational update, that is a statement fromΣ to Γ such that the states are related by
R. It is the same asany (γ′; R(σ, γ′)) {γ = γ′;} except that it also changes the state
space. StatementS′ data refines statementS under relationR, writtenS vR S′:

S vR S′ def= S; [R] v [R]; S’

7.2 Piecewise data refinement in context

In case of structural similarity (Fig. 15), we can establish greybox refinement by
proving data refinement in context of the corresponding blocks, the parameters of
external calls, and of the result values. LetS, S′, T, andT′ be statements without
any calls to modification operations of mentioned component instances. Letn
denote a modification operation, andc, c′, r, andr′ either variables or constants.
Furthermore, letc, c′, r, and r′ be fresh variables of the same types as their
correspondents without the initial underscore.

We consider separately the first block and the following blocks. For each we
develop a sequence of increasingly more general, but also more complex rules.
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interface A {
X x;
W w;
E e; // reference to other object
invariant I
int m(Z z) pre p {

S;
w=e.n(c);
T;
return r;
}
}

class B implements A {
X′ x′;
W w′;
E e′; // reference to other object
invariant I′

int m(Z z) {
S′;
w′=e′.m(c′);
T′;
return r′;
}
}

Figure 15: Structure-Preserving Refinement

Thus, if one of the stronger rules holds, they are often easier to show, especially if
done informally.

First block. The first blockS including the value of the method parameter has to
be data refined byS′:

S; c=c vI′ && c== c′ S′; c′=c′ (1a)

The assignments toc and c′ and the extension of the refinement relation guar-
antee that the values of the actual parameters of the method callse.n ande′.n are
the same.

This condition is sufficient, but too strong. We only require data refinement in
a context where the invariantI and the preconditionp hold. We express this context
with anassert statement:

assert I && p; S; c=c vI′ && c== c′ S′; c′=c′ (1b)

That we only consider contexts whereI′ holds is already determined by the
refinement relation.

Following blocks. In the rules for the second and the following blocks, it is a bit
more complicated to express the minimal context in which data refinement must
hold. The first rule does not limit the context:

w=e.n(c); T; r=r vI′ && r== r′ w′=e.n(c′); T′; r′=r′ (2a)

Here we user and r′ to assure refinement of the return values. The preceding
method callse.n, respectivelye′.n, are required because the refinement relation is
only required to hold after termination ofS andS′, but not after the method calls.

Condition (2a) is sufficient, but too strong. We only require refinement to hold
in contexts that are reachable by executingS in states whereI && p holds. This
gives us the sharper condition:
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S’ w’=e’.n(c’); T’

S w=e.n(c); TI && p

I’ I’ && c==c’ I’ && r==r’

sp(S, I && p)

sp(S', im(I',I && p))

Figure 16: Piecewise Data Refinement

assert sp(S, p && I); w=e.n(c); T; r=r vI′ && r== r′ w′=e.n(c′); T′; r′=r′ (2b)

This is the sharpest context we can describe with asserts; using guards we
can express an even weaker condition that is still sufficient. Often,S′ is more
deterministic and, therefore, gives us more context information thanS. Consider
the following correct refinement example:

I: true p: true S: any(int y; true){x=y;} T: x=1
I′: x==x′ && e==e′ S′: x′=1 T′: skip

This cannot be proved correct with the above rule, but with the following
weaker rule:

w=e.n(c); T; r=r vI′ && r== r′ (2c)
guard sp(S′, im(I′, I && p)); w′=e.n(c′); T′; r′=r′

This rule is sufficiently complete for most practical applications. A complete
rule, requiring additional concepts and notation, as well as as a proof of complete-
ness are beyond the scope of this paper.

Let condition (1) be true if (1a) or (1b) holds and let condition (2) be true if
(2a), (2b), or (2c) holds. Then we get the following theorem:

Theorem 1 (Soundness of piecewise data refinement)If conditions (1) and (2)
hold, thenA.m ≤I ′ B.m.

Figure 16 shows this piecewise data refinement in context, where solid lines
mean ‘for every choice’ and dashed lines ‘there exists a choice’. The strongest
postcondition expressions are remarks to illustrate conditions (2b) and (2c).

Insufficient conditions. To sharpen the intuition, we also list the following two
alternatives for condition (2) that are sometimes wrongfully believed to be suffi-
cient. In the first case we require data refinement of the complete method:
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S; w=e.n(c); T; r=r vI′ && r== r′ S′; w′=e.n(c′); T′; r′=r′ (f1)

The following counterexample shows that the above condition (f1) together
with (1) is insufficient. The conditions hold, but greybox refinement doesn’t be-
cause<0, 1> is not a legal sequence of states for x.

I: true p: true S: any(int y; true){x=y;} T: skip
I′: x==x′ && e==e′ S′: x′=0 T′: x′=1

The second insufficient replacement for condition (2) is ‘derived’ from the lay-
ered specification pattern (Fig. 8). It says thatpartTwo, standing forT, must be
data refined bypartTwo′, that isT′. This condition,T vI′ T′, as well as condition
(1) hold in the following example: p: true and

I: true S: skip w=e.n(c): w=1 T: w=0; x=1
I′: w==w′ && w ′==0 && x==x ′ S′: skip w′=e′.n(c′): w′=1 T′: w=0

However, trace refinement does not hold. The problem of this condition is
that it wrongfully assumesI′ to holdafter the call toe.n. If we impose and prove
the additional, unnecessarily restricting consistency requirement on specifications
that the invariants also hold after the external method calls, then we can use this
rule. For layered specifications (Sect. 3) this means that we can produce a correct
implementation by implementing —or if we write the specification as an abstract
class inheriting— the whitebox layer unchanged and proving data refinement in
context (without any calls) of the blackboxes.

Sufficient conditions for additional methods and for constructors using data
refinement in context follow the same pattern as conditions (1) and (2).

8 Towards a Greybox Specification Language

In this paper we have used invariants, preconditions, specification statements, ab-
stract data types, and loops over sets as extensions to Java for formulating compo-
nent contracts. The final definition of a greybox specification language is subject
to future research. To get some feedback what constructs such a language needs
to embrace, we have conducted a number of small to medium sized case studies
within our group. The most notable example [48] is the specification of a part of
the text subsystem of the commercial BlackBox Component Framework [38]. The
language used for this was an extension of Component Pascal [39], the implemen-
tation language of the BlackBox Component Framework. The greybox specifica-
tion was shown to be consistent with the original blackbox specification provided
with the product.

There are two reasons why it is important to fix a greybox language and not just
use ad-hoc notations. First, tool support can only be provided for a clearly defined
language. Second, ad-hoc notations are subject to different interpretations. Below
we summarize the specification extensions used in our case studies:
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• Invariants and method preconditions with universal and existential quantifi-
cations (Sects. 2.2, 4).

• Fields, private members (methods, fields), and constructors in interfaces
(Sects. 2.2, 4).

• Modifier inquiry for inquiry only methods (Sect. 4).

• Special methodothers to provide for more modifications in additional meth-
ods (Sect. 6.4).

• Abstract data types set and sequence of objects together with the common
operations (Sect. 2.2).

• Loop (do ) to iterate over sets and sequences (Sect. 4).

• Specification statementany (Sect. 4).

• Non-deterministic control structure. The statementchoose {S1 | S2 | . . . |
Sn} nondeterministically chooses one of theSi ’s and executes it.

9 Related Work

In this section, we discuss whether and how other specification methods can be
utilized to (1) specify both state transformations and mandatory calls and (2) prove
refinement of both aspects in implementations.

Pre/post specifications. As discussed, methods that are based on pre/post spec-
ifications (without an explicit encoding of the external call trace) cannot specify
mandatory external calls that the component must make. This restriction also
applies to Meyer’s design by contract [29, 31] and the Java Modeling Language
(JML) [27], although they are especially targeted at component-based develop-
ment, respectively a language for this paradigm. As pointed out (Sect. 3), we
can express layered specifications with notations, such as Eiffel, that express both
white- and blackbox specifications. However, none of these approaches comes
equipped with refinement rules that also preserve the external call sequence.

We are not aware of any pre/post specification-based methods that actually
encode the call sequence with the respective states into trace variables (Sect. 2.3.1)
to achieve the same expressiveness as greybox specifications.

B, VDM, and Z. The B method [1] uses a combination of preconditions and ab-
stract statement sequences to specify operations. The operation bodies can contain
calls to operations of imported modules. However, in refinement steps only the
overall state transformation, but not the external call sequence needs to be pre-
served. Thus, B does not solve the problem at hand. Related methods such as Z
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[46], VDM [24], VDM++ [14], and RAISE [42] do not give a better grip on the
problem.

Class refinement. Mikhajlova and Sekerinski [34, 33, 35] also use a refinement
calculus-based extension of Java with nondeterministic constructs and abstract data
types for their treatment of class refinement. Although possible in their framework,
they do not consider mandatory external calls, but only concentrate on local state
transformations. Implementation correctness is based on data refinement of state
transformers only. Because they equal non-termination with abortion, they do not
have a practically useful treatment of methods that make infinitely many external
calls either. Their condition for additional methods is weaker than ours: Additional
methods must simply preserve the strongest invariant implied by existing methods;
thus, preserve absolute rather than relative (from the current) state reachability as
we demand. This would not be a sensible option for greybox refinement because
no refinement of external call sequences could be demanded. Relative reachability
is mentioned as a proof technique in [33]. No provisions, such as our specialothers
method, are made for additional methods to perform supplementary modifications.

Class refinement has also been studied under the name behavioral subtyping
in less formal settings guaranteeing only partial correctness by America [2] and
by Liskov and Wing [28]. However, because pre/post specifications are used these
approaches are not suitable for the problem at hand either.

Refinement calculi. As exemplified by our own proposal, the refinement calculi
of Back [4, 7] and Morgan [36] with their abstract statement notation can be used
to specify external calls. However, their refinement rules only take the state trans-
formations, but not the calls, into account.

Contracts of Helm, Holland, and Gangopadhyay. Helm et al. define a mostly
syntactic notion of interaction contracts [20, 21] for the object-oriented design
of components. External calls can be explicitly specified. However, lacking the
distinction between modification and enquiry operations, all specified calls are
mandatory. As a consequence, not only the call todeleteNotification in ITextModel.
deleteCharAt, but also the call corresponding to ourgetCharAt in ITextObserver.
deleteNotification is explicitly mentioned to be mandatory in their treatment of the
observer pattern.

Call sequences can be specified using sequential and parallel composition as
well as conditionals. The local state change is indicated by a combination of post-
condition and place where the modification should be executed:

SetValue(Value val) {∆value; Notify();} [value==val]

This means that first, indicated by the∆value, value should be set so as to satisfy the
postcondition, that is toval. This notation does not work if several changes should

27



be made. For example, the following specification, presented in our notation, can
not be expressed in theirs:

SetTwoValues(Value val1, Value val2) {value=val1; Notify(); value=val2;}

Hence, their notation cannot satisfactorily be used to express the states in which
external calls have to be made. Furthermore, no operation preconditions can be
expressed.

Holland’s thesis [21] gives part of an operational semantics for an object-
oriented programming language and for interaction contracts. However, no seman-
tic reasoning is done. There is a notion of contract refinement to design specialized
contracts; however, no clear semantic conditions are listed and the examples are
such that not even the state transformation aspect can be captured by any standard
notion of semantic refinement. No conditions for the correct implementation of
specified call sequences and state transformations is given. The notion of contract
refinement is not applicable for proving implementation correctness, because there
is a fundamental dichotomy between contracts (specifications) and class imple-
mentations in their work. The OOram method [43] partly expands on these ideas,
but does not solve the problems discussed in this paper.

UML. Different kinds of diagrams from the Unified Modeling Language (UML)
[45] can be used to specify both state changes and call sequences. Sequence and
collaboration diagrams —collectively called interaction diagrams— show interac-
tions of fixed sets of objects, including the messages sent among them. The more
common instance form describes one actual sequence of message interchanges;
thus, it is not appropriate for general specifications. On the other hand, the generic
form describes all possible sequences using loops and branches. Using loops, we
can also indicate messages sent to an a priori unknown set of objects, such as our
observers. There is no notation to distinguish between mandatory and optional
calls. The main focus of interaction diagrams are the possible message sequences.
State changes can be indicated by placing a copy of an object icon showing those
modifications. No invariants or operation preconditions can be expressed in col-
laboration diagrams. Thus no consistency check (Sect. 4.1) is possible. Figure 17
shows the collaboration diagram approximatingITextModel.deleteCharAt.

In our experience, interaction diagrams that make use of loops, branches, and
object icon duplication to express greybox specifications quickly become crowded
and unreadable. We are not aware of any use of interaction diagrams in the sense
of greybox specifications. UML has no formal semantics. Furthermore, it lacks
a notion of refinement and, therefore, cannot be used to assert the correctness of
implementations based on UML diagrams. The object message sequence chart
[10] and the message sequence chart notations [22], from which UML sequence
diagrams are derived, have the same limitations.

Activity diagrams can also be used to model operations. They give flowchart-
like representations as used in visual programming languages. However, even the
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: ITextModel : ITextModel : ITextObserver

1: deleteCharAt(p) 1.1: «become»
text = text[0..pos-1]+text[pos+1..len(text)]

1.2 *[o in registeredObservers]:
deleteNotification(p)

Figure 17: Collaboration Diagram forITextModel.deleteCharAt

principal authors of UML admitted that this is usually more cumbersome than a
textual representation [8]. Furthermore, there is no clear notation to indicate exter-
nal calls and activity diagrams lack both a formal semantics and refinement rules.

Catalysis. Catalysis [16], a method specifically targeted at the development of
components and frameworks, contains a several possibilities to indicate what ex-
ternal calls must be made during the execution of a method. For most cases, the
preferred way is to use UML statechart diagrams. Statecharts show state machines
that emphasize the flow of control from state to state. Although state changes,
external calls, conditionals, and loops can all be encoded in the Catalysis version
of statecharts, they are really meant for higher levels of abstraction and, therefore,
quite cumbersome to use for greybox-like specifications. Catalysis does not pro-
vide a clear semantics and refinement rules that preserve all relevant aspects.

Another option, time indexes provide a way to refer to refer to values of vari-
ables at different times. For example,x@j==x@i +3 in a postcondition expresses
that the value ofx at time j must equal to the value ofx+3 at time i. This, in our
opinion cumbersome encoding, suffers from the same semantic problem in con-
junction with methods that refer to global state as the primed notation in Sec. 2.2.

Sequence expressions can express sequencing constraints on external method
calls using sequential composition, alternative, arbitrary iteration, and concurrency,
but no conditionals. Time indexes can be used for parameters of calls in message
sequences, but it is impossible to indicate in which states external calls have to be
made.

Catalysis differentiates between optional and mandatory calls. Unlike in our
approach where this distinction is based on the kind of the called method, Catal-
ysis lets the call specifier optionally indicate mandatoryness. Catalysis lacks a
formal semantics and has only vague informal refinement rules for asserting the
correctness of an implementation.

No other surveyed method, such as Fusion and OOAD, gives a better grip on
the problem.

Algebraic specifications. Algebraic specifications suffer from the same deficien-
cies as pre/post specifications. Consider the typical stack example. For stacks and
elemente, s==pop(put(s, e)). Here we cannot specify what external method calls
methodspop andput must make.
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10 Conclusions

Specification approaches that only relate the state prior to operation invocation to
the state after operation termination are insufficient to cope with call-backs in ex-
tensible systems: The sequence of external calls and the respective states in which
the latter must be made cannot be specified. An encoding with auxiliary trace
variables could theoretically solve this problem, but in practice this would be very
complex and almost unreadable.

Specifications that only relate pre- and post-operational states are called black-
box. As the other extreme, whitebox specifications contain all implementation
details which often makes them too restrictive. On the middle ground there are two
possibilities. In a discrete combination of the concepts one can layer a whitebox
on blackboxes. On a continous scale, we recommend a new method which we call
greybox.

To specify external calls, we proposed component interface specifications to
draw on abstract programs rather than on pure blackbox views. Formally, this ap-
proach has a sound basis in the refinement calculus. Practically, abstract programs
are very close to the programmers’ intuition. To increase acceptability further, we
recommend to define a greybox specification language as a natural extension of an
implementation language. In this paper we used such an extension of Java.

Finally, we have given refinement rules for establishing the correctness of im-
plementations with respect to specifications. These rules can be used for fully
formal reasoning, but also give an intuition for informal justifications.

Greybox specifications also have a number of ‘soft’ advantages [3]: They are
(usually) shorter than source code, tend to be more readable than large postcondi-
tions —even without trace encoding—, scale better, and allow to indicate enough
detail for resource-efficient reuse. Here, we have on purpose not discussed these
advantages in order not to distract from the fundamental problem solved by grey-
box specifications.
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